当前位置:文档之家› 数学建模与经济学的关系

数学建模与经济学的关系

数学建模与经济学的关系
数学建模与经济学的关系

数学模型与经济学的关系

摘要:随着科学技术的迅速发展,数学模型这个词汇越来越多的出现在现代人的生产、工作和社会活动中。每一门学科要想成为一门科学,首先要经过数学的推理验证,构建相应的数学模型,经济学也不例外。本文主要阐述了最优价格模型在经济学中的指导意义,经济数学模型是研究经济学的重要工具,在经济应用中占有重要的地位。文章从经济数学模型的内涵、构建经济数学模型的方法、遵循的基本原则以及所要注意的问题进行了简要分析和论述。

数学与经济学息息相关,可以说每一项经济学的研究、决策,都离不开数学的应用。特别是自从诺贝尔经济学奖创设以来,利用数学工具来分析经济问题得到的理论成果层出不穷,经济学中使用数学方法的趋势越来越明显。当代西方经济学认为,经济学的基本方法是分析经济变量之间的函数关系,建立经济模型,从中引申出经济原则和理论,进行预测、决策和监控。在经济领域,数学的运用首要的问题是实用性和实践性问题,即能否用所建立的模型去概括某一经济现象或说明某一经济问题。因而,数学模型分析已成为现代经济学研究的基本趋向,经济数学模型在研究许多特定的经济问题时具有重要的不可替代的作用,在经济学日益计量化、定量分析的今天,数学模型方法显得愈来愈重要。

关键字:经济学数学模型最优价格

一.引言

科学与生产生活和数学模型的关系变得越来越紧密。工程师要建立数学模型,用这个模型对控制装置作出相应的设计和计算。城市规划工作者需要建立一个包括人口、经济、交通、环境等大系统的数学模型。建立数学模型是沟通摆在面前的实际问题与工作者掌握的数学工具之间联系的一座必不可少的桥梁。将数学方

法应用到实际问题中时,往往首先是把这个问题的内在规律用数字、图表或者公式、符号表示出来,然后经过数学的处理得到定量的结果,以供人们作分析、预报、决策或者控制,这个过程实际上就是一个建立数学模型的过程。

数学和经济的联系是十分紧密的,而对数学的应用往往要通过数学模型。无论现在还是以后的学习和工作,建立数学模型都将是一个解决问题的重要的方法。

二.最优价格模型

经济问题往往通过转化为数学模型来分析。数学是研究现实世界的数量关系和空间形式的科学。它具有高度的抽象性,在经济上应用的范围很广。经济范畴和经济过程同样是质和量的统一。在对生产方式以及与之相适应的生产关系进行质的分析的前提下,对反映生产方式以及与之相适应的生产关系的经济范畴和经济过程进行量的分析,将有助于认识的深化,有助于理论的应用。从这一方面来说,马克思主义经济学所提示的原理和规律,不少都有可能用数学语言来表达,用数学模型来表示。马克思自己就曾经想运用数学方法来说明经济危机的规律性。马克思提出了运用数学方法的前提条件:首先,材料必须是足够的;其次,材料必须是经过检验的。

数学模型为西方经济学家提供了方便。西方经济学家在他们的研究中大量地运用数学模型,他们所用的数学方法几乎遍及纯数学的各主要分支。不可否认,数理分析的方法要比单纯文字说明、推理更方便、更精确,有时也更能说服人。大量的数学符号和算式推导,使经济过程和现象的表述较为简洁、清晰和直观。现在的数理经济学,金融数学,计量经济学等学科的蓬勃发展和其广阔的发展前景都说明了经济是必须要和数学结合起来研究的,而且经济学的研究史是一个从定性分析研究向定量研究转变的过程,并最终是严密的定量研究的趋势,而在定量研

究过程中,是否能准确地建立数学模型关系着该领域研究的成功与否。在经济学界和数学界都赫赫有名的数学和经济学大师——约翰纳什,通过数学模型把日常生活中生动的经济问题分析并深化研究,总结出了著名的纳什均衡[1]。这个著名的经济论断成为经济学界坚实的理论基石,为以后研究更个领域的博弈问题提供了理论基础,可以说正是数学和经济的完美结合才创造除了世界宝贵的财富,经济和数学密不可分的关系也就不言而喻了。

下面的最优价格模型是我们经济学中比较经典的一个数学模型,从中也可以看出数学模型的建立对经济学有很重要的意义。

1.最优价格如何建立模型[2]

2.分析问题

我们要简练一个最有的的价格模型,首先要深入了解实际经济问题以及与问题有关的背景知识,对现实经济现象及原始背景进行细致观察和周密调查,以获取大量的数据资料,并对数据进行加工分析、分组整理。

3.模型基本假设假设[2]

最优价格,简单的说就是使商家或企业获得最大利润的产品的价格。对于最优价格的问题,应该是每个企业关注的。如果一个厂长有权根据产品成本和销售情况制定商品价格的话,他当然会寻求能使工厂利润最大的所谓最优价格。本文所讨论的最优价格模型,是指在产销平衡状态下的模型,这里的产销平衡是指工厂产品的产量等于市场上的销售量。为了模型的更加合理性,这里假设产品的销售量依赖于产品的价格,产品的成本与产品的产量也是相关联的。

4.模型建立[2]

利润是销售收入与生产支出之差。假设每件产品售价为p,成本为q,销售量为x(与产量相等),总收入与总支出分别是I和C,则可以得到:

I=px (1)

C=qx (2)

另外,我们知道在市场竞争的情况下销售量x依赖于价格p,因此销售量应该是价格的函数,记作:

x = f (p) (3)

这里f称为需求函数,是p的减函数。

我们再考虑成本与产品数量的关系。通常情况下,成本是随着产品的数量逐渐降低的,因此可以认为产品的成本是产品数量的函数。记作:

q = Q(x) (4)

其中,我们把Q叫做成本函数,是x的减函数。这样,x和q都可以由p来确定。可以得到销售收入和生产支出C都是价格p的函数,设利润为U,则可以表示为: U(p) = I(p) - C(p) (5)

其中,I (p) = px = pf (p),C (p) = qx = Q (x)x =Q (f (p))f (p)。

使利润U达到最大的价格就是最优价格。设最优价格为p*,那么可以得到当

dU/dp = 0

时p的值即为p*。即有

dU/dp = dU/dp

当p = p*时:我们把dI/dp称为边际收入(价格变动一个单位时收入的改变量),dC/dp称为边际支出(价格变动一个单位时的支出的改变量)。上式表明,最大利润是在边际收入等于边际支出时达到的。

为了得到进一步的结果,本文假设出需求函数和成本函数的具体形式。设需求函数是简单的线性函数:

f (p) = a-bp ab>0 –bp (6)

其中,a可以理解为这种产品免费供应(p = 0)社会的需求量,称为“绝对需求量”。b表示价格上涨一个单位时销售量下降的幅度(当然也是价格下跌一个单位时销售量上升的幅度),它反映市场需求对价格的敏感程度。

接下来,设成本函数为:

Q (x) = m + 1/ (tx + n) (其中 m ,t ,n >0)

(7)其中,m表示产品的最底成本,t表示产品数量增加或减少带来的幅度,n 调节常数,即产品的最大成本为(m + 1/n)。

5.模型求解

将(1)~(3)和(6),(7)带入(4)式可得:

U (p) = I (p) – C (p)= pf(p) – Q (f (p))f (p)

=(a – bp) [p – m – 1/(ta + n – tbp)] (8)用微分的方法可以求出使U (p)最大的最优价格。由dU/dp = 0式和(8)式可以得到:

b t p–(2btn + 2abt + b t m)p +(n + 2atn + a t + 2abt m + 2btmn)p –m(n + ta)–n = 0 (9)

这是一个关于p的三次方程,对于实际问题,当得到a、b 、m 、n 、t的数值带到(9)式中,再用相应的数学方法求出p*。

6.结果分析

在实际的工作之中,a和b可以由价格p和销售量x的统计数据用最小二乘法拟合来确定。m和n实际上是已知的常数,t也是根据产量的多少可以得出的。对于(9)式的求解在有些时候可能不容易得到精确的数值,我们可以根据实际情况得到具有一定精度的近似值。

四.总结

除了上述最优价格模型,经济学中的弹性理论,金融工程中的期货期权理论,最优化和影子价格都是经济和数学的完美结合,数学模型为经济学的研究开辟了一条宽阔的大路,同时也使经济学从定性研究向定量研究转化,更加具有理性和发散思维,正是数学和经济学的结合为社会科学的发展增加了动力,也为社会创造了很大的物质财富,相信数学模型这个工具将来会给经济学更广阔的发展空间。

参考文献

1.高鸿业.西方经济学[M]. 北京,中国人民大学出版社,2004

2. 迪迪埃.科森,于格.皮罗特.高级信用风险分析:评估、定价和管理信用风险的金融方法和数学模型[M]. 王唯翔、殷剑峰、程炼等译.北京:机械工业出版社,2005

数学模型在经济学中的应用 李海维

中南民族大学 毕业论文(设计) 学院: 数学与统计学学院 专业: 数学与应用数学年级:2008 题目: 数学模型在经济学的应用 学生姓名: 李海维学号: 08063041指导教师姓名:陈作清职称: 副教授 2012年5月1日

中南民族大学本科毕业论文(设计)原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。 作者签名:年月日

目录 1数学模型概述 (2) 1.1.1 数学的应用 (2) 1.1.2 数学建模 (3) 1.2.1 数学建模的方法 (4) 1.2.2 数学建模的基本过程 (4) 1.2.3 数学建模的分类 (6) 2数学模型的实际应用 (7) 2.1.1 运用数学模型解决经济最优化问题 (6) 2.1.2 数学模型对经济预测的指导 (7) 2.1.3 数学模型对经济政策的指导 (8) 2.2 经济学研究中应用数学方法的注意事项 2.2.1 数学在经济学中应用的局限性 (9) 结论 (10) 致谢 (10) 参考文献 (11)

数学模型在经济学中的应用 摘要:本文在阐述了数学建模的基本概念及相关理论知识基础上,分析了数学模型的合理性,实用性、严密性、抽象性与趣味性。当代西方经济认为,经济学的基本方法是分析经济变量之间的函数关系,建立经济模型,从中引申出经济原则和理论进行决策和预测。本文从“运用数学模型解决经济最优化问题”,“数学模型对经济预测的指导”,以及“数学模型对经济政策的指导三个方面”阐明了数学模型在经济学中的应用。最后阐述了正确认识数学方法和数学模型在经济学研究运用中的重要的意义。 关键词:经济学数学模型应用最优化预测指导 The mathematics model application in Economics Abstract:In this paper, the mathematical modeling of the basic concept and theory of knowledge based on the analysis of the mathematical model, the rationality, practicability, tightness, abstract and interest. Contemporary western economic thought, economics is the basic method of economic analysis of the relationship between variables, the establishment of the economic model, derived from the economic principle and the theory of decision-making and forecasting. I use the mathematical model to solve the economic optimization problem, a mathematical model of economic prediction guidance, and mathematical model of economic policies of the three aspects of each give an example explain the mathematical model in the application of economics. Secondly, the correct understanding of mathematics method and mathematics model in economics research in the use of the trend, effect and limitation, have very important sense. Key words:Mathematical model;Graph maximum coverage;Optimization;Forecast;Guide

数学建模的作用意义

数学建模的背景: 人们在观察、分析和研究一个现实对象时经常使用模型,如展览馆里的飞机模型、水坝模型,实际上,照片、玩具、地图、电路图等都是模型,它们能概括地、集中地反映现实对象的某些特征,从而帮助人们迅速、有效地了解并掌握那个对象。数学模型不过是更抽象些的模型。 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子(称为数学模型),然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个全过程就称为数学建模。 近半个多世纪以来, 随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用, 而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并计算求解。人们常常把数学建模和计算机技术在知识经济时代的作用比喻为如虎添翼。 数学建模日益显示其重要作用,已成为现代应用数学的一个重要领域。为培养高质量、高层次人才,对理工、经济、金融、管理科学等各专业的大学生都提出“数学建模技能和素质方面的要求”。 数学建模在现代社会的一些作用 (1)在一般工程技术领域,数学建模仍然大有用武之地。在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的普遍性和重要性不言而喻,虽然这里的基本模型是已有的,但是由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题;高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝的应力计算,中长期天气预报等)迎刃而解;建立在数学模型和计算机模拟基础上的CAD技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段。 (2)在高新技术领域,数学建模几乎是必不可少的工具。无论是发展通讯、航天、微电子、自动化等高新技术本身,还是将高新技术用于传统工业去创造新工艺、开发新产品,计算机技术支持下的建模和模拟都是经常使用的有效手段。数学建模、数值计算和计算机图形学等相结合形成的计算机软件,已经被固化于产品中,在许多高新技术领域起着核心作用,被认为是高新技术的特征之一。在这个意义上,数学不再仅仅作为一门科学,它是许多技术的基础,而且直接走向了技术的前台。国际上一位学者提出了“高技术本质上是一种数学技术”的观点。 (3)数学迅速进入一些新领域,为数学建模开拓了许多新的处女地。随着数学向诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生。一般地说,不存在作为支配关系的物理定律,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的、关键的步骤和这些学科发展与应用的基础。在这些领域里建立不同类型、不同方法、不同深浅程度模型的余地相当大,为数学建模提供了广阔的新天地。马克思说过,一门科学只有成功地运用数学时,才

经济数学模型的局限性

数学与经济学息息相关,经济理论研究也离不开经济数学模型。经济学从它产生时起,就在某种程度上运用着经济数学模型。几乎每一项经济学的研究、决策,都离不开数学的应用。利用数学工具来分析经济问题得到的理论成果层出不穷,经济学中使用数学方法的趋势也越来越明显。西方经济学认为,经济学的基本方法是分析经济变量之间的函数关系,建立经济模型,从中引申出经济原则和理论,进行预测、决策和监控。在经济领域,数学的运用首要的问题是实用性和实践性问题,即能否用所建立的模型去概括某一经济现象或说明某一经济问题。因而,数学模型分析已成为现代经济学研究的基本趋向,经济数学模型在研究许多特定的经济问题时具有重要的不可替代的作用。在经济学日益计量化、定量分析的今天,数学模型方法显得愈来愈重要。在社会发展中,经济数学模型渗透到了许多方面。 1 经济数学模型的基本内涵 经济数学模型:①凡一切数学概念、数学理论体系、各种数学公式以及由公式构成的算法系统均可称为数学模型。②数学模型就是运用数学符号、公式和函数等数学语言,表示出客观事物特征、本质和规律的方法。那么经济活动中数量关系的简化的数学表达,简称经济模型。“数学模型是数学思想精华的具体体现,是对客观实际对象的数学表述,它是在一定的合理假设前提下,对实际问题进行抽象和简化,基于数学理论和方法,用数学符号、数学命题、图形、图表等来刻画客观事物的本质属性及其内在联系。当数学模型与经济问题有机地结合在一起时,经济数学模型也就产生了。数学中有数、形、式结合原则。数表示量的大小,形表示量的集合,式反映了经济变量的联系及规律,三者之间形成了逻辑的统一。数学中图形是点的轨迹,点是函数的特殊值,因而也是函数和曲线的统一。可以认为经济问题是复杂经济现象中的一个点,函数则是经济变量之间的相互依存、相互作用关系,图形就是经济运行的规律和机制。所以,数、形、式是建模的主要工具和手段,是解决客观经济问题的三个要素。” 经济数学模型强调直接从实际问题中提出数学问题,然后选择恰当的数学方法加以解决,教会人们善于从实际问题中提出数学问题。对于广大学习数学的人来说,这也是提高其数学素质的直要途经,是培养人们尤其是经济工作者用数学工具解决实际问题的桥梁。而且,在建立数学模型解决实际问题时可以体会数学的应用价值,数学应用意识,增强学习数学的兴趣,学会团结合作,提高分析和解决问题的能力,认识数学知识的发展过程,可以培养数学创造能力。 在经济数学模型中,用到的数学非常广泛,按数学形式的不同,经济数学模型一般分为线性和非线性两种:①线性模型是指模型中包含的方程都是一次方程。②非线性模型是指模型中有两次以上的高次方程。③有时非线性模型可化为线性模型来求解,如把指数模型转换为对数模型来处理。数列,概率统计等。 模型要采取一定的数学形式来反映经济数量关系。任何数学形式主要由方程式、变量(它的数值随时间、地点和条件的变化而改变,按其在方程式中的地位和作用,分为因变量和自变量)和参数(反映变量之间相互影响程度的系数)3个基本要素组成。简化是用模型来反

数学模型在微观经济学中的应用吴亚兰

数学模型在微观经济学中的应用 建立一个形如U=Aa+(1-a)B关于某消费者的效应函数,两种商品Y的价格既定,消费者的收入既定,计算该消费者关于两种商品各消费多少?从中获得的总效应是多少? 问题分析: 需要建立一个效应函数来求商品的消费量和可获得的总效应。只有既定的预算线与一条无差异曲线的相切点,才是消费者获得最大效用水平或满足程度的均衡点。切点是在收入一定的条件下费消费者带来最大效用的商品组合。可知预算线的斜率与无差异曲线的斜率相等意味着:MU X/MU Y = P X/P Y 模型假设: 1.假定消费者将其全部货币收入W用于购买两种商品X和Y; 2. 商品X和Y的价格分别为P X 和P Y ; 3. 消费者的收入为W. 模型建立: 消费者的效应函数可建立成:U(x,y)=alnx + (1-a)lny,a为(0-1)。得MU X=aU/ax=a/x;MU Y=aU/ay=(1-a)y 又X商品的价格是P X ,Y商品的价格是P Y ,则消费者的预算线方程可表示为: W=P X x+P Y y 模型求解: 根据消费者效用最大化的均衡条件MU X/MU Y = P X/P Y 得a.y/(1-a)x = P X/P Y 从而y = (1-a)x P X/a P Y 根据预算线方程W=P X x+P Y y,得W=P X x +(1-a) P X x/a 从而x=aW/P X 把x=aW/P X 代入y = (1-a)x P X/a P Y,得y = (1-a)W/ P Y 即该消费者消费商品X和Y各为aW/P X和(1-a)W/ P Y,把x=aW/P X和 y=(1-a)W/ P Y代入效用函数,得U=aln(aW/ P X) +(1-a)ln[ (1-a)W/ P Y]

数学建模在经济学中的应用

数学建模在经济学中的应用 摘要:高校的经济学教学中经常会融入一些数学模型的思想,实际上数学模型的建立与经济学的教学和研究有着很大的内在联系,两者之间有着必然的关系,文本笔者将会从数学与经济学的关系出发,具体的介绍数学经济模型及其重要性,并对构建数学经济模型以及一些实例进行具体的论述。 关键词:数学模型;经济学;高校教学;应用 现如今的高校教学当中可以说数学建模与经济学之间有着密切的关系,任何一项经济学的研究和计算都离不开数学模型的建立,采用数学模型来辅助经济学的发展可以更加直观的让人们从中看出经济的发展形势。例如在经济学的宏观控制和价格控制中,都有数学建模的融入,利用数学建模可以有助于经济学实验的宏观经济分析,在一些实验和价格控制当中,都经常会涉及到数学问题在微观经济中数理统计的实验设计,这时候就体现出了数学建模对于经济学的促进性作用。下面笔者将会针对数学建模对于经济学的重要作用进行具体的分析。 1.数学经济模型对于经济学研究的重要性: 一般情况下,单独的依靠数学模型是不够解决所有的经济学问题,很多经济领域中的问题是需要从微观角度进行细致的分析才能够总结出其中的规律。要想利用数学知识来

解决经济学中所出现的问题,就一定要建立适当的经济学模型。运用数学建模来解决经济学中的问题并不是没有道理的,很多时候从经济学的角度仅仅能够知道问题的方向和目的,至于其中的过程并不能有着详细的分析,而利用数学模型就可以彻底的解决这一问题。数学建模可以通过自身在数字、图像以及框图等形式来更加真实地反映出现有经济的实际状况。 2.构建经济数学模型的一般步骤: 要想利用数学模型来更好的解决现有的经济学问题,主要分为两个步骤,第一先要分清楚问题发生的背景并且熟悉问题,然后要通过假设的形式来完善现有的经济学问题,通过抽象以及形象化的方式来构建一些合理的数学模型。运用数学知识和技巧来描述问题中变量参数之间的关系。这样可以得出一些有关经济类的数据,进而将建模中得到的数据与实际情况进行对比和分析,最终得出结果。 3.应用实例: 商品提价问题的数学模型: 3.1问题: 现如今经济学在很多的商场中都有所运用,例如同样的商品要想获得最大的经济效益,既要考虑到规定的售价,又要考虑到销售的数量,如果定价过低,则销售数量较多,如果定价较高,利润是大了,但是却影响了销售数量。怎样

浅论数学建模在经济学中的应用

浅论数学建模在经济学中的应用 摘要:当代西方经济认为,经济学的基本方法是分析 经济变量之间的函数关系,建立经济模型,从中引申出经济原则和理论进行决策和预测。 关键词:经济学数学模型应用 在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统(根据厂家各种资源、产品工艺流程、生产成本及客户需求等数据进行数学经济建模)与客户进行商业谈判。 一、数学经济模型及其重要性 数学经济模型可以按变量的性质分成两类,即概率型和确定型。概率型的模型处理具有随机性情况的模型,确定型的模型则能基于一定的假设和法则,精确地对一种特定情况的结果做出判断。由于数学分支很多,加之相互交叉渗透,又派生出许多分支,所以一个给定的经济问题有时能用一种以上的数学方法去对它进行描述和解释。具体建立什么类型的模型,既要视问题而定,又要因人而异。要看自己比较熟悉精通哪门学科,充分发挥自己的特长。 数学并不能直接处理经济领域的客观情况。为了能用数学解决经济领域中的问题,就必须建立数学模型。数学建模是为了解决经济领域中的问题而作的一个抽象的、简化的结构的数学刻划。或者说,数学经济建模就是为了经济目的,用字母、数字及其他数学符号建立起

来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构的刻划。而现代世界发展史证实其经济发展速度与数学经济建模的密切关系。数学经济建模促进经济学的发展;带来了现实的生产效率。在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统与客户进行商业谈判。 二、构建经济数学模型的一般步骤 1.了解熟悉实际问题,以及与问题有关的背景知识。 2.通过假设把所要研究的实际问题简化、抽象,明确模型中诸多的影响因素,用数量和参数来表示这些因素。运用数学知识和技巧来描述问题中变量参数之问的关系。一般情况下用数学表达式来表示,构架出一个初步的数学模型。然后,再通过不断地调整假设使建立的模型尽可能地接近实际,从而得到比较满意的结论。 3.使用已知数据,观测数据或者实际问题的有关背景知识对所建模型中的参数给出估计值。 4.运行所得到的模型。把模型的结果与实际观测进行分析比较。如果模型结果与实际情况基本一致,表明模型是符合实际问题的。我们可以将它用于对实际问题进一步的分析或者预测;如果模型的结果与实际观测不一致,不能将所得的模型应用于所研究的实际问题。此时需要回头检查模型的组建是否有问题。问题的假使是否恰当,是否忽略了不应该忽略的因

数学建模背景

数学建模背景: 数学技术 近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、管理、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。 数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。[1] 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解(通常借助计算机)。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。 建模应用 数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。 2建模过程 模型准备 了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。 模型假设 根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。 模型建立 在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。 模型求解 利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。 模型分析 对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。 模型检验 将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

从诺贝尔经济学奖看数学建模的价值

第23卷第1期大 学 数 学Vol.23,№.1 2007年2月COLL EGE MA T H EMA TICS Feb.2007从诺贝尔经济学奖看数学建模的价值 韩 明 (福建工程学院数理系,福州350014) [摘 要]分为三个部分,第一部分,诺贝尔经济学奖的概述;第二部分,数学建模在经济学中的应用情 况;最后一部分,展望经济科学的发展趋势. [关键词]诺贝尔奖;数学建模;经济学 [中图分类号]F224;O213 [文献标识码]C [文章编号]167221454(2007)0120181206 1 诺贝尔经济学奖的概述 1968年瑞典银行为庆祝建行300周年,决定从1969年起同样以诺贝尔的名义,颁发经济学奖.这一奖项的全称是:“瑞典银行为纪念阿尔弗雷德?诺贝尔的经济科学奖(The Central Bank of Sweden Prize of Nobel in Economic Sciences in Memory of Alfred Nobel)”.除了奖金来源不同外,诺贝尔经济学奖的整个程序与其他诺贝尔奖完全相同. 获得当今世界上最具影响力的经济学奖项———诺贝尔经济学奖,几乎是每个经济学家的梦想.诺贝尔经济学奖从1969年第一次颁奖到2004年,已经有55人获此殊荣(同时获奖的人数最多不超过3人).1969年首届授予计量经济学的奠基人Regnar Frisch(挪威,1895-1979)和J an Tinbergen(荷兰, 1903-1994). 正如著名经济学家、后来的瑞典皇家科学院院长Erik L undberg在首届颁奖仪式上的讲话所说:“过去四十年中,经济科学在经济行为的数学规范化和统计定量化的方向上已经越来越发展.沿着这样的路线的科学分析,通常用来解释诸如经济增长、商情周期波动以及为各种目的来对经济资源重新配置那样的复杂经济现象…….然而,经济学家对有关战略性的经济关系构造数学模型的企图,以至借助于时间序列的统计分析来定量地阐明它们,事实上已经被证实是成功的.经济研究的这条路线,也就是数理经济学和计量经济学,已经在最近几十年里刻画了这一宗旨的发展.……”“近二十年来,Frisch教授和Tinbergen教授正在沿着本质上是同样的路线在进行研究.他们的目的是对经济理论赋予数学上的严谨性,并使它具有允许经验定量和统计假设检验的形式.其本质目标之一是要使经济学摆脱模糊的、较为‘文学’的类型.例如在Frischt和Tinbergen的著作中,商情周期波动的原因的任意‘命名’已经被抛弃,代之以陈述经济变量之间相互关系的数学系统.”从Erik L undberg的这段讲话,我们能看出经济科学在1969年前四十年的发展概况. 我们从经济科学的发展概况中,似乎能感觉到数学所起的作用.那么诺贝尔经济学奖得主的工作中数学建模起什么作用呢?它对开展大学生数学建模竞赛活动和我国大学数学教育又有什么启发呢? 2 数学建模在经济学中的应用情况 本文简要地介绍诺贝尔经济学奖得主的主要工作,从中我们能看到数学建模的应用情况和数学建  [收稿日期]2005208210  [基金项目]福建工程学院教育科学基金项目(G B-06-20)

经济数学模型与案例分析

经济数学模型与案例分析 摘要:经济学与数学是两个有着密切联系的学科,经济学中很多经济现象与经济理论都需要数学只是来解释。微积分作为数学知识的基础,是学习经济学的必备知识。微积分在经济领域的应用,最主要的是研究相关的函数关系。这其中最为重要的就是边际分析与弹性分析。 关键词:导数;积分;函数;弹性;边际 Abstract:There is a very close relationship betweeneconomics and mathematics. Many phenomena and theories in economics can be explained by mathematical ideal.Calculus is a necessary subject when weemulate the knowledge of economics for it is the foundation of mathematics.We will mainly research some functions in this area, therefore we must understand some common functions about it. The most important is marginal analysis and elasticity analysis. Key words: derivative; integration; function; elasticity; margin

一.数学与经济学的关系 随着经济学发展以及研究的深化,在考虑和研究问题时,要求具有逻辑严谨的理论分析模型和通过计量分析方法进行实证检验,需要完全弄清楚一个结论成立需要哪些具体条件。单纯依靠文字描述进行推理分析,不能保证对所研究问题前提的规范性和严密性,也不能保证其研究结论的准确性。现代经济学中,几乎每个领域或多或少都会用到数学、数理统计和计量经济学方面的知识,如果不了解相关的数学知识,就很难理解经济概念的内涵,也就无法对相关经济问题进行讨论,更谈不上做自己的研究。理解概念是学习一门学科、分析某一具体问题的重要前提。 数学方法为经济学理论的突破提供了科学的方法论,为经济学研究提供了有力的工具。数学方法是经济学分析的有力工具之一,在经济学的理论更新中起着不可低估的作用。从古典经济学的代数式的简单运算、数理经济学中的高深数学的大量运用、计量经济学的数学方法的借鉴到现代数学与现代经济理论学的有机结合,无不体现了数学方法作为工具与方法论,并成为经济理论更新的不可缺少的工具。数学方法为经济学理论的突破提供了方法论的指导,使用数学方法能得出用语言文字无法得到证明的经济学理论。 数学方法的运用大大拓展和加深了经济学科,使经济学的推理和分析过程更加严谨。数学的特点之一就是应用的广泛性。正如数学家华罗庚所说:“宇宙之大、粒子之微、火箭之速、画工之巧、地球之变、生物之秘、日用之繁无不涉及到数学。”数学在经济学的应用使新的学科不断出现,产生了数理经济学、经济计量学、福利经济学、博弈论等经济学科;系统论和经济学结合产生了经济系统分析;控制论和经济学结合产生了经济控制论。因此,数学方法的运用大大拓展了经济学科。另一方面,数学表达具有文字性表述所不具备的确定性和精确性,数学推导具有数理逻辑性,运用数学模型结合经济模型来研究经济问题,可以使经济学的推理和分析过程更加严谨。

数学建模论文:浅谈数学规划模型在经济学中的应用

浅谈数学规划模型在经济学中的应用 一、 起因:经济学中的稀缺与效率 经济学研究的是一个社会如何利用稀缺的资源生产有价值的物品和劳务,并将它们在不同的人中间进行分配。经济学主要进行三点考虑;资源的稀缺性是经济学分析的前提;选择行为是经济学分析的对象;资源的有效配置是经济学分析的中心目标。经济学最基本的两大主题即是稀缺与效率,其首要任务是利用有限的地球资源尽可能持续地开发成人类所需求的商品及其合理分配,即生产力与生产关系两个方面。 简而言之,经济学研究的是如何利用有限的资源实现分配的效率,而线性规划模型的研究对象是——(1)在现有的资源条件下,研究如何合理地计划、安排,可使某一目标达到最大化;(2)在任务确定后,研究如何合理地计划、安排, 用最低限度的人、财等资源,去实现任务。——即线性规划可以以其特定的数学分析方法,实现体现在实际生产生活中的经济学的稀缺资源有效利用。 自1947年美国数学家丹捷格提出了求解线性规划问题的方法——单纯形法之后,线性规划在理论上趋于成熟,在实际中的应用日益广泛与深入。特别是在能用计算机来处理成千上万个约束条件和变量的大规模线性规划问题之后,它的适用领域更广泛了。从解决技术问题中的最优化设计到工业、农业、商业、交通运输业、军事、经济计划与管理、决策等各个领域均可发挥作用;从范围来看,小到一个小组的日常工作和计划安排,大至整个部门以致国民经济计划的最优方案的提出,都有用武之地。它具有适应性强、应用广泛、计算技术比较简单的特点,是现代管理科学的重要基础和手段之一。线性规划是研究线性约束条件下线性目标函数的极值问题的数学理论和方法。它是运筹学的一个重要分支,为合理地利用有限的人力、物力、财力等资源做出的最优决策,提供科学的依据。 二、 过程:数学规划模型操作 线性规划问题,即是要解决在一组线性的等式或不等式的约束之下,求一个线性函数的最大值或最小值的问题。 线性规划建模型的过程为: (1) 理解需要解决的问题,明确模型条件以及要达到的目标; (2) 针对问题定义一组决策变量,用x =(x 1, x 2, …, x n )T 表示某一方案。 (3) 用决策变量的线性函数形式表示出所要寻求的目标,称为目标函数。按问题的不同,要求目标函数在满足约束条件下实现最大化或最小化; (4) 用一组含有决策变量的等式或不等式来表示在解决问题的过程中所必须遵循的约束条件。 其标准形式为: 三、 应用:具体案例结合分析 1122min n n z c x c x c x =+++ 11112211211222221122..(1)n n n n m m mn n m a x a x a x b a x a x a x b s t a x a x a x b +++=??+++=????+++=? 12,,,0n x x x ≥

经济数学模型

经济数学模型 经济数学模型(economic mathematical model) 经济数学模型:经济活动中数量关系的简化的数学表达。 [编辑] 经济数学模型的种类 反映经济数量关系复杂变化的经济数学模型,可按不同的标准分类。 (一)、按经济数量关系,一般分为三种:经济计量模型、投入产出模型、最优规划模型 1、经济计量模型反映经济结构关系,用来分析经济波动的原因和规律,是一种社会再生产模型。 2、投入产出模型反映部门、地区或产品之间的平衡关系,用来研究生产技术联系,以协调经济活动。 3、最优规划模型反映经济活动中的条件极值问题,是一种特殊的均衡模型,用来选取最优方案。 (二)按经济范围的大小,模型可分为:企业的、部门的、地区的、国家的和世界的五种。 1、企业模型一般称为微观模型,它反映企业的经济活动情况,对改善企业的经营管理有重大意义。 2、部门模型与地区模型是连结企业模型和国家模型的中间环节。 3、国家模型一般称为宏观模型,综合反映一国经济活动中总量指标之间的相互关系。 4、世界模型反映国际经济关系的相互影响和作用。 (三)按数学形式的不同,模型一般分为线性和非线性两种。 1、线性模型是指模型中包含的方程都是一次方程。 2、非线性模型是指模型中有两次以上的高次方程。 3、有时非线性模型可化为线性模型来求解,如把指数模型转换为对数模型来处理。 (四)按时间状态分,模型有静态与动态两种: 1、静态模型反映某一时点的经济数量关系;

2、动态模型反映一个时期的经济发展过程,含有时间延滞因素。 (五)按应用的目的,有理论模型与应用模型之分,是否利用具体的统计资料,是这两种模型的差别所在。 (六)按模型的用途,还可分为结构分析模型、预测模型、政策模型、计划模型。 此外,还有随机模型(含有随机误差的项目)与确定性模型(不考虑随机因素)等等分类。这些分类互有联系,有时还可结合起来进行考察,如动态非线性模型、随机动态模型等等。 [编辑] 经济数学模型的建立和应用 建立和应用的步骤有: ①理论和资料的准备。 经济数学模型的质量首先取决于对经济问题的理论研究状况。理论假设能否成立、是否正确,关系到模型的成败。合理的理论假设是模型赖以建立的前提。资料是否充分、可靠和准确,也直接影响经济数学模型的质量与功能。 ②建立模型。 模型要采取一定的数学形式来反映经济数量关系。任何数学形式主要由方程式、变量(它的数值随时间、地点和条件的变化而改变,按其在方程式中的地位和作用,分为因变量和自变量)和参数(反映变量之间相互影响程度的系数)三个基本要素组成。简化是用模型来反映现实的特点,这是一种科学的抽象。否则,模型就建立不起来。它不会降低模型的真实性,反而会提高模型的科学性和实用性。但简化是有限度的,这取决于研究对象所允许的误差范围和数学方法所需要的前提条件。模型不能过于简化,以致不能把握经济现实,又不能过分复杂,以致难于加工处理和管理操作。一个模型抽象或现实到什么程度,取决于分析的需要、分析人员的能力,以及取得资料的可能性。 ③求解或模拟试验。 以适用的软件(计算程序)在具有一定功能的电子计算机上可以进行各种模拟试验,比较和选择不同的方案。 ④分析说明和实际应用。 在分析和应用模型时,把模型计算所得出的结论与模型外获得的信息相结合,作出必要的判断。评价模型优劣的标准应该是吻合度(它同被反映的经济数量关系的符合程度)与实用度(进行理论分析、经济预测、政策评价等应用效果)的统一,两者不可偏废。随着客观经济情况的变化,模型需要不断修改和更新。经济数学模型是系统方法的具体运用,它的着眼点并不在于反映

数学建模与经济学的关系

数学模型与经济学的关系 摘要:随着科学技术的迅速发展,数学模型这个词汇越来越多的出现在现代人的生产、工作和社会活动中。每一门学科要想成为一门科学,首先要经过数学的推理验证,构建相应的数学模型,经济学也不例外。本文主要阐述了最优价格模型在经济学中的指导意义,经济数学模型是研究经济学的重要工具,在经济应用中占有重要的地位。文章从经济数学模型的内涵、构建经济数学模型的方法、遵循的基本原则以及所要注意的问题进行了简要分析和论述。 数学与经济学息息相关,可以说每一项经济学的研究、决策,都离不开数学的应用。特别是自从诺贝尔经济学奖创设以来,利用数学工具来分析经济问题得到的理论成果层出不穷,经济学中使用数学方法的趋势越来越明显。当代西方经济学认为,经济学的基本方法是分析经济变量之间的函数关系,建立经济模型,从中引申出经济原则和理论,进行预测、决策和监控。在经济领域,数学的运用首要的问题是实用性和实践性问题,即能否用所建立的模型去概括某一经济现象或说明某一经济问题。因而,数学模型分析已成为现代经济学研究的基本趋向,经济数学模型在研究许多特定的经济问题时具有重要的不可替代的作用,在经济学日益计量化、定量分析的今天,数学模型方法显得愈来愈重要。 关键字:经济学数学模型最优价格 一.引言 科学与生产生活和数学模型的关系变得越来越紧密。工程师要建立数学模型,用这个模型对控制装置作出相应的设计和计算。城市规划工作者需要建立一个包括人口、经济、交通、环境等大系统的数学模型。建立数学模型是沟通摆在面前的实际问题与工作者掌握的数学工具之间联系的一座必不可少的桥梁。将数学方

法应用到实际问题中时,往往首先是把这个问题的内在规律用数字、图表或者公式、符号表示出来,然后经过数学的处理得到定量的结果,以供人们作分析、预报、决策或者控制,这个过程实际上就是一个建立数学模型的过程。 数学和经济的联系是十分紧密的,而对数学的应用往往要通过数学模型。无论现在还是以后的学习和工作,建立数学模型都将是一个解决问题的重要的方法。 二.最优价格模型 经济问题往往通过转化为数学模型来分析。数学是研究现实世界的数量关系和空间形式的科学。它具有高度的抽象性,在经济上应用的范围很广。经济范畴和经济过程同样是质和量的统一。在对生产方式以及与之相适应的生产关系进行质的分析的前提下,对反映生产方式以及与之相适应的生产关系的经济范畴和经济过程进行量的分析,将有助于认识的深化,有助于理论的应用。从这一方面来说,马克思主义经济学所提示的原理和规律,不少都有可能用数学语言来表达,用数学模型来表示。马克思自己就曾经想运用数学方法来说明经济危机的规律性。马克思提出了运用数学方法的前提条件:首先,材料必须是足够的;其次,材料必须是经过检验的。 数学模型为西方经济学家提供了方便。西方经济学家在他们的研究中大量地运用数学模型,他们所用的数学方法几乎遍及纯数学的各主要分支。不可否认,数理分析的方法要比单纯文字说明、推理更方便、更精确,有时也更能说服人。大量的数学符号和算式推导,使经济过程和现象的表述较为简洁、清晰和直观。现在的数理经济学,金融数学,计量经济学等学科的蓬勃发展和其广阔的发展前景都说明了经济是必须要和数学结合起来研究的,而且经济学的研究史是一个从定性分析研究向定量研究转变的过程,并最终是严密的定量研究的趋势,而在定量研

经济问题中的数学建模应用

经济问题中的数学建模应用 摘要:微分方程是一类应用十分广泛而且常见的数学模型。它在经济学,管理学和物理学中有着重要的辅助研究作用。在经济学中,通过数学建模把经济问题所涉及的重要特征进行合理的数学转化,即用数学语言对经济学中复杂、抽象问题进行表述,将实际问题与数学紧密的结合起来。 关键词:微分方程数学建模逻辑斯谛方程销售曲线经济应用0 引言 微分方程研究范围广、历史悠久,在牛顿和莱布尼茨创造微分和积分运算时指出了它们的互逆性,事实上这是解决了最简单的微分方程y=f(x)的求解问题。当人们运用微分去解决经济学中的问题时,发现其对经济问题所做的定性分析和定量分析是严谨的、可信的,因此大量的微分方程涌现出来。现如今微分方程在经济学和管理学等实际问题中得到越来越广泛地应用。 1 逻辑斯谛方程 逻辑斯谛方程是一种非线性的微分方程,它的数学模型属于一条连续的,单调递增的,单参数k为上渐近线的s型曲线。众所周知,经济学上存在着大量的s型变化的现象,而逻辑斯谛方程是可以描述这种变化的数学模型。其特点是一开始增长较慢,中间段增长速度较快,以后的增长速度下降并趋于稳定。在经济学中,如果问题的基本特征是:在时间t很小时,呈指数型增长;而当t不断增大,增长速度却随之下降,且越来越接近一个确定的值时,可以考虑运

用逻辑斯谛方程加以解决。 利用逻辑斯谛方程的思想可以很好地分析一些经济问题,例如新产品在市场中的发展。根据逻辑斯谛方程,建立数学模型,我们可以建立一个新产品的推广模型。例如:某种新产品问世,t时刻的销量为f(t),由于产品属于新型产品,没有可替代的产品,因此t 时刻产品销售量的增长率与f(x)成正比。同时,产品的销售量存在着一定的市场容量n,统计表明与尚未购买的此新产品的潜在客户数量n-f(x)也呈正比,于是有=kx(n-x)符合逻辑斯谛方程的模型,于是有通解=kx(n-x)。 其中k为比例系数.分离变量积分,可以解得:x(t)= 当x(t*)0即销量x(t)单调增加.当x(t*)=时,=0;当x (t*)>时,0即当销售量大于需求量的一半时,产品最畅销。当销售不足一半时,销售速度将不断的增大,同理,销售量达到一半时,销售速度则不断减少。 许多产品的销售曲线都和逻辑斯谛方程曲线十分的相近。所以分析家认为当产品推出的初期应小批量生产。当产品用户在20%-80%之间时,产品应该大批量的生产,但当产品的用户超过80%时,企业应该研发新的产品。 2 收入与债务的问题 目前,欧债,美债危机使大家对经济的发展前景十分担忧。一个国家债务过多,其所需支付的利息超过了该国的国民收入时,该国会出现破产。那么持续财政赤字的国家会出现破产这个现象吗?国

经济数学模型分类作业

经济数学模型分类作业 一、按数学模型的性质分为: 1、确定性模型: 确定性模型是一个由完全肯定的函数关系(因果关系)所决定的、不包含任何随机成份的模型。这种模型包括由微分方程所描述的数学模型,可用解析解法、数值解法和电模拟方法求解。对于确定性模型,只要设定了输入和各个输入之间的关系,其输出也是确定的,而与实验次数无关。确定性模型事实上是一种简化了的随机性模型。 举例: 模型名称:大坝位移确定性模型 模型:把坝体某考察点的位移i ?视为几种外界条件贡献的总和 )()()()(321i t f t f t f t i i i ++=? 式中: i ——某考察点, △——位移, t ——时间, )(1t f i ——水位变化引起的弹性位移分量, )(2t f i ——变温引起的弹性位移分量, )(3t f i ——由于混凝土和岩石的非弹性性质引起的不可恢复的位移分量。 2、随机性模型: 随机性模型是指含有随机成份的模型。 与确定性模型的不同可以很好地用以下例子解释:在赌场里赌大小,如果有人认为三次连开大第四次必然开小,那么此人所用的既是确定性模型。但是常识告诉我们第四次的结果并不一定与之前的结果相关联。概率模型、统计回归模型、马氏链模型都属于随机性模型 举例: 模型名称:报童的诀窍 模型:报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回。购进太少,不购卖,

会少赚钱;购进太多,卖不完,将要赔钱。他应该如何确定每天购进量,以获得最大收入。 每天需求量是随机的,所以每天收入是随机的。 模型假设: 1、假设报纸没分购进价为b,零售价为a,退回价为c,a>b>c 。 2、每天购进量为n份,需求量为r 份的概率为f(r ),r =0,1,2…。 3、每天购进量为n 份的日平均收入为G (n)。 模型构成: ∑∑=∞ +=-+ ----=n r n r r nf b a r f r n c b r b a n G 01)()()()])(()[()( 求n 使G(n )最大 二、按数学模型的变量和函数结构的变动情况分为: 1、连续性模型: 模型中的任何量或关系的微小变动是相对稳定的。模型中的时间变量是在一定区间内变化的模型称为连续性模型。一般用微分方程描述。如:人口增长模型。 举例: 模型名称:连续增长模型 模型:标准的连续增长模型方程式d N/d t=(b-d)N=rN 积分式N t=0N e^rt 在很短的时间d t内,b,d 为瞬时出生率、死亡率,N 为种群大小。r 为每员增长率,与密度无关。 2、非连续性模型: 模型中某些量或关系的变化是间断的,有跳跃的模型。 举例: 模型名称:马尔可夫模型 模型:马尔可夫链是随机变量X1,X2,X 3…的一个数列。这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而Xn 的值则是在时间n 的状态。如果Xn + 1对于过去状态的条件概率分布仅是Xn 的一个函数,则 P(Xn+1=x∣X0,X1,X 2,…,Xn)=P(Xn+1=x∣X n) 这里x 为过程中的某个状态。 3、离散性模型: 模型中的变量是由可数点列构成的。变量(主要是时间变量)取离散的模型称为离散性模

管理经济学中的常用数学模型

管理经济学结课论文之 管理经济学中的常用数学模型

管理经济学中的常用数学模型 摘要:由于历史的原因,我国经济运行中数学的应用曾经处在无足轻重的地位。随着社会的进步和经济的发展,人们越来越清楚认识到数学不仅可以被广泛应用于自然科学和工程技术,而且已经渗透到经济科学和社会科学的众多领域。纵观世界经济理论研究和经济管理科学的发展,不难发现数学在经济学中的地位已发生了巨大的变化。 在本文中,主要介绍并总结几种常见的经济学模型。包括管理经济学,计量经济学,宏观经济学,微观经济学等当面。并对其中的个别模型,尤其涉及到很多数学应用的模型,进行应用举例。 关键字:RT-DE模型 ARCH模型 B-S模型 1.RT-DE模型(回归技术与需求估计模型) 在许多经营管理实践中,管理者要想取得弹性方面的信息,必须先收集一组数据,然后用数学中的统计方法估计需求函数,再根据需求方程算出弹性。 RT-DE模型就是一种估计需求函数的模型。在此,应用回归技术来模拟出函数。下面对回归技术模型基本思想进行应用说明。在此,我们采用成本函数分析为例,因为相对而言,回归技术在成本函数的应用更容易理解。 RT-DE模型,大概分为这样几个的过程: 建立理论模型→收集数据→选择函数形式→估计和解释结果。 1.1回归技术 一般来说,管理者想知道成本和产量之间的关系,即企业的总成本函数,就可以依据函数预测下一个生产周期,怎样模拟出这个函数?在此,我们采用最小二乘回归技术法【1】。 假设总收入和函数是线性的,对上表的数据进行一次拟合,设为bX Y+ =。 a 之所以选择线性方程,是因为线性方程具有多个有点,比如,不需要改变它的形式,即不需要转换数据就能对它进行处理。而且相对来说,它对变量系数的解释较为简单。在此,把Y的实际值和预测值之间的离差(即点到直线的垂直距离)

相关主题
文本预览
相关文档 最新文档