当前位置:文档之家› 建筑防水材料的人工加速老化试验

建筑防水材料的人工加速老化试验

建筑防水材料的人工加速老化试验
建筑防水材料的人工加速老化试验

建筑防水材料的人工加速老化试验

参照标准

GB250-1995 评定变色用灰色样卡

GB730-1998 纺织品色牢度试验耐光和耐气候色牢度蓝色羊毛标准(eqvI SO 105-B:1994) GB/T3511-1983 橡胶大气老化试验方法

GB/T16777-1997 建筑防水涂料试编方注

GB/T18244-2000 建筑防水材料老化试验方法

人工气候加速老化(氙弧灯)

采用设备:氙灯耐候试验箱

设备型号:CLM-SN-900A

1 原理

用人工的方法,模拟和强化在自然气候中受到的光、热、氧、湿气、降雨为主要老化破坏的环境因素,特别是光,以加速材料的老化。按标准检测评定性能变化,从而获得近似于自然气候的耐候性。

试验装置(型号:CLM-SN-900A)

1 试验箱的中心安装光源一氙弧灯,箱内有一个安装试样架的转鼓,设有氙灯功率、温度、湿度、喷水周期等指示及自控装置,干湿球温度自动记录仪及计时器。箱体有一个控制循环空气的调节器,用来调节黑板温度和排出箱内的臭氧。根据需要,箱上还设有光照周期开关。2氙弧灯

氙弧灯是试验光源,其光谱的波长从270n m以下短波紫外区,经可见光谱扩展到红外区。氙灯发出的辐射要经过滤光,滤掉较短的紫外光波并尽可能滤掉红外光波,使达到试样表面的光谱极接近太阳光的光谱,与表4的光谱能量分布一致。建议选择波长在290 nm至800 nm 间的辐照度为550 W/m'o

试验步骤

3.4.1 试样安装

除另有规定,试样一般按自由状态安装在试样架上,应避免试样受外应力的作用。试样架固定在试验箱的转鼓上时,试样的曝露面要对正光源,试样工作区面积要完全曝露在有效的光源范围,并且要方便调换试样的位置。在与氙灯轴平行的试样架上,任意两点的试样表面辐照度的变化不应超过to%,否则应定期调换试样位置,使其在每一位置都得到相等的辐照度。

3.4.2 曝露试验

开动试验箱,调好规定的试验条件,并记录开始曝露时间。在整个曝露期间要保持规定的试验条件恒定。放入或取出试样时,不要触摸或碰撞试样表面。

3.4.3 辐射量的测定

辐射量的测定有两种方式:

a)连续测定:用积算照度计连续测定累计总辐射量。

b) 间断测定:用辐射计测定一段曝露时间的辐射量,再求出总的辐射量。

测定时将感光器固定在适当位置上,使感光器所测得的辐射值相当于试样位置上的辐射值。辐射量也可以用其他物质标准测定。

3.4.4 试验周期

试验期限应根据产品标准决定,以某一规定的曝露时间或辐射量,或性能降至某一规定值时的曝露时间或辐射量。通常可选720 h(累计辐射能量1 500 MJ/m')或更长。

3.4.5 性能测定

按预定试验周期从试验箱中取出试样进行各项性能的测定。

3.4.5.1 外观检测

用目测或仪器检测试样表面,评定曝露后试样表面颜色或其他外观变化。试样外观检测的方法,按GB/T 3511进行。

3.4.5.2 其他性能测试按产品标准中规定进行。

3.5 试验结果

试样老化后的试验结果可用试样曝露至某一时间或辐射量时的外观变化程度或性能变化率表示,也可用试样性能变化至某一规定值所需的曝露时间或辐射量表示。

3.5.1 试样外观变化程度分0-4级,按5.5.1的规定进行评定。

3.5.2 试样性能变化可按外观、拉伸性能变化率、低温柔度或产品标准规定进行。

NBR加速老化试验预测橡胶使用寿命

加速老化预测NBR橡胶的使用寿命 摘要:橡胶材料的性能及橡胶组件使用寿命的预测、估算在橡胶组件的设计过程中有着重要的作用。我们通过加速老化试验和模拟相结合的办法,对橡胶材料在氧气环境中的寿命预测做了很多年的研究。这篇论文研究了热老化对橡胶性能的影响,同时也对冷冻机用,丁腈橡胶(NBR)橡胶组件的使用寿命进行了预测。实验结果表明橡胶组分影响着橡胶的交联密度;老化时间及活化能可以很好的用以描述老化行为;通过单轴拉伸试验得到应力应变曲线。为了预测NBR的使用寿命,对NBR橡胶做了50℃到100℃,1天到180天的加速老化试验,并测试了一系列的物理性能试验。通过阿伦尼乌斯方程进行了计算,并通过压缩永久变形试验,本文提出了一系列方程用以预测橡胶材料使用寿命。 关键词:加速试验,丁腈橡胶,活化能,交联,三元乙丙橡胶,热老化,寿命预测,橡胶材料。 符号缩写:C.S 压缩永久变形;d0 样品的厚度;d1压缩状态下样品厚度;d2 卸载后厚度 k 交联密度变化程度;(K)T 反应速率;A,B 常数;E 反应活化能;R 气体常数;T 绝对温度 I 前言 橡胶是一种最为通用的材料,有着广泛的用途,甚至很难说清它到底有多少用途。从普通的家用,商用,汽车制造等到高尖端的航天航空工业都有橡胶的身影。许多橡胶组件在使用中需要承受一定的机械力作用,为了保证橡胶组件的安全性和可靠性,使用寿命的预测估算是一项关键技术。如何防止橡胶组件在使用过程中损坏是一个关键问题。橡胶组件在使用过程中承受着一定的载荷,还受到温度,辐射以及一些其它的有害物质的影响。所有的影响因素结合在一起,导致了橡胶物理及化学结构的改变,最终表现为橡胶机械性能的降低。橡胶在使用了一段时间后,开始老化,通常表现为挺性增加,阻尼性能下降。老化不光光影响了性能,同时也影响了组件的使用寿命。橡胶组件所处环境的不同,使得它们的降解方式也不一样。橡胶组件的逐步老化降解,不仅与外部因素有关,同时与橡胶基体本身以及橡胶里面的添加剂有关。广义上讲,橡胶的老化是这些因素的一个加和。这些因素具体起到了多大的作用,很难计算出来。它们的分类可以见表1。 表1 橡胶老化因素表 冷冻机中空压机部分所使用的橡胶组件的使用寿命是它的一项关键指标。在使用过程中,直到这些橡胶组件被替换下来之前,它们必须保持足够的物理机械性能,但是受到温度、湿度、紫外光、臭氧、化学物质、载荷的影响,它们的使用寿命又很难估算。所以找到橡胶的统一属性和它处于的环境影响,并预计它的寿命显得非常重要。通过对橡胶材料降解老化的研究,可以为提高使用寿命,增加可靠性提供必要的条件。 橡胶硫磺硫化体系形成的交联网络,随着热老化的不断进行而发生着改变。受到热老化后,高硫磺含量硫化体系形成的交联网络的变化要大于低硫磺含量硫化体系所形成的交联网络。

常用三种加速老化测试模型

在环境模拟试验中,常常会遇到这样一个问题:产品在可控的试验箱环境中测试若干小时相当于产品在实际使用条件下使用多长时间?这是一个亟待解决的问题,因为它的意义不仅仅在于极大地降低了成本,造成不必要的浪费,也让测试变得更具目的性和针对性,有利于测试人员对全局的掌控,合理进行资源配置。 在众多的环境模拟试验中,温度、湿度最为常见,同时也是使用频率最高的模拟环境因子。实际环境中温度、湿度也是不可忽略的影响产品使用寿命的因素。所以,迄今将温度、湿度纳入考量范围所推导出的加速模型在所有的老化测试加速模型中占有较大的比重。由于侧重点的不同,推导出的加速模型也不一样。下面,本文将解读三个极具代表性的加速模型。 模型一.只考虑热加速因子的阿伦纽斯模型(Arrhenius Mode) 某一环境下,温度成为影响产品老化及使用寿命的绝对主要因素时,采用单纯考虑热加速因子效应而推导出的阿伦纽斯模型来描述测试,其预估到的结果会更接近真实值,模拟试验的效果会更好。此时,阿伦纽斯模型的表达式为: AF=exp{(E a/k)·[(1/T u)-(1/T t)]} 式中: AF是加速因子; E a是析出故障的耗费能量,又称激活能。不同产品的激活能是不一样的。一般来说,激活能的值在0.3ev~1.2ev之间;

K是玻尔兹曼常数,其值为8.617385×10-5; T u是使用条件下(非加速状态下)的温度值。此处的温度值是绝对温度值,以K(开尔文)作单位; T t是测试条件下(加速状态下)的温度值。此处的温度值是绝对温度值,以K(开尔文)作单位。 案例:某一客户需要对产品做105℃的高温测试。据以往的测试经验,此种产品的激活能E a取0.68最佳。对产品的使用寿命要求是10年,现可供测试的样品有5个。若同时对5个样品进行测试,需测试多长时间才能满足客户要求? 已知的信息有T t、E a,使用的温度取25℃,则先算出加速因子AF:AF=exp{[0.68/(8.617385×10-5)]·【[1/(273+25)]- [1/(273+105)]】}最终: AF≈271.9518 又知其目标使用寿命: L目标=10years=10×365×24h=87600h 故即可算出: L测试= L目标/AF=87600/271.9518h=322.1159h≈323h 现在5个样品同时进行测试,则测试时长为:

塑胶类材料人工加速老化测试常用那些标准

塑胶类材料人工加速老化测试常用那些标准 塑料材料由于其组成的不同,在不同的环境情况下会存在不同程度的老化情况。了解材料或者产品耐老化的能力如何,就需要做一些人工加速老化试验,以下是一些常见的老化测试项目以及标准: 氙灯老化( Xenon-Arc Weathering)常用的测试标准: ASTM G155-05a氙灯老化测试实验; ASTM D2565户外用塑料的氙弧型曝光装置的标准实施规范; ASTM D4459室内使用塑料氙弧灯曝光加速老化试验; ASTM D3424-01印刷品氙灯老化测试; ASTM D4355土工布氙灯老化试验; ISO 4892-2:2006实验室光源曝露-氙灯; ISO 11341 涂料氙灯老化试验; GB/T 16422.2:1999 塑料实验室光源曝露试验-氙灯; GB/T 1865 色漆和清漆氙灯老化试验; AATCC 169 纺织品耐气候测试:氙弧灯曝晒法; SAE J1885、SAE J2412、SAE J1960、SAE J2527汽车内饰件氙灯老化测试. 碳弧灯老化(Carbon-Arc Weathering)测试常用的测试标准 ASTM G152,cycle 1,2,6碳弧光老化测试;

ASTM D3361涂料碳弧光老化测试; ASTM D822 涂料碳弧光老化测试; ASTM D1499碳弧光老化测试; JIS D0205-1987 汽车零件耐候性试验方法。 紫外老化( QUV Weathering)常用的测试标准 ASTM G154/G53非金属材料荧光紫外灯曝露试验操作; ASTM D4329 塑料的荧光紫外线曝露试验; ASTM D4587 涂料老化测试(紫外老化); AATCC 186 耐气候性:紫外线和湿度暴露; ISO 4892-3:2006 实验室光源曝露-荧光紫外灯; ISO 11507 涂层暴露于荧光紫外灯和水; SAE J2020汽车外饰材料UV快速老化测试; GB/T 16422.3紫外光老化试验标准。 臭氧老化(Ozone Aging)测试常用的测试标准: ASTM D1149橡胶臭氧老化测试; ASTM D1171 橡胶臭氧老化测试; ISO 10960 橡胶和塑料软管臭氧老化测试; ISO 7326 橡胶和塑料软管静态条件下抗臭氧性能评估;

人工气候试验箱

◎人工气候试验箱 固定,以防止设备在运行中下滑,非常麻烦。 以上所谓"七大"误区均是造成传统烘干机产量低、成本高、热能大量流失、成品质量过差的致命弱点。新工艺烘干技术在生产中所表现出来的"五种"奇特现象: MLS-225 精密鼓风干燥箱(精密烤箱),60℃低温,中小型 主要特征 PID数字智能温控,按键设定,自动恒温,操作简单 不锈钢内胆及风道,烘箱内清洁无污染,烘箱使用年限长 采用固态继电器(SSR)配合加热控制,控温准确,无传统接触器频繁吸合噪音

大流量热风循环,箱内温度均匀 不锈钢加热管,热效能高,使用寿命是普通加热管的数倍 恒温定时功能,设定时间完成后自动停止加热,并可蜂鸣提示 耐用与坚固的设计制造,即使24小时365天连续工作也可胜任 本型可依需求适当调整内部尺寸、最高温度等,使用户实现最佳使用 效能,且未必需要增加额外的费用 规格参数 内胆规格:(高x宽x深)750x600x500mm 温度范围:RT+10--60℃ 工作电源:380V 50HZ 三相线+零线+地线 材质:内胆#SUS不锈钢板,外部冷轧钢板,玻璃纤维棉隔热保温 发热体:不锈钢加热管 加热功率: 1.5KW 热风循环:特制耐高温长轴电机,多翼式离心风轮;工作室内从左至右水平运风 温度控制:PID+SSR控温,按键设置,设置值与实际温度LED数字显示;测温Pt100输入升温时间:常温升至60℃在15分钟内(空载) 温度均匀性:正负1.5% 定时:最大99.9小时恒温定时,时到停止加热,蜂鸣提示 搁架:4层,出厂时标配2块不锈钢网搁板 安全装置:超温保护与报警;漏电、短路、过载保护;鼓风电机过载、缺相保护 选配:增减隔层数和不锈钢网搁板;程序温控 其他规格:可根据用户需求定制各类规格与功能的烘箱(干燥箱/烤箱)

防水涂料最常用的性能指标的六大检测方法

防水涂料常用指标的六大检测方法 防水涂料常用指标的六大检测方法 一、成膜厚度检查; 应采用针穿刺法每100平米刺三个点,用尺测量其高度,取其平均值,成膜厚度应大于2毫米。穿刺时应用彩笔做标记、以便修补。 二、断裂延伸率检查: 在防水施工中,监理人员可到施工现场将搅拌好的料,分多次涂刷在平整的玻璃板上(玻璃板应先打蜡),成膜厚度1.2-1.5毫米,放置7天后,在1%的碱水中浸泡7天,然后在50℃土2℃烘箱中烘24小时,做哑铃型拉伸实验,要求延伸保持率达到80%(无处理为200%)。如达不到标准,说明在施工中乳液掺加比例不足。 三、耐水性检查: 将涂料分多次涂刷在水泥块上,成膜厚度1.2-1.5毫米,放置7天,放入1%碱水中浸泡7天,不分层,不空鼓为合格。 四、不透水性检查: 在有条件下,应用仪器检测,其方法是将涂料按比例配好,分多次涂刷在玻璃板上(玻璃板先打蜡),厚度为1.5毫米,静放7天,然后放人烘箱内50℃±2℃烘24小时,取出后放置3小时,做不透水实验,不透水性为0.3MPa。保持30分钟无渗漏为合格。 若条件不具备,可用目测法检查防水效果,方法是将涂料分4—6次涂刷到无纺布上,干透后(约24h)成膜厚度为1.2-1.5毫米,做成缓盒子形状吊空,但不得留有死角,再将1%碱水加人盒内,24h无渗漏为合格。 五、粘结力检查: G型聚合物防水砂浆,可直接成形“8”字模,24小时后出模。放人水中浸泡6天,室内温度25℃±2℃干养护21天,做粘结实验。G型防水砂浆,灰:水:胶=1:0.11:0.14,G型防水砂浆为2.3MPa。 将R型涂料和成芝麻酱状,将和好的涂料涂到两个半“8”字砂浆块上,放置7天做粘结实验,R型配比(高弹),粉:胶=1:1.4;(中弹),粉:胶=1:0.8-1。R型为0.5MPa,大于等于粘结指标为合格。 六、低温柔度检查: 在玻璃板上打蜡,将施工现场搅拌好的涂料分多次涂刷在玻璃板上,成膜厚度1.2-1.5毫米,干透后从玻璃板上取下,放置室内(25℃±2℃)7天,然后剪下长120-150毫米,宽20毫米的条状,将冰箱温度调

加速老化实验

山东华普医疗科技有限公司 加速老化试验 版本/修改状态:生效日期: 文件编号:发放号:控制状态:拟制:审核:批准:

加速老化实验计划 一、使用范围 本公司生产的一次性使用氧气面罩,一次性使用鼻氧管,医用雾化器及其外包装。 二、过程要求 1、微生物屏障 2、无毒性 3、物理特性的符合性 4、化学特性的符合性 5、生物特性的符合性 三、预计完成时间: 老化实验前 全能性实验:2012年5月20日前 包装验证实验:2012年5月22日前 阻菌实验:2012年5月24日前 老化实验时间:2012年5月26日前 加速第一年验证 无菌实验:2012年6月18日前 全能性实验:2012年6月25日前 包装验证实验:2012年6月25日前 阻菌实验:2012年6月27日前 加速第二年验证 无菌实验:2012年7月1日前 全能性实验:2012年7月8日前 包装验证实验:2012年7月8日前 阻菌实验:2012年7月10日前 加速第三年验证 无菌实验:2012年7月15日前 全能性实验:2012年7月22日前 包装验证实验:2012年7月22日前 阻菌实验:2012年7月24日前 加速第四年验证 无菌实验:2012年7月29日前 全能性实验:2012年8月6日前 包装验证实验:2012年8月6日前

阻菌实验:2012年8月8日前 加速第五年验证 无菌实验:2012年8月13日前 全能性实验:2012年8月20日前 包装验证实验:2012年8月20日前 阻菌实验:2012年8月22日前 目的:在有效期三年内和三年有效期外,通过对我公司产品检验实验,来验证我们的产品规定为三年的有效期是有科学依据的,可靠有效的。

人工紫外加速老化和自然老化测试结果间的相关性

人工紫外加速老化和自然老化测试结果间的相关性 长期以来,人工加速老化和自然老化测试结果间的相关性问题一直是业内关注的热点。一般来说,工业上要求快速地得出老化测试结果,同时要求实验室人工加速老化和自然老化测试结果间有较好的相关性,然而实际上这两个要求是相互矛盾的。人工加速老化方法使用比实际环境更高的测试温度、更短波长光源、更大的辐照强度,在加速材料老化进程的同时,降低了与自然条件材料老化结果的相关性。 QUV加速老化设备配备的UVA-340 灯管提供了一个新的解决方案。UVA-340紫外灯光源能很好地模拟太阳光谱中短波紫外光( <365 nm部分)。由于UVA-340紫外灯光源所模拟的太阳短波紫外光通常是引起聚合物破坏的主要原因,理论上这种方法的测试结果和户外自然老化的相关性较好。为了验证这一点,我们针对户外自然曝晒和使用UVA-340 紫外光源人工加速老化的相关性进行了一系列的实验。 人工加速老化和自然老化测试结果间的相关性: 1 实验 本实验选用了环氧涂料、聚氨酯涂料以及聚酯涂料,分别进行户外自然曝晒和紫外人工加速老化实验,记录实验中样品光泽和颜色的变化。 1.1户外自然曝晒实验 由于全球各地户外自然曝晒的情况很不相同,为了准确地评价实验,这里选择了三种不同的典型气候类型:亚热带气候( 佛罗里达的迈阿密)、沙漠气候( 亚利桑那的凤凰城) 和美国北方工业型气候(俄亥俄州的克里夫兰) 。 户外自然曝晒严格按照ASTM G7《非金属材料的户外自然曝晒试验标准》执行。被测试样的背板为厚1.6mm的夹板,试样架45°,朝南。 1.2人工加速老化实验 人工加速老化测试按照ASTMG154《非金属材料的紫外老化测试方法》执行。实验设备为紫外加速老化试验机。该试验箱具有闭环反馈回路系统控制,可设定并控制UV光辐照强度。试验使用UVA-340紫外灯管,光强峰值为343nm,截止点为295nm。为了排除不同温度对实验结果的影响,测试温度统一设定在50℃。 实验分别在三种不同的循环条件下测试: 条件1 :4 h紫外光照射,4h 冷凝;UVA-340灯管的辐照点控制在0.83W/(m2·nm)@340nm;整个测试循环温度控制在50℃。本测试循环中紫外的辐照强度相当于夏天正午的太阳光照。 条件2 :4 h紫外光照射,4h 冷凝;UVA-340灯管的辐照点控制在1.35W/(m2·nm)@340 nm;整个测试循环温度控制在50℃。条件2与条件1基本类似,但辐照度更强。 条件3 :4 h紫外光照射(100 %紫外辐照,无冷凝,无暗周期);UVA-340灯管的辐照点控制在1.35W/(m 2·nm)@340 nm;整个测试循环温度控制在50℃。 2 结果与讨论 2.1环氧涂料 样板为涂覆在钢板上的高光灰色环氧涂料。 户外自然曝晒在一开始就表现出快速地失光和粉化,曝晒1年后,样板基本无光泽。此外,三个曝晒地点的样品都出现锈蚀现象,在佛罗里达的样板表面完全为锈斑所覆盖,而在亚利桑那和克里夫兰的样板有部分锈蚀。 人工加速老化测试中,样板很快失光,辐照强度越高,样板失光越快。此外带有冷凝循环时样板易粉化,单纯采用紫外辐照的则不易产生粉化。 从以上的数据可以看出,就环氧涂料的光泽和粉化的变化而言,带有冷凝循环的人工加速老化实验结果和户外自然曝晒的结果相关性较好。但由于ASTMG154标准要求测试采用纯水,因此实验结果没有产生户外自然曝晒中出现的生锈现象。如果改为使用腐蚀性溶液可能更接近户外自然曝晒,估计样板会产生生锈现象。建议实际使用中,结合采用盐雾/ 紫外人工老化测试以达到更接近自然的结果。 2.2聚氨酯涂料 样板采用涂覆在钢底材上的高光灰色聚氨酯涂料。 户外自然曝晒中佛罗里达和亚利桑那的光泽下降较快,俄亥俄州的光泽下降较慢。曝晒2年后,所有样板钢底材全部裸露。三个户外自然曝晒点的样板都发生锈蚀现象。其中佛罗里达样板的生锈面积达整个面积的20%,俄亥俄的样板仅有几个锈点,而亚利桑那样板几乎无锈蚀。 人工加速老化测试中带有冷凝循环条件的测试的样板失光较快,并伴有粉化现象。而单纯采用紫外辐照条件的测试样板失光速度较为缓慢且无粉化现象。

建筑工程中常用防水材料的检测方法分析

建筑工程中常用防水材料的检测方法分析 使用防水材料可以有效提高建筑工程的防水性能,如果防水材料不合格必然会严重影响建筑质量。因此,要使用正确的检测方法来检验各种防水材料。本文将简单介绍建筑工程常用防水材料,并探讨检测方法。 一、建筑工程常用防水材料 常用的建筑防水材料主要包括水泥基渗透结晶型防水材料、喷膜防水材料、防水涂料、高性能沥青混凝土排水铺装用防水材料。水泥基渗透结晶型防水材料的基本组成物质有硅酸盐水泥、活性化学物质、石英砂。这种防水材料有两大特点,即渗透与结晶,活性化学物质能够渗透到混凝土中,形成不溶于水的结晶,从而提高混凝土的密度与防水性能。喷膜防水材料也叫做丙烯酸盐喷膜防水材料,含有丙烯酸系化合物和膨润土,丙烯酸盐的凝固点比较低,可以作为优质灌浆,膨润土能够改善丙烯酸盐的结构与力度,提高丙烯酸盐喷膜防水材料的耐腐蚀性。防水涂料是防水性能良好的涂料,属于一种液态施工的单组分环保型装饰涂料,基本成分包括聚氨酯预聚体、沥青和无焦油等。聚氨酯预聚体是一类聚合物的统称,通过异氰酸酯(带功能团-NCO)与醇类(带-OH功能团)反应而成,异氰酸酯不溶于水,用来制作表面涂料可以起到良好的防水作用。沥青这种石油状物质粘稠

度很高,主要由碳和氢的化合物组成,一般在建筑工程建设中用于屋顶覆盖层和地板贴砖,不仅具有防水性能,而且可以提高隔音效果。无焦油是一种不溶于水又无污染的油脂,在防水涂料中添加无焦油既能够提高防水性能与防蚀性能,而且美观无污染,具有美化与装饰作用。建筑科技将防水涂料分为三大类型和15个品种。 从表1可以看出使用塑料型改性沥青防水涂料的效果最佳,这种涂料的断裂延伸性比较差,所以要加大涂料的密度以提高涂料的延伸力度。 高性能沥青混凝土排水铺装用防水材料主要是由树脂防水材料和沥青混凝土组成的,具有刚性、柔性和绿色环保的功能,能够起到排水的作用。 二、建筑工程中常用防水材料的检测方法 (一)检测水泥基渗透结晶型防水材料的方法 渗透与结晶是水泥基渗透结晶型防水材料的两大特点,基本组成物质有硅酸盐水泥、活性化学物质、石英砂,在检验水泥基渗透结晶型防水材料时应该先检验这种材料的渗透能力与结晶体是否达标,然后再测试硅酸盐水泥、活性化学物质、石英砂的参数比例,通过加入

医疗器械加速老化实验方案及报告

华普医疗科技 加速老化试验 版本/修改状态:生效日期: 文件编号:发放号:控制状态:拟制:审核:批准:

加速老化实验计划 一、使用围 本公司生产的一次性使用氧气面罩,一次性使用鼻氧管,医用雾化器及其外包装。 二、过程要求 1、微生物屏障 2、无毒性 3、物理特性的符合性 4、化学特性的符合性 5、生物特性的符合性 三、预计完成时间: 老化实验前 全能性实验: 2012年5月20日前 包装验证实验: 2012年5月22日前 阻菌实验: 2012年5月24日前 老化实验时间: 2012年5月26日前 加速第一年验证 无菌实验: 2012年6月18日前 全能性实验: 2012年6月25日前 包装验证实验: 2012年6月25日前 阻菌实验: 2012年6月27日前 加速第二年验证 无菌实验: 2012年7月1日前 全能性实验: 2012年7月8日前 包装验证实验: 2012年7月8日前 阻菌实验: 2012年7月10日前 加速第三年验证 无菌实验: 2012年7月15日前 全能性实验: 2012年7月22日前 包装验证实验: 2012年7月22日前 阻菌实验: 2012年7月24日前 加速第四年验证 无菌实验: 2012年7月29日前 全能性实验: 2012年8月6日前 包装验证实验: 2012年8月6日前

阻菌实验: 2012年8月8日前 加速第五年验证 无菌实验: 2012年8月13日前 全能性实验: 2012年8月20日前 包装验证实验: 2012年8月20日前 阻菌实验: 2012年8月22日前 目的:在有效期三年和三年有效期外,通过对我公司产品检验实验,来验证我们的产品规定为三年的有效期是有科学依据的,可靠有效的。

人工加速老化试验条件的选择

人工加速老化试验条件的选择 这个问题实际上可以理解为应该模拟哪些老化因素,高分子材料在使用过程中,气候环境里许多因素都有可能对高分子材料的老化产生作用。如果事先知道产生老化的主要因素,就可以有针对性的选择试验方法。我们可以从该材料的运输、储存、使用环境以及其老化机理等方面考虑,确定试验方法。例如硬聚氯乙烯型材,使用聚氯乙烯为原料,添加稳定剂、颜料等助剂加工而成,主要用于室外。 从聚氯乙烯的老化机理考虑,聚氯乙烯受热易分解;从使用环境考虑;空气中的氧、紫外光、热、水分都是引起型材老化的原因。 因此,国标GB/T8814-2004《门、窗用未增塑聚氯乙烯(PVC-U)型材》中,既规定了光氧老化试验方法,采用GB/T 16422.2《塑料实验室光源曝露试验方法第二部分:氙弧灯》老化4000h或6000h,模拟了室外紫外光及可见光、温度、湿度、降雨等因素,同时又规定了热氧老化项目:加热后状态,150℃放置30min,目测观察是否出现气泡、裂纹、麻点或分离现象,以考察型材的耐热性能。 又如我国在国际市场上有竞争力的一个产品:外贸出口鞋。在使用过程中,阳光中的紫外线是引起鞋子变色、褪色的主要原因,因此,有必要用紫外线试验箱对其进行耐黄变测试。常用的鞋类耐黄变试验箱

采用30WUV灯,样品离光源20cm,照射3h后观察颜色变化。同时,在运输过程中,集装箱内闷热、潮湿的恶劣环境会引起鞋面、鞋底、胶水的变色、斑点,甚至是变质。因此,在装船运输之前,有必要考虑进行耐湿热老化试验,模拟集装箱内高热、高湿环境,在70℃、95%相对湿度的条件下,进行48h试验后观察外观、颜色变化。

人工气候箱价格及参数表

人工气候箱 产 品 说 明 ———— 文章来源:南京途威商贸有限公司免费热线:4008-585-600

◆人性化设计 ●顺应世界环保潮流,全新无氟设计,使你始终走在健康生活的前沿。 ●人性化触摸按钮,菜单式操作,直观明了,多个参数可同屏显示。 ●采用镜面不锈钢内胆,四角半圆弧过渡,无需工具可拆卸箱体内隔板或隔 条,便于工作室消毒和清洗。 ◆智能化控制技术 ●可模拟大自然白天及黑夜的温度变化,也可以模拟大自然多方向性光源。 ●设定的参数可以在停电的情况下自动储存,并在通电后运行原设定程序。 ●循环风速大小自动控制,可避免试验过程中由于循环风速过快而吹到植物 幼苗。 ◆智能化多段可编程控制 ●程序控制温度、湿度、光照度、时间和升温速率,并可以多段阶梯程序控 制,使简化复杂的试验过程,真正实现自动控制和运行。 ◆连续运行技术 ●两套进口压缩机自动轮流切换,确保植物培育长时间运行不发生故障,突 破现有光照培养箱\人工气候箱无法长时间运行的缺陷。 ◆自我诊断功能 ●当光照培养箱\人工气候箱发生故障时,液晶显示屏出现故障信息,运行 故障一目了然。 ◆安全功能 ●独立限温报警系统,并声光报警提示操作者保证安全运行不发生意外。 ●温度偏高或偏低报警。

◆数据控制系统 ●RS485或USB接口及软件。 ●实现数据记录、数据通讯、图形动态显示、故障分析。 ●选配打印机系统进行数据记录、符合GMP标准。 ◆隔板式光照系统 ●为满足用户对光照强度均匀度和光照空间灵活性的更高要求,开发的隔 板式光照系统,用户可调节隔板,符合植物生长需要,并且可以配置多层光照系统;在保证光照强度均匀度的同时,大大提高培养植物的数量,而且每层光照系统,用户选择不同的灯管,满足对不同光照的要求。 ◆光照度自动检测和控制 ●采用光传感进行监测和控制,减少由于灯管老化造成光照度衰减和误 差。突破现有国产植物光照度监测和控制缺陷。 ◆无线通讯报警系统(短信报警系统) ●设备使用人若不在现场,当设备发生故障时,系统及时采集故障信号, 通过短信第一时间送到指定接收人员的手机上,确保及时排除故障,恢复试验,避免造成意外损失。 ◆CO2浓度监测与控制 ●对于植物工资培养,红外传感器是个理想的选择,因为红外传感器的 CO2浓度的恢复是不受温度和湿度的影响,对CO2浓度的变化,红外传感器几秒之内就可以做出响应,控制精度准确可靠。

浅析建筑工程中常用防水材料的检测方法

浅析建筑工程中常用防水材料的检测方法 发表时间:2019-06-21T17:10:10.453Z 来源:《工程管理前沿》2019年第05期作者:牟永利李栋 [导读] 当前对建筑防水工程的质量要求越来越高,为了适应防水工程的高要求,便需要对防水材料进行质量把关,确保防水材料的合格性,同时也要确保施工技术的先进性和正确性。 内蒙古自治区建材产品质量检验院内蒙古呼和浩特 010070 摘要:在建筑工程中,建筑结构的防水工程是建筑物正常使用的前提保证,只有防水工程做到位,才可以有效防止雨水、渗水等侵入建筑物,影响建筑物的正常使用和寿命。对于防水工程而言,防水材料的选取和防水工程施工质量是关乎整个防水工程的质量重要因素。确保对建筑工程中使用的防水材料的检测和施工质量的检测,可以保证防水工程的质量。当前对建筑防水工程的质量要求越来越高,为了适应防水工程的高要求,便需要对防水材料进行质量把关,确保防水材料的合格性,同时也要确保施工技术的先进性和正确性。 关键词:建筑工程;防水材料;检测方法 1建筑防水材料应用现状 目前,建筑防水材料(主要包括防水卷材和防水涂料)生产和施工企业家数在3000家左右,具有建筑防水施工资质的施工单位12589家(目前,资质包括防水、防腐和保温),年产值约2500亿元。规模以上企业(年销售额在2000万元以上)近641家,防水卷材获生产许可证企业1226家(注:建筑防水卷材属于许可证管理范围),卷材产品生产线2000多条。建筑防水行业涉及涵盖住宅、工业建筑、地下工程、桥梁隧道、地跌、高铁、水利、机场等各类工程领域,全行业从业人员近200万人。我国现代化的防水材料是从引进国外先进生产线开始,通过消化吸收和再创造,不断发展的。1986年,从国外引进第一条改性沥青防水卷材生产线开始,弹性体(SBS)和塑性体(APP)改性沥青防水卷材获得了大面积应用,特别是在中央500亿公斤储备粮库中的成功应用,把我国的建筑防水事业推上新的发展阶段。新型建筑防水材料生产线的大量引进,结束了石油沥青纸胎油毡的“一统天下”的局面,我国的建筑防水行业得到了快速的发展,逐步形成了防水材料品种、高中低档产品齐全,辅助材料和备配件基本配套,生产工艺相对稳定、施工工艺相对提高、标准化体系逐步完善的局面,在行业集中度、技术创新意识和水平、产品质量水平、人才培养、标准化、对外交流等各个方面得到快速推进。根据2005年~2017年《建筑防水行业发展报告》,对历年建筑防水材料、新型建筑防水材料和落后建筑防水材料的产量和占比进行了统计分析。从图中可以看出,从2005年~2009年,产量处于快速上升时期,主要由于房地产的大开发和国家基础建设的大发展,随后随着经济危机的出现,房地产受到影响,而此时的国家基础建设仍然在大量投入建设,产量仍然处于缓慢上升中,随后国家提出供给侧改革,建筑防水行业也进入结构性调整和质量提升阶段,加之房地产仍然不景气,防水材料增长率处于下滑,但基本维持在7%左右。自1980年代开始引进新型建筑防水材料生产线,此后改性沥青类防水卷材、高分子类防水卷材和防水涂料等获得了较快增长,原来的石油沥青油毛毡在建筑水材料中的应用量主线下滑,而新型建筑防水材料逐渐占据主导地位,2017年占到总量的96%以上。与此同时,石油沥青油毡在建筑防水工程中已很少见到。从各类建筑防水材料从2005年~2017年的占比情况分析来看,改性沥青类防水卷材从2005年的23.5%逐步上升到2017年的48%,占据主导地位,与国外情况类似,也将会是今后数十年内的主导产品品种。其次是建筑防水涂料,从2005年的13.4%上升到2017年的27.4%,已占到四分之一强。占据第三位的是高分子防水卷材,从2005年的12.1%上升到2008年的16.3%,随后逐步稳定在14%左右。 2建筑工程中常用防水材料的检测方法 2.1卷材防水材料 卷材防水是常见的防水措施,该材料的使用日益广泛,成为建筑防水工程中重要的防水材料。沥青防水卷材,就是以沥青材料对纤维组织、石棉布、原纸等材料进行浸渍,或者将石棉、橡胶粉等材料渗入沥青,进行碾压处理,形成卷状材料。这种材料具备可卷曲及低成本等优势,但同时,这种材料也存在较为突出的缺陷,材料并不具备较好的拉伸强度及延伸率,沥青材料的稳定性不足,高温环境下容易熔化并流淌,低温情况下容易脆化并断裂。同时,材料不具备好的抗老性,因此使用年限不足,且沥青易燃,防火效果差。基于这种情况,可将沥青防水卷材应用于地下室防水施工中,并结合地下水位的实际情况,对沥青防水卷材进行合理铺贴。 2.2刚性防水材料 刚性防水材料主要以混凝土材料为主,该防水方式已经广泛应用于建筑防水及结构防水施工中。一般来说,混凝土防水材料的功能性,需要以墙板、梁柱等结构的自身密实性与防水性加以体现,并结合止水环或设置结构坡度等,起到足够的防水效果。混凝土防水材料,对于其拌和料的配合比具有较高要求,需要提前进行混凝土性能实验,在实验中,严格按照工程施工对于材料等级提出的具体要求采取合理的实验方法,合理控制混凝土防水层材料等级。混凝土防水材料所需要的石子,可尽量采用卵石,将石子粒径控制在0.5-4cm的范围内,要求石子泥沙含量不超过1%,可选用中砂。控制砂石中的泥块含量,使用优质的矿渣硅酸盐水泥。除了砂石及水泥之外,其他诸如钢筋及模板的选择,也需要严格保证其材料质量,并控制材料配合比。

常用三种加速老化测试模型

常用三种加速老化测试模型 在环境模拟试验中,常常会遇到这样一个问题:产品在可控的试验箱环境中测试若干小时相当于产品在实际使用条件下使用多长时间?这是一个亟待解决 的问题,因为它的意义不仅仅在于极大地降低了成本,造成不必要的浪费,也让测试变得更具目的性和针对性,有利于测试人员对全局的掌控,合理进行资 源配置。 在众多的环境模拟试验中,温度、湿度最为常见,同时也是使用频率最高的模拟环境因子。实际环境中温度、湿度也是不可忽略的影响产品使用寿命的因素。所以,迄今将温度、湿度纳入考量范围所推导出的加速模型在所有的老化测试加速模型中占有较大的比重。由于侧重点的不同,推导出的加速模型也不一样。下面,本文将解读三个极具代表性的加速模型。 模型一.只考虑热加速因子的阿伦纽斯模型( Arrhenius Mode ) 某一环境下,温度成为影响产品老化及使用寿命的绝对主要因素时,采用单纯考虑热加速因子效应而推导出的阿伦纽斯模型来描述测试,其预估到的结果会更接近真实值,模拟试验的效果会更好。此时,阿伦纽斯模型的表达式为: AF=exp{(E a/k) ? [(1/T u)-(1/T t)]} 式中: AF是加速因子; E a是析出故障的耗费能量,又称激活能。不同产品的激活能是不一样的。一般来说,激活能的值在0.3ev~1.2ev之间;

K是玻尔兹曼常数,其值为8.617385 X 10-5; T u是使用条件下(非加速状态下)的温度值。此处的温度值是绝对温度值, 以K(开尔文)作单位; T t是测试条件下(加速状态下)的温度值。此处的温度值是绝对温度值,以K(开尔文)作单位。 案例:某一客户需要对产品做105C的高温测试。据以往的测试经验,此种产品的激活能E a取0.68最佳。对产品的使用寿命要求是10年,现可供测试的样品有5个。若同时对5个样品进行测试,需测试多长时间才能满足客户要求? 已知的信息有T t、E a,使用的温度取25C,贝U先算出加速因子AF: 5 AF=exp{[0.68/(8.617385 X 10-)] ?【[1/(273+25)]-[1/(273+105)] 】} 最 终: AF^ 271.9518 又知其目标使用寿命: L 目标=10years=10 X 365X 24h=87600h 故即可算出: L 测试=L 目标/AF=87600/271.9518h=322.1159h ?323h 现在5个样品同时进行测试,则测试时长为: L 最终=323/5h=65h 这即是说明,若客户用5个产品同时在105C高温下测试65h后产品未发生故障,则说明产品的使用寿命已达到要求。 通过这个案例可以看出,利用阿伦纽斯模型可以提前预估测试的相关信息,指导客户该怎样进行测试才既能达到目标值而又最大限度的降低成本。本案例中,若客户急需测试结果,那么可以投入10个或者更多的样品来缩短整个测试时长;或者在允许的情况下进一步提高温度,加快完成测试。根据需求灵活的调整测试方案,这才能更完美地达到目标,提高工作效率,省去一些不必要的费用。 模型二.综合温度及湿度因素的阿伦纽斯模型(Arrhenius ModeWith Humidity )

材料老化的试验方法

材料老化的试验方法 材料老化的因素有很多,目前市场上常用的是老化试验箱;老化试验箱是橡、塑胶产品耐久性之试验,老化试验箱主要在测试其材料在老化前与老化后之强度、伸长率等变化,一般认为材料在70℃的老化箱中24小时相当与自然界中6个月,本机具观测窗在使用时亦能看出内部之变化,不须打开门使试验造成误差. 目前市场上关于材料老化实验在市场上使用较多的是人工加速老化实验,对于自然老化实验的方法周期长效果等对于企业生产是不适用的,但是这里标准集团(香港)有限公司还是为大家简单过的讲解关于这两类实验的方法和特点: 一、人工加速老化实验 人工加速老化实验是用人工的方法,在室内或设备内模拟近似于大气环境条件或某种特定的环境条件,并强化某些因素,以期在短期内获得实验结果。可以相对比较不同材料的抗老化性能,并对材料的使用寿命提出指导性意见。因此,各国标准大都采用这种方法来评价材料的抗老化性能。人工加速老化实验方法主要包括:人工气候实验、热老化实验(绝氧、热空气、热氧化吸氧等实验)、臭氧老化实验、气体腐蚀实验等,其中热老化是较为普通方便的实验方法。 热老化实验通过加速材料在氧、热作用下的老化进程,反映材料耐热氧老化性能。根据材料的使用要求和实验目的确定实验温度。温度上限可根据有关技术规范确定,一般对于热塑性材料应低于其维卡软化点,对于热固性材料应低于其热变形温度,或者通过探索实验,选取不致造成试样分解或明显变形的温度。主要通行的实验方法硫化橡胶或热塑性橡胶热空气加速老化和耐热实验。 二、自然环境老化实验 自然环境老化实验是利用自然环境条件或自然介质进行的实验,主要包括:大气老化实验、埋地实验、仓库贮存实验、海水浸渍实验等等。自然环境老化实验结果更符合实际、所需费用较低而且操作简单方便,是国内外广泛采用的方法。其中对高分子材料而言,应用最多的是自然气候曝露实验(又称户外气候实验)。自然气候曝露实验就是将试样置于自然气候环境下曝露,使其经受日光、温度、氧等气候因素的综合作用,通过测定其性能的变化来评价塑料的耐候性。

医疗器械加速老化试验方案及报告

. . . .. .. . 华普医疗科技 加速老化试验

版本/修改状态:生效日期: 文件编号:发放号:控制状态:拟制:审核:批准: ... .. .s. . . . . .. .. . 加速老化实验计划 一、使用围

本公司生产的一次性使用氧气面罩,一次性使用鼻氧管,医用雾化器及其外包装。 二、过程要求 1、微生物屏障 2、无毒性 3、物理特性的符合性 4、化学特性的符合性 5、生物特性的符合性 三、预计完成时间: 老化实验前 全能性实验:2012年5月20日前 包装验证实验:2012年5月22日前 阻菌实验:2012年5月24日前 老化实验时间:2012年5月26日前 加速第一年验证 无菌实验:2012年6月18日前 全能性实验:2012年6月25日前 包装验证实验:2012年6月25日前 阻菌实验:2012年6月27日前 加速第二年验证 无菌实验:2012年7月1日前 全能性实验:2012年7月8日前

包装验证实验:2012年7月8日前 阻菌实验:2012年7月10日前 加速第三年验证 无菌实验:2012年7月15日前 全能性实验:2012年7月22日前 包装验证实验:2012年7月22日前 阻菌实验:2012年7月24日前 加速第四年验证 无菌实验:2012年7月29日前 全能性实验:2012年8月6日前 包装验证实验:2012年8月6日前 ... .. .s. . . . . .. .. . 阻菌实验:2012年8月8日前 加速第五年验证 无菌实验:2012年8月13日前 全能性实验:2012年8月20日前 包装验证实验:2012年8月20日前 阻菌实验:2012年8月22日前 目的:在有效期三年和三年有效期外,通过对我公司产品检验实验,来验证我们的产品规定为三年的有效期是有科学依据的,可靠有效的。 ... .. .s. .

硫化橡胶人工气候老化试验方法

硫化橡胶人工气候老化试验方法 本标准规定了以荧光紫外灯和冷凝装置模拟天然气候的太阳紫外光、温度和冷凝水等老化因素的一种人工气候老化试验方法。 本标准适用于硫化橡胶在紫外光照和冷凝作用交替条件下暴露的耐候性试验。 1、引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 紫外老化试验箱采用能最佳模拟阳光中UV段光谱的荧光紫外灯,并结合控温、供湿等装置来模拟对材料造成变色、亮度、强度下降;开裂、剥落、粉化、氧化等损害的阳光(UV 段)高温、高湿、凝露、黑暗周期等因素,同时通过紫外光与湿气之间的协同作用使得材料单一耐光能力或单一耐湿能力减弱或失效,从而广泛用于对材料耐气候性能的评价。 GB 250-84 评定变色用灰色样卡(idt ISO 105 A02:1984) GB/T 528-92 硫化橡胶和热塑性橡胶拉伸性能的测定 GB 730-86 耐光和耐气候色牢度蓝色羊毛标准(idt ISO 105 B:1984) GB 2941-91 橡胶试样环境调节和试验的标准温度、湿度及时间(eqv ISO 471:1983 ISO 1826:1981) GB/T 9865.1-1996 硫化橡胶或热塑性橡胶样品和试样的制备第一部分:物理试验(idt ISO 4661-1:1986) GB/T 12831-91 硫化橡胶人工气候(氙灯)老化试验方法(neq ISO 4665-3:1987) GB/T 14835-93 硫化橡胶在玻璃下耐阳光曝露试验方法(neq ISO 4665-2:1985) 2、方法提要 硫化橡胶暴露在紫外光、温度和冷凝等老化因素的环境中,按规定的时间检测试样性能的变化,从而评价硫化橡胶的耐候性。 3、试验装置 3.1 紫外老化试验箱试验箱 紫外老化试验箱工作室安装两排每排4支荧光灯,设有加热水槽、试样架、黑板温度计、控制和指示工作时间和温度的装置。 3.2 荧光灯 荧光灯分为UV-A、UV-B、UV-C、UV-D和UV-E五种类型,各种类型的荧光灯出现最大峰值辐射的波长不同。除非另有规定,一般使用UV-B灯。荧光灯光能量输出随使用时间而逐步衰减,为了减少荧光能量衰减造成对试验的影响,在8支荧光灯中每隔1/4的荧光灯寿命时间,在每排由一支新灯管换一支旧灯。其国家技术监督局1996-10-28 批准 3.3 试样架 试样架是由框式基架,衬垫板和伸张弹簧组成。框式基架和衬垫板是由铝合金材料制成。3.4 黑板温度计 黑板温度计由75㎜×10㎜×2.5㎜的黑色铝板联接温度传感器组成。它应该在暴露中心范围,使它尽可能反映出试验温度。 3.5 测定辐射量的仪器和标准物质 根据条件和需要,可选用辐射量测定仪或标准物质来测定试样接受的光能量。

建筑防水材料检测方法的探究及其应用技术

建筑防水材料检测方法的探究及其应用技术 建筑防水材料的检测是一项非常复杂的任务,在检测过程中会受到许多因素的影响,如何客观、准确地检测防水材料,确保建筑防水工程合格,是一个值得认真研究的工作。本文首先对目前我国常用的防水材料进行了分类,然后重点对建筑防水材料的检测方法及其应用进行研究,以期为检测人员提高检测水平提供参考帮助。 标签:建筑工程;防水材料;检测方法 在建筑工程中广泛应用的建筑防水材料,具备防水、防潮的性能,能够有效地防止雨雪等对建筑物造成侵蚀破坏。因此,建筑防水材料的质量是否符合工程设计以及国家质量标准,对于防水工程而言具有着举足轻重的作用。当前我国建材市场上可以见到诸多品类的防水材料,需要检测人员掌握各种材料的质量标准和技术规范,才能科学、准确地监管保障建筑防水材料的质量。 一、建筑防水材料分类 就目前而言,我国防水工程中所常用的建筑防水材料主要有防水涂料、防水卷材、刚性防水材料等类别,其各自的具体特点如下: 防水涂料是一种能牢固覆盖在物体表面,通过固化后形成的防水膜来达到防水、保护建筑的作用的涂料。其优点在于施工操作简单,不需要太复杂的设备,对建筑基层的外观形态没有要求,可以根据施工现场的实际情况来灵活掌握施工的厚度。防水涂料的缺点则是在固化过程中容易受到外界环境的影响,在遇到需要多层涂刷的情况时会造成施工时间较长,以及在固化时会释放出危害人体健康的气体成分等。目前常用的防水涂料有聚合物水泥防水涂料(JS防水涂料)、聚氨酯防水涂料、丙烯酸防水涂料等。 防水卷材是一种片状的柔性建材产品,目前常见的有沥青防水卷材与高分子防水卷材等。其优点包括施工工期短,层厚匀称易施工,易计算用量,不受气温等环境因素的影响,免除了后期养护的工序等;其缺点主要包括不适宜形态复杂的基层,在实际施工中需要裁剪拼接且黏结较难,拼接影响外形的美观度,维修较复杂等。此外,由于防水卷材冷粘法需要用到黏结剂,而黏结剂的使用寿命较防水卷材的使用寿命短,因此当黏结剂达到期限后会出现防水性能严重下降的问题。目前常用的防水卷材有弹性体(SBS)改性沥青防水卷材、塑性体(APP)改性沥青防水卷材、湿铺/预铺防水卷材和高分子防水卷材等。 刚性建筑防水材料主要是以水泥、砂石为主料,按配比参加一定的添加剂而制成。其优点是作为水泥基的材料,防水层与混凝土基层能够很好地黏结,适宜拐角边缘处的防水,不必拼接而保障了防水层的整体性;其缺点主要在于对基层的表面条件有较高要求,需要后期养护,在实际的工程应用中其防水效果出现较晚等。目前常见的有水泥基渗透结晶型防水涂料,水泥基渗透结晶型防水剂等。

相关主题
文本预览
相关文档 最新文档