2018届中考数学一模试卷(解析版)
- 格式:doc
- 大小:394.50 KB
- 文档页数:19
2018年山东省青岛市即墨市中考数学一模试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.(3分)(﹣π)0的绝对值是( )A .﹣πB .πC .﹣1D .12.(3分)青岛“最美地铁线”﹣﹣连接崂山和即墨的地铁11号线,在今年4月份开通,地铁11号线全长月58千米,58千米用科学记数法可表示为( )A .0.58×105mB .5.8×104mC .58×104mD .5.8×105m3.(3分)如图是我国几家银行的标志,其中即是轴对称图形又是中心对称图形的有()A .2个B .3个C .4个D .5个4.(3分)“微信发红包”是最近兴起的一种娱乐方式,为了了解所在单位员工春节期间使用微信发红包的情况,小明随机调查了16名同事平均每个红包发的钱数,结果如下表则此次调查中平均每个红包发的钱数的众数为( )A .2元B .5元C .10元D .5元和10元 5.(3分)如图,已知AB 是⊙O 的直径,∠CBA =25°,则∠D 的度数为( )A .25°B .50°C .65°D .75°6.(3分)小明家离学校2000米,小明平时从家到学校需要用x分钟,今天起床晚,恰迟到,走路速度比平时快5米/分钟,结果比平时少用了2分钟到达学校,则根据题意可列方程()A.﹣=5B.﹣=5C.﹣=5D.﹣=57.(3分)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.8.(3分)如图,抛物线y1=ax2+bx+c(a≠0),其顶点坐标为A(﹣1,3),抛物线与x轴的一个交点为B(﹣3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a﹣b=0,②abc>0,③方程ax2+bx+c=3有两个相等的实数根,④抛物线与x轴的另一个交点是(1,0),⑤当﹣3<x<﹣1时,有y2<y1.其中正确结论的个数是()A.5B.4C.3D.2二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)计算:(2x7y)3÷(6x6y3)=.10.(3分)3.12日植树节,老师想从甲、乙、丙、丁4名同学中挑选2名同学代表班级去参加学校组织的植树活动,恰好选中甲和乙去参加的概率是.11.(3分)如图是反比例函数y=与反比例函数y=(m>n且mn≠0)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若m﹣n=2,则△AOB的面积是.12.(3分)如图,若菱形ABCD的周长为20,对角线AC=5.E为BC边上的中点,则AE的长为.13.(3分)将抛物线y=x2+x+1向上平移一个单位,向右平移两个单位,直线y =2x+b恰好经过平移后的抛物线的顶点,则b的值是.14.(3分)求1+2+22+23+…+22007的值,可令s=1+2+22+23+…+22007,则2s=2+22+23+24+…+22018,因此2s﹣s=22018﹣1,即s=22018﹣1,仿照以上推理,计算出1+3+32+33+…+32018的值为.三、作图题(本题满分4分)15.(4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:四边形ABCD.求作:点P,使PC∥AB,且点P到点A和点B的距离相等.结论:四、解答题(本题满分74分)16.(8分)(1)化简:(a﹣)÷(1﹣)(2)解不等式组:17.(6分)在一个不透明的袋子里装有4个小球,分别标有数字1,2,3,4;这些小球除所标数字不同外,其余完全相同,甲乙两人每次同时从袋中各随机摸出一个小球,记下球上的数字,并计算它们的积.(1)请用画树状图或列表的方法,求两数积是8的概率;(2)甲乙两人想用这种方式做游戏,他们规定,当两数之积是偶数时,甲得1分,当两数之积是奇数时,乙得3分,你认为这个游戏公平吗?请说明理由,若你认为不公平,请修改得分规则,使游戏公平.18.(6分)为了了解学生的课外学习负担,即墨区某中学数学兴趣小组决定对本校学生每天的课外学习情况进行调查,他们随机抽取本校部分学生进行了问卷调查,并将调查结果分为A,B,C,D四个等级,列表如下:根据调查结果绘制了如图所示的两幅不完整的统计图,请你根据图中信息解答下列问题:(1)本次抽样调查共抽取了多少名学生?其中学习时间在B等级的学生有多少人?(2)将条形统计图补充完整;(3)表示D等级的扇形圆心角的度数是多少?(4)该校共有2000名学生,每天课外学习时间在2小时以内的学生有多少人?19.(6分)2014年,“即墨古城”在即墨区破土重建,2016年建成,现已成为青岛北部一个重要的旅游景点,为了衡量古城“潮海”门的高度,在数学课外实践活动中,小明分别在如图所示的A,B两点处,利用测角仪对“潮海”,门的最高点C进行了测量,测得∠A=30°,∠B=45°,若AB=22米,求“潮海”门的最高点C到地面的高度为多少米?(结果精确到1米,参考数据:≈1.732)20.(8分)为开展体育大课间活动,某学校需要购买篮球与足球若干个,已知购买3个篮球和2个需求共需要575元,购买4个篮球和3个足球共需要785元.(1)购买一个篮球,一个足球各需多少元?(2)若体育老师带了8000元去购买这种篮球与足球共80个,由于数量较多,店主给出篮球与足球一律打八折的优惠价,那么他最多能购买多少个篮球?同时买了多少个足球?21.(8分)如图,正方形ABCD中,点E,F分别在边,AD,CD上,且BE=BF,BD和EF交于点O,延长BD至点H,使得BO=HO,并连接HE,HF.(1)求证:AE=CF;(2)试判断四边形BEHF是什么特殊的四边形,并说明理由.22.(10分)图中是抛物线拱桥,P处有一照明灯,点P到水面OA的距离为m,从O、A两处观测P处,仰角分别为α,β,且tanα=,tanβ=,以O为原点,OA所在直线为x轴建立直角坐标系,已知抛物线方程为y=ax2+bx.(1)求抛物线方程,并求抛物线上的最高点到水面的距离;(2)水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?23.(10分)阅读下列材料:情形展示:情形一:如图①,在△ABC中,沿等腰三角形ABC的顶角∠BAC的平分线AB1折叠,若点B与点C重合,则称∠BAC是△ABC的“好角”,如图②,在△ABC中,先沿∠BAC的平分线AB1折叠,剪掉重复部分,再将余下部分沿∠B1A1C的平分线A1B2折叠,若点B1与点C重合,则称∠BAC是△ABC的“好角”.情形二:如图③,在△ABC中,先沿∠BAC的平分线AB1折叠,剪掉重复部分,再将余下部分沿∠B1A1C的平分线A1B1折叠,剪掉重复部分…重复折叠n次,与点C重合,则称∠BAC是△ABC的“好角”,探究发现:(不最终若点B n﹣1妨设∠B≥∠C)(1)如图①,若∠BAC是△ABC的“好角”,则∠B与∠C的数量关系是:.(2)如图②,若∠BAC是△ABC的“好角”,则∠B与∠C的数量关系是:.(3)如图③,若∠BAC是△ABC的“好角”,则∠B与∠C的数量关系是:.应用提升:(4)如果一个三角形的三个角分别为15°,60°,105°,我们发现60°和105°的两个角都是此三角形的“好角”;如果有一个三角形,它的三个角均是此三角形的“好角”,且已知最小的角是12°,求另外两个角的度数.24.(12分)如图,在四边形ABCD中,AD∥BC,AD=3,DC=5,AB=4,∠B=45°,动点M从点B出发沿线段BC以每秒2个单位长度的速度向终点C运动,动点N同时从点C出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒(0<t<5).(1)求BC的长.(2)当MN∥AB时,求t的值.(3)设△MNC的面积为S△MNC ,试确定S△MNC与t的函数关系式.(4)在运动过程中,是否存在某一时刻t,使S△MNC :S四边形ABCD=12:65?若存在,求出t的值;若不存在,请说明理由.2018年山东省青岛市即墨市中考数学一模试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.(3分)(﹣π)0的绝对值是()A.﹣πB.πC.﹣1D.1【解答】解:(﹣π)0=1,则它的绝对值是1.故选:D.2.(3分)青岛“最美地铁线”﹣﹣连接崂山和即墨的地铁11号线,在今年4月份开通,地铁11号线全长月58千米,58千米用科学记数法可表示为()A.0.58×105m B.5.8×104m C.58×104m D.5.8×105m 【解答】解:58千米=5.8×104m.故选:B.3.(3分)如图是我国几家银行的标志,其中即是轴对称图形又是中心对称图形的有()A.2个B.3个C.4个D.5个【解答】解:中国银行标志:既是轴对称图形又是中心对称图形,符合题意;中国工商银行标志:既是轴对称图形又是中心对称图形,符合题意;中国人民银行标志:是轴对称图形,不是中心对称图形,不符合题意;中国农业银行标志:是轴对称图形,不是中心对称图形,不符合题意;中国建设银行标志:不是轴对称图形,也不是中心对称图形,不符合题意;故选:A.4.(3分)“微信发红包”是最近兴起的一种娱乐方式,为了了解所在单位员工春节期间使用微信发红包的情况,小明随机调查了16名同事平均每个红包发的钱数,结果如下表则此次调查中平均每个红包发的钱数的众数为( )A .2元B .5元C .10元D .5元和10元 【解答】解:观察发现平均每个红包发的钱数为5元和10元的人数都为5人,最多,故众数为5元和10元.故选:D .5.(3分)如图,已知AB 是⊙O 的直径,∠CBA =25°,则∠D 的度数为( )A .25°B .50°C .65° D.75°【解答】解:∵AB 为⊙O 的直径, ∴∠ACB =90°, ∵∠CBA =25°,∴∠CAB =90°﹣∠CBA =65°,∴∠D =∠CAB =65°.故选:C .6.(3分)小明家离学校2000米,小明平时从家到学校需要用x 分钟,今天起床晚,恰迟到,走路速度比平时快5米/分钟,结果比平时少用了2分钟到达学校,则根据题意可列方程( )A .﹣=5 B .﹣=5 C .﹣=5 D .﹣=5【解答】解:设小明平时从家到学校需要用x 分钟,则实际从家到学校用(x ﹣2)分钟,根据题意,得﹣=5.故选:A.7.(3分)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选:C.8.(3分)如图,抛物线y1=ax2+bx+c(a≠0),其顶点坐标为A(﹣1,3),抛物线与x轴的一个交点为B(﹣3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a﹣b=0,②abc>0,③方程ax2+bx+c=3有两个相等的实数根,④抛物线与x轴的另一个交点是(1,0),⑤当﹣3<x<﹣1时,有y2<y1.其中正确结论的个数是()A.5B.4C.3D.2【解答】解:由抛物线对称轴为直线x=﹣b=2a,则①正确;由图象,ab同号,c>0,则abc>0,则②正确;方程ax2+bx+c=3可以看做是抛物线y=ax2+bx+c与直线y=3求交点横坐标,由抛物线顶点为(﹣1,3)则直线y=3过抛物线顶点.∴方程ax2+bx+c=3有两个相等的实数根.故③正确;由抛物线对称轴为直线x=﹣1,与x轴的一个交点(﹣3,0)则有对称性抛物线与x轴的另一个交点为(1,0)则④正确;∵A(﹣1,3),B(﹣3,0),直线y2=mx+n与抛物线交于A,B两点∴当当﹣3<x<﹣1时,抛物线y1的图象在直线y2上方,则y2<y1,故⑤正确.故选:A.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)计算:(2x7y)3÷(6x6y3)=.【解答】解:(2x7y)3÷(6x6y3)=,故答案为:,10.(3分)3.12日植树节,老师想从甲、乙、丙、丁4名同学中挑选2名同学代表班级去参加学校组织的植树活动,恰好选中甲和乙去参加的概率是.【解答】解:画树形图得:由树状图知共有12种等可能结果,其中恰好抽到甲、乙两名同学的有2种结果,所以恰好选中甲和乙去参加的概率是=,故答案为:.11.(3分)如图是反比例函数y=与反比例函数y=(m>n且mn≠0)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若m﹣n=2,则△AOB的面积是1.【解答】解:如图,设直线AB与y轴交于点C,则直线AB⊥y轴.∵反比例函数y=的图象过点B,反比例函数y=(m>n且mn≠0)的图象过点A,∴S△BOC =m,S△AOC=n,∴S△AOB =S△BOC﹣S△AOC=m﹣n=(m﹣n)=×2=1.故答案为1.12.(3分)如图,若菱形ABCD的周长为20,对角线AC=5.E为BC边上的中点,则AE的长为.【解答】解:∵四边形ABCD是菱形,周长为20,∴AB=BC=5,∵AC=5,∴AB=BC=AC,∴△ABC是等边三角形,∵BE=EC,∴AE⊥BC,∴AE=AB•sin60°=,故答案为13.(3分)将抛物线y=x2+x+1向上平移一个单位,向右平移两个单位,直线y =2x+b恰好经过平移后的抛物线的顶点,则b的值是﹣.【解答】解:∵y=x2+x+1=(x+)2+,∴抛物线y=x2+x+1的顶点坐标(﹣,).将顶点坐标(﹣,)向上平移一个单位,向右平移两个单位后得到新抛物线的顶点坐标是(,).将(,)代入y=2x+b,得=2×+b解得b=﹣.故答案是:﹣.14.(3分)求1+2+22+23+…+22007的值,可令s=1+2+22+23+…+22007,则2s=2+22+23+24+…+22018,因此2s﹣s=22018﹣1,即s=22018﹣1,仿照以上推理,计算出1+3+32+33+…+32018的值为.【解答】解:令S=1+3+32+33+ (32018)则3S=3+32+33+ (32019)因此3S﹣S=32019﹣1,即S=,故答案为:三、作图题(本题满分4分)15.(4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:四边形ABCD.求作:点P,使PC∥AB,且点P到点A和点B的距离相等.结论:【解答】解:如图,点P即为所求.四、解答题(本题满分74分)16.(8分)(1)化简:(a﹣)÷(1﹣)(2)解不等式组:【解答】解:(1)原式=÷=•=a+b;(2),由①得:x≤5.5,由②得:x>4,则不等式组的解集为4<x≤5.5.17.(6分)在一个不透明的袋子里装有4个小球,分别标有数字1,2,3,4;这些小球除所标数字不同外,其余完全相同,甲乙两人每次同时从袋中各随机摸出一个小球,记下球上的数字,并计算它们的积.(1)请用画树状图或列表的方法,求两数积是8的概率;(2)甲乙两人想用这种方式做游戏,他们规定,当两数之积是偶数时,甲得1分,当两数之积是奇数时,乙得3分,你认为这个游戏公平吗?请说明理由,若你认为不公平,请修改得分规则,使游戏公平.【解答】解:(1)画树状图得:∵共有12种等可能的结果,两次摸出的小球的数字积是8的有2种情况,∴两数积是8的概率为=;(2)两数之积是偶数的有10种情况,两数之积是奇数的有2种情况,∴P (两数之积是偶数)==,P (两数之积是奇数)==,∵×1≠×3,∴此游戏不公平;修改规则为:当两数之积是偶数时,甲得1分,当两数之积是奇数时,乙得5分.18.(6分)为了了解学生的课外学习负担,即墨区某中学数学兴趣小组决定对本校学生每天的课外学习情况进行调查,他们随机抽取本校部分学生进行了问卷调查,并将调查结果分为A,B,C,D四个等级,列表如下:根据调查结果绘制了如图所示的两幅不完整的统计图,请你根据图中信息解答下列问题:(1)本次抽样调查共抽取了多少名学生?其中学习时间在B等级的学生有多少人?(2)将条形统计图补充完整;(3)表示D等级的扇形圆心角的度数是多少?(4)该校共有2000名学生,每天课外学习时间在2小时以内的学生有多少人?【解答】解:(1)本次抽样调查共抽取学生40÷20%=200名,其中学习时间在B等级的学生有200﹣(40+40+20)=100名;(2)补全图形如下:(3)表示D等级的扇形圆心角的度数是360°×=36°;(4)估计每天课外学习时间在2小时以内的学生有2000×=1800名.19.(6分)2014年,“即墨古城”在即墨区破土重建,2016年建成,现已成为青岛北部一个重要的旅游景点,为了衡量古城“潮海”门的高度,在数学课外实践活动中,小明分别在如图所示的A,B两点处,利用测角仪对“潮海”,门的最高点C进行了测量,测得∠A=30°,∠B=45°,若AB=22米,求“潮海”门的最高点C到地面的高度为多少米?(结果精确到1米,参考数据:≈1.732)【解答】解:过C作CD⊥AB,交AB延长线于点D,在Rt△ACD中,设CD=x米,∴AD==x米,在Rt△BCD中,CD=x米,∴BD=x米,∴x﹣x=22,解得:x=≈30,则“潮海”门的最高点C到地面的高度为30米.20.(8分)为开展体育大课间活动,某学校需要购买篮球与足球若干个,已知购买3个篮球和2个需求共需要575元,购买4个篮球和3个足球共需要785元.(1)购买一个篮球,一个足球各需多少元?(2)若体育老师带了8000元去购买这种篮球与足球共80个,由于数量较多,店主给出篮球与足球一律打八折的优惠价,那么他最多能购买多少个篮球?同时买了多少个足球?【解答】解:(1)设购买一个篮球需要x元,购买一个足球需要y元,列方程得:,解得:,答:购买一个需要篮球155元,购买一个足球需要55元.(2)设购买了a个篮球,则购买了(80﹣a)个足球.列不等式得:155×0.8a+55×0.8×(80﹣a)≤8000,解得a≤56.∴a最多可以购买56个篮球.∴这所学校最多可以购买56个篮球.21.(8分)如图,正方形ABCD中,点E,F分别在边,AD,CD上,且BE=BF,BD和EF交于点O,延长BD至点H,使得BO=HO,并连接HE,HF.(1)求证:AE=CF;(2)试判断四边形BEHF是什么特殊的四边形,并说明理由.【解答】解:(1)∵四边形ABCD是正方形,∴AB=BC,∠A=∠C=90°,在Rt△ABE和Rt△BCF中,ADAB=BCBC,BE=BF,∴Rt△ABE≌Rt△BCF(HL)∴AE=FC;(2)四边形BEHF是菱形.理由:∵四边形ABCD是正方形,∴∠BDF=45°,∵ABCD为正方形,∴∠D=90°,AD=DC.又∵AE=FC,∴DE=DF,∴△DEF为等腰直角三角形,∴∠DFE=45°,∴∠DOF=90°,即OB⊥EF,又∵EB=BF,∴OE=OF.∵OE=OF,OB=OH,OB⊥EF,∴四边形BEHF是菱形.22.(10分)图中是抛物线拱桥,P处有一照明灯,点P到水面OA的距离为m,从O、A两处观测P处,仰角分别为α,β,且tanα=,tanβ=,以O为原点,OA所在直线为x轴建立直角坐标系,已知抛物线方程为y=ax2+bx.(1)求抛物线方程,并求抛物线上的最高点到水面的距离;(2)水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?【解答】解:过点P作PH⊥OA于H,如图.在Rt△OHP中,∵tanα=,PH=m,∴OH=3m,在Rt△AHP中,∵tanβ=,PH=m,∴AH=1m,∴OA=4m,∴点P的坐标为(3,);若水面上升1m后到达BC位置,如图,过点O(0,0),A(4,0)的抛物线的解析式可设为y=ax(x﹣4),∵P(3,)在抛物线y=ax(x﹣4)上,∴3a(3﹣4)=,解得a=﹣,∴抛物线的解析式为y=﹣x(x﹣4).当y=1时,﹣x(x﹣4)=1,解得x1=2+,x2=2﹣,∴BC=(2+)﹣(2﹣)=2≈2.8m.故水面宽约为2.8m.23.(10分)阅读下列材料:情形展示:情形一:如图①,在△ABC中,沿等腰三角形ABC的顶角∠BAC的平分线AB1折叠,若点B与点C重合,则称∠BAC是△ABC的“好角”,如图②,在△ABC中,先沿∠BAC的平分线AB1折叠,剪掉重复部分,再将余下部分沿∠B1A1C的平分线A1B2折叠,若点B1与点C重合,则称∠BAC是△ABC的“好角”.情形二:如图③,在△ABC中,先沿∠BAC的平分线AB1折叠,剪掉重复部分,再将余下部分沿∠B1A1C的平分线A1B1折叠,剪掉重复部分…重复折叠n次,与点C重合,则称∠BAC是△ABC的“好角”,探究发现:(不最终若点B n﹣1妨设∠B≥∠C)(1)如图①,若∠BAC是△ABC的“好角”,则∠B与∠C的数量关系是:∠B=∠C.(2)如图②,若∠BAC是△ABC的“好角”,则∠B与∠C的数量关系是:∠B=2∠C.(3)如图③,若∠BAC是△ABC的“好角”,则∠B与∠C的数量关系是:∠B=n∠C.应用提升:(4)如果一个三角形的三个角分别为15°,60°,105°,我们发现60°和105°的两个角都是此三角形的“好角”;如果有一个三角形,它的三个角均是此三角形的“好角”,且已知最小的角是12°,求另外两个角的度数.【解答】解:(1)如图1中,∵∠BAC是△ABC的“好角”,∴∠B与∠C重合,∴∠B=∠C.故答案为∠B=∠C.(2)如图2中,∵沿∠BAC的平分线AB1折叠,∴∠B=∠AA1B1;又∵将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合,∴∠A1B1C=∠C;∵∠AA1B1=∠C+∠A1B1C(外角定理),∴∠B=2∠C;故答案为:∠B=2∠C;(3)根据上面结论可知:当1次折叠时,∠BAC是“好角”,则有∠B=∠C,当1次折叠时,∠BAC是“好角”,则有∠B=∠C,当2次折叠时,∠BAC是“好角”,则有∠B=2∠C,当3次折叠时,∠BAC是“好角”,则有∠B=3∠C,…当n次折叠时,∠BAC是“好角”,则有∠B=n∠C,故答案为∠B=n∠C.(4)因为最小角是12°是△ABC的好角,根据好角定义,则可设另两角分别为12m°,12mn°(其中m、n都是正整数).由题意,得12m+12mn+12=180,所以m(n+1)=14.因为m、n都是正整数,所以m与n+1是14的整数因子,因此有:m=1,n+1=14;或m=2,n+1=7,所以m=1,n=13;或m=2,n=6所以10m=10°,10mn=160°;所以该三角形的另外两个角的度数分别为:12°,156°或24°,144°故答案为:12°,156°或24°,144°;24.(12分)如图,在四边形ABCD中,AD∥BC,AD=3,DC=5,AB=4,∠B=45°,动点M从点B出发沿线段BC以每秒2个单位长度的速度向终点C运动,动点N同时从点C出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒(0<t<5).(1)求BC的长.(2)当MN∥AB时,求t的值.(3)设△MNC的面积为S△MNC ,试确定S△MNC与t的函数关系式.(4)在运动过程中,是否存在某一时刻t,使S△MNC :S四边形ABCD=12:65?若存在,求出t的值;若不存在,请说明理由.【解答】解:(1)如图①,过A、D分别作AK⊥BC于K,DH⊥BC于H,则四边形ADHK是矩形.∴KH=AD=3.在Rt△ABK中,AK=AB•sin45°=4•=4,BK=AB•cos45°=4•=4.在Rt△CDH中,由勾股定理得,HC==3.∴BC=BK+KH+HC=4+3+3=10.(2)如图②,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形.∵MN∥AB,∴MN∥DG.∴BG=AD=3.∴GC=10﹣3=7.由题意知,当M、N运动到t秒时,CN=t,CM=10﹣2t.∵DG∥MN,∴∠NMC=∠DGC.又∵∠C=∠C,∴△MNC∽△GDC.∴=,即=.解得,t=.(3)①如图③,当0≤t ≤5时,CN =t ,BM =2t ,MC =10﹣2t ;过N 作NG ⊥于BC 于点G ;∴△NGC ∽△DFC ∴=,即=; ∴NG =;∴S △MNC =MC •NG =•(10﹣2t )•=﹣t 2+4t ; (4)存在这样的t ,其值为2或3.理由如下: ∵S 四边形ABCD ===26,S △MNC :S 四边形ABCD =12:65∴S △MNC =4.8把S △MNC =4.8代入S △MNC =﹣t 2+4t 得到:﹣t 2+4t =4.8. 解得t 1=2,t 2=3;综上所述,符合条件的t 的值为:2或3.。
2018年中考数学一模试卷一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x 2﹣2x+4具有相同对称轴的是( ) A .y=4x 2+2x+1B .y=2x 2﹣4x+1C .y=2x 2﹣x+4D .y=x 2﹣4x+22.如图,点D 、E 位于△ABC 的两边上,下列条件能判定DE ∥BC 的是( )A .AD •DB=AE •ECB .AD •AE=BD •EC C .AD •CE=AE •BD D .AD •BC=AB •DE 3.已知一个坡的坡比为i ,坡角为α,则下列等式成立的是( ) A .i=sinα B .i=cosα C .i=tanα D .i=cotα4.已知向量和都是单位向量,则下列等式成立的是( ) A .B .C .D .||﹣||=05.已知二次函数y=x 2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为( )A .y=(x+2)2+3 B .y=(x+2)2﹣3 C .y=(x ﹣2)2+3 D .y=(x ﹣2)2﹣36.Word 文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC ,已知AB=AC ,当它以底边BC 水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC 以腰AB 水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是( )图形图①图②图③图④图⑤绝对高度1.52.01.22.4?0 0 0 绝对宽度2.001.502.503.60?A .3.60和2.40B .2.56和3.00C .2.56和2.88D .2.88和3.00二.填空题(本大题共12题,每题4分,共48分)7.已知线段a 是线段b 、c 的比例中项,如果a=3,b=2,那么c= . 8.化简:= .9.已知点P 是线段AB 的黄金分割点(AP >BP ),若AB=2,则AP ﹣BP= .10.已知二次函数y=f (x )的图象开口向上,对称轴为直线x=4,则f (1) f (5)(填“>”或“<”)11.求值:sin60°•tan30°= .12.已知G 是等腰直角△ABC 的重心,若AC=BC=2,则线段CG 的长为 . 13.两个相似三角形的相似比为2:3,则它们的面积之比为 .14.等边三角形的周长为C ,面积为S ,则面积S 关于周长C 的函数解析式为 .15.如图,正方形ABCD 的边EF在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知BC=6,△ABC 的面积为9,则正方形DEFG 的面积为 .16.如图,小明家所在小区的前后两栋楼AB 、CD ,小明在自己所住楼AB 的底部A 处,利用对面楼CD 墙上玻璃(与地面垂直)的反光,测得楼AB 顶部B 处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB 的高度是 米.17.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC 上,使得△ADP与△ABC相似,则线段AP的长为.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A与点B 重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.参考答案与试题解析一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+2【考点】二次函数的性质.【分析】根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.【解答】解:抛物线y=x2﹣2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=﹣,不符合题意;B、y=2x2﹣4x+1的对称轴为x=1,符合题意;C、y=2x2﹣x+4的对称轴为x=,不符合题意;D、y=x2﹣4x+2的对称轴为x=2,不符合题意,故选B.【点评】此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.2.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE【考点】平行线分线段成比例.【分析】根据选项选出能推出对应线段成比例的即可.【解答】解:∵AD•CE=AE•BD,∴,∴DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比的定义:斜坡垂直高度与水平宽度的比值,即坡角的正弦值,据此即可判断.【解答】解:i=tanα.故选C.【点评】本题考查了坡比的定义,理解坡比是斜坡垂直高度与水平宽度的比值,即坡角的正弦值,是关键.4.已知向量和都是单位向量,则下列等式成立的是()A.B.C. D.||﹣||=0【考点】*平面向量.【专题】推理填空题.【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:∵已知向量和都是单位向量,∴||=||=1,∴||﹣||=0,故选D.【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.5.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,二次函数y=x2的图象向左平移个单位得到y=(x+2)2,由“上加下减”的原则可知,将二次函数y=(x+2)2的图象向上平移3个单位可得到函数y=(x+2)2+3,【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.6.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度2.01.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质,勾股定理可求AB,即图⑤绝对宽度,再根据三角形面积公式可求图⑤绝对高度.【解答】解:图④,过A点作AD⊥BC于D,BD=3.60÷2=1.80,在Rt△ABD中,AB==3,图⑤绝对宽度为3;图⑤绝对高度为:2.40×3.60÷2×2÷3=4.32×2÷3故选:D.【点评】此题考查了勾股定理,等腰三角形的性质,解题的关键是熟练掌握图形的绝对高度和绝对宽度的定义.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .【考点】比例线段.【分析】根据比例中项的定义可得b2=ac,从而易求c.【解答】解:∵线段a是线段b、c的比例中项,∴a2=bc,即32=2×c,∴c=.故答案是:.【点评】本题考查了比例线段,解题的关键是理解比例中项的定义.8.化简: = ﹣﹣7.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解: =2﹣4﹣3﹣3=﹣﹣7.故答案为:.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= 2﹣4 .【考点】黄金分割.【分析】根据黄金分割的概念、黄金比值计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=﹣1,则BP=2﹣AP=3﹣,∴AP﹣BP=(﹣1)﹣(3﹣)=2﹣4,故答案为:2﹣4.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)>f(5)(填“>”或“<”)【考点】二次函数的性质.【分析】根据对称轴及开口方向确定其增减性即可确定答案.【解答】解:∵二次函数y=f(x)的图象开口向上,对称轴为直线x=4,∴当x的取值越靠近4函数值就越小,反之越大,∴f(1)>f(5),故答案为:>.【点评】考查了二次函数的性质,解题的关键是根据对称轴及开口方向确定其增减性,难度不大.11.求值:sin60°•tan30°=.【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据特殊角的三角函数值计算出各数,再根据二次根式的乘法进行计算即可.【解答】解:原式=×=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.【考点】三角形的重心;等腰直角三角形.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=2,∴CG=,故答案为:【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.13.两个相似三角形的相似比为2:3,则它们的面积之比为4:9 .【考点】相似三角形的性质.【专题】探究型.【分析】直接根据相似三角形的性质进行解答即可.【解答】解:∵两个相似三角形的相似比为2:3,∴它们的面积之比为4:9.故答案为:4:9【点评】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为S=C2.【考点】根据实际问题列二次函数关系式.【分析】直接利用等边三角形的性质得出AD的长,再利用三角形面积求法得出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵等边三角形的周长为C,∴AB=BC=AC=,∴DC=BD=,∴AD==C,∴S=×C×=C2.故答案为:S=×C×=C2.【点评】此题主要考查了等边三角形的性质以及三角形面积求法,正确表示出三角形的高是解题关键.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为 4 .【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:作AH⊥BC于H,交DG于P,如图所示:∵△ABC的面积=BC•AH=9,BC=6,∴AH=3,设正方形DEFG的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=6,AH=3,DE=DG=x,得,解得x=2.故正方形DEFG的面积=22=4;故答案为:4.【点评】本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是27 米.【考点】解直角三角形的应用-仰角俯角问题.【分析】作PE⊥AB于点E,在直角△AEP中,利用三角函数求得AE的长,根据AB=2AE即可求解.【解答】解:作PE⊥AB于点E,在直角△AEP中,∠APE=∠α,则AE=PE•tan∠APE=30×0.45=13.5(米),则AB=2AE=27(米).故答案是:27.【点评】本题考查解直角三角形、仰角、俯角的定义,解题的关键是记住特殊三角形的边之间关系,学会把问题转化为方程解决,属于中考常考题型.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为4或.【考点】相似三角形的判定.【分析】先根据勾股定理求出AB的长,再分△ADP∽△ABC与△ADP∽△ACB两种情况进行讨论即可.【解答】解:∵在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10.∵D是边AB的中点,∴AD=5.当△ADP∽△ABC时, =,即=,解得AP=4;当△ADP∽△ACB时, =,即=,解得AP=.故答案为:4或.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .【考点】菱形的性质;解直角三角形.【分析】如图,连接AN、CM,延长BM交AD于H.AN是菱形ABCD的角平分线,同理CM也是菱形ABCD 的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,因为四边形BMDN的面积是菱形ABCD面积的,所以S△AMB=S△AMD=S△CNB=S△CND=4a,推出AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,由△ABO∽△BNO,推出OB2=OA•ON=5k2,推出OB=k,AB=AD==k,由AD•BH=•BD•AO,推出BH==,再利用勾股定理求出AH即可解决问题.【解答】解:如图,连接AN、CM,延长BM交AD于H.∵AB⊥BN,AD⊥DN,∴∠ABN=∠ADN=90°,在Rt△ANB和Rt△AND中,,∴△ABN≌△ADN,∴∠BAN=∠DAN,∴AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,∵四边形BMDN的面积是菱形ABCD面积的,∴S△AMB=S△AMD=S△CNB=S△CND=4a,∴AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,∵△ABO∽△BNO,∴OB2=OA•ON=5k2,∴OB=k,AB=AD==k,∵AD•BH=•BD•AO,∴BH==,∴AH===k,∴cosA===.故答案为【点评】本题考查菱形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,学会利用面积法求线段,所以中考常考题型.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式,根据二次函数的性质解答即可.【解答】解:y=x2﹣4x+5=(x﹣4)2﹣3,∴抛物线开口向上,对称轴x=4,顶点(4,﹣3).【点评】本题考查的是二次根式的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.【考点】*平面向量;梯形.【专题】计算题.【分析】(1)作BM ∥CD 交AD 、EF 于M 、N 两点,将问题转化到△ABM 中,利用相似三角形的判定与性质求EN ,由EF=EN+NF=EN+AD 进行求解;(2)由=、=得BC=AD ,EB=AB ,根据=可得答案.【解答】解:(1)作BM ∥CD 交AD 、EF 于M 、N 两点,又AD ∥BC ,EF ∥AD ,∴四边形BCFN 与MNFD 均为平行四边形.∴BC=NF=MD=2,∴AM=AD ﹣MD=1.又=2,∴=,∵EF ∥AD ,∴△BEN ∽△BAM ,∴,即,∴EN=,则EF=EN+NF=;(2)∵=, =,∴BC=AD ,EB=AB ,∴==, ==,则==+. 【点评】本题主要考查了平行四边形的判定与性质、相似三角形的判定与性质及向量的运算,熟练掌握相似三角形的判定与性质得出对应边的长度之比和向量的基本运算是解题的关键.21.如图,在△ABC 中,∠ACB=90°,AB=5,tanA=,将△ABC 沿直线l 翻折,恰好使点A 与点B 重合,直线l 分别交边AB 、AC 于点D 、E ;(1)求△ABC 的面积;(2)求sin ∠CBE 的值.【考点】翻折变换(折叠问题).【分析】(1)根据∠A 的正切用BC 表示出AC ,再利用勾股定理列方程求出BC ,再求出AC ,然后根据直角三角形的面积公式列式计算即可得解;(2)设CE=x ,表示出AE ,再根据翻折变换的性质可得BE=AE ,然后列方程求出x ,再利用锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC ,在Rt △ABC 中,BC 2+AC 2=AB 2,即BC 2+4BC 2=25,解得BC=,所以,AC=2,△ABC 的面积=AC •BC=××2=5;(2)设CE=x ,则AE=AC ﹣CE=2﹣x ,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.【点评】本题考查了翻折变换的性质,锐角三角函数的定义,此类题目,利用勾股定理列出方程求出相关的线段的长度是解题的关键.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)【考点】解直角三角形的应用-坡度坡角问题.【分析】作BE⊥AD于点E,设AB=x米,在直角△ABE中,根据三角函数,利用x表示出AE和BE的长,则在直角△BED中,利用勾股定理表示出BD的长,在直角△ABC中利用勾股定理表示出BC,根据BC=BD即可列方程求解.【解答】解:作BE⊥AD于点E,设AB=x米,在直角△ABE中,∠BAE=90°﹣∠DAH=90°﹣30°=60°,则AE=AB•cos∠BAE=xcos60°=x(米),BE=AB•sin∠BAE=xsin60°=x(米).则DE=AD﹣AE=12﹣x,在直角△BED中,BD2=BE2+DE2=(x)2+(12﹣x)2=144+x2﹣12x,在直角△ABC中,BC2=AC2+AB2=72+x2=49+x2.∵BC=BD,∴144+x2﹣12x=49+x2.解得x=≈7.9答:电线杆AB的高度约是7.9米.【点评】本题考查了解直角三角形的应用,坡度坡角问题,正确作出辅助线,利用AB的长表示抽BD和BC是关键.23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.【考点】相似三角形的判定与性质.【分析】(1)证出△ABD∽△ACB,得出对应角相等即可;(2)由相似三角形的性质得出对应边成比例求出AD=,BD=,得出BD=CD,由等腰三角形的性质得出∠DBC=∠ACB,证出∠ABD=∠BDC,再证明点B、E、D、F四点共圆,由圆周角定理得出,即可得出结论.【解答】(1)证明:∵AB是AD与AC的比例中项.∴,又∵∠A=∠A,∴△ABD∽△ACB,∴∠ACB=∠ABD;(2)证明:∵△ABD∽△ACB,∴,即,解得:AD=,BD=,∴CD=AC﹣AD=6﹣=,∴BD=CD,∴∠DBC=∠ACB,∵∠ACB=∠ABD,∴∠ABD=∠BDC,∵∠EDF=∠A+∠C,∠A+∠C=180°﹣∠ABC,∴∠EDF+∠ABC=180°,∴点B、E、D、F四点共圆,∴,∴DE=DF.【点评】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握相似三角形的判定与性质,证明四点共圆是解决问题(2)的关键.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线的解析式;(2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k【解答】解:(1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴抛物线的解析式为y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)如图,设点D(m,0),E(n,0),∵A(1,0),∴AD=m﹣1,AE=n﹣1由(1)知,抛物线的解析式为y=2x2﹣8x+6=2(x﹣2)2﹣2;∴将此抛物线先沿x轴方向向右平移6个单位,得到抛物线的解析式为y=2(x﹣8)2﹣2;∴再沿y轴方向平移k个单位,得到的抛物线的解析式为y=2(x﹣8)2﹣2﹣k;令y=0,则2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0,根据根与系数的关系得,∴m+n=16,mn=63﹣,∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45,∵△ACD∽△AEC,∴,∴AC2=AD•AE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6个单位.【点评】此题是二次函数综合题,主要考查了待定系数法,平移的性质,相似三角形的性质,根与系数的关系,解本题的关键是设出了点D,E的坐标,借助韦达定理直接求出k.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.【考点】三角形综合题;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解直角三角形.【专题】压轴题;面积法.【分析】(1)先根据∠ACB=90°,AC=3,BC=4,求得AB=5,sinA=,tanB=,再根据△ACD为直角三角形,求得AD,在Rt△CDE中,求得DE,最后根据BE=AB﹣AD﹣DE进行计算即可;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,进而得出∠CED=∠CDE,再根据∠B=∠DCE,∠CDE=∠BDC,得到∠BCD=∠CED=∠CDE=∠BDC,最后求得AD的长;(3)先作CH⊥AB于H,Rt△ACH中,求得CH和AH的长,在Rt△CDH中,根据勾股定理得出:CD2=x2﹣x+9,再判定△BDC∽△CDE,得出CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),最后求得y关于x的函数解析式,并写出定义域.【解答】(1)在△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,sinA=,tanB=,如图,当CD⊥AB时,△ACD为直角三角形,∴CD=AC•sinA=,∴AD==,又∵∠DCE=∠ABC,∴在Rt△CDE中,DE=CD•tan∠DCE=×=,∴BE=AB﹣AD﹣DE=5﹣﹣=;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,∴唯有∠CED=∠CDE,又∵∠B=∠DCE,∠CDE=∠BDC,∴∠BCD=∠CED=∠CDE=∠BDC,∴BD=BC=4,∴AD=5﹣4=1;(3)如图所示,作CH⊥AB于H,∵×BC×AC=AB×CH,∴CH=,∴Rt△ACH中,AH==,∴在Rt△CDH中,CD2=CH2+DH2=()2+(﹣x)2=x2﹣x+9,又∵∠CDE=∠BDC,∠DCE=∠B,∴△BDC∽△CDE,∴CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),解得.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形的综合应用,解决问题的关键是中辅助线构造直角三角形,根据勾股定理以及面积法进行求解.。
2018年中考数学一模试卷一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.4的倒数是()A.4 B.﹣4 C.D.﹣2.下列运算正确的是()A.(a﹣3)2=a2﹣9 B.a2•a4=a8 C.=±3 D.=﹣23.式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x≤1 C.x>0 D.x>14.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁5.如图,已知圆锥侧面展开图的扇形面积为65πcm2,扇形的弧长为10πcm,则圆锥母线长是()A.5cm B.10cm C.12cm D.13cm6.下列语句正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线相等C.有两边及一角对应相等的两个三角形全等D.平行四边形是轴对称图形7.下列说法中,你认为正确的是()A.四边形具有稳定性B.等边三角形是中心对称图形C.等腰梯形的对角线一定互相垂直D.任意多边形的外角和是360°8.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.众数B.中位数C.平均数D.极差9.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.B.C.D.10.如图,A、B、C是反比例函数y=(x<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条B.3条C.2条D.1条二、填空题:(本大题共8小题,每小题2分,共16分.不需写出解答过程.)11.方程=1的根是x=.12.已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是13.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE 与△ABC的面积之比为.14.一元二次方程x2+x﹣2=0的两根之积是.15.如图,点O是⊙O的圆心,点A、B、C在⊙O上,AO∥BC,∠AOB=38°,则∠OAC的度数是度.16.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为m(结果保留根号).17.如图,在平面直角坐标系中,点A(a,b)为第一象限内一点,且a<b.连结OA,并以点A为旋转中心把OA逆时针转90°后得线段BA.若点A、B恰好都在同一反比例函数的图象上,则的值等于.18.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是.三、解答题:(本大题共10小题,共84分.)19.计算:(1)|﹣2|﹣(1+)0+;(2)(a﹣)÷.20.(1)解方程: +=4.(2)解不等式组:.21.如图,平行四边形ABCD的对角线AC、BD,相交于点O,EF过点O且与AB、CD分别相交于点E、F,求证:AE=CF.22.某学校为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题:(1)求本次测试共调查了多少名学生?(2)求本次测试结果为B等级的学生数,并补全条形统计图;(3)若该中学八年级共有900名学生,请你估计八年级学生中体能测试结果为D等级的学生有多少人?23.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.24.随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B 型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?25.如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.26.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)⊙O的半径为,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.参考答案一、选择题:1.C2.B3.A4.B5.D6.C7.D8.B9.A10.A二、填空题:(本大题共8小题,每小题2分,共16分.不需写出解答过程.)11.7.5×103.12.假.13.a(a+2)(a﹣2)14.﹣2.15.19°.16 AC=BD(或∠CBA=∠DAB)(只填一个).17..18.1.2.三、解答题:(本大题共10小题,共84分.)19.解:(1)原式=2﹣1+2=3.(2)原式=.20.解:(1)去分母得:x﹣5x=4(2x﹣3),解得:x=1,经检验x=1是分式方程无解;(2),∵由①得,x<2,由②得,x≥﹣1,∴不等式组的解集是:﹣1≤x<2.21.证明:∵四边形ABCD是平行四边形,∴AB∥CD,OA=OC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴AE=CF.22.解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:;故答案为:;(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;∴建议小明在第一题使用“求助”.23.解:(1)360°×(1﹣50%﹣30%﹣5%)=54°;(2)10÷5%=200人;(3)200×15%=30人,200×30%=60人;(4)平均每天参加体育活动的时间在0.5小时以下人数为2000×5%=100(人).24.解:作AM⊥EF于点M,作BN⊥EF于点N,如右图所示,由题意可得,AM=BN=60米,CD=100米,∠ACF=45°,∠BDF=60°,∴CM=米,DN=米,∴AB=CD+DN﹣CM=100+20﹣60=(40+20)米,即A、B两点的距离是(40+20)米.25.解:(1)设每台B型空气净化器为x元,A型净化器为(x+300)元,由题意得,=,解得:x=1200,经检验x=1200是原方程的根,则x+300=1500,答:每B型空气净化器、每台A型空气净化器的进价分别为1200元,1500元;(2)设B型空气净化器的售价为x元,根据题意得;(x﹣1200)(4+)=3200,解得:x=1600,答:如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为1600元.26.解:(1)把点B的坐标代入抛物线的表达式,得=a×22﹣2a﹣a,解得a=,∴抛物线的表达式为y=x2﹣x﹣.(2)连接CD,过点B作BF⊥x轴于点F,则∠BCF+∠CBF=90°∵∠ACB=90°,∴∠ACO+∠BCF=90°,∴∠ACO=∠CBF,∵∠AOC=∠CFB=90°,∴△AOC∽△CFB,∴=,设OC=m,则CF=2﹣m,则有=,解得m1=m2=1,∴OC=CF=1,当x=0时,y=﹣,∴OD=,∴BF=OD,∵∠DOC=∠BFC=90°,∴△OCD≌△FCB,∴DC=CB,∠OCD=∠FCB,∴点B、C、D在同一直线上,∴点B与点D关于直线AC对称,∴点B关于直线AC的对称点在抛物线上.(3)过点E作EG⊥y轴于点G,设直线AB的表达式为y=kx+b,则,解得k=﹣,∴y=﹣x +,代入抛物线的表达式﹣x +=x 2﹣x ﹣. 解得x=2或x=﹣2,当x=﹣2时y=﹣x +=﹣×(﹣2)+=,∴点E 的坐标为(﹣2,),∵tan ∠EDG===, ∴∠EDG=30°∵tan ∠OAC===, ∴∠OAC=30°,∴∠OAC=∠EDG ,∴ED ∥AC .。
2018年江苏省扬州市中考数学一模试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)下列各数中,属于无理数的是()A.0.010010001 B.C.3.14 D.﹣2.(3分)下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率3.(3分)下列各式计算正确的是()A.a2+2a3=3a5B.(a2)3=a5C.a6÷a2=a3D.a2•a3=a54.(3分)下列函数中,自变量的取值范围是x>3的是()A.y=x﹣3 B.C. D.5.(3分)如图,下列选项中不是正六棱柱三视图的是()A.B.C.D.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA7.(3分)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为()A.B.2 C.2 D.48.(3分)一种包装盒的设计方法如图所示,ABCD是边长为80cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D四点重合于图中的点O,形成一个底面为正方形的长方体包装盒.设BE=CF=xcm,要使包装盒的侧面积最大,则x应取()A.30cm B.25cm C.20cm D.15cm二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)我国的南海资源丰富,其面积为3500000平方千米,相当于渤海、黄海和东海总面积的3倍.其中3500000用科学记数法可表示为.10.(3分)正方形的面积为18,则该正方形的边长为.11.(3分)分解因式:a2b﹣4ab+4b=.12.(3分)若双曲线y=与直线y=x无交点,则k的取值范围是.13.(3分)口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是.14.(3分)一个矩形的周长为16,面积为14,则该矩形的对角线长为.15.(3分)如图,每个小正方形的边长为l,A、B、C是小正方形的顶点,则sin ∠ABC的值等于.16.(3分)如图,在▱ABCD中,E,F是对角线BD上的两点,要使四边形AFCE 是平行四边形,则需添加的一个条件可以是.(只添加一个条件)17.(3分)如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则的长为.18.(3分)如图,△ABC三个顶点分别在反比例函数y=,y=的图象上,若∠C=90°,AC∥y 轴,BC∥x 轴,S△ABC=8,则k的值为.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)(1)计算:﹣3tan30°;(2)解方程:x2﹣4x﹣1=0.20.(8分)先化简再求值:,其中x是不等式组的一个整数解.21.(8分)中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)写出扇形图中a=%,并补全条形图;(2)在这次抽测中,测试成绩的众数和中位数分别是个、个.(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?22.(8分)4张奖券中有2张是有奖的,甲、乙先后各抽一张.(1)甲中奖的概率是;(2)试用列树状图或列表法求甲、乙都中奖的概率.23.(10分)如图,在▱ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF.(1)求证:△AEH≌△CGF;(2)若EG平分∠HEF,求证:四边形EFGH是菱形.24.(10分)扬州市某土特产商店购进960盒绿叶牌牛皮糖,由于进入旅游旺季,实际每天销售的盒数比原计划每天多20%,结果提前2天卖完.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.25.(10分)同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.(1)求点P的坐标,并说明其实际意义;(2)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.26.(10分)如图,△ABC中,AB=AC,点D为BC上一点,且AD=DC,过A,B,D三点作⊙O,AE是⊙O的直径,连结DE.(1)求证:AC是⊙O的切线;(2)若sinC=,AC=6,求⊙O的直径.27.(12分)如图1,反比例函数y=(x>0)的图象经过点A(2,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.28.(12分)如图,已知△ABC中,∠ACB=90°,AC=15,BC=20.动点P在线段CB上,以1cm/s的速度从点C向B运动,连接AP,作CE⊥AB分别交AP、AB于点F、E,过点P作PD⊥AP交AB于点D.(1)线段CE=;(2)若t=5时,求证:△BPD≌△ACF;(3)t为何值时,△PDB是等腰三角形;(4)求D点经过的路径长.2018年江苏省扬州市中考数学一模试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)下列各数中,属于无理数的是()A.0.010010001 B.C.3.14 D.﹣【分析】由于无理数就是无限不循环小数,利用无理数的定义即可判定选择项.【解答】解:无理数是,故选:B.2.(3分)下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、人数众多,应用抽样调查,故此选项错误;B、人数不多,应用全面调查,故此选项正确;C、数量众多,使用抽样调查,破坏性较强,故此选项错误;D、范围太大,应用抽样调查,故此选项错误;故选:B.3.(3分)下列各式计算正确的是()A.a2+2a3=3a5B.(a2)3=a5C.a6÷a2=a3D.a2•a3=a5【分析】根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加对各选项分析判断即可得解.【解答】解:A、a2+2a3不能进行运算,故本选项错误;B、(a2)3=a2×3=a6,故本选项错误;C、a6÷a2=a6﹣2=a4,故本选项错误;D、a2•a3=a2+3=a5,故本选项正确.故选:D.4.(3分)下列函数中,自变量的取值范围是x>3的是()A.y=x﹣3 B.C. D.【分析】根据被开方数大于等于0,分母不等于0对各选项分析判断利用排除法求解.【解答】解:A、自变量的取值范围是全体实数,故本选项错误;B、自变量的取值范围是x≠3,故本选项错误;C、自变量的取值范围是x≥3,故本选项错误;D、自变量的取值范围是x>3,故本选项正确.故选:D.5.(3分)如图,下列选项中不是正六棱柱三视图的是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:正六棱柱三视图分别为:三个左右相邻的矩形,两个左右相邻的矩形,正六边形.故选:A.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS可得到三角形全等.【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD ≌△C'O'D',故选:B.7.(3分)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为()A.B.2 C.2 D.4【分析】由A、B、P是半径为2的⊙O上的三点,∠APB=45°,可得△OAB是等腰直角三角形,继而求得答案.【解答】解:∵A、B、P是半径为2的⊙O上的三点,∠APB=45°,∴∠AOB=2∠APB=90°,∴△OAB是等腰直角三角形,∴AB=OA=2.故选:C.8.(3分)一种包装盒的设计方法如图所示,ABCD是边长为80cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D四点重合于图中的点O,形成一个底面为正方形的长方体包装盒.设BE=CF=xcm,要使包装盒的侧面积最大,则x应取()A.30cm B.25cm C.20cm D.15cm【分析】如图,设BE=CF=x,则EF=80﹣2x,利用△EFM和△CFN都是等腰直角三角形,所以MF=EF=40﹣x,FN=FC=x,利用矩形的面积公式得到包装盒的侧面积=4•x(40﹣x),然后根据二次函数的性质解决问题.【解答】解:如图,设BE=CF=x,则EF=80﹣2x,∵△EFM和△CFN都是等腰直角三角形,∴MF=EF=40﹣x,FN=FC=x,∴包装盒的侧面积=4MF•FN=4•x(40﹣x)=﹣8(x﹣20)2+3200,当x=20时,包装盒的侧面积最大.故选:C.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)我国的南海资源丰富,其面积为3500000平方千米,相当于渤海、黄海和东海总面积的3倍.其中3500000用科学记数法可表示为 3.5×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:3 500 000=3.5×106,故答案为:3.5×106.10.(3分)正方形的面积为18,则该正方形的边长为3.【分析】根据正方形的面积公式,由开方运算可得答案.【解答】解:∵正方形的面积为18,∴该正方形的边长为=3.故答案为:3.11.(3分)分解因式:a2b﹣4ab+4b=b(a﹣2)2.【分析】考查了对一个多项式因式分解的能力.本题属于基础题,当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.此题应先提公因式,再用完全平方公式.【解答】解:a2b﹣4ab+4b=b(a2﹣4a+4)=b(a﹣2)212.(3分)若双曲线y=与直线y=x无交点,则k的取值范围是k>2.【分析】由双曲线y=与直线y=x无交点,于是得到4﹣2k与异号,解不等式即可得到结论.【解答】解:∵双曲线y=与直线y=x无交点,∴4﹣2k与异号,∴4﹣2k<0,∴k>2,故答案为:k>2.13.(3分)口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是0.3.【分析】让1减去摸出红球和白球的概率即为所求的概率.【解答】解:根据概率公式摸出黑球的概率是1﹣0.2﹣0.5=0.3.14.(3分)一个矩形的周长为16,面积为14,则该矩形的对角线长为6.【分析】运用矩形性质,找出等量关系,列出方程,求出长与宽;再利用勾股定理,求出对角线长.【解答】解:设矩形长为x,则宽为(8﹣x).∴x(8﹣x)=14.解得:x1=4+,x2=4﹣(舍去).∴长为4+,宽为4﹣.则对角线为=6.故答案为:6.15.(3分)如图,每个小正方形的边长为l,A、B、C是小正方形的顶点,则sin∠ABC的值等于.【分析】连接AC,设小正方形的边长为1,利用勾股定理求出AC,BC及AB的长,利用勾股定理的逆定理得出三角形ABC为等腰直角三角形,可得出∠ABC 为45°,利用特殊角的三角函数值即可求出sin∠ABC的值.【解答】解:连接AC,设小正方形的边长为1,根据勾股定理可以得到:AC=BC=,AB=.∵()2+()2=()2.∴AC2+BC2=AB2.∴△ABC是等腰直角三角形.∴∠ABC=45°.则sin∠ABC=.故答案为:16.(3分)如图,在▱ABCD中,E,F是对角线BD上的两点,要使四边形AFCE是平行四边形,则需添加的一个条件可以是BF=DE.(只添加一个条件)【分析】可连接对角线AC,通过对角线互相平分得出结论.【解答】解:添加的条件为BF=DE;连接AC交BD于O,∵四边形ABCD是平行四边形,∴AO=CO、BO=DO,∵BF=DE,∴OE=OF,∴四边形AFCE是平行四边形;故答案为:BF=DE.17.(3分)如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则的长为π.【分析】连接CF,DF,得到△CFD是等边三角形,得到∠FCD=60°,根据正五边形的内角和得到∠BCD=108°,求得∠BCF=48°,根据弧长公式即可得到结论.【解答】解:连接CF,DF,则△CFD是等边三角形,∴∠FCD=60°,∵在正五边形ABCDE中,∠BCD=108°,∴∠BCF=48°,∴的长==π,故答案为:π.18.(3分)如图,△ABC三个顶点分别在反比例函数y=,y=的图象上,若∠C=90°,AC∥y 轴,BC∥x 轴,S△ABC=8,则k的值为5.【分析】设点C的坐标为(m,),则点A的坐标为(m,),点B的坐标为(km,),由此即可得出AC、BC的长度,再根据三角形的面积结合S=8,△ABC即可求出k值,取其正值即可.【解答】解:设点C的坐标为(m,),则点A的坐标为(m,),点B的坐标为(km,),∴AC=﹣=,BC=km﹣m=(k﹣1)m,=AC•BC=(k﹣1)2=8,∵S△ABC∴k=5或k=﹣3.∵反比例函数y=在第一象限有图象,∴k=5.故答案为:5.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)(1)计算:﹣3tan30°;(2)解方程:x2﹣4x﹣1=0.【分析】(1)根据二次根时的性质,特殊角三角函数值,负整数指数幂,可得答案.(2)根据配方法,可得答案.【解答】(1)原式=,=(2)移项,得x2﹣4x=1配方得:(x﹣2)2=5解之得:.20.(8分)先化简再求值:,其中x是不等式组的一个整数解.【分析】先计算括号内分式的减法,再将除法转化为乘法,继而约分化简原式,解不等式求出符合题意的整数x的值,代入计算可得.【解答】解:原式=(﹣)÷===﹣(x+2)(x﹣1)=﹣x2﹣x+2;解不等式组得﹣1<x≤2,符合不等式解集的整数是0,1,2,当x=0时,原式=2.21.(8分)中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)写出扇形图中a=25%,并补全条形图;(2)在这次抽测中,测试成绩的众数和中位数分别是5个、5个.(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?【分析】(1)用1减去其他天数所占的百分比即可得到a的值,用360°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;(2)根据众数与中位数的定义求解即可;(3)先求出样本中得满分的学生所占的百分比,再乘以1800即可.【解答】解:(1)扇形统计图中a=1﹣30%﹣15%﹣10%﹣20%=25%,设引体向上6个的学生有x人,由题意得=,解得x=50.条形统计图补充如下:(2)由条形图可知,引体向上5个的学生有60人,人数最多,所以众数是5;共200名同学,排序后第100名与第101名同学的成绩都是5个,故中位数为(5+5)÷2=5(3)×1800=810(名).答:估计该区体育中考选报引体向上的男生能获得满分的同学有810名.故答案为:25;5,5.22.(8分)4张奖券中有2张是有奖的,甲、乙先后各抽一张.(1)甲中奖的概率是;(2)试用列树状图或列表法求甲、乙都中奖的概率.【分析】(1)由4张奖券中有2张是有奖的,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙都中奖的情况,再利用概率公式即可求得答案.【解答】解:(1)∵4张奖券中有2张是有奖的,∴甲中奖的概率是:=;故答案为:;(2)设四张奖券分别为奖1、奖2、空1、空2,列表得:∵共有12种等可能结果,其中甲、乙都中奖的有2种情况.==.∴P(甲、乙都中奖)23.(10分)如图,在▱ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF.(1)求证:△AEH≌△CGF;(2)若EG平分∠HEF,求证:四边形EFGH是菱形.【分析】(1)根据全等三角形的判定定理SAS证得结论;(2)欲证明四边形EFGH是菱形,只需推知四边形EFGH是平行四边形,然后证得该平行四边形的邻边相等即可.【解答】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C.∴在△AEH与△CGF中,,∴△AEH≌△CGF.(2)∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∠B=∠D.∵AE=CG,AH=CF,∴EB=DG,HD=BF.∴△BEF≌△DGH.∴EF=HG.又∵△AEH≌△CGF,∴EH=GF.∴四边形HEFG为平行四边形.∴EH∥FG,∴∠HEG=∠FGE.∵EG平分∠HEF,∴∠HEG=∠FEG,∴∠FGE=∠FEG,∴EF=GF,∴EFGH是菱形.24.(10分)扬州市某土特产商店购进960盒绿叶牌牛皮糖,由于进入旅游旺季,实际每天销售的盒数比原计划每天多20%,结果提前2天卖完.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.【分析】问题:求原计划每天销售多少盒绿叶牌牛皮糖?设原计划每天销售x盒绿叶牌牛皮糖,则实际每天销售1.2x盒绿叶牌牛皮糖,根据销售时间=销售总量÷每天的销量结合提前2天卖完,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】问题:求原计划每天销售多少盒绿叶牌牛皮糖?解:设原计划每天销售x盒绿叶牌牛皮糖,则实际每天销售1.2x盒绿叶牌牛皮糖,根据题意,得:﹣=2,解得:x=80,经检验,x=80是原分式方程的解,且符合题意.答:原计划每天销售80盒绿叶牌牛皮糖.25.(10分)同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.(1)求点P的坐标,并说明其实际意义;(2)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.【分析】(1)根据图象中的数据可以求得乙对应的函数解析式,从而可以求得点P的坐标,进而写出它的实际意义;(2)根据题意可以得到甲对应的函数解析式,再根据甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍,可以得到方程,从而可以解答本题.【解答】解:(1)设乙蜡烛y与x之间的函数表达式为y=kx+b,,解得,,∴乙蜡烛y与x之间的函数表达式为y=﹣0.8x+40,当x=20时,y=﹣0.8×20+40=24,∴点P的坐标为(20,24),其实际意义为点燃20分钟时甲乙两根蜡烛剩下的长度都是24 cm;(2)设甲蜡烛剩下的长度y甲与x之间的函数表达式为y甲=mx+n,,得,∴甲蜡烛剩下的长度y甲与x之间的函数表达式为y甲=﹣1.2x+48,∵甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍则1.1×(﹣0.8x+40)=﹣1.2x+48,解得,x=12.5,答:点燃12.5分钟,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.26.(10分)如图,△ABC中,AB=AC,点D为BC上一点,且AD=DC,过A,B,D三点作⊙O,AE是⊙O的直径,连结DE.(1)求证:AC是⊙O的切线;(2)若sinC=,AC=6,求⊙O的直径.【分析】(1)根据等腰三角形的性质,由AB=AC,AD=DC得∠C=∠B,∠1=∠C,则∠1=∠B,根据圆周角定理得∠E=∠B,∠ADE=90°,所以∠1+∠EAD=90°,然后根据切线的判定定理即可得到AC是⊙O的切线;(2)过点D作DF⊥AC于点F,如图,根据等腰三角形的性质得CF=AC=3,在Rt△CDF中,利用正弦定义得sinC==,则设DF=4x,DC=5x,利用勾股定理得CF=3x,所以3x=3,解得x=1,于是得到DC=AD=5,然后证明△ADE∽△DFC,再利用相似比可计算AE即可.【解答】(1)证明:∵AB=AC,AD=DC,∴∠C=∠B,∠1=∠C,∴∠1=∠B,又∵∠E=∠B,∴∠1=∠E,∵AE是⊙O的直径,∴∠ADE=90°,∴∠E+∠EAD=90°,∴∠1+∠EAD=90°,即∠EAC=90°,∴AE⊥AC,∴AC是⊙O的切线;(2)解:过点D作DF⊥AC于点F,如图,∵DA=DC,∴CF=AC=3,在Rt△CDF中,∵sinC==,设DF=4x,DC=5x,∴CF==3x,∴3x=3,解得x=1,∴DC=5,∴AD=5,∵∠ADE=∠DFC=90°,∠E=∠C,∴△ADE∽△DFC,∴=,即=,解得AE=,即⊙O的直径为.27.(12分)如图1,反比例函数y=(x>0)的图象经过点A(2,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;与AC相交于点N,连接CM,求△CMN面积的最大值.【分析】(1)由点A在反比例函数图象上,用待定系数法确定反比例函数的解析式;(2)由反比例函数解析式先求出点B的坐标,过B作BE⊥AD于E,可得到AE、BE间的长度关系,从而得到∠BAE的度数,再根据∠BAC的度数求出∠DAC,从而得到tan∠DAC的值,根据tan∠DAC的值及线段的和差关系,求得点C的坐标,从而确定一次函数AC的解析式;(3)设M的横坐标为m,可知道M、N点的坐标,利用三角形的面积公式得到关于m的二次函数,利用二次函数的性质,得到△MNC的最大面积.【解答】解:(1)∵反比例函数y=(x>0)的图象经过点A(2,1)∴=1,∴k=2;(2)∵k=2,所以反比例函数解析式为y=∵点B(1,a)在反比例函数y=的图象上,∴a==2,∴点B(1,2)过B作BE⊥AD于E,则AE=BE=2﹣1.∴∠ABE=∠BAE=45°又∵∠BAC=75°,∴∠DAC=30°∴tan∠DAC=tan30°=∴DC=AD==2,∴OC=2﹣1=1,∴C(0,﹣1)设直线AC的解析式为y=kx+b∴,解得∴直线AC的解析式为y=x﹣1(3)设M(m,)(0<m<2),则N(m,m﹣1)则MN=﹣(m﹣1)=﹣m+1=(﹣m+1)•m=﹣m2+m+∴S△CMN=﹣(m﹣)2+当m=时,△CMN的面积有最大值,最大值为28.(12分)如图,已知△ABC中,∠ACB=90°,AC=15,BC=20.动点P在线段CB上,以1cm/s的速度从点C向B运动,连接AP,作CE⊥AB分别交AP、AB(1)线段CE=12;(2)若t=5时,求证:△BPD≌△ACF;(3)t为何值时,△PDB是等腰三角形;(4)求D点经过的路径长.【分析】(1)先根据勾股定理求AB的长,再利用面积法求CE即可;(2)由题意得:CP=t,根据同角的余角相等可得:∠BPD=∠CAP和∠ACE=∠B,再由AC=BP=15,可得结论;(3)分三种情况:①PD=BD,作高线DG,根据等角的三角函数得:tan∠GPD=tan∠B=,可得t的值;②PB=PD,根据三角形内角和说明其不成立;③BD=PB,根据三角形内角和说明其不成立;(4)先确定点D的运动路径,再根据相似求BD的长,可得结论.【解答】解:(1)在Rt△ACB中,由勾股定理得:AB==25,∵CE⊥AB,∴S△ABC=AC•BC=AB•CE,∴15×20=25CE,∴CE=12,故答案为:12;(2)由题意得:CP=t,∵t=5,∴BP=20﹣5=15,∴AC=BP,∵AP⊥PD,∴∠APD=90°,∴∠APC+∠BPD=∠APC+∠CAP=90°,∴∠BPD=∠CAP,∴∠ACE=∠B,∴△BPD≌△ACF;(3)如图1,作DG⊥BC,垂足为G,由(2)得:∠CAP=∠GPD,∵DP=DB,∴∠GPD=∠B,∴tan∠GPD=tan∠B=,∴,∴CP=,即t=;如图2,当PD=PB时,∠B=∠PDB,∴∠PDB是一个钝角,此种情况不成立;当BD=PB时,∠PDB=75°,而∠ADP<90°,∴∠PDB>90°,所以此种情况也不成立;综上所述,t为秒时,△PDB是等腰三角形;(4)如图3,构建⊙E,∵∠APD=90°,∴P在⊙E上,当半径最小时,即EP⊥BC时,BD最大,设⊙E的半径为r,∵EP∥AC,∴△BPE∽△BCA,∴,∴,r=,∴BD=25﹣2r=,点P在运动过程中,点D的运动路径=2BD==12.5.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。
2018 年上海市普陀区中考数学一模试卷一、选择题:(本大题共 6 题,每题 4 分,满分 24 分)[ 以下各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应地点上]1. 以下函数中,y对于x的二次函数是()A.y=ax2+bx+cB.y=x( x﹣1)C. D .y=( x﹣1)2﹣x2【剖析】依据二次函数的定义,逐个剖析四个选项即可得出结论.【解答】解: A、当 a=0 时, y=bx+c 不是二次函数;B、y=x( x﹣1)=x2﹣x 是二次函数;C、y= 不是二次函数;D、y=(x﹣1)2﹣x2=﹣2x+1 为一次函数.应选:B.【评论】本题考察了二次函数的定义,切记二次函数的定义是解题的重点.C=90°,AC=2,以下结论中,正确的选项是()2. 在Rt △ ABC中,∠A.AB=2sinA B. AB=2cosA C.BC=2tanA D.BC=2cotA【剖析】直接利用锐角三角函数关系分别计算得出答案.【解答】解:∵∠ C=90°, AC=2,∴cosA==,故AB=,应选项 A ,B 错误;tanA==,则 BC=2tanA,应选项 C 正确;则选项 D错误.应选: C.【评论】本题主要考察了锐角三角函数关系,正确将记忆锐角三角函数关系是解题重点.3.如图,在△ ABC中,点 D、 E 分别在边 AB、AC 的反向延伸线上,下边比率式中,不能判断 ED∥BC 的是()A.B.C.D.【剖析】依据平行线分线段成比率定理,对各选项进行逐个判断即可.【解答】解: A.当时,能判断 ED∥BC;B. 当时,能判断 ED∥ BC;C. 当时,不可以判断 ED∥ BC;D. 当时,能判断ED∥ BC;应选: C.【评论】本题考察的是平行线分线段成比率定理,假如一条直线截三角形的两边(或两边的延伸线)所得的对应线段成比率,那么这条直线平行于三角形的第三边.)4.已知,以下说法中,不正确的选项是(A.B.与方向同样C.D.【剖析】依据平行向量以及模的定义的知识求解即可求得答案,注意掌握清除法在选择题中的应用.【解答】解: A、错误.应当是﹣5= ;B、正确.因为,因此与的方向同样;C、正确.因为,因此∥;D、正确.因为,因此| |=5| | ;应选:A.【评论】本题考察了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向同样或相反的非零向量.零向量和任何向量平行.5.如图,在平行四边形 ABCD中, F 是边 AD 上的一点,射线 CF 和 BA 的延伸线交于点E,假如,那么的值是()A.B.C.D.【剖析】依据相像三角形的性质进行解答即可.【解答】解:∵在平行四边形ABCD 中,∴AE∥CD,∴△ EAF∽△ CDF,∵,∴,∴,∵AF∥BC,∴△ EAF∽△ EBC,∴=,应选:D.【评论】本题考察相像三角形的判断和性质,综合运用了平行四边形的性质和相像三角形的性质是解题重点.6.如图,已知 AB 和 CD 是⊙O 的两条等弦. OM⊥AB, ON⊥ CD,垂足分别为点 M、N,BA、 DC 的延伸线交于点 P ,联络 OP.以下四个说法中:①;② OM=ON;③ PA=PC;④∠ BPO=∠DPO,正确的个数是()A.1B.2C.3D.4【剖析】如图连结 OB、OD,只需证明Rt△OMB≌Rt△OND,Rt△OPM≌ Rt△OPN即可解决问题.【解答】解:如图连结 OB、 OD;∵AB=CD,∴= ,故①正确∵OM⊥AB,ON⊥CD,∴A M=MB, CN=ND,∴BM=DN,∵OB=OD,∴R t△OMB≌Rt△OND,∴O M=ON,故②正确,∵OP=OP,∴R t△OPM≌Rt△OPN,∴PM=PN,∠ OPB=∠OPD,故④正确,∵AM=CN,∴PA=PC,故③正确,应选:D.【评论】本题考察垂径定理、圆心角、弧、弦的关系、全等三角形的判断和性质等知识,解题的重点是学会增添常用协助线面结构全等三角形解决问题,属于中考常考题型.二.填空题(本大题共12题,每题4分,满分48分)7.假如=,那么=.【剖析】利用比率的性质由=获得=,则可设a=2t , b=3t,而后把a=2t ,b=3t 代入中进行分式的运算即可.【解答】解:∵=,∴=,设 a=2t ,b=3t ,∴==.故答案为.【评论】本题考察了比率的性质:常用的性质有:内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质.8.已知线段 a=4 厘米, b=9 厘米,线段 c 是线段 a 和线段 b 的比率中项,线段 c 的长度等于6厘米.【剖析】依据比率中项的定义,列出比率式即可得出中项,注意线段不可以为负.【解答】解:依据比率中项的观点联合比率的基天性质,得:比率中项的平方等于两条线段的乘积.因此 c 2=4× 9,解得 c=±6(线段是正数,负值舍去),∴c=6cm,故答案为: 6.【评论】本题考察比率线段、比率中项等知识,解题的重点是娴熟掌握基本观点,属于中考常考题型.9.化简:=﹣4+7.【剖析】依据屏幕绚烂的加法法例计算即可【解答】解::= ﹣ 4 +6 =﹣ 4 +7 ,故答案为;【评论】本题考察平面向量的加减法例,解题的重点是娴熟掌握平面向量的加减法例,注意平面向量的加减合适加法互换律以及联合律,合适去括号法例.y=3x 2+2x 在对称轴的左边部分是降落的10.在直角坐标系平面内,抛物线(填“上涨”或“降落”)【剖析】由抛物线分析式可求得其张口方向,再联合二次函数的增减性则可求得答案.【解答】解:2∵在 y=3x +2x 中, a=3>0,∴在对称轴左边部分 y 随 x 的增大而减小,即图象是降落的,故答案为:降落.【评论】本题主要考察二次函数的性质,利用二次函数的分析式求得抛物线的张口方向是解题的重点.1.二次函数y=(x﹣1)2﹣3的图象与y轴的交点坐标是(0,﹣ 2).【剖析】求自变量为 0 时的函数值即可获得二次函数的图象与y轴的交点坐标.【解答】解:把 x=0 代入 y= (x﹣1)2﹣3 得 y=1 ﹣3=﹣2,因此该二次函数的图象与 y 轴的交点坐标为( 0,﹣ 2),故答案为( 0,﹣ 2).【评论】本题考察了二次函数图象上点的坐标特点,在y轴上的点的横坐标为0.12.将抛物线 y=2x 2平移,使极点挪动到点 P (﹣ 3,1)的地点,那么平移后所得新抛物线的表达式是y=2(x+3)2+1.【剖析】因为抛物线平移前后二次项系数不变,而后依据极点式写出新抛物线分析式.【解答】解:抛物线 y=2x 2平移,使极点移到点P (﹣ 3, 1)的地点,所得新抛物线的表达式为 y=2 (x+3)2+1.故答案为: y=2(x+3)2+1.【评论】本题考察了二次函数图象与几何变换:因为抛物线平移后的形状不变,故a不变,因此求平移后的抛物线分析式往常可利用两种方法:一是求出原抛物线上随意两点平移后的坐标,利用待定系数法求出分析式;二是只考虑平移后的极点坐标,即可求出分析式.13.在直角坐标平面内有一点 A (3,4),点 A 与原点 O 的连线与 x 轴的正半轴夹角为α,那么角α 的余弦值是.【剖析】利用锐角三角函数的定义、坐标与图形性质以及勾股定理的知识求解.【解答】解:∵在直角坐标平面内有一点A(3,4),∴OA= =5,∴cos α= .故答案为:.【评论】本题考察认识直角三角形、锐角三角函数的定义、坐标与图形性质以及勾股定理的知识,本题比较简单,易于掌握.14.如图,在△ ABC 中, AB=AC,点 D 、E 分别在边 BC、AB 上,且∠ ADE=∠B,假如 DE:AD=2:5,BD=3,那么 AC=,.【剖析】依据∠ ADE=∠B,∠ EAD=∠DAB,得出△ AED∽△ ABD,利用相像三角形的性质解答即可.【解答】解:∵∠ ADE=∠B,∵∠ EAD=∠DAB,∴△ AED∽△ ABD,∴,即,∴AB=,∵AB=AC,∴AC=,故答案为:,【评论】本题考察了相像三角形的判断与性质.重点是要懂得找相像三角形,利用相像三角形的性质求解.15.如图,某水库大坝的横断面是梯形ABCD,坝顶宽 AD=6 米,坝高是 20 米,背水坡AB 的坡角为 30 °,迎水坡 CD 的坡度为 1 : 2,那么坝底 BC 的长度等于(46+20)米(结果保存根号)【剖析】过梯形上底的两个极点向下底引垂线AE、DF,获得两个直角三角形和一个矩形,分别解 Rt△ABE、Rt△DCF 求得线段 BE、 CF 的长,而后与EF 相加即可求得 BC 的长.【解答】解:如图,作 AE⊥BC,DF⊥BC,垂足分别为点 E,F,则四边形 ADFE 是矩形.由题意得, EF=AD=6米, AE=DF=20米,∠ B=30°,斜坡 CD 的坡度为 1 : 2 ,在 Rt△ABE 中,∵∠ B=30°,∴BE= AE=20米.在 Rt△CFD中,∵=,∴CF=2DF=40米,∴BC=BE+EF+FC=20 +6+40=46+20(米).因此坝底 BC 的长度等于( 46+20)米.故答案为( 46+20).【评论】本题考察认识直角三角形的应用﹣坡度坡角问题,难度适中,解答本题的重点是结构直角三角形和矩形,注意理解坡度与坡角的定义.16.已知 Rt △ ABC中,∠ C=90°,AC=3,BC= , CD⊥ AB,垂足为点 D,以点 D 为圆心作⊙D,使得点 A 在⊙D 外,且点 B 在⊙D 内.设⊙D 的半径为 r ,那么 r 的取值范围是.【剖析】先依据勾股定理求出AB 的长,从而得出 CD 的长,由点与圆的地点关系即可得出结论.【解答】解:∵ Rt△ABC中,∠ ACB=90, AC=3, BC=,∴AB==4.∵CD⊥AB,∴CD=.2∵AD?BD=CD,设 AD=x,BD=4﹣x.解得 x=∴点 A 在圆外,点 B 在圆内,r 的范围是,故答案为:.【评论】本题考察的是点与圆的地点关系,熟知点与圆的三种地点关系是解答本题的重点.17.如图,点 D 在△ ABC的边 BC 上,已知点 E、点 F 分别为△ ABD和△ ADC 的重心,如果BC=12,那么两个三角形重心之间的距离EF 的长等于4.【剖析】连结 AE 并延伸交 BD 于 G,连结 AF 并延伸交 CD 于 H,依据三角形的重心的观点、相像三角形的性质解答.【解答】解:如图,连结 AE 并延伸交 BD 于 G,连结 AF 并延伸交 CD 于 H,∵点E 、F 分别是△ ABD 和△ ACD的重心,∴DG= BD,DH= CD,AE=2GE,AF=2HF,∵BC=12,∴GH=DG+DH=( BD+CD)= BC= ×12=6,∵AE=2GE, AF=2HF,∠ EAF=∠GAH,∴△ EAF∽△ GAH,∴= = ,∴EF=4,故答案为: 4.【评论】本题考察了三角形重心的观点和性质,三角形的重心是三角形中线的交点,三角形的重心到极点的距离等于到对边中点的距离的 2 倍.18.如图,△ ABC中, AB=5,AC=6,将△ ABC翻折,使得点 A 落到边 BC 上的点 A′处,折痕分别交边 AB、AC 于点 E,点 F ,假如 A′F∥AB,那么 BE=.【剖析】设 BE=x,则 AE=5﹣x=AF=A'F, CF=6﹣( 5﹣ x)=1+x,依照△ A'CF ∽△ BCA,可得=,即=,从而获得BE=.【解答】解:如图,由折叠可得,∠AFE=∠A'FE,∵A'F∥AB,∴∠AEF=∠A'FE,∴∠ AEF=∠AFE,∴AE=AF,由折叠可得, AF=A'F,设 BE=x,则 AE=5﹣x=AF=A'F, CF=6﹣( 5﹣x)=1+x,∵A'F∥AB,∴△ A'CF∽△ BCA,∴=,即=,解得x=,∴BE=,故答案为:.【评论】本题主要考察了折叠问题以及相像三角形的判断与性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.三、解答题(本大题共7 题,满分 78 分)19.( 10 分)计算:45°.【剖析】直接利用特别角的三角函数值从而代入化简得出答案.【解答】解:原式 =﹣×=﹣=.【评论】本题主要考察了特别角的三角函数值,正确记忆有关数据是解题重点. 20 .( 10 分)已知一个二次函数的图象经过 A(0,﹣ 3),B(1,0),C(m,2m+3), D(﹣ 1,﹣ 2)四点,求这个函数分析式以及点 C 的坐标.【剖析】设一般式 y=ax 2+bx+c,把 A、 B、 D 点的坐标代入得,然后解法组即可获得抛物线的分析式,再把C( m, 2m+3)代入分析式获得对于m 的方程,解对于 m 的方程可确立 C 点坐标.【解答】解:设抛物线的分析式为y=ax 2+bx+c,把 A (0,﹣ 3), B(1, 0),D(﹣ 1,﹣ 2)代入得,解得,∴抛物线的分析式为y=2x 2+x﹣3,把 C(m,2m+3)代入得 2m2+m﹣3=2m+3,解得 m1=﹣, m2=2,∴C点坐标为(﹣,0)或(2,7).【评论】本题考察了待定系数法求二次函数的分析式:在利用待定系数法求二次函数关系式时,要依据题目给定的条件,选择合适的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的极点或对称轴时,常设其分析式为极点式来求解;当已知抛物线与 x 轴有两个交点时,可选择设其分析式为交点式来求解.21.( 10 分)如图,已知⊙O 经过△ ABC 的极点 A 、B,交边 BC 于点 D,点A 恰为的中点,且BD=8,AC=9,sinC=,求⊙O 的半径.【剖析】如图,连结 OA.交 BC 于 H.第一证明OA⊥BC,在 Rt△ACH中,求出 AH,设2 2 2⊙O的半径为 r ,在 Rt△BOH中,依据 BH +OH=OB,建立方程即可解决问题;【解答】解:如图,连结 OA.交 BC 于 H .∵点 A 为的中点,∴OA⊥BD, BH=DH=4,∴∠ AHC=∠BHO=90°,∵s inC= = ,AC=9,∴AH=3,设⊙ O 的半径为 r ,2 2 2在 Rt△BOH中,∵ BH+OH=OB,2 2 2,∴4+( r ﹣ 3)=r∴r= ,∴⊙O 的半径为.【评论】本题考察圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的重点是学会增添常用协助线,结构直角三角形解决问题.22.( 10 分)下边是一位同学的一道作图题:已知线段 a 、b、c(如图),求作线段 x ,使 a :b=c:x他的作法以下:()1 、以点 O 为端点画射线 OM,ON.()2 、在 OM 上挨次截取 OA=a, AB=b.()3 、在 ON 上截取 OC=c.()4 、联络 AC,过点 B 作 BD∥AC,交 ON 于点 D.因此:线段CD 就是所求的线段 x .①试将结论补完好②这位同学作图的依照是平行于三角形一边的直线截其余两边(或两边的延伸线),所得对应线段成比率③假如 OA=4, AB=5,,试用向量表示向量.【剖析】①依据作图依照平行线分线段成比率定理求解可得;②依据“平行于三角形一边的直线截其余两边(或两边的延伸线),所得对应线段成比率”可得;③先证△ OAC∽△ OBD得=,即BD=AC,从而知==﹣=﹣.【解答】解:①依据作图知,线段 CD 就是所求的线段 x ,故答案为: CD;②这位同学作图的依照是:平行于三角形一边的直线截其余两边(或两边的延伸线),所得对应线段成比率;故答案为:平行于三角形一边的直线截其余两边(或两边的延伸线),所得对应线段成比率;③∵ OA=4、 AB=5,且 BD∥AC,∴△ OAC∽△ OBD,∴=,即=,∴B D= AC,∴==﹣=﹣.【评论】本题主要考察作图﹣复杂作图,解题的重点是娴熟掌握平行线分线段成比率定理及向量的计算.23.(12 分)已知:如图,四边形ABCD的对角线 AC 和BD 相交于点 E,AD=DC,2DC=DE?DB,求证:(1)△BCE∽△ADE;(2)AB?BC=BD?BE.【剖析】(1)由∠ DAC=∠DCA,对顶角∠ AED=∠BEC,可证△ BCE∽△ ADE.(2)依据相像三角形判断得出△ ADE∽△ BDA,从而得出△ BCE∽△ BDA,利用相像三角形的性质解答即可.【解答】证明:(1)∵ AD=DC,∴∠ DAC=∠DCA,2∵DC=DE?DB,∴= ,∵∠ CDE=∠BDC,∴△ CDE∽△ BDC,∴∠ DCE=∠DBC,∴∠ DAE=∠EBC,∵∠ AED=∠BEC,∴△ BCE∽△ ADE,2(2)∵ DC=DE?DB, AD=DC2∴AD=DE?DB,同法可得△ ADE∽△ BDA,∴∠ DAE=∠ABD=∠EBC,∵△ BCE∽△ ADE,∴∠ ADE=∠BCE,∴△ BCE∽△ BDA,∴=,∴AB?BC=BD?BE.【评论】本题考察了相像三角形的判断与性质.重点是要懂得找相像三角形,利用相像三角形的性质求解.24.( 12 分)如图,已知在平面直角坐标系中,已知抛物线y=ax 2+2ax+c(此中常数,且 a < 0)与 x轴交于点A,它的坐标是(﹣3,0),与 y 轴交于点物线极点 C 到 x轴的距离为 4 a 、 c 为B ,此抛(1)求抛物线的表达式;(2)求∠CAB的正切值;(3)假如点P是抛物线上的一点,且∠ABP=∠CAO,试直接写出点P的坐标.【剖析】(1)先求得抛物线的对称轴方程,而后再求得点 C 的坐标,设抛物线的分析式为 y=a (x+1)2 +4,将点(﹣3, 0)代入求得 a 的值即可;(2)先求得A、B、C 的坐标,而后依照两点间的距离公式可获得BC、AB、AC 的长,而后依照勾股定理的逆定理可证明∠ABC=90°,最后,依照锐角三角函数的定义求解即可;(3)记抛物线与x轴的另一个交点为D.先求得D(1,0),而后再证明∠DBO=∠CAB,从而可证明∠ CAO=ABD,故此当点 P 与点 D 重合时,∠ ABP=∠CAO;当点 P 在 AB 的上时.过点 P 作 PE∥AO,过点 B 作 BF∥AO,则PE∥BF.先证明∠ EPB=∠CAB,则tan ∠EPB= ,设 BE=t ,则 PE=3t ,P(﹣ 3t ,3+t ),将P (﹣ 3t , 3+t )代入抛物线的分析式可求得t 的值,从而可获得点 P 的坐标.【解答】解:( 1)抛物线的对称轴为x= ﹣=﹣1.∵a< 0,∴抛物线张口向下.又∵抛物线与 x轴有交点,∴C 在 x轴的上方,∴抛物线的极点坐标为(﹣1,4).设抛物线的分析式为 y=a (x+1)2+4,将点(﹣ 3,0)代入得: 4a+4=0,解得: a=﹣1,∴抛物线的分析式为 y= ﹣x2﹣ 2x+3.(2)将x=0代入抛物线的分析式得:y=3,∴B( 0,3).∵C(﹣ 1,4)、B(0,3)、A(﹣3,0),∴BC=,AB=3,AC=2,22 2∴BC+AB=AC,∴∠ ABC=90°.∴tan ∠CAB== .(3)如图1所示:记抛物线与x轴的另一个交点为D.∵点 D 与点 A 对于 x= ﹣1 对称,∴D( 1,0).∴t an ∠DBO= .又∵由( 2)可知: tan ∠CAB= .∴∠ DBO=∠CAB.又∵OB=OA=3,∴∠ BAO=∠ABO.∴∠ CAO=∠ABD.∴当点 P 与点 D 重合时,∠ ABP=∠CAO,∴P(1,0).如图 2 所示:当点 P 在 AB 的上时.过点 P 作 PE∥AO,过点 B 作 BF∥AO,则 PE∥BF.∵BF∥AO,∴∠ BAO=∠FBA.又∵∠ CAO=∠ABP,∴∠ PBF=∠ CAB.又∵PE∥BF,∴∠ EPB=∠PBF,∴∠ EPB=∠CAB.∴t an ∠EPB= .设 BE=t ,则 PE=3t , P(﹣ 3t ,3+t ).将 P(﹣ 3t ,3+t )代入抛物线的分析式得: y=﹣ x2﹣2x+3 得:﹣9t 2+6t+3=3+t ,解得 t=0 (舍去)或 t= .∴P(﹣,).综上所述,点 P 的坐标为 P( 1, 0)或 P(﹣,).【评论】本题主要考察的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的分析式、勾股定理的逆定理、等腰直角三角形的性质、锐角三角函数的定义,用含 t的式子表示点P的坐标是解题的重点.25.( 14 分)如图 1 ,∠ BAC的余切值为 2 , AB=2,点D是线段AB上的一动点(点D 不与点 A 、B 重合),以点 D 为极点的正方形 DEFG 的另两个极点E 、F 都在射线 AC上,且点 F 在点 E 的右边,联络 BG,并延伸 BG,交射线 EC 于点 P .( 1)点D在运动时,以下的线段和角中,④⑤ 是一直保持不变的量(填序号);①AF;② FP;③ BP;④∠ BDG;⑤∠ GAC;⑥∠ BPA;( 2)设正方形的边长为x ,线段 AP 的长为 y ,求 y与x之间的函数关系式,并写出定义域;(3)假如△PFG与△AFG相像,但面积不相等,求此时正方形的边长.【剖析】(1)作 BM⊥AC 于 M,交 DG 于 N,如图,利用三角函数的定义获得=2,设 BM=t,则 AM=2t,利用勾股定理得( 2t )2+t 2=( 2 )2,解得t=2 ,即 BM=2,AM=4,设正方形的边长为 x ,则 AE=2x,AF=3x,因为tan ∠GAF= = ,则可判断∠ GAF为定值;再利用 DG∥AP 获得∠ BDG=∠BAC,则可判断∠ BDG为定值;在 Rt△BMP中,利用勾股定理和三角函数可判断PB 在变化,∠ BPM在变化, PF 在变化;(2)易得四边形DEMN为矩形,则NM=DE=x,证明△BDG∽△BAP,利用相像比可获得y 与 x的关系式;(3)因为∠AFG=∠PFG=90°,△PFG与△AFG相像,且面积不相等,利用相像比获得PF= x,议论:当点P 在点 F 点右边时,则AP=x ,因此=x,当点 P 在点 F 点左边时,则 AP= x,因此= x,而后分别解方程即可获得正方形的边长.【解答】解:( 1)作 BM⊥AC 于 M,交 DG 于 N,如图,在 Rt△ABM中,∵ cot ∠BAC==2,设 BM=t,则 AM=2t,22 2∵AM+BM=AB,∴( 2t )2+t 2=(2 ) 2,解得t=2 ,∴BM=2, AM=4,设正方形的边长为x ,在 Rt△ADE中,∵ cot ∠DAE= =2,∴AE=2x,∴AF=3x,在 Rt△GAF中, tan ∠GAF= = = ,∴∠ GAF 为定值;∵DG∥AP,∴∠ BDG=∠BAC,∴∠ BDG为定值;在 Rt△BMP中, PB=,而PM在变化,∴PB 在变化,∠ BPM在变化,∴PF 在变化,因此∠ BDG和∠ GAC是一直保持不变的量;故答案为④⑤;(2)易得四边形DEMN为矩形,则NM=DE=x,∵DG∥AP,∴△ BDG∽△ BAP,∴= ,即=,∴y=(1≤x<2)(3)∵∠AFG=∠PFG=90°,△PFG与△AFG相像,且面积不相等,∴=,即=,∴PF=x,当点 P 在点 F 点右边时, AP= x,∴= x,解得 x=,当点 P 在点 F 点左边时, AP=AF﹣PF=3x﹣x=x,∴= x,解得 x=,综上所述,正方形的边长为或.【评论】本题考察了相像形综合题:娴熟掌握锐角三角函数的定义、正方形的性质和相像三角形的判断与性质.。
2018年河南省南阳市中考数学⼀模试卷(含解析)2018年河南省南阳市中考数学⼀模试卷⼀、选择题1. 下列各数的相反数中,⽐1⼤的数是( )A. ?√2B. 0C. ?1D. 42. 下列运算中不正确的是( )A. a 3+a 2=a 5B. a 3?a 2=a 5C. a 3÷a 2=aD. (a 3)2=a 63. 如图是由⼏个相同的⼩正⽅形搭成的⼏何体的主视图与左视图,则搭成这个⼏何体的⼩正⽅体的个数最多是( ) A. 6 B. 7 C. 8 D. 94. 如图,点A 在反⽐例函数y =kx 的图象上,AM ⊥y 轴于点M ,P 是x 轴上⼀动点,当△APM 的⾯积是4时,k 的值是( ) A. 8 B. ?8 C. 4 D. ?45. 不等式组{2x +1≤3?12x <1的整数解的和为( )A. ?2B. ?1C. 0D. 16. 某科普⼩组有5名成员,⾝⾼分别为(单位:cm):165,170,175,168,172,增加⾝⾼为170cm的1名成员后,现在科普⼩组成员的⾝⾼与原来相⽐( ) A. 平均数不变,⽅差变⼩ B. 平均数不变,⽅差变⼤ C. 平均数不变,⽅差不变 D. 平均数变⼩,⽅差不变7. 关于x 的⼀元⼆次⽅程(a ?1)x 2+3x ?2=0有实数根,则a 的取值范围是( )A. a >?18 B. a ≥?18 C. a >?18且a ≠1D. a ≥?18且a ≠18. 有两个有两个除所标数字外构造完全相同的转盘A 和B ,游戏规定:两⼈各选择⼀个转盘转⼀A. 23B. 59C. 12D. 499. 如图,在Rt △ABC 中,∠ACB =90°,将△ABC 绕顶点C 逆时针旋转得到,M 是BC 的中点,P 是的中点,连接PM.若BC =2,∠BAC =30°,则线段PM 的最⼤值是( )A. 4B. 3C. 2D. 110.在扇形OAB中,∠AOB=90°,正⽅形OCED的顶点C,D分别在半径OA,OB上,顶点E在AB?上,以O为圆⼼,OC长为半径作CD?,若OA=2,则阴影部分⾯积为()A. πB. π2C. √2D. 1⼆、填空题)?1=______.11.计算:(π?3)0+(?1312.如图,EF//BC,若AE:EB=2:1,EM=1,MF=2.则BN:NC=______.13.若将图中的抛物线y=x2?2x+c向上平移,使它经过点(2,0),则此时的抛物线位于x轴下⽅的图象对应x的取值范围是______.14.如图①,在正⽅形ABCD中,点E是AB的中点,点P是对⾓线AC上⼀动点,设PC的长度为x,PE与PB的长度和为y,图②是y关于x的函数图象,则图象上最低点H的坐标为______.15.如图,在R△ABC中,∠ACB=90°,AC=8,BC=6,BD=2,点E是边AB上⼀动点,把∠B沿直线DE折叠,使点B的对应点为B’,若直线DB′与边AB垂直,则BE的长为______.三、解答题16.先化简,再求值:x2?y2x ÷(2xy?y2xx),其中,x=√3+2,y=√3?2.17.某中学开学前准备购进A、B两种品牌⾜球,已知购买1个A品牌⾜球和2个B品牌⾜球共需210元,购买2个A品牌⾜球和3个B品牌⾜球共需340元.(1)求A、B两种品牌的⾜球售价各是多少元?(2)为响应习总书记“⾜球进校园”的号召,学校决定再次购进A、B两种品牌⾜球共50个,恰逢商场对两种品牌⾜球的售价进⾏调整,A品牌⾜球售价⽐第⼀次购买时提⾼了8%,B品牌⾜球按第⼀次购买时售价的9折出售,如果学校此次购买A、B两种品牌⾜球的总费⽤不超过3260元,问⾄少可购买A品牌⾜球多少个?(3)在(2)条件下,如果购买A品牌⾜球的数量不超过22个,问怎样购买总费⽤最低?最低费⽤为多少元?18.中华⽂化源远流长,⽂学⽅⾯,《西游记》、《三国演义》、《⽔浒传》、《红楼梦》是我国古代长篇⼩说中的典型代表,被称为“四⼤古典名著”某中学为了解学⽣对四⼤名著的阅读情况,就“四⼤古典名著你读完了⼏部”的问题在全校学⽣中进⾏了抽样调查,根据调查结果绘制成如下尚不完整的统计图.请根据以上信息,解决下列问题(1)本次调查所得数据的众数是______部,中位数是______部;(2)扇形统计图中“4部”所在扇形的圆⼼⾓为______度;(3)请将条形统计图补充完整;(4)没有读过四⼤古典名著的两名学⽣准备从中各⾃随机选择⼀部来阅读,求他们恰好选中同⼀名著的概率.19.如图,已知AB是⊙O的直径,PC切⊙O于点P,过A作直线AC⊥PC交⊙O于另⼀点D,连接PA、PB.(1)求证:AP平分∠CAB;(2)若P是直径AB上⽅半圆弧上⼀动点,⊙O的半径为2,则①当弦AP的长是______时,以A,O,P,C为顶点的四边形是正⽅形;②当AP?的长度是______时,以A,D,O,P为顶点的四边形是菱形.20.图1是太阳能热⽔器装置的⽰意图,利⽤玻璃吸热管可以把太阳能转化为热能,玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最好,假设某⽤户要求根据本地区冬⾄正午时刻太阳光线与地⾯⽔平线的夹⾓(θ)确定玻sin37°50′≈0.6l,cos37°50′≈079,tan37°50′≈0.78)(>0)的21.如图,已知⼀次函数y=2x+6的图象与反⽐例函数y=kx图象相交于点A(1,m),与x轴相交于点B.(1)填空:m的值为______,反⽐例函数的解析式为______;(2)点P是线段AB上⼀动点,过P作直线PM//x轴交反⽐例函数的图象于点M,连接BM若△PMB的⾯积为S,求S的最⼤值.22.【问题情境】在四边形ABCD中,BA=BC,DC⊥AC,过D作DE//AB交BC延长线于点E,M是边AD的中点,连接MB,ME.【特例探究】(1)如图①,当∠ABC=90°时,线段MB与ME的数量关系是______,位置关系是______;(2)如图②,当∠ABC=120时,试探究线段MB与ME的数量关系,并证明你的结论;【拓展延伸】(3)如图③,当∠ABC=α时,请直接⽤含⾓α的式⼦表⽰线段MB与ME之间的数量关系.23.如图,已知直线y=?3x+c与x轴相交于点A(1,0),与y轴相交于点B,抛物线y=?x2+bx+c经过点A,B,与x轴的另⼀个交点是C.(1)求抛物线的解析式;(2)点P是对称轴的左侧抛物线上的⼀点,当S△PAB=2S△AOB时,求点P的坐标;(3)连接BC抛物线上是否存在点M,使∠MCB=∠ABO?若存在,请直接写出点M的坐标;否则说明理由.答案和解析【答案】 1. A 2. A 3. B 4. B5. C6. A7. D8. B 9. B 10. D11. ?2 12. 1:213. 03 16. 解:x÷(2xy?y 2xx)=(x +y)(x ?y)x ÷2xy ?y 2?x 2x =(x +y)(x ?y)x ?x ?(x ?y)2=?x+yx?y ,当x =√3+2,y =√3?2时,原式=√3+2+√3?2√3+2?√3+2=?2√34=?√32. 17. 解:(1)设购买⼀个A 品牌的⾜球需x 元,购买⼀个B 品牌的⾜球需y 元,根据题意得:{2x +3y =340x+2y=210,解得:{y =80x=50.答:购买⼀个A 品牌的⾜球需50元,购买⼀个B 品牌的⾜球需80元. (2)设此次购买B 品牌⾜球m 个,则购买A 品牌⾜球(50? m)个,根据题意得:50×(1+8%)(50?m)+80×0.9m ≤3260,解得:m ≤3119.∵m 为正整数,∴m ≤31.答:该中学此次最多可购买31个B 品牌⾜球. (3)设购买50个⾜球所需总费⽤为w 元,根据题意得:w =50×(1+8%)(50?m)+80×0.9m =18m +2700.∵购买A 品牌⾜球的数量不超过22个,∴50?m ≤22,∴m ≥28.⼜∵m ≤31,∴28≤m ≤31.∵在w =18m +2700中,k =18>0,∴当m =28时,w 取最⼩值,最⼩值为3204.答:当购买A 品牌⾜球22个、B 品牌⾜球28个时,总费⽤最低,最低费⽤为3204元 18. 1;2;5419. 2√2;23π20. 解:如图所⽰,过点E 作EP ⊥BC 于点P ,延长ED 、BC 交于点H ,根据题意知∠θ=∠1=37°50′,∵∠2=∠FGH =90°,∴∠1=∠FHG =37°50′,∵AB//CD ,AB ⊥BC ,∴DC ⊥BC ,即∠DCH =90°,∴在Rt △DCH 中,,则.21. 8;y =8x22. MB =ME ;MB ⊥ME23. 解:(1)把A(1,0)代⼊y =?3x +c 得?3+c =0,解得c =3,则B(0,3),把A(1,0),B(0,3)代⼊y =?x 2+bx +c 得{c +3?1+b+c=0,解得{c =3b=?2,∴抛物线解析式为y =?x 2?2x +3;(2)连接OP ,如图1,抛物线的对称轴为直线x =??22×(?1)=?1,设P(x,?x 2?2x +3)(x∴S △POB ?S △POA =S △ABO ,当P 点在x 轴上⽅时,12?3?(?x)?12?1?(?x 2?2x +3)=12?1?3,解得x 1=?2,x 2=3(舍去),此时P 点坐标为(?2,3);当P 点在x 轴下⽅时,12?3?(?x)?12?1?(x 2+2x ?3)=12?1?3,解得x 1=?5,x 2=0(舍去),此时P 点坐标为(?5,?12),综上所述,P 点坐标为(?2,3)或(?5,?12); (3)存在.当y =0时,?x 2?2x +3=0,解得x 1=?1,x 2=?3,则C(?3,0),∵OC =OB =3,∴△OBC为等腰直⾓三⾓形,∴∠OBC=∠OCB=45°,BC=3√2,当∠BCM在直线BC下⽅时,如图2,直线CM交y轴于D,作DE⊥BC于E,设D(0,t),∵∠DBE=45°,∴△BDE为等腰直⾓三⾓形,∴DE=BE=√22BD=√22(3?t),∵∠MCB=∠ABO,∴tan∠MCB=tan∠ABO,3,即CE=3DE,∴3√2?√22(3?t)=√22(3?t),解得t=32,则D(0,32),设直线CD的解析式为y=mx+n,把C(?3,0),D(0,32)代⼊得{3m+n=0n=32,解得{m=12n=32,∴直线CD的解析式为y=12x+32,解⽅程组{y=12x+32y=?x2?2x+32y=74,此时M点坐标为(12,74);当∠BCM在直线CB上⽅时,如图3,CM交直线AB于N,易得直线AB的解析式为y=?3x+3,AB=√10,AC 设N(k,?3k+3),∵∠MCB=∠ABO,∠CBO=∠OCB,∴∠NCA=∠ABC,⽽∠BAC=∠CAN,∴△ABC∽△ACN,∴AB:AC=AC:AN,即√10:4=4:AN,∴AN=8√105,∴(k?1)2+(?3k+3)2=(8√105)2,整理得(k?1)2=6425,解得k1=95(舍去),k2=?15,∴N点坐标为(?15,185),解⽅程组{y=97x+277y=?x2?2x+3得{y=0x=?3或{x=?27y=17149,此时M点坐标为(?27,17149),综上所述,满⾜条件的M点的坐标为(12,74)或(?27,17149).【解析】1. 解:?√2的相反数是√2,0的相反数是0,?1的相反数是1,4的相反数是?4,∵√2>1,0<1,1=1,?4<1,∴各数的相反数中,⽐1⼤的数是?√2.故选:A.⾸先求出每个数的相反数是多少;然后根据实数⼤⼩⽐较的⽅法判断即可.此题主要考查了实数⼤⼩⽐较的⽅法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值⼤的反2. 解:A、原式不能合并,符合题意;B、原式=a5,不符合题意;C、原式=a,不符合题意;D、原式=a6,不符合题意,故选:A.各项计算得到结果,即可作出判断.此题考查了同底数幂的乘除法,合并同类项,以及幂的乘⽅与积的乘⽅,熟练掌握运算法则是解本题的关键.3. 解:根据主视图和左视图可得:这个⼏何体有2层,3列,最底层最多有3×2=6个正⽅体,第⼆层有1个正⽅体,则搭成这个⼏何体的⼩正⽅体的个数最多是6+1=7个;故选:B.根据所给出的图形可知这个⼏何体共有2层,3列,先看第⼀层正⽅体可能的最多个数,再看第⼆层正⽅体的可能的最多个数,相加即可.此题考查了有三视图判断⼏何体,关键是根据主视图和左视图确定组合⼏何体的层数及列数.4. 解:设点A的坐标为:(x,kx),由题意得,12×|x|×|kx|=4,解得,|k|=8,∵反⽐例函数y=kx的图象在第四象限,∴k=?8,故选:B.设点A的坐标为:(x,kx),根据三⾓形的⾯积公式计算即可.本题考查的是反⽐例函数系数k的⼏何意义,反⽐例函数的图象上任意⼀点向坐标轴作垂线,这⼀点和垂⾜以及坐标原点所构成的三⾓形的⾯积是12|k|,且保持不变.5. 解:{2x+1≤3①?12解不等式①得:x≤1,解不等式②得:x>?2;所以不等式组的解集为:?2所以不等式组的整数解为:?1,0,1,所以整数解的和为?1+0+1=0,故选:C.分别求出每⼀个不等式的解集,根据⼝诀:同⼤取⼤、同⼩取⼩、⼤⼩⼩⼤中间找、⼤⼤⼩⼩⽆解了确定不等式组的解集.本题考查的是解⼀元⼀次不等式组,正确求出每⼀个不等式解集是基础,熟知“同⼤取⼤;同⼩取⼩;⼤⼩⼩⼤中间找;⼤⼤⼩⼩找不到”的原则是解答此题的关键.6. 解:原数据的平均数为15×(165+170+175+168+172)=170(cm)、⽅差为15×[(165?170)2+(170?170)2+(175?170)2+(168?170)2+(172?170)2]=585(cm2),新数据的平均数为16×(165+170+170+175+168+172)=170(cm),⽅差为16×[(165?170)2+2×(170?170)2+(175?170)2+(168?170)2+(172?170)2]=586=293(cm2),所以平均数不变,⽅差变⼩,故选:A.根据平均数的意义、⽅差的意义,可得答案.本题考查了⽅差,利⽤⽅差的定义是解题关键.7. 解:根据题意得a≠1且△=32?4(a?1)?(?2)≥0,解得a≥?18且a≠1.故选:D.根据⼀元⼆次⽅程的定义和判别式的意义得到a≠1且△=32?4(a?1)?(?2)≥0,然后求出两个不等式解集的公共部分即可.本题考查了根的判别式:⼀元⼆次⽅程ax2+bx+c=0(a≠0)的根与△=b2?4ac有如下关系:当△>0时,⽅程有两个不相等的实数根;当△=0时,⽅程有两个相等的实数根;当△<0时,⽅程⽆实数根.8. 解:画树状图得:∵共有9种等可能的结果,A⼤于B的有5种情况,∴选择转盘A获胜的概率是59,故选:B.⾸先根据题意画出树状图,然后由树状图求得所有等可能的结果与A⼤于B的有5种情况,A⼩于B的有4种情况,再利⽤概率公式即可求得答案.本题考查的是⽤列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.⽤到的知识点为:概率=所求情况数与总情况数之⽐.9. 解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=12A′B′=2,∵CM=BM=1,⼜∵PM≤PC+CM,即PM≤3,∴PM的最⼤值为3(此时P、C、M共线).故选:B.如图连接PC.思想求出PC=2,根据PM≤PC+CM,可得PM≤3,由此即可解决问题.本题考查旋转变换、解直⾓三⾓形、直⾓三⾓形30度⾓的性质、直⾓三⾓形斜边中线定理,三⾓形的三边关系等知识,解题的关键是学会添加常⽤辅助线,学会利⽤三⾓形的三边关系解决最值问题,属于中考常考题型.10. 解:连接OE,交CD?于W,连接DE,则OA=OE=OB=2,∵四边形OCED是正⽅形,∴∠AOE=∠BOE=45°,∠ECO=∠COD=∠ECO=∠EDO=90°,CE=OC,在等腰三⾓形OCE中,CE=OC=2√2=√2,∴S扇形AOE ?S△EOC=S扇形EOBS△EOD,∴阴影部分的⾯积S=S正⽅形OCED ?S扇形COD+12(S扇形AOBS正⽅形OCED)=√2×√2?90π×(√2)2360+12×(90π×22360√2×√2)=1,故选:D.根据正⽅形的性质得到∠AOE=∠BOE=45°,∠ECO=∠COD=∠ECO=∠EDO=90°,CE=OC,求出正⽅形OCED的边长,得出阴影部分的⾯积=S正⽅形OCED ?S扇形COD+12(S扇形AOBS正⽅形OCED),分别求出即可.本题考查的是扇形⾯积的计算,正⽅形的性质,熟记扇形的⾯积公式是解答此题的关键.11. 解:(π?3)0+(?13)?1,=1?3,=?2,故答案为:?2.根据零指数和负整数指定幂运算法则进⾏计算即可.此题主要考查了实数的运算,熟练掌握零指数和负整数指定幂运算法则是关键.12. 解:∵AE:EB=2:1,∴AE:AB=2:3,∵EF//BC,∴AEAB =EMBN=AMAN=MFNC,即23=1BN=2NC,∴BN=1.5,NC=3,∴BN:NC=1:2.故答案为:1:2.先根据AE:EB=2:1,得到AE:AB=2:3,再根据EF//BC,即可得到23=1BN=2NC,进⽽得出BN:NC的值.本题主要考查了平⾏线分线段成⽐例定理的运⽤,解题时注意:平⾏于三⾓形的⼀边,并且和其他两边(或两边的延长线)相交的直线,所截得的三⾓形的三边与原三⾓形的三边对应成⽐例.13. 解:设平移后的抛物线解析式为y=x2?2x+c+b,把A(2,0)代⼊,得0=c+b,解得c+b=0,则该函数解析式为y=x2?2x.当y=0时,x2?2x=0,解得:x1=0,x2=2,∴此时的抛物线位于x轴下⽅的图象对应x的取值范围是:0故答案为:0设平移后的抛物线解析式为y=x2?2x+c+b,把点A的坐标代⼊进⾏求值即可得到c+b的值,然后求得抛物线与x轴的交点坐标,即可得到结论.主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并⽤规律求函数解析式.会利⽤⽅程求抛物线与坐标轴的交点.14. 解:如图,连接PD.∵B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE,∴当D、P、E共线时,PE+PB的值最⼩,观察图象可知,当点P与A重合时,PE+PB=9,∴AE=EB=3,AD=AB=6,在Rt△AED中,DE=√62+32=3√5,∴PB+PE的最⼩值为3√5,∴点H的纵坐标为3√5,∵AE//CD,∴PCPA =CDAE=2,∵AC=6√2,∴PC=23×6√2=4√2,∴点H的横坐标为4√2,∴H(4√2,3√5).故答案为(4√2,3√5).如图,连接PD.由B、D关于AC对称,推出PB=PD,推出PB+PE=PD+PE,推出当D、P、E 共线时,PE+PB的值最⼩,观察图象可知,当点P与A重合时,PE+PB=9,推出AE=EB=3,AD=AB=6,分别求出PB+PE的最⼩值,PC的长即可解决问题;本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利⽤数形结合的思想解答.15. 解:∵∠ACB=90°,AC=8,BC=6,∴AB=√AC2+BC2=10,∵∠ACB=90°,DB′⊥AB,∴△BFD∽△BCA,∴DFAC =BFBC=BDAB,即DF8=BF6=210,解得,DF=85,BF=65,由折叠的性质可知,DB′=DB=2,BE′=BE,∴FB′=DB′?DF=25,在Rt△B′EF中,EF2+B′F2=B′E2,即(65?BE)2+(25)2=BE2,解得,BE=23,故答案为:23.根据勾股定理求出AB,根据相似三⾓形的性质分别求出DF、BF,根据勾股定理计算即可.本题考查的是翻转变换的性质,掌握翻转变换是⼀种对称变换,折叠前后图形的形状和⼤⼩不变,位置变化,对应边和对应⾓相等是解题的关键.16. 根据分式的减法和除法可以化简题⽬中的式⼦,然后将x、y的值代⼊化简后的式⼦即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的⽅法.17. (1)设A、B两种品牌的⾜球的单价分别为x元和y元.接下来,依据购买2个A品牌的⾜球和3个B品牌的⾜球共需340元:购买1个A品牌的⾜球和2个B品牌的⾜球共需210元列⽅程组求解即可;(2)设此次购买B品牌⾜球m个,则购买A品牌⾜球(50?m)个,根据总价=单价×购买数量结合总费⽤不超过3260元,即可得出关于m的⼀元⼀次不等式,解之即可得出m的取值范围,取其内的最⼤值即可;(3)设购买50个⾜球所需总费⽤为w元,根据总价=单价×购买数量,即可得出w关于m的函数关系式,再利⽤⼀次函数的性质即可解决最值问题.本题考查了⼆元⼀次⽅程组的应⽤、⼀元⼀次不等式的应⽤、⼀次函数的应⽤以及⼀次函数的最值,解题的关键是:(1)找准等量关系,列出关于x、y的⼆元⼀次⽅程组;(2)根据总价=单价×购买数量结合总费⽤不超过3260元,列出关于m的⼀元⼀次不等式;(3)根据总价=单价×购买数量,找出w关于m的函数关系式.18. 解:(1)∵调查的总⼈数为:10÷25%=40,∴1部对应的⼈数为40?2?10?8?6=14,∴本次调查所得数据的众数是1部,∵2+14+10=26>21,2+14<20,∴中位数为2部,故答案为:1、2;(2)扇形统计图中“4部”所在扇形的圆⼼⾓为:640×360°=54°;故答案为:54;(3)条形统计图如图所⽰,(4)将《西游记》、《三国演义》、《⽔浒传》、《红楼梦》分别记作A,B,C,D,画树状图可得:共有16种等可能的结果,其中选中同⼀名著的有4种,故P(两⼈选中同⼀名著)=416=14.(1)先根据调查的总⼈数,求得1部对应的⼈数,进⽽得到本次调查所得数据的众数以及中位数;(2)根据扇形圆⼼⾓的度数=部分占总体的百分⽐×360°,即可得到“4部”所在扇形的圆⼼⾓;(3)根据1部对应的⼈数为40?2?10?8?6=14,即可将条形统计图补充完整;(4)根据树状图所得的结果,判断他们选中同⼀名著的概率.此题考查了树状图法与列表法求概率,以及条形统计图与扇形统计图的知识.注意平均条数=总条数÷总⼈数;如果⼀个事件有n 种可能,⽽且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.19. (1)证明:∵PC切⊙O于点P,∴OP⊥PC,∵AC⊥PC,∴AC//OP,∴∠1=∠3,∵OP=OA,∴∠2=∠3,∴∠1=∠2,∴AP 平分∠CAB ;(2)解:①当∠AOP =90°,四边形AOPC 为矩形,⽽OA =OP ,此时矩形AOPC 为正⽅形,AP =√2OP =2√2;②当AD =AP =OP =OD 时,四边形ADOP 为菱形,△AOP 和△AOD 为等边三⾓形,则∠AOP =60°,AP ?的长度=60?π?2180=23π.故答案为2√2,23π.(1)利⽤切线的性质得OP ⊥PC ,再证明AC//OP 得到∠1=∠3,加上∠2=∠3,所以∠1=∠2;(2)①当∠AOP =90°,根据正⽅形的判定⽅法得到四边形AOPC 为正⽅形,从⽽得到AP =2√2;②根据菱形的判定⽅法,当AD =AP =OP =OD 时,四边形ADOP 为菱形,所以△AOP 和△AOD 为等边三⾓形,然后根据弧长公式计算AP ?的长度.本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了正⽅形和菱形的判定.20. 作EP ⊥BC 于点P ,延长ED 、BC 交于点H ,根据题意求得∠1=∠FHG =37°50′,先根据FG =30求得,再根据CD =10求得,继⽽由CF =HF ?HC 可得答案.本题主要考查解直⾓三⾓形的应⽤?坡度坡⾓问题,根据题意构建所需直⾓三⾓形和熟练掌握三⾓函数是解题的关键.21. 解:(1)把点A(1,m)代⼊y =2x +6,得m =2+6=8,∴点A 的坐标为(1,8)把点A(1,8)代⼊y =kx (k >0),得k =8.∴反⽐例函数的解析式为:y =8x 故答案为:8,y =8x(2)设点P 的坐标为(x,2x +6)由于直线PM//x 轴,所以点M 的纵坐标为:2x +6 ∴点M(82x+6,2x +6)∵S △PMB =12PM ×(2x +6)=12(82x +6x)×(2x +6) =x 23x +4当x =??3?2=?1.5时,因为a =?1<0S 最⼤=4×(?1)×4?(?3)2=254答:S 的最⼤值为254(1)利⽤点A在⼀次函数图象上,先求出m,再把点A代⼊y=k,确定反⽐例函数解析式;x(2)设点P的横坐标为x,⽤含x的代数式表⽰出点P的纵坐标,由于PM与x轴平⾏,P、M有相同的纵坐标,可表⽰出点M的横坐标,利⽤三⾓形的⾯积公式得到关于x的⼆次函数关系,求出S 的最⼤值.本题考查了⼀次函数、反⽐例函数、三⾓形的⾯积及⼆次函数的极值.题⽬综合性⽐较强,利⽤三⾓形的⾯积公式得到x的⼆次函数关系是解决本题的关键.22. (1)解:如图1中,连接CM.∵∠ACD=90°,AM=MD,∴MC=MA=MD,∵BA=BC,∴BM垂直平分AC,∵∠ABC=90°,BA=BC,∠ABC=45°,∠ACB=∠DCE=45°,∴∠MBE=12∵AB//DE,∴∠ABE+∠DEC=180°,∴∠DEC=90°,∴∠DCE=∠CDE=45°,∴EC=ED,∵MC=MD,∴EM垂直平分线段CD,EM平分∠DEC,∴∠MEC=45°,∴△BME是等腰直⾓三⾓形,∴BM=ME,BM⊥EM.故答案为BM=ME,BM⊥EM.(2)解:结论:ME=√3MB.理由:如图2中,连接CM.∵∠ACD=90°,AM=MD,∴MC=MA=MD,∵BA=BC,∴BM垂直平分AC,∵∠ABC=120°,BA=BC,∴∠MBE=12∠ABC=60°,∠BAC=∠BCA=30°,∠DCE=60°,∵AB//DE,∴∠ABE+∠DEC=180°,∴∠DEC=60°,∴∠DCE=∠CDE=60°,∴△CDE是等边三⾓形,∴EC=ED,∵MC=MD,∴EM垂直平分线段CD,EM平分∠DEC,∴∠MEC=30°,∴∠MBE+∠MEB=90°,∵∠MEB=12∠CED=30°∴EM=√3BM.(3)如图3中,结论:EM=BM?sinα2.理由:同法可证:BM⊥EM,BM平分∠ABC,所以EM=BM?sinα2.(1)如图1中,连接CM.只要证明△MBE是等腰直⾓三⾓形即可;(2)结论:EM=√3MB.只要证明△EBM是直⾓三⾓形,且∠MEB=30°即可;(3)结论:EM=BM?sinα2.证明⽅法类似;本题考查四边形综合题、等腰直⾓三⾓形的判定和性质、等边三⾓形的判定和性质、等腰三⾓形的性质、锐⾓三⾓函数等知识,解题的关键是学会添加常⽤辅助线,灵活运⽤所学知识解决问题,所以中考压轴题.23. (1)先把A点坐标代⼊y=?3x+c求出得到B(0,3),然后利⽤待定系数法求抛物线解析式;(2)连接OP,如图1,抛物线的对称轴为直线x=?1,设P(x,?x2?2x+3)(x讨论:当P点在x轴上⽅时,12?3?(?x)?121(x22x+3)=1213,当P点在x轴下⽅时,1 2?3?(?x)?121(x2+2x3)=1213,然后分别解⽅程求出x即可得到对应P点坐标;(3)解⽅程?x2?2x+3=0得C(?3,0),则可判断△OBC为等腰直⾓三⾓形,讨论:当∠BCM在直线BC 下⽅时,如图2,直线CM交y轴于D,作DE⊥BC于E,设D(0,t),表⽰出DE=BE=√22(3?t),接着利⽤tan∠MCB=tan∠ABO得到DECE =OAOB=13,所以3√2?√22(3?t)=√22(3?t),解⽅程求出t得到D点坐标,接下来利⽤待定系数法确定直线CD的解析式为y=12x+32,然后解⽅程组{y=12x+32y=?x2?2x+3得此时M点坐标;当∠BCM在直线CB上⽅时,如图3,CM交直线AB于N,易得直线AB的解析式为y=?3x+3,设N(k,?3k+3),证明△ABC∽△ACN,利⽤相似⽐求出AN=8√10 5,再利⽤两点间的距离公式得到(k?1)2+(?3k+3)2=(8√105)2,解⽅程求出t得N点坐标为(?15,185),易得直线CN的解析式为y=97x+277,然后解⽅程组{y=97x+277y=?x2?2x+3得此时M点坐标.本题考查了⼆次函数的综合题:熟练掌握⼆次函数图象上点的坐标特征、⼆次函数的性质和等腰直⾓三⾓形的性质;会利⽤待定系数法求函数解析式,能把求函数交点问题转化为解⽅程组的问题;灵活运⽤锐⾓三⾓函数的定义和相似⽐进⾏⼏何计算;理解坐标与图形性质,记住两点间的距离公式.。
2018年初三第一次模拟考试数学试题一、选择题(本大题共16题,1-8小题,9-16小题,每题3分,共40分) 1.如图,数轴上表示-2的相反数的点是( ) A.点P B.点Q C.点M D.点N 2.下列运算正确的是( ) A.9=±3B. 532)(m m =C. 532a a a =⋅D.222)(y x y x +=+3.如图,AD 与BC 相交于点O,AB//CD,如果∠B =20°,∠D =40° ,那么∠BOD 为( ) A. 40° B.50° C.60° D.70°4.估计18-的值在( )A. 0到1之间B. 1到2之间C.2到3之间D. 3至4之间 5.用配方法解一元二次方程0542=-+x x ,此方程可变形( ) A. 9)2(2=+xB. 9)2(2=-xC. 1)2(2=+xD. 1)2(2=-x6.下列各因式分解正确的是( ) A.22)1(12-=-+x x xB.)2)(2()2(22+-=-+-x x xC.)2)(2(43-+=-x x x x xD.22)1(22++=+x x x7.若a>b,则下列式子一定成立的是( )A.0>+b aB. 0>-b aC.0>abD.0>ba8.△ABC 中,已知AB=8,∠C=90°,∠A=30°,DE 是中位线,则DE 的长是( ) A. 4B. 5C.32D. 29.若关于x 的一元一次不等式组⎩⎨⎧>-<-001a x x 无解,则a 的取值范围是( )A.1≥aB.1>aC. 1≤aD.1-<a 10.已知点A ),(11y x ,B ),(22y x 是反比例函数xy 2=图像上的点,若210x x >>,则一定成立的是( ) A.021>>y yB.210y y >>C.210y y >>D.120y y >>11.如图是王老师去公园锻炼及原路返回家的距离y (千米)与时间t (分钟)之间的函数图像,根据图像信息,下列说法正确的是( ) A. 王老师去时所用时间少于回家的时间 B. B. 王老师在公园锻炼了40分钟C. 王老师去时走上坡路,回家时走下坡路D. D.王老师去时速度比回家时的速度慢12.如图,CD 是Rt △ABC 斜边AB 边上的高,将△BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处,则∠A 等于( ) A. 60° B.45° C. 30° D.25° 13.如图,在Rt △ABC 中,∠C =90°,AC=4cm ,BC=6cm ,动点P 从点C 沿CA,以1cm/s 的速度向点A 运动,同时动点O 从点C 沿CB,以2cm/s 的速度向点B 运动,其中一个动点运动到终点时,另一个动点也停止运动。
2018年上海市宝山区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)1.(4分)符号tanA 表示( )A .∠A 的正弦B .∠A 的余弦C .∠A 的正切D .∠A 的余切2.(4分)如图△ABC 中∠C=90°,如果CD ⊥AB 于D ,那么( )A .CD=AB B .BD=ADC .CD 2=AD•BD D .AD 2=BD•AB3.(4分)已知、为非零向量,下列判断错误的是( )A .如果=2,那么∥B .如果||=||,那么=或=﹣C .的方向不确定,大小为0D .如果为单位向量且=2,那么||=24.(4分)二次函数y=x 2+2x +3的图象的开口方向为( )A .向上B .向下C .向左D .向右5.(4分)如果从某一高处甲看低处乙的俯角为30°,那么从乙处看甲处,甲在乙的( )A .俯角30°方向B .俯角60°方向C .仰角30°方向D .仰角60°方向6.(4分)如图,如果把抛物线y=x 2沿直线y=x 向上方平移2个单位后,其顶点在直线y=x 上的A 处,那么平移后的抛物线解析式是( )A.y=(x+2)2+2B.y=(x+2)2+2 C.y=(x﹣2)2+2 D.y=(x﹣2)2+2二、填空题(每小题4分,共48分)7.(4分)如果2a=3b,那么a:b=.8.(4分)如果两个相似三角形的周长之比1:4,那么它们的某一对对应角的角平分线之比为.9.(4分)如图,D、E为△ABC的边AC、AB上的点,当时,△ADE∽△ABC.其中D、E分别对应B、C.(填一个条件).10.(4分)计算:(4)=.11.(4分)如图,在锐角△ABC中,BC=10,BC上的高AQ=6,正方形EFGH的顶点E、F在BC边上,G、H分别在AC、AB边上,则此正方形的边长为.12.(4分)如果一个滚筒沿斜坡向正下直线滚动13米后,其水平高度下降了5米,那么该斜坡的坡度i=.13.(4分)如图,四边形ABCD、CDEF、EFGH都是正方形,则tan∠CAF=.14.(4分)抛物线y=5(x﹣4)2+3的顶点坐标是.15.(4分)二次函数y=﹣(x﹣1)2+的图象与y轴的交点坐标是.16.(4分)如果点A(0,2)和点B(4,2)都在二次函数y=x2+bx+c的图象上,那么此抛物线在直线的部分是上升的.(填具体某直线的某侧)17.(4分)如图,点D、E、F分别为△ABC三边的中点,如果△ABC的面积为S,那么以AD、BE、CF为边的三角形的面积是.18.(4分)如图,点M是正方形ABCD的边BC的中点,联结AM,将BM沿某一过M的直线翻折,使B落在AM上的E处,将线段AE绕A顺时针旋转一定角度,使E落在F处,如果E在旋转过程中曾经交AB于G,当EF=BG时,旋转角∠EAF的度数是.三、(本大题共7题,第19-22题每题10分;第23、24题每题12分;第25题14分;满分73分)19.(10分)计算: +(tan60°+π0)﹣1.20.(5分)如图,AB∥CD∥EF,而且线段AB、CD、EF的长度分别为5、3、2.(1)求AC:CE的值;(2)如果记作,记作,求(用、表示).21.(10分)已知在港口A的南偏东75°方向有一礁石B,轮船从港口出发,沿正东北方向(北偏东45°方向)前行10里到达C后测得礁石B在其南偏西15°处,求轮船行驶过程中离礁石B的最近距离.22.(10分)如图,在直角坐标系中,已知直线y=x+4与y轴交于A点,与x 轴交于B点,C点坐标为(﹣2,0).(1)求经过A,B,C三点的抛物线的解析式;(2)如果M为抛物线的顶点,联结AM、BM,求四边形AOBM的面积.23.(12分)如图,△ABC中,AB=AC,过点C作CF∥AB交△ABC的中位线DE 的延长线于F,联结BF,交AC于点G.(1)求证:;(2)若AH平分∠BAC,交BF于H,求证:BH是HG和HF的比例中项.24.(12分)设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,恒有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”,同理函数y=x也是闭区间[1,3]上的“闭函数”.(1)反比例函数y=是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;(2)如果已知二次函数y=x2﹣4x+k是闭区间[2,t]上的“闭函数”,求k和t的值;(3)如果(2)所述的二次函数的图象交y轴于C点,A为此二次函数图象的顶点,B为直线x=1上的一点,当△ABC为直角三角形时,写出点B的坐标.25.(14分)如图,等腰梯形ABCD中,AD∥BC,AD=7,AB=CD=15,BC=25,E 为腰AB上一点且AE:BE=1:2,F为BC一动点,∠FEG=∠B,EG交射线BC于G,直线EG交射线CA于H.(1)求sin∠ABC;(2)求∠BAC的度数;(3)设BF=x,CH=y,求y与x的函数关系式及其定义域.2018年上海市宝山区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.(4分)符号tanA表示()A.∠A的正弦B.∠A的余弦C.∠A的正切D.∠A的余切【解答】解:符号tanA表示∠A的正切.故选:C.2.(4分)如图△ABC中∠C=90°,如果CD⊥AB于D,那么()A.CD=AB B.BD=AD C.CD2=AD•BD D.AD2=BD•AB【解答】解:∵△ABC中∠C=90°,CD⊥AB于D,∴∠CDB=∠ADC,∠B=∠ACD,∴△CDB∽△ACD,∴,即CD2=AD•BD,故选:C.3.(4分)已知、为非零向量,下列判断错误的是()A.如果=2,那么∥B.如果||=||,那么=或=﹣C.的方向不确定,大小为0D.如果为单位向量且=2,那么||=2【解答】解:A、如果=2,那么∥,正确;B、如果||=||,没法判断与的关系;故错误.C、的方向不确定,大小为0,正确;D、如果为单位向量且=2,那么||=2,正确;故选:B.4.(4分)二次函数y=x2+2x+3的图象的开口方向为()A.向上B.向下C.向左D.向右【解答】解:∵二次函数y=x2+2x+3中a=1>0,∴二次函数y=x2+2x+3的图象的开口向上,故选:A.5.(4分)如果从某一高处甲看低处乙的俯角为30°,那么从乙处看甲处,甲在乙的()A.俯角30°方向B.俯角60°方向C.仰角30°方向D.仰角60°方向【解答】解:如图所示:∵甲处看乙处为俯角30°,∴乙处看甲处为:仰角为30°.故选:C.6.(4分)如图,如果把抛物线y=x2沿直线y=x向上方平移2个单位后,其顶点在直线y=x上的A处,那么平移后的抛物线解析式是()A.y=(x+2)2+2B.y=(x+2)2+2 C.y=(x﹣2)2+2 D.y=(x﹣2)2+2【解答】解:如图,过点A作AB⊥x轴于B,∵直线y=x与x轴夹角为45°,OA=2,∴OB=AB=2×=2,∴点A的坐标为(2,2),∴平移后的抛物线解析式是y=(x﹣2)2+2.故选:D.二、填空题(每小题4分,共48分)7.(4分)如果2a=3b,那么a:b=3:2.【解答】解:两边都除以2b,得a:b=3:2,故答案为:3:2.8.(4分)如果两个相似三角形的周长之比1:4,那么它们的某一对对应角的角平分线之比为1:4.【解答】解:∵两个相似三角形的周长之比1:4,∴它们的相似比是1:4,∴它们的某一对对应角的角平分线之比为1:4.故答案为:1:4.9.(4分)如图,D、E为△ABC的边AC、AB上的点,当∠ADE=∠B时,△ADE∽△ABC.其中D、E分别对应B、C.(填一个条件).【解答】解:当∠ADE=∠B,∵∠EAD=∠CAB,∴△ADE∽△ABC.故答案为∠ADE=∠B.10.(4分)计算:(4)=2.【解答】解:(4)=2﹣+=2﹣故答案为211.(4分)如图,在锐角△ABC中,BC=10,BC上的高AQ=6,正方形EFGH的顶点E、F在BC边上,G、H分别在AC、AB边上,则此正方形的边长为.【解答】解:设正方形EFGH的边长为x,则HG=HE=QK=x,∵HG∥BC,∴,且AK=AQ﹣x,又∵AQ=6,BC=10,∴,解得x=,故答案为:12.(4分)如果一个滚筒沿斜坡向正下直线滚动13米后,其水平高度下降了5米,那么该斜坡的坡度i=1:2.4.【解答】解:如图,根据题意知AB=13米、AC=5米,则BC===12(米),∴斜坡的坡度i=tanB===1:2.4,故答案为:1:2.4.13.(4分)如图,四边形ABCD、CDEF、EFGH都是正方形,则tan∠CAF=.【解答】解:连接AG,设正方形的边长为a,AC=,∵,,∴,∵∠ACF=∠ACF,∴△ACF∽△GCA,∴∠AGB=∠CAF,∴tan∠CAF=tan∠AGB=,故答案为:14.(4分)抛物线y=5(x﹣4)2+3的顶点坐标是(4,3).【解答】解:∵y=5(x﹣4)2+3是抛物线解析式的顶点式,∴顶点坐标为(4,3).故答案为(4,3).15.(4分)二次函数y=﹣(x﹣1)2+的图象与y轴的交点坐标是(0,﹣).【解答】解:当x=0时,y=﹣(x﹣1)2+=﹣×(0﹣1)2+=﹣.∴二次函数y=﹣(x﹣1)2+的图象与y轴的交点坐标是(0,﹣).故答案为:(0,﹣).16.(4分)如果点A(0,2)和点B(4,2)都在二次函数y=x2+bx+c的图象上,那么此抛物线在直线x=2右侧的部分是上升的.(填具体某直线的某侧)【解答】解:∵点A(0,2)和点B(4,2)都在二次函数y=x2+bx+c的图象上,∴,解得:,∴该二次函数的表达式为y=x2﹣4x+2;∵y=x2﹣4x+2=(x﹣2)2﹣2,∴对称轴为直线x=2,∵a=1>0,∴抛物线在直线x=2的右侧的部分是上升;故答案为:x=2右侧.17.(4分)如图,点D、E、F分别为△ABC三边的中点,如果△ABC的面积为S,那么以AD、BE、CF为边的三角形的面积是S.【解答】解:如图所示,延长AD至G,使得DG=AD,连接BG,CG,则△ACD ≌△GBD,△ABD≌△GCD,四边形ABGC为平行四边形,∴四边形ABGC的面积=2S,取BG的中点H,连接CH,FH,则BH∥CE,BH=CE,故四边形BHCE是平行四边形,∴BE=CH,由题可得,FH是△ABG的中位线,∴FH=AG=AD,∴△CFH即为以AD、BE、CF为边的三角形,∵△CHG的面积=△BCG的面积的一半=平行四边形ABGC的面积的=S,△BFH的面积=△ABG的面积的=S,△ACF的面积=S,∴△CFH的面积=2S﹣S﹣S﹣S=S,故答案为:S.18.(4分)如图,点M是正方形ABCD的边BC的中点,联结AM,将BM沿某一过M的直线翻折,使B落在AM上的E处,将线段AE绕A顺时针旋转一定角度,使E落在F处,如果E在旋转过程中曾经交AB于G,当EF=BG时,旋转角∠EAF的度数是36°.【解答】解:设BM=a,则AB=2a,∴Rt△ABM中,AM=a,由题可得,EM=BM=a,∴AE=(﹣1)a=AG=AF,∴BG=AB﹣AG=(3﹣)a,又∵EF=BG,∴,∴△AEF为黄金三角形,即∠EAF=36°,故答案为:36°三、(本大题共7题,第19-22题每题10分;第23、24题每题12分;第25题14分;满分73分)19.(10分)计算: +(tan60°+π0)﹣1.【解答】解:原式=+=+﹣.20.(5分)如图,AB∥CD∥EF,而且线段AB、CD、EF的长度分别为5、3、2.(1)求AC:CE的值;(2)如果记作,记作,求(用、表示).【解答】解:(1)过点E作EH∥BF交CD,AB于G,H,∴CG=1,AH=3,∴=,∴=2;(2)===,且AH∥CD,AH=CD,∴=.21.(10分)已知在港口A的南偏东75°方向有一礁石B,轮船从港口出发,沿正东北方向(北偏东45°方向)前行10里到达C后测得礁石B在其南偏西15°处,求轮船行驶过程中离礁石B的最近距离.【解答】解:如图,在Rt△ABC中,∠BAC=60°,∠ACB=30°,AC=10,∴AB=AC=5,过B作BD⊥AC于D,则Rt△ABD中,BD=sin60°×AB=×5=(里),∴轮船行驶过程中离礁石B的最近距离为里.22.(10分)如图,在直角坐标系中,已知直线y=x+4与y轴交于A点,与x 轴交于B点,C点坐标为(﹣2,0).(1)求经过A,B,C三点的抛物线的解析式;(2)如果M为抛物线的顶点,联结AM、BM,求四边形AOBM的面积.【解答】解:(1)当x=0时,y=x +4=4,则A (0,4),当y=0时, x +4=0,解得x=8,则B (8,0),设抛物线解析式为y=a (x +2)(x ﹣8),把A (0,4)代入得a•2•(﹣8)=4,解得x=﹣,∴抛物线解析式为y=﹣(x +2)(x ﹣8),即y=﹣x 2+x +4;(2)∵y=﹣(x ﹣3)2+,∴M (3,), 作MD ⊥x 轴于D ,如图,四边形AOBM 的面积=S 梯形AODM +S △BDM=×(4+)×3+×5×=31.23.(12分)如图,△ABC 中,AB=AC ,过点C 作CF ∥AB 交△ABC 的中位线DE 的延长线于F ,联结BF ,交AC 于点G .(1)求证:;(2)若AH 平分∠BAC ,交BF 于H ,求证:BH 是HG 和HF 的比例中项.【解答】证明:(1)∵CF∥AB,DE是中位线,∴四边形BCFD是平行四边形,∴DE=EF,∴,即;(2)连接CH,∵AH平分∠BAC,∴∠BAH=∠CAH,在△ABH与△ACH中,∴△ABH≌△ACH,∴∠HCG=∠DBH=∠HFC,∵∠GHC=∠CHF,∴△GHC∽△CHF,∴,∴HC2=HG•HF,∵BH=HC,∴BH2=HG•HF,即BH是HG和HF的比例中项.24.(12分)设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,恒有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”,同理函数y=x也是闭区间[1,3]上的“闭函数”.(1)反比例函数y=是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;(2)如果已知二次函数y=x2﹣4x+k是闭区间[2,t]上的“闭函数”,求k和t的值;(3)如果(2)所述的二次函数的图象交y轴于C点,A为此二次函数图象的顶点,B为直线x=1上的一点,当△ABC为直角三角形时,写出点B的坐标.【解答】解:(1)∵k=2018,∴当1≤x≤2018时,y随x的增大而减小.∴当x=1时,y=2018,x=2018时,y=1.∴1≤y≤2108.∴反比例函数y=是闭区间[1,2018]上的“闭函数”.(2)∵x=﹣=2,a=1>0,∴二次函数y=x2﹣4x+k在闭区间[2,t]上y随x的增大而增大.∵二次函数y=x2﹣2x﹣k是闭区间[2,t]上的“闭函数”,∴当x=2时,y=k﹣4,x=t时,y=t2﹣4t+k.,解得k=6,t=3,t=﹣2,因为t>2,∴t=2舍去,∴t=3.(3)由二次函数的图象交y轴于C点,A为此二次函数图象的顶点,得A(2,2),C(0,6)设B(1,t),由勾股定理,得AC2=22+(2﹣6)2,AB2=(2﹣1)2+(2﹣t)2,BC2=12+(t﹣6)2,①当∠ABC=90°时,AB2+BC2=AC2,即(2﹣1)2+(2﹣t)2+(t﹣6)2+1=22+(2﹣6)2,化简,得t2﹣8t+11=0,解得t=4+或t=4﹣,B(1,4+),(1,4﹣);②当∠BAC=90°是,AB2+AC2=BC2,即(2﹣1)2+(2﹣t)2+22+(2﹣6)2=12+(t﹣6)2,化简,得8t=12,解得t=,B(1,),③当∠ACB=90°时,AC2+CB2=AB2,即22+(2﹣6)2+12+(t﹣6)2=(2﹣1)2+(2﹣t)2,化简,得2t=13,解得t=,B(1,),综上所述:当△ABC为直角三角形时,点B的坐标(1,4+),(1,4﹣),(1,),(1,).25.(14分)如图,等腰梯形ABCD中,AD∥BC,AD=7,AB=CD=15,BC=25,E 为腰AB上一点且AE:BE=1:2,F为BC一动点,∠FEG=∠B,EG交射线BC于G,直线EG交射线CA于H.(1)求sin∠ABC;(2)求∠BAC的度数;(3)设BF=x,CH=y,求y与x的函数关系式及其定义域.【解答】解:(1)如图1,过点A作AP⊥BC于P,∵四边形ABCD是等腰梯形,∴BP=(BC﹣AD)=9,在Rt△ABP中,根据勾股定理得,AP=12,∴sin∠ABC===;(2)如图1,在Rt△ACP中,CP=BC﹣BP=16,根据勾股定理得,AC2=AP2+CP2=144+256=400,∵AB=15,BC=25,∴AB2+AC2=225+400=625=252=BC2,∴△ABC是直角三角形,∴∠BAC=90°;(3)过点E作EM⊥BC于M,∵AB=15,AE:BE=1:2,∴AE=5,BE=10,在Rt△BEM中,sin∠ABC=,∴EM=8,BM=6,CM=BC﹣BM=25﹣6=19,当点G和点C重合时,如图4,在Rt△EMC中,CE==∵∠B=∠EFC,∠BCE=∠ECF,∴△BCE∽△ECF,∴=,∴,∴x=8,当EG∥AC时,如图5,∴∠ACB=∠EGB,∵∠B+∠ACB=90°,∴∠FEG+∠EGB=90°,∴EF⊥BC,即:点F和点M重合,∴BF=BM=6,∴当6≤x≤8时,EG和AC的延长线相交,不符合题意,Ⅰ、当点G在BC的延长线上时,如图2,∴FM=BF﹣BM=x﹣6,由(1)知,AC=20,∴AH=AC﹣CH=20﹣y∵∠FEG=∠B∴∠EFG=180°﹣∠G﹣∠FEG=180°﹣∠G﹣∠B,∵∠BEG=180°﹣∠G﹣∠B,∴∠EFG=∠BEG,∴∠EFM=∠AEH,∵∠EMF=∠HAE=90°,∴△EFM∽△HEA,∴,∴,∴y=20﹣(8<x<25),Ⅱ、当点G在边BC上时,如图3,∴FM=BM﹣BF=6﹣x,AH=CH﹣AC=y﹣20,∵同①的方法得,∠EFG=∠BEG,∵∠AEH=∠BEG,∴∠AEH=∠EFG,∵∠EAH=∠FME,∴△AEH∽△MFE,∴,∴,∴y=20+=20﹣(0<x<6).∴y=20﹣(8<x<25).。
2018年初中数学中考一模试卷数学试题一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.下列计算中正确的是()A.﹣1﹣1=0 B.32=6 C.﹣2÷=﹣1 D.﹣33﹣(﹣3)3=02.在下列各数中,最大的数是()A.1.00×10﹣9B.9.99×10﹣8C.1.002×10﹣8D.9.999×10﹣73.下面调查统计中,适合做全面调查的是()A.乘坐飞机的旅客是否携带了违禁物品B.苹果电脑的市场占有率C.“我爱发明”专栏电视节目的收视率D.“现代”汽车每百公里的耗油量4.在三个内角互不相等的△ABC中,最小的内角为∠A,则在下列四个度数中,∠A最大可取()A.30° B.59° C.60° D.89°5.下列性质中,菱形对角线不具有的是()A.对角线互相垂直B.对角线所在直线是对称轴C.对角线相等D.对角线互相平分6.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同二、填空题(本大题共6小题,每小题3分,共18分)7.已知是方程2x﹣ay=3的一个解,则a的值是.8.已知一个正数的平方根是2x和x﹣6,这个数是.9.观察分析下列数据,并寻找规律:,,2,,,,…根据规律可知第n个数据应是.10.如图,BC是一条河的直线河岸,点A是河岸BC对岸上的一点,AB⊥BC于B,站在河岸C的C处测得∠BCA=50°,BC=10m,则桥长AB= m(用计算器计算,结果精确到0.1米)11.在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为.12.能使6|k+2|=(k+2)2成立的k值为.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)解不等式组:(2)先化简(﹣)÷,然后选取一个你认为符合题意的x的值代入求值.14.若a为方程(x﹣)2=16的一正根,b为方程y2﹣2y+1=13的一负根,求a+b的值.15.某市团委在2015年3月初组成了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事件数的统计情况如图所示:(1)这6个学雷锋小组在2015年3月份共做好事多少件?(2)补全条形统计图;(3)请估计该市300个学雷锋小组在2015年3月份共做好事多少件?16.已知点A,点B,请分别在图1,图2的网格中用无刻度直尺画一个不同的菱形,使菱形的顶点A,B,C,D恰好为格点,并计算所画菱形的面积.17.如图所示(背面完全相同)A、B、C三张卡片,正面分别写上整式x2﹣4,x2,4;现将这三张卡片背面向上洗匀,从中随机抽取两张,然后将所抽取卡片上的两个整式分别放在“=”的两边,组成一个等式.(1)“抽取的卡片所组成的等式是一个一元二次方程”,这个事件是.A.必然事件 B.不可能事件 C.随机事件 D.确定事件(2)求所抽取的卡片组成的等式不是一元二次方程的概率.四、(本大题共4小题,每小题8分,共32分)18.如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积?19.某中学开学初在商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌和一个B品牌的足球各需多少元.(2)这所中学决定再次购进A,B两种品牌足球共50个,恰逢商场对两种品牌足球的售价进行调整,A品牌足球球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3260元,那么这所中学此次最多可购买多少个B品牌足球?20.如图,点P,D分别是⊙O上的动点、定点、非直径弦CD⊥直径AB,当点P与点C重合时,易证:∠DPB+∠ACD=90°,在不考虑点P于点B或点D重合的情况下,试解答如下问题:(1)当点P与点A重合时(如图1),∠DPB+∠ACD= 度.(2)当点P在上时(如图2),(1)中的结论还成立吗?请给予证明.(3)当点P在上时,先写出∠DPB与∠ACD的数量关系,再说明其理由.21.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达点B处停止运动,M,N分别是AD,CD的中点,连接MN,设点D运动的时间为ts.(1)MN与AC的数量关系是;(2)求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3)当t为何值时,△DMN是等腰三角形?五、(本大题共10分)22.如图,在平面直角坐标系中,已知点A(﹣2,0),B(1,3)设经过A,O两点且顶点C 在直线AB上的抛物线为m.(1)求直线AB和抛物线m的函数解析式.(2)若将抛物线m沿射线AB方向平移(顶点C始终在AB上),设移动后的抛物线与x轴的右交点为D.①在上述移动过程中,当顶点C在水平方向上移动3个单位长度时,A与D之间的距离是多少?②当顶点在水平方向移动a(a>0)个单位长度时,请用含a的代数式表示AD的长.六、(本大题共12分)23.如图,小东将一张长AD为12、宽AB为4的矩形纸片按如下方式进行折叠:在纸片的一边BC上分别取点P,Q,使得BP=CQ,连结AP、DQ,将△ABP、△DCQ分别沿AP、DQ折叠得△APM,△DQN,连结MN.小东发现线段MN的位置和长度随着点P、Q的位置变化而发生改变.(1)请在图1中过点M,N分别画ME⊥BC于点E,NF⊥BC于点F.求证:①ME=NF;②MN∥BC.(2)如图1,若BP=3,求线段MN的长;(3)如图2,当点P与点Q重合时,求MN的长.2018年初中数学中考一模试卷数学试题(解析版)一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.下列计算中正确的是()A.﹣1﹣1=0 B.32=6 C.﹣2÷=﹣1 D.﹣33﹣(﹣3)3=0【考点】有理数的混合运算.【分析】A、原式利用减法法则计算得到结果,即可作出判断;B、原式利用乘方的意义计算得到结果,即可作出判断;C、原式利用除法法则计算得到结果,即可作出判断;D、原式利用乘方的意义计算得到结果,即可作出判断.【解答】解:A、原式=﹣2,错误;B、原式=9,错误;C、原式=﹣2×2=﹣4,错误;D、原式=﹣27+27=0,正确,故选D2.在下列各数中,最大的数是()A.1.00×10﹣9B.9.99×10﹣8C.1.002×10﹣8D.9.999×10﹣7【考点】有理数大小比较;科学记数法—表示较小的数.【分析】由于四个选项中的数都是用科学记数法表示,故应先比较10的指数的大小,若指数相同再比较10前面数的大小.【解答】解:∵四个选项中10的指数分别是﹣9,﹣8,﹣8,﹣7,∵|﹣9|>|﹣8|>|﹣7|,∴﹣9<﹣8<﹣7,∵四个数均为正数,∴9.999×10﹣7最大.故选D.3.下面调查统计中,适合做全面调查的是()A.乘坐飞机的旅客是否携带了违禁物品B.苹果电脑的市场占有率C.“我爱发明”专栏电视节目的收视率D.“现代”汽车每百公里的耗油量【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、乘坐飞机的旅客是否携带了违禁物品,是事关重大的调查,适合普查,故A正确;B、苹果电脑的市场占有率,调查范围广适合抽样调查,故B错误;C、“我爱发明”专栏电视节目的收视率,调查范围广适合抽样调查,适合抽样调查,故C 错误;D、“现代”汽车每百公里的耗油量,调查范围广适合抽样调查,故D错误;故选:A.4.在三个内角互不相等的△ABC中,最小的内角为∠A,则在下列四个度数中,∠A最大可取()A.30° B.59° C.60° D.89°【考点】三角形内角和定理.【分析】根据三角形的三角形的内角和等于180°求出最小的角的度数的取值范围,然后选择即可.【解答】解:180°÷3=60°,∵不等边三角形的最小内角为∠A,∴∠A<60°,∴0°<∠A<60°,则∠A最大可取59°.故选:B.5.下列性质中,菱形对角线不具有的是()A.对角线互相垂直B.对角线所在直线是对称轴C.对角线相等D.对角线互相平分【考点】菱形的性质.【分析】由菱形的对角线互相平分且垂直,可得菱形对角线所在直线是对称轴,继而求得答案.【解答】解:∵菱形对角线具有的性质有:对角线互相垂直,对角线互相平分,∴对角线所在直线是对称轴.故A,B,D正确,C错误.故选C.6.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同【考点】平移的性质;简单组合体的三视图.【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【解答】解:A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选:B.二、填空题(本大题共6小题,每小题3分,共18分)7.已知是方程2x﹣ay=3的一个解,则a的值是.【考点】二元一次方程的解.【分析】把方程的解代入方程可得到关于a的方程,解方程即可求得a的值.【解答】解:∵是方程2x﹣ay=3的一个解,∴2×1﹣(﹣2)×a=3,解得a=,故答案为:.8.已知一个正数的平方根是2x和x﹣6,这个数是16 .【考点】平方根.【分析】由于一个正数的平方根有两个,它们互为相反数,由此即可得到关于x的方程,解方程即可解决问题.【解答】解:∵一个正数的平方根是2x和x﹣6,∴2x+x﹣6=0,解得x=2,∴这个数的正平方根为2x=4,∴这个数是16.故答案为:16.9.观察分析下列数据,并寻找规律:,,2,,,,…根据规律可知第n个数据应是.【考点】算术平方根.【分析】根据2=,结合给定数中被开方数的变化找出变化规律“第n个数据中被开方数为:3n﹣1”,依此即可得出结论.【解答】解:∵2=,∴被开方数为:2=3×1﹣1,5=3×2﹣1,8=3×3﹣1,11=3×4﹣1,14=3×5﹣1,17=3×6﹣1,…,∴第n个数据中被开方数为:3n﹣1,故答案为:.10.如图,BC是一条河的直线河岸,点A是河岸BC对岸上的一点,AB⊥BC于B,站在河岸C的C处测得∠BCA=50°,BC=10m,则桥长AB= 11.9 m(用计算器计算,结果精确到0.1米)【考点】解直角三角形的应用.【分析】在Rt△ABC中,tan∠BCA=,由此可以求出AB之长.【解答】解:在△ABC中,∵BC⊥BA,∴tan∠BCA=.又∵BC=10m,∠BCA=50°,∴AB=BC•tan50°=10×tan50°≈11.9m.故答案为11.9.11.在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为(2,1).【考点】中心对称;坐标与图形性质.【分析】根据中心对称的性质,知道点P(1,1),N(2,0),并细心观察坐标轴就可以得到答案.【解答】解:∵点P(1,1),N(2,0),∴由图形可知M(3,0),M1(1,2),N1(2,2),P1(3,1),∵关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,∴对称中心的坐标为(2,1),故答案为:(2,1).12.能使6|k+2|=(k+2)2成立的k值为﹣2,4或﹣8 .【考点】换元法解一元二次方程.【分析】根据解方程的方法可以求得6|k+2|=(k+2)2成立的k的值,本题得以解决.【解答】解:6|k+2|=(k+2)26|k+2|﹣|k+2|2=0,∴|k+2|(6﹣|k+2|)=0,∴|k+2|=0或6﹣|k+2|=0,解得,k=﹣2,k=4或k=﹣8,故答案为:﹣2,4或﹣8.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)解不等式组:(2)先化简(﹣)÷,然后选取一个你认为符合题意的x的值代入求值.【考点】分式的化简求值;解一元一次不等式组.【分析】(1)分别解两个不等式得到x≤1和x≥﹣3,然后根据大于小的小于大的取中间确定不等式组的解集;(2)先进行括号的加法运算和除法运算化为乘法运算,然后约分得到原式=x+3,再根据分式有意义的条件取x=10代入计算即可.【解答】解:(1)解①得x≤1,解②得x≥﹣3,所以不等式组的解集为﹣3≤x≤1;(2)原式=•=x+3,当x=10时,原式=10+3=13.14.若a为方程(x﹣)2=16的一正根,b为方程y2﹣2y+1=13的一负根,求a+b的值.【考点】解一元二次方程﹣配方法;解一元二次方程﹣直接开平方法.【分析】利用直接开平方法求得a的值,利用配方法求得b的值,代入计算即可.【解答】解:∵方程(x﹣)2=16的解为x=±4,∵+4>0,﹣4<0,∴a=+4,∵方程y2﹣2y+1=13,即(y﹣1)2=13的解为y=1±,∵1+>0,1﹣<0,∴b=1﹣,则a+b=+4+1﹣=5.15.某市团委在2015年3月初组成了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事件数的统计情况如图所示:(1)这6个学雷锋小组在2015年3月份共做好事多少件?(2)补全条形统计图;(3)请估计该市300个学雷锋小组在2015年3月份共做好事多少件?【考点】折线统计图;用样本估计总体;条形统计图.【分析】(1)由折线统计图,即可解答;(2)根据第3小组做了25件,即可补全条形统计图;(3)根据样本估计总体,即可解答.【解答】解:(1)13+16+25+22+20+18=114(件),这6个学雷锋小组在2015年3月份共做好事114件;(2)如图所示:(3)300×=5700(件).估计该市300个学雷锋小组在2015年3月份共做好事5700件.16.已知点A,点B,请分别在图1,图2的网格中用无刻度直尺画一个不同的菱形,使菱形的顶点A,B,C,D恰好为格点,并计算所画菱形的面积.【考点】作图—复杂作图;菱形的性质.【分析】利用菱形的四边相等,以A点为圆心,AB为半径画弧可找到格点D,同样方法可得到点C,从而得到菱形ABCD,然后根据菱形的面积公式计算对应的菱形面积.【解答】解:如图1,四边形ABCD为所作,AC==2,BD==4,菱形ABCD的面积=×2×4=8;如图2,菱形ABCD的面积=×2×6=6.17.如图所示(背面完全相同)A、B、C三张卡片,正面分别写上整式x2﹣4,x2,4;现将这三张卡片背面向上洗匀,从中随机抽取两张,然后将所抽取卡片上的两个整式分别放在“=”的两边,组成一个等式.(1)“抽取的卡片所组成的等式是一个一元二次方程”,这个事件是 C .A.必然事件 B.不可能事件 C.随机事件 D.确定事件(2)求所抽取的卡片组成的等式不是一元二次方程的概率.【考点】列表法与树状图法;随机事件.【分析】(1)根据随机事件的定义进行判断即可;(2)将所有等可能的结果列举出来,利用概率公式求解即可.【解答】解:(1)“抽取的卡片所组成的等式是一个一元二次方程”,这个事件是随机事件.故选C;(2)共有x2﹣4=x2、x2﹣4=4、4=x2三种等可能的结果,为一元二次方程的有x2﹣4=4、4=x2两种是一元二次方程,故P(抽取的卡片组成的等式不是一元二次方程)=.四、(本大题共4小题,每小题8分,共32分)18.如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积?【考点】反比例函数与一次函数的交点问题.【分析】(1)将A坐标代入一次函数解析式中求出k的值,确定出一次函数解析式,将A 坐标代入反比例函数解析式中求出m的值,即可确定出反比例解析式;(2)直接求出BN,CN的长,进而求出BC的长,即可求出△ABC的面积.【解答】解:(1)将A(1,2)代入一次函数解析式得:k+1=2,即k=1,∴一次函数解析式为y=x+1;将A(1,2)代入反比例解析式得:m=2,∴反比例解析式为y=;(2)∵N(3,0),∴点B横坐标为3,将x=3代入一次函数得:y=4,将x=3代入反比例解析式得:y=,即CN=,BC=4﹣=,A到BC的距离为:2,则S△ABC=××2=.19.某中学开学初在商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌和一个B品牌的足球各需多少元.(2)这所中学决定再次购进A,B两种品牌足球共50个,恰逢商场对两种品牌足球的售价进行调整,A品牌足球球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3260元,那么这所中学此次最多可购买多少个B品牌足球?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设购买一个A品牌足球需x元,购买一个B品牌足球需(x+30)元.接下来,依据购买A品牌足球数量是购买B品牌足球数量的2倍列方程求解即可;(2)设此次可购买a个B品牌的足球,则购进A品牌足球(50﹣a)个,接下来依据总费用不超过3260元列不等式求解即可.【解答】解:(1)设购买一个A品牌足球需x元,购买一个B品牌足球需(x+30)元.根据题意得: =×2.解得:x=50.经检验x=50是原方程的解.则x+30=80.答:购买一个A品牌的足球需要50元,购买一个B品牌的足球需80元.(2)设此次可购买a个B品牌的足球,则购进A品牌足球(50﹣a)个.由题意得:50(1+8%)(50﹣a)+80×0.9a≤3260.解得;a≤31.∵a是整数,∴a最大可取31.答:这所中学此次最多可购买31个B品牌的足球.20.如图,点P,D分别是⊙O上的动点、定点、非直径弦CD⊥直径AB,当点P与点C重合时,易证:∠DPB+∠ACD=90°,在不考虑点P于点B或点D重合的情况下,试解答如下问题:(1)当点P与点A重合时(如图1),∠DPB+∠ACD= 90 度.(2)当点P在上时(如图2),(1)中的结论还成立吗?请给予证明.(3)当点P在上时,先写出∠DPB与∠ACD的数量关系,再说明其理由.【考点】圆的综合题.【分析】(1)先根据垂径定理得出AC=AD,故可得出∠ACD=∠ADC,∠AED=90°,再由∠DPB+∠ADC=90°即可得出结论;(2)先根据垂径定理得出=,再由∠A+∠ACD=90°即可得出结论;(3)连接AP,则∠BPD=∠BPA+∠APD,由圆周角定理得出∠BPA=90°,∠ACD=∠APD,进而可得出结论.【解答】解:(1)∵弦CD⊥直径AB,∴CE=DE,∠AED=90°,∴∠ACD=∠ADC,∠AED=90°.∵∠DPB+∠ADC=90°,∴∠DPB+∠ACD=90°.故答案为:90;(2)成立.理由:如图2,∵AB⊥CD,AB是⊙O的直径,∴=,∴∠DPB=∠A.∵∠A+∠ACD=90°,∴∠DPB+∠ACD=90°.(3)∠DPB﹣∠ACD=90°.理由:如图3,连接AP,则∠BPD=∠BPA+∠APD.∵AB是⊙O的直径,∴∠BPA=90°,∠ACD=∠APD,∴∠BPD=90°+∠ACD,即∠BPD﹣∠ACD=90°.21.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达点B处停止运动,M,N分别是AD,CD的中点,连接MN,设点D运动的时间为ts.(1)MN与AC的数量关系是MN=AC ;(2)求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3)当t为何值时,△DMN是等腰三角形?【考点】三角形综合题.【分析】(1)直接利用三角形中位线证明即可;(2)分别取△ABC三边AC,AB,BC的中点E,F,G,并连接EG,FG,根据题意可得线段MN 扫过区域的面积就是▱AFGE的面积求解即可;(3)分三种情况:①当MD=MN=3时,②当MD=DN,③当DN=MN时,分别求解△DMN为等腰三角形即可.【解答】解:(1)∵在△ADC中,M是AD的中点,N是DC的中点,∴MN=AC;故答案为:MN=AC;(2)如图1,分别取△ABC三边AC,AB,BC的中点E,F,G,并连接EG,FG,根据题意可得线段MN扫过区域的面积就是▱AFGE的面积,∵AC=6,BC=8,∴AE=3,GC=4,∵∠ACB=90°,∴S四边形AFGE=AE•GC=3×4=12,∴线段MN所扫过区域的面积为12.(3)据题意可知:MD=AD,DN=DC,MN=AC=3,①当MD=MN=3时,△DMN为等腰三角形,此时AD=AC=6,∴t=6,②当MD=DN时,AD=DC,如图2,过点D作DH⊥AC交AC于H,则AH=AC=3,∵cosA==,∴=,解得AD=5,∴AD=t=5.③如图3,当DN=MN=3时,AC=DC,连接MC,则CM⊥AD,∵cosA==,即=,∴AM=,∴AD=t=2AM=,综上所述,当t=5或6或时,△DMN为等腰三角形.五、(本大题共10分)22.如图,在平面直角坐标系中,已知点A(﹣2,0),B(1,3)设经过A,O两点且顶点C 在直线AB上的抛物线为m.(1)求直线AB和抛物线m的函数解析式.(2)若将抛物线m沿射线AB方向平移(顶点C始终在AB上),设移动后的抛物线与x轴的右交点为D.①在上述移动过程中,当顶点C在水平方向上移动3个单位长度时,A与D之间的距离是多少?②当顶点在水平方向移动a(a>0)个单位长度时,请用含a的代数式表示AD的长.【考点】二次函数综合题.【分析】(1)设直线AB的解析式为y=kx+b,根据点A、B的坐标利用待定系数法即可求出直线AB的解析式,根据抛物线过点A、O即可得出抛物线的对称轴,由顶点在直线AB上即可找出顶点C的坐标,设抛物线的解析式为y=a(x+1)2+1,根据点O的坐标利用待定系数法即可求出抛物线的解析式;(2)①根据点C的坐标以及平移的性质可找出平移后的顶点坐标(2,4),由此即可得出平移后的抛物线的解析式,令y=0,求出x值,点D横坐标取x中的较大值,再结合点A的坐标即可得出线段AD的长度;②根据点C的坐标以及平移的性质可找出平移后的顶点坐标(a﹣1,a+1),由此即可得出平移后的抛物线的解析式,令y=0,求出x值,点D横坐标取x中的较大值,再结合点A的坐标即可得出线段AD的长度.【解答】解:(1)设直线AB的解析式为y=kx+b,则,解得:,∴直线AB的解析式为y=x+2.∵抛物线m经过A、O两点,∴抛物线的对称轴为x=﹣1,∵抛物线顶点在直线AB上,∴y=﹣1+2=1,∴抛物线的顶点C(﹣1,1).设抛物线的解析式为y=a(x+1)2+1,将(0,0)代入y=a(x+1)2+1中,有0=a(0+1)2+1,解得:a=﹣1,∴抛物线的解析式为y=﹣(x+1)2+1=﹣x2﹣2x.(2)①根据题意,顶点在水平方向上向右平移了3个单位长度,顶点的横坐标为﹣1+3=2,纵坐标为x+2=2+2=4,∴平移后的抛物线为y=﹣(x﹣2)2+4,当y=0时,有﹣(x﹣2)2+4=0,解得:x1=0,x2=4,∴D(4,0),∴AD=4﹣(﹣2)=6.②当顶点在水平方向上向右平移了a个单位长度时,顶点为(a﹣1,a+1),∴平移后的抛物线为y=﹣(x﹣a+1)2+a+1,当y=0时,(x﹣a+1)2=a+1,解得:x=a﹣1±,∴D(a﹣1+,0),∴AD=a﹣1+﹣(﹣2)=a+1+.六、(本大题共12分)23.如图,小东将一张长AD为12、宽AB为4的矩形纸片按如下方式进行折叠:在纸片的一边BC上分别取点P,Q,使得BP=CQ,连结AP、DQ,将△ABP、△DCQ分别沿AP、DQ折叠得△APM,△DQN,连结MN.小东发现线段MN的位置和长度随着点P、Q的位置变化而发生改变.(1)请在图1中过点M,N分别画ME⊥BC于点E,NF⊥BC于点F.求证:①ME=NF;②MN∥BC.(2)如图1,若BP=3,求线段MN的长;(3)如图2,当点P与点Q重合时,求MN的长.【考点】三角形综合题.【分析】(1)①根据矩形的性质得到∠B=∠C=90°,AB=CD.根据全等三角形的性质得到∠APB=∠DQG.推出△MEP≌△NPQ,由全等三角形的性质即可得到ME=NF;②根据矩形的判定定理得到四边形EFMN是矩形,由矩形的性质得到结论;(2)证明△EMP∽△MAG,根据相似三角形的对应边的比相等,以及矩形的性质即可求解;(3)设PM、PN分别交AD于点E、F,证明△PEF∽△PMN,根据相似三角形的对应边的比相等即可求解.【解答】解:(1)①∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=CD.∵在△ABP和△DCQ中,,∴△ABP≌△DCQ,∴∠APB=∠DQG.∴∠MPE=180°﹣2∠APB=180°﹣2∠DQC=∠NQF.∴在△MEP和△NPQ中,,∴△MEP≌△NPQ,∴ME=NF;②∵ME∥NF,ME=NF,∴四边形EFMN是矩形,∴MN∥BC;(2)延长EM、FN交AD于点G、H,∵AB=4,BP=3,∴AM=4,PM=3.∵AD∥BC,∴EM⊥AD.∵∠AMP=∠MEP=∠MGA,∴∠EMP=∠MAG.∴△EMP∽△MAG.∴===,设AG=4a,MG=3b.∵四边形ABEG是矩形,∴,解得:,∴AG=,同理DH=.∴MN=;(3)设PM、PN分别交AD于点E、F.∵∠EPA=∠APB=∠PAE,∴EA=EP.设EA=EP=x,在直角△AME中,42+(6﹣x)2=x2,解得:x=,∴EF=12﹣2×=,∵EF∥MN,∴△PEF∽△PMN,∴=,即,解得:MN=.。
中考数学一模试卷(解析版)一.选择题1.下列图形中,既是轴对称图形又是中心对称图形的有()A. 4个B. 3个C. 2个D. 1个2.如图,点D,E分别为△ABC的边AB,AC上的中点,则△ADE的面积与四边形BCED的面积的比为()A. 1:2B. 1:3C. 1:4D. 1:13.如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限.若反比例函数y= 的图象经过点B,则k的值是()A. 1B. 2C.D.4.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A. =B. ∠APB=∠ABCC. =D. ∠ABP=∠C5.在△ABC中,(2cosA﹣)2+|1﹣tanB|=0,则△ABC一定是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 等腰直角三角形6.已知x=1是方程x2+bx=2的一个根,则方程的另一个根是()A. 1B. 2C. ﹣2D. ﹣17.有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是y=2x,y=x2﹣3(x>0),y=(x>0),y=﹣(x<0),将卡片顺序打乱后,随意从中抽取一张,取出的卡片上的函数是y随x的增大而增大的概率是()A. B. C. D. 18.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A. a>0B. 3是方程ax2+bx+c=0的一个根C. a+b+c=0D. 当x<1时,y随x的增大而减小9.如图所示,直线l和反比例函数y= (k>0)的图象的一支交于A,B两点,P是线段AB上的点(不与A,B重合),过点A,B,P分别向x轴作垂线,垂足分别是C,D,E,连接OA,OB,OP,设△AOC面积是S1,△BOD面积是S2,△POE面积是S3,则()A. S1<S2<S3B. S1>S2>S3C. S1=S2>S3D. S1=S2<S310.如图,⊙O是△ABC的外接圆,弦AC的长为3,sinB= ,则⊙O的半径为()A. 4B. 3C. 2D.二.填空题11.如图,若点A的坐标为,则sin∠1=________.12.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是________.13.如图,一次函数与反比例的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是________.14.在矩形ABCD中,AB=6,BC=8,AC,BD相交于O,P是边BC上一点,AP与BD交于点M,DP与AC交于点N.①若点P为BC的中点,则AM:PM=2:1;②若点P为BC的中点,则四边形OMPN的面积是8;③若点P为BC的中点,则图中阴影部分的总面积为28;④若点P在BC的运动,则图中阴影部分的总面积不变.其中正确的是________.(填序号即可)三.解答题16.解方程:x2﹣5x+3=0.四.综合题17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD(顶点是网格线的交点),按要求画出四边形AB1C1D1和四边形AB2C2D2.(1)以A为旋转中心,将四边形ABCD顺时针旋转90°,得到四边形AB1C1D1;(2)以A为位似中心,将四边形ABCD作位似变换,且放大到原来的两倍,得到四边形AB2C2D2.18.如图,专业救助船“沪救1”轮、“沪救2”轮分别位于A、B两处,同时测得事发地点C在A的南偏东60°且C在B的南偏东30°上.已知B在A的正东方向,且相距100里,请分别求出两艘船到达事发地点C的距离.(注:里是海程单位,相当于一海里.结果保留根号)五.应用题19.如图,在平面直角坐标系xOy中,直线y=﹣x+2分别与x、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,OE=2.(1)求反比例函数的解析式;(2)连接OD,求△OBD的面积.(3)x取何值时,反比例函数的值大于一次函数的值.20.如图,已知△ABC为直角三角形,∠C=90°,边BC是⊙0的切线,切点为D,AB经过圆心O并与圆相交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若AC=8,tan∠DAC= ,求⊙O的半径.21.在一个不透明的袋子中装有仅颜色不同的5个小球,其中红球3个,黑球2个.(1)先从袋中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,填空:若A为必然事件,则m的值为________,若A为随机事件,则m的取值为________;(2)若从袋中随机摸出2个球,正好红球、黑球各1个,求这个事件的概率.22.如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2=AB•AD,我们称该四边形为“可分四边形”,∠DAB称为“可分角”.(1)如图2,若四边形ABCD为“可分四边形”,∠DAB为“可分角”,且∠DCB=∠DAB,则∠DAB=________°.(2)如图3,在四边形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求证:四边形ABCD为“可分四边形”;(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,BC=2,∠D=90°,求AD的长?23.已知抛物线l1:y=﹣x2+2x+3与x轴交于点A,B(点A在点B左边),与y轴交于点C,抛物线l2经过点A,与x轴的另一个交点为E(4,0),与y轴交于点D(0,﹣2).(1)求抛物线l2的解析式;(2)点P为线段AB上一动点(不与A、B重合),过点P作y轴的平行线交抛物线l1于点M,交抛物线l2于点N.①当四边形AMBN的面积最大时,求点P的坐标;②当CM=DN≠0时,求点P的坐标.答案解析一.<b >选择题</b>1.【答案】C【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】解:左起第1个图形不是轴对称图形;左起第2个图形和第3个图形,它们旋转180°能与原图形重合,都有4条对称轴,∴这两个图形既是轴对称又是中心对称;左起第4个图形旋转180°不能与原图形重合,但它是轴对称图形,有5条对称轴故答案为:C.【分析】根据轴对称图形的定义和中心对称图形的定义去判定。
2.【答案】B【考点】三角形中位线定理,相似三角形的判定与性质【解析】【解答】解:∵D、E分别为△ABC的边AB、AC上的中点,∴DE是△ABC的中位线,∴DE∥BC,DE= BC,∴△ADE∽△ABC,∴△ADE的面积:△ABC的面积=()2=1:4,∴△ADE的面积:四边形BCED的面积=1:3;故答案为:B.【分析】先证明DE是△ABC的中位线,得出DE∥BC,DE= BC,从而由平行得两三角形相似,再根据相似三角形的性质,两个相似三角形的面积比等于它们的对应边之比的平方,即可求出结果。
3.【答案】C【考点】等边三角形的性质,反比例函数图象上点的坐标特征【解析】【解答】解:过点B作BC垂直OA于C,∵点A的坐标是(2,0),∴AO=2,∵△ABO是等边三角形,∴OC=1,BC= ,∴点B的坐标是(1,),把(1,)代入y= ,得k= .【分析】此题要求k的值关键是求出点B的坐标,抓住题中的已知条件点A的坐标是(2,0),得出OA=2;△ABO是等边三角形,根据等边三角形的性质“三线合一”,就需要添加辅助线,作△OAB的高BC,就转化到直角三角形中去求点B的坐标,再根据待定系数法可求出k的值。
4.【答案】A【考点】相似三角形的判定【解析】【解答】观察图形要判断△ABP∽△ACB,图中隐含条件公共角∠A=∠A,两组对应角分别相等的两个三角形相似,B、D答案可得到△ABP∽△ACB;排除B、D;而A选项两组对应边的比相等,相等的角不是夹角,不能判断△ABP∽△ACB,故此选项符合题意;C选项可利用两组对应边的比相等且夹角对应相等的两个三角形相似判断△ABP∽△ACB,排除C故答案为:A.【分析】此题是相似三角形判定的运用。
可用排除法解答此题。
5.【答案】D【考点】特殊角的三角函数值,等腰直角三角形,平方的非负性,绝对值的非负性【解析】【解答】解:由,(2cosA﹣)2+|1﹣tanB|=0,得2cosA= ,1﹣tanB=0.解得A=45°,B=45°,则△ABC一定是等腰直角三角形,故答案为:D.【分析】本题考查的知识点:几个非负数之和为0,则这几个数都为0;特殊角的三角函数值;等腰直角三角形的判定。
6.【答案】C【考点】根与系数的关系【解析】【解答】解:∵x=1是方程x2+bx﹣2=0的一个根∴x1x2= =﹣2,i∴1×x2=﹣2,则方程的另一个根是:﹣2,故答案为:C.【分析】根据根与系数的关系,知道a与c的值,已知方程的一个根,要求方程的另一个根,利用两根之积可求出结果;也可以将x=1代入原方程或利用两根之和求出b的值,再解方程即可。
7.【答案】C【考点】正比例函数的图象和性质,反比例函数的性质,二次函数的性质【解析】【解答】解:函数y=2x,y=x2﹣3(x>0),y= (x>0),y=﹣(x<0)中,有y=2x,y=x2﹣3(x>0),y=﹣(x<0),是y随x的增大而增大,所以随意从中抽取一张,取出的卡片上的函数是y随x的增大而增大的概率是.【分析】利用正比例函数,二次函数,反比例函数的性质可以判断y随x的增大而增大的函数有哪些,再根据概率的定义可以求出结果。
8.【答案】B【考点】二次函数的性质,二次函数图象与系数的关系【解析】【解答】解:A、因为抛物线开口向下,因此a<0,故此选项错误;B、根据对称轴为x=1,一个交点坐标为(﹣1,0)可得另一个与x轴的交点坐标为(3,0)因此3是方程ax2+bx+c=0的一个根,故此选项正确;C、把x=1代入二次函数y=ax2+bx+c(a≠0)中得:y=a+b+c,由图象可得,y>0,故此选项错误;D、当x<1时,y随x的增大而增大,故此选项错误;故答案为:B.【分析】A选项利用抛物线开口方向判断;B选项利用抛物线是关于对称轴对称,可得出抛物线另一个与x 轴的交点坐标来判断;C选项将x=1代入即可;D选项根据抛物线开口向下,在对称轴左侧y随x的增大而增大。
在对称轴右侧y随x的增大而减小。
9.【答案】D【考点】反比例函数与一次函数的交点问题【解析】【解答】解:结合题意可得:AB都在双曲线y= 上,则有S1=S2;而线段AB之间,直线在双曲线上方;故S1=S2<S3.故答案为:D.【分析】根据双曲线上图像上的点与原点所连的线段,过这些点向坐标轴作垂线与坐标轴围成的直角三角形的面积(s)相等,s=|k|,因为点A,点B在双曲线上,所以S1=S2,PE与双曲线交于点M,S3=S△POM+S△OME,S△OME=S1=S2,所以S1=S2<S3.10.【答案】C【考点】圆周角定理,解直角三角形【解析】【解答】解:作直径AD,连接CD,∴∠D=∠B,∴sinD=sinB= ,在直角△ADC中,AC=3,∴AD= =4,故答案为:C.【分析】抓住已知条件sinB= ,弦AC的长为3,就要添加辅助线构造直角三角形,把∠B和AC转化到同一个直角三角形中去,根据直径所对的圆周角是直角,所以过点C或过点A作⊙O的直径,根据同弧所对的圆周角相等,即可求出⊙O的直径和半径。