当前位置:文档之家› 巧用轴对称 构等腰三角形解题

巧用轴对称 构等腰三角形解题

巧用轴对称 构等腰三角形解题

巧用轴对称 构等腰三角形解题

在几何解题中,若遇有高线、角平分线、线段的垂直平分线,可根据图形的轴对称性,巧妙

构造等腰三角形,借助等腰三角形的有关性质,往往能够迅速找到解题途径,直观易懂,简捷明

快.这样不仅能使问题化难为易,迎刃而解,而且有助于同学们创新思维的培养.现略举几例析

解如下,供同学们参考:

一、图形含有垂线(或高线), 以垂线(或高线)为对称轴构等腰三角形

例1.如图1,已知AD ⊥BC 于点D,且∠B=2∠C,试说明AB+BD=DC

分析:因为AD ⊥BC,以AD 为对称轴进行变换,点B 的对称点E 必落在BC 上,

连AE,则△ABE 为等腰三角形,根据等腰三角形的性质使问题迎刃而解.

解:因为AD ⊥BC,以AD 为对称轴进行变换,点E 为点B 的对称点.

连AE,则△ABE 为等腰三角形,所以∠AEB=∠B=2∠C,且DB=DE.

因为∠AEB=∠C+∠CAE,而∠AEB=2∠C,所以∠C=∠CAE,从而AE=CE.因此 图1

AB=AE=EC

所以AB+BD=EC+DE=DC.

二、图形含有角平分线, 以角平分线为对称轴构等腰三角形

例2.如图2,等腰Rt △ABC 中,∠A=900,∠B 的平分线交AC 于D,过C 作BD 的垂

线交BD 的延长线于E,,试说明::BD=2CE 分析:因为BE 是∠ABC 的平分线,且BE ⊥CE,以BE 为对称轴进行变换,点C 的

对称点必是BA 和CE 的延长线的交点F,,则△BCF 为等腰三角形,根据等腰三角形的

性质可使问题巧妙获解. 图2

解:因为BE 是∠ABC 的平分线,且BE ⊥CE,以BE 为对称轴进行变换,点C 的对称点则为

BA 和CE 的延长线的交点F,,则△BCF 为等腰三角形.

所以CE=EF ,即CF=2CE ,

在△ABD 和△ACF 中,因为∠BAD=∠CAF=Rt ∠, AB=AC, ∠ABD=900-∠F=∠ACF

所以△ABD ≌△ACF(ASA),

所以BD=CF=2CE(全等三角形的对应边相等)

三、图形含有线段的垂直平分线, 以垂直平分线为对称轴构等腰三角形

例3.如图3,在△ABC 中,AB=AC,∠A=1200,AB 的垂直平分线交AB 于点E ,交BC 于点

D,

试说明BD=2

1CD 分析:因为DE 是线段AB 的垂直平分线,以DE 为对称轴进行变换,点B 的

对称点必为点A,,连AD,则△ABD 为等腰三角形,根据等腰三角形的性质可使问 题迅捷获解.

解:DE 为线段AB 的垂直平分线,连AD,则△ABD 为等腰三角形. 图3

因为AB=AC ,∠A=1200,所以∠B=∠C=300,

因为△ABD 为等腰三角形,BD=AD .则∠BAD=∠B=300,

从而∠DAC=900,又∠C=300,所以AD=21CD ,而BD=AD ,所以BD=2

1CD. 评注:根据图形的轴对称,巧妙构造等腰三角形,可迅速找到解题途径,构思新颖,方法独特,

不仅能使问题化难为易,迎刃而解,而且有助于培养同学们探索求新的学习习惯,提高数学思

维能力和几何解题能力.

相似三角形-构造相似辅助线双垂直模型

构造相似辅助线(1)——双垂直模型 6.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx 的图象与线段OA的夹角是45°,求这个正比例函数的表达式. 7.在△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长.

8.在△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB. 9.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y 轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折B点落在D 点的位置,且AD交y轴于点E.那么D点的坐标为() A. B. C. D.

10..已知,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。求C、D两点的坐标。

6.答案:解:分两种情况 第一种情况,图象经过第一、三象限 过点A作AB⊥OA,交待求直线于点B,过点A作平行于y轴的直线交x轴于点C,过点B作BD⊥AC则由上可知:=90°由双垂直模型知:△OCA∽△ADB ∴ ∵A(2,1),=45°∴OC=2,AC=1,AO=AB ∴AD=OC=2,BD=AC=1 ∴D点坐标为(2,3)∴B点坐标为(1,3) ∴此时正比例函数表达式为:y=3x 第二种情况,图象经过第二、四象限 过点A作AB⊥OA,交待求直线于点B,过点A作平行于x轴的直线交y轴于点C,过点B作BD⊥AC 则由上可知:=90°由双垂直模型知:△OCA∽△ADB ∴

初中数学解题模型专题讲解4---角平分线 垂直构造等腰三角形

初中数学解题模型专题讲解 专题4 角平分线模型 模型模型 3 3 角平分线角平分线角平分线++垂线构造等腰三角形垂线构造等腰三角形 如图,P 是∠MON 的平分线上一点,AP⊥OP 于 P 点,延长 AP 交ON 于点 B。 结论:△AOB 是等腰三角形。 模型证明模型证明:: 由已知可得AP⊥OP,BP⊥OP,OP=OP,∠POA=∠POB ∴△POA≌△POB ∴OA=OB ∴△AOB 是等腰三角形 模型分析 构造此模型可以利用等腰三角形的“三线合一”,也可以得到两个全等 的直角三角形,进而得到对应边、对应角相等。这个模型巧妙地把角平分线 和三线合一联系了起来。 模型实例 如图,已知等腰直角三角形 ABC 中,∠A=90°,AB=AC,BD 平分∠ABC, CE⊥BD,垂足为 E。求证:BD=2CE。

证明:如图延长BA 、CE 交于 ∠ABE=∠CBE ,BE=B ∴RT △BEF ≌RT △BEC ∴CE=EF ∴CF=2CE 又∵∠ADB=∠CDE ∠DCE+∠CDE=∠ ∴∠ADB=∠F 又AB=AC ∴RT △BAD ≌RT △CAF ∴BD=CF ∴BD=2CE. 模型练习 1.如图,在△ABC 中,BE 求证:∠2=∠1+∠C。 证明:如图延长AD 交BC 交于点F 则有: BE=BE BEC DCE+∠F=90° CAF BE 是角平分线,AD⊥BE,垂足为 D。 于点F 则有

BD=BD ,∠ABD=∠ ∴RT △ADB ≌RT △FDB ∴∠2=∠BFD=∠1+∠ ∴∠2=∠1+∠C 2.如图,在△ABC 中,∠求证:BE= ?(AC-AB)。 ∠FBD FDB ∠C ∠ABC=3∠C,AD 是∠BAC 的角平分线,BE⊥AD AD 于点 E。

全等三角形知识点总结

全等三角形知识梳理 一、知识网络 ??????????→?????????????? ???对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理 二、基础知识梳理 (一)、基本概念 1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形; 即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。 当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。 (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边一定是对应边; > (4)有公共角的,角一定是对应角; (5)有对顶角的,对顶角一定是对应角。 2、全等三角形的性质 (1)全等三角形对应边相等;(2)全等三角形对应角相等(即对应元素相等)

3、全等三角形的判定方法 (1)三边对应相等的两个三角形全等(SSS)。 (2)两边和它们的夹角对应相等的两个三角形全等(SAS)。 (3)两角和它们的夹边对应相等的两个三角形全等(ASA)。 , (4)两角和其中一角的对边对应相等的两个三角形全等(AAS)。 (5)斜边和一条直角边对应相等的两个直角三角形全等(HL)。 所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。 注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。 4、角平分线的性质及判定 性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上 尺规作图 < (二)灵活运用定理 1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等, 因此在寻找全等的条件时,总是先寻找边相等的可能性。 2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。 3、要善于灵活选择适当的方法判定两个三角形全等。 (1)已知条件中有两角对应相等,可找: ①夹边相等(ASA)②任一组等角的对边相等(AAS) (2)已知条件中有两边对应相等,可找

全等三角形题型归类及解析

全等三角形难题题型归类及解析 一、角平分线型 角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线。另外掌握两个常用的结论:角平分 线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。 1. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC , 连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。 2. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M , ?PN ⊥CD 于N ,判断PM 与PN 的关系. 3. 已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。 (1) 求证:∠ABE=∠C ; (2) 若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5,AC=8,求DC 的长。 . A B C D E P D A C B M N

5、如图所示,已知∠1=∠2,EF ⊥AD 于P ,交BC 延长线于M ,求证:2∠M=(∠ACB-∠B ) 2 1P F M D B A C E 6、如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E . (1) 若BD 平分∠ABC ,求证CE=1 2 BD ; (2) 若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围; 若不变,求出它的度数,并说明理由。 8、如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB , 求证:AC=AE+CD . 二、中点型 由中点应产生以下联想: E D C B A

相似三角形解答题难题含答案个人精心整理

一、相似三角形中的动点问题 1.如图,在Rt△ ABC中,∠ACB=90°,AC=3,BC=4,过 点B作射线BB1∥AC.动点D 从点A 出发沿射线AC方向 以每秒5 个单位的速度运动,同时动点E 从点C沿射线 AC 方向以每秒3个单位的速度运动.过点D作DH⊥AB 于H,过点E作EF⊥ AC交射线BB1于F,G是EF中点, 连接DG.设点D 运动的时间为t 秒. (1)当t 为何值时,AD=AB,并求出此时DE的长度; (2)当△DEG与△ACB 相似时,求t 的值. 点P从A点出发,沿着AB以每秒4cm的速度向B点运 动;同时点Q从C点出发,沿CA以每秒3cm 的速度向A 点运动,当P点到达B点时,Q 点随之停止运动.设运动 的时间为x. (1)当x 为何值时,PQ∥ BC? (2)△APQ 与△CQB能否相似?若能,求出AP的长; 若不能说明理由. 2.如图,在△ ABC中,ABC=90°,AB=6m,BC=8m, 动点P 以2m/s 的速度从A 点出发,沿AC 向点C 移 动.同时,动点Q以1m/s的速度从C点出发,沿CB向 点B移动.当其中有一点到达终点时,它们都停止移 动.设移动的时间为t 秒. (1)① 当t=2.5s 时,求△ CPQ的面积; ② 求△ CPQ的面积S(平方米)关于时间t(秒)的函数 解析式; (2)在P,Q 移动的过程中,当△CPQ为等腰三角形 时,求出t 的值. 5.如图,在矩形ABCD 中,AB=12cm,BC=6cm,点P 沿 AB 边从A 开始向点B 以2cm/s 的速度移动;点Q 沿DA 边从点D开始向点A以1cm/s 的速度移动.如果P、Q 同 时出发,用t(s)表示移动的时间(0< t <6)。 (1)当t 为何值时,△ QAP为等腰直角三角形?(2) 当t 为何值时,以点Q、A、P 为顶点的三角形与△ABC 相似? 3.如图1,在Rt△ ABC中,ACB=90°,AC=6,BC=8, 点D 在边AB 上运动,DE 平分CDB交边BC 于点E, EM⊥ BD,垂足为M,EN⊥CD,垂足为N. (1)当AD=CD 时,求证:DE∥AC; (2)探究:AD 为何值时,△BME与△CNE相似? 二、构造相似辅助线——双垂直模型 6.在平面直角坐标系xOy 中,点A 的坐标为(2,1), 正比例函数y=kx 的图象与线段OA 的夹角是45°,求这个 正比例函数的表达式. 7.在△ABC中,AB= ,AC=4, BC=2,以AB 为边在 C点的异侧作△ABD,使△ABD 为等腰直角三角形, 4.如图所示,在△ ABC中,BA=BC=20cm,AC=30cm ,

初二等腰三角形专题

等腰三角形专题复习 一、等腰三角形中的分类讨论 1、等腰三角形的周长为50, —条边长是12,则另两边分别是____________________ 4 、如图,在RT^ABC中,/ ACBW ,AB=2BC 在直线BC或AC上取一点P 使得△ PAB为等腰三角形,则符合条件的点P共有____________ 个。 5、已知0为等边△ ABD边BD的中点,AB=4, E、F分别为射线AB DA上一动点,且/ EOF=^ ,若AF=1,求BE的长 _________________ 。 二、构造等腰三角形解题一一截长补短法 6、如图,在△ ABC中,AD为角平分线,且AC=AB+BD求证丁代 2 <:. 7、如图,已知W.W 1 2V,AC平分/ MA N MEC-A N C

&如图,△ ABC为等腰三角形,EC=ED, P为BD的中点,求证:AE=2PE. 三、构造等腰三角形解题一一引平行线 9、如图,已知△ ABC是等边三角形,延长BC到D,延长BA到E,使AE=BD求证:EC=ED. 10、已知△ ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC延长BE交AC于F,求证:AF=EF. B

11、△ ABC为等边三角形,D为BC上任意一点,/ ADE=60,边ED与/ ACB外角的平分线交于点E. (1) 求证:AD=DE. (2) 若点D在CB的延长线上,(1)的结论是否依然成立?请画出图形,若成立,请给出证明, 若不成立,请说明理由。 12、如图,BD平分/ ABC交AC于点D, E为CD上一点,且AD=DE,EF// BC交BD于F,求证: AB=EF. 四、等腰三角形中的“三线合一” (一)利用等腰三角形的“三线合一”证题 AE=AC,EF// BC交AC于点F,求证:EC 平分/ DEF. 13、如图,AD是厶ABC的角平分线,且

全等三角形及轴对称测试题

全等三角形、轴对称测试题 一、选择题1、下列说法正确的是( ). A .轴对称涉及两个图形,轴对称图形涉及一个图形 B .如果两条线段互相垂直平分,那么这两条线段互为对称轴 C .所有直角三角形都不是轴对称图形 D .有两个内角相等的三角形不是轴对称图形 2、点M (1,2)关于x 轴对称的点的坐标为( ). A .(-1,-2) B .(-1,2) C .(1,-2) D .(2,-1) 3、下列图形中对称轴最多的是( ) . A .等腰三角形 B .正方形 C .圆 D .线段 4、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( ). A .11cm B .7.5cm C .11cm 或7.5cm D .以上都不对 5、如图:D E 是△ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米, 则△EBC 的周长为( )厘米. A .16 B .18 C .26 D .28 6、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论: ①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ). A .1个 B .2个 C .3个 D .4个 7、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫 做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ). A .对应点连线与对称轴垂直 B .对应点连线被对称轴平分 C .对应点连线被对称轴垂直平分 D .对应点连线互相平行 8、等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标,能确定的是 ( ) . A C B A ' ' C ' 图2 图1 E D C A l O D C B A

全等三角形解题方法与技巧

“三步曲”证全等 牢记判定定理:SSS SAS ASA AAS HL 一看图形:全等三角形的基本图形大致有以下几种①平移型;②对称型;③旋转型(复杂图形可分离 出基本图形) 二看条件: (一)应先看有无隐含条件(如对顶角、公共边、公共角、某些角的和差,某些线段的和差。) 1、利用公共边(或公共角)相等 例1:如图1,AB DC =,AC DB =,△ABC ≌△DCB 全等吗?为什么? 练习1:已知:如图,AB ⊥BC ,AD ⊥DC ,AB=AD ,若E 是AC 上一点。求证:EB=ED 。 D A E C B

2、利用对顶角相等 例2:如图2,已知AC 与BD 交于点O ,∠A=∠C ,且AD =CB ,你能说明BO=DO 吗? 练习2:已知:如图,AB 、CD 交于O 点,CE//DF ,CE=DF ,AE=BF 。求证:∠ACE=∠BDF 。 3、利用等边(等角)加(或减)等边(等角),其和(或差)仍相等 例3:如图,AB=DC ,BF=CE ,AE=DF ,你能找到一对全等的三角形吗?说明你的理由. 练习3:已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。求证:BE =CD 。 A E D C B A B C D E F O

4、利用平行线的性质得出同位角、内错角相等 例4:如图4,AB ∥CD ,∠A =∠D ,BF =CE ,∠AEB =110°,求∠DFC 的度数. 练习4:如图,△ABC 中,AB=AC ,过A 作GE ∥BC ,角平分线BD 、CF 交于点H ,它们的延长线分别交GE 于E 、G ,试在图中找出三对全等三角形,并对其中一对给出证明。 (二)再分析显性条件,如果条件不够,应确定还需什么条件,然后证明该条件。基本思路:1.已知两角――任一边;2.已知两边――找夹角或第三边;3.已知一角与邻边――找另一角或另一邻边;4.已知一角与对边――找另一角。 例1:如图,已知点E C ,在线段BF 上,BE=CF ,AB ∥DE ,∠ACB=∠F . 求证:ABC DEF △≌△. 例2:如图所示,把一个直角三角尺ACB 绕着30°角的顶点B 顺时针旋转,使得点A 落在CB 的延长线上的点E 处,则∠BDC 的度数为 . 例3:两个大小不同的等腰直角三角形三角板如图所示放置,图2是由它抽象出的几何图形,B C E ,,在同一条直线上,连接DC . (1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC BE . 图1 图2 C E B F D A E

相似三角形解题方法步骤(教师版)

相似三角形解题方法、技巧、步骤 一、相似、全等的关系 全等和相似是平面几何中研究直线形性质的两个重要方面,全等形是相似比为1的特殊相似形,相似形则是全等形的推广.因而学习相似形要随时与全等形作比较、明确它们之间的联系与区别;相似形的讨论又是以全等形的有关定理为基础. 二、相似三角形 (1)三角形相似的条件: ①;②;③. 三、两个三角形相似的六种图形: 只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决. 四、三角形相似的证题思路:判定两个三角形相似思路: 1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例; 找另一角两角对应相等,两三角形相似 找夹边对应成比例两边对应成比例且夹角 相等,两三角形相似 找夹角相等两边对应成比例且夹角相等,两三角形相似 找第三边也对应成比例三边对应 成比例,两三角形相似 找一个直角斜边、直角边对应成比例,两个直角三角形相似 找另一角两角对应相等,两三角形相似 找两边对应成比例判定定理1或判定定理 4 找顶角对应相等判定定理1 找底角对应相等判定定理1 找底和腰对应成比例判定定理3 e)相似形的传递性若△1∽△2,△2∽△3,则△1∽△3 五、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。 有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。 例1、已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC. 求证:BA AC AF AE = (判断“横定”还是“竖定”?) 例2、如图,CD 是Rt △ABC 的斜边AB 上的高,∠BAC 的 平分线分别交BC 、CD 于点E 、F ,AC ·AE=AF ·AB 吗? 说明理由。 分析方法: 1)先将积式______________ 2)______________(“横定”还是“竖定”?) 例1、 已知:如图,△ABC 中,∠ ACB=900 ,AB 的垂直平分线交AB 于D ,交BC 延长线于F 。 求证:CD 2 =DE ·DF 。 分析方法: 1)先将积式______________ 2)______________(“横定”还是“竖定”?) 六、过渡法(或叫代换法) 有些习题无论如何也构造不出相似三角形,这就要考虑灵活地运用“过渡”,其主要类型有三种,下面分情况说明. 1、 等量过渡法(等线段代换法) 遇到三点定形法无法解决欲证的问题时,即如果线段比例式中的四条线段都在图形中的同一条直线上,不能组成三角形,或四条线段虽然组成两个三角形,但这两个三角形并不相似,那就需要根据已知条件找到与比例式中某条线段相等的一条线段来代替这条线段,如果没有,可考虑添加简单的辅助线。然后再应用三点定形法确定相似三角形。只要代换得当,问题往往可以得到解决。当然,还要注意最后将代换的线段再代换回来。 例1:如图3,△ABC 中,AD 平分∠BAC , AD 的垂直平分线FE 交BC 的延长线于E .求证:DE 2=BE·CE . 分析: 2、 等比过渡法(等比代换法) 当用三点定形法不能确定三角形,同时也无等线段代换时,可以考虑用等比代换法,即考虑利用第三组线段的比为比例式搭桥,也就是通过对已知条件或图形的深入分析,找到与求证的结论中某个比相等的比,并进行代换,然后再用三点定形法来确定三角形。 例2:如图4,在△ABC 中,∠BAC=90°,AD ⊥BC ,E 是AC 的中点,ED 交AB 的延长线于点F . 求证:AB DF AC AF =. a)已知一对等b)己知两边对应成比 c)己知一个直d)有等腰关

直角三角形的存在性问题解题策略

中考数学压轴题解题策略(3) 直角三角形的存在性问题解题策略 《挑战压轴题·中考数学》的作者马学斌 专题攻略 解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根. 一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程. 有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便. 解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起. 如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便. 在平面直角坐标系中,两点间的距离公式常常用到. 怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点). 例题解析 例?如图1-1,在△ABC中,AB=AC=10,cos∠B=4 5 .D、E为线段BC上的两个动点, 且DE=3(E在D右边),运动初始时D和B重合,当E和C重合时运动停止.过E作EF//AC 交AB于F,连结DF.设BD=x,如果△BDF为直角三角形,求x的值. 图1-1 【解析】△BDF中,∠B是确定的锐角,那么按照直角顶点分类,直角三角形BDF存在两种情况.如果把夹∠B的两条边用含有x的式子表示出来,分两种情况列方程就可以了.如图1-2,作AH⊥BC,垂足为H,那么H是BC的中点. 在Rt△ABH中,AB=10,cos∠B=4 5 ,所以BH=8.所以BC=16. 由EF//AC,得BF BE BA BC =,即 3 1016 BF x+ =.所以BF= 5 (3) 8 x+. 图1-2 图1-3 图1-4

全等三角形与轴对称图形练习题

全等三角形与轴对称图形测试题(1) 姓名:_____________ 1. 下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等 的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,其中正确的个数有()A 、3 个B 、2 个C 、1 个D 、0 个 2. 下列说法中:①如果两个三角形可以依据“AAS'来判定全等,那么一定也可以依据“ASA来判 定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要 判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是( ) A.①和② B.②和③ C.①和③ D.①②③ 3. 已知:在厶ABC中,AD为/ BAC的角平分线,DE丄AB, F为AC上一点,且/ DFA=100°,贝U ( ) A.DE>DF B. DE

全等三角形解题技巧

造全等三角形解题的技巧 全等三角形是初中几何《三角形》中的一个重要内容,是初中生必须掌握的三角形两大知识点之一(全等和相似),在解决几何问题时,若能根据图形特征添加恰当的辅助线,构造出全等三角形,并利用全等图形的性质,可以使问题化难为易,出奇制胜,现举几例供大家参考。 友情提示:证明三角形全等的方法有SAS、SSS、AAS、ASA、HL(Rt△)。 一、见角平分线试折叠,构造全等三角形 例1 如图1,在△ABC中,AD平分∠BAC,AB+BD=AC。 求证:∠B:∠C=2:1。 证法一:在线段AC上截取AE=AB,连接DE。 在△ABD和△AED中 ∵AE=AB,∠1=∠2,AD=AD,∴△ABD△AED。∴DE=DB,∠B=∠AED。 ∵AB+BD=AC,∴AE+DE=AC。 又∵AE+CE=AC,∴DE=CE。∴∠C=∠EDC。 ∵∠AED=∠C+∠EDC,∴∠AED=2∠C,即∠B=2∠C。∴∠B:∠C=2:1。 证法二:延长AB到F,使BF=BD,连接DF。∴∠F=∠BDF。 ∵∠ABC=∠F+∠BDF,∴∠ABC=2∠F。 ∵AB+BD=AC,∴AB+BF=AC,即AF=AC。 在△ADF和△ADC中, ∵AF=AC,∠1=∠2,AD=AD,∴△ADF△ADC。∴∠F=∠C。 又∵∠ABC=2∠F,∴∠ABC=2∠C,即∠ABC:∠C=2:1。 点评:见到角平分线时,既可把△ABD沿AD折叠变成△AED,也可把△ACD沿AD折叠变成△AFD,利用全等三角形的性质,可使问题得以解决。

练习:如图3,△ABC中,AN平分∠BAC,CN⊥AN于点N,M为BC中点,若AC=6,AB=10,求MN的长。 图3 提示:延长CN交于AB于点D。则△ACN△ADN,∴AD=AC=6。 又AB=10,则BD=4。可证为△BCD的中位线。 ∴。 点评:本题相当于把△ACN沿AN折叠成△AND。 二、见中点“倍长”线段,构造全等三角形 例2 如图4,AD为△ABC中BC上的中线,BF分别交AC、AD于点F、E,且AF=EF,求证:BE=AC。 图4 证明:延长AD到G,使DG=AD,连接BG。 ∵AD为BC上的中线,∴BD=CD, 在△ACD和△GBD中, ∵AD=DG,∠ADC=∠BDG,BD=CD,∴△ACD△GBD。∴AC=BG,∠CAD=∠G。 ∵AF=EF,∴∠CAD=∠AEF。∴∠G=∠AEF=∠BEG,∴BE=BG, ∵AC=BG,∴BE=AC。 点评:见中线AD,将其延长一倍,构造△GBD,则△ACD△GBD。 例3 如图5,两个全等的含有、角的三角极ADE和ABC如图放置,E、A、C三点在同一直线上,连接BD,取BD中点M,连接ME、MC 图5 试判断△EMC的形状,并说明理由。 解析:△EMC为等腰直角三角形。

简单的轴对称图形(等腰三角形)

第五章生活中的轴对称 3 简单的轴对称图形(第1课时) 会宁县桃林中学王伟彦 一、教学目的 1. 探索并掌握等腰三角形的轴对称性及其相关性质。 3. 掌握等边三角形的轴对称性及其有关性质。 二、教学过程 ⑴(整体浏览课本,确定学习目标) 1、(课本121页引例)认识等腰三角形是轴对称图形。掌握等腰三角形对称轴的“三线合一”及相关性质。 2、(课本121页想一想)认识等边三角形是轴对称图形。掌握等边三角形的相关特征。 ⑵创设情境导入新课 1. 认识等腰三角形,介绍等腰三角形的概念及各部分名称。 ⑶动手操作探求新知 等腰三角形是一种特殊的三角形,它除具有一般三角形的性质外,还有一些特殊的性质吗?拿出你的等腰三角形纸片,把纸片折折看,你能发现什么现象吗? 1. 思考 (1)等腰三角形是轴对称图形吗?找出对称轴。 (2)顶角的平分线所在的直线是等腰三角形的对称轴吗? (3)底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高呢?(4)沿对称轴折叠,你能发现等腰三角形的哪些特征?

2.归纳 (1)等腰三角形是轴对称图形。 (2)∠B =∠C (3 )∠BAD=∠CAD,AD为顶角的平分线 (4)∠ADB=∠ADC=90°AD为底边上的高 (5 )BD=CD,AD为底边上的中线。 等腰三角形的特征: 1).等腰三角形是轴对称图形 2).等腰三角形的顶角平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴。 3).等腰三角形的两个底角相等。 3.推理 等腰三角形顶角的平分线、底边上的中线、底边上的高重合 (也称为“三线合一”). 证明:因为AD是角平分线, 所以∠BAD= ∠ CAD 在ΔABD和ΔA CD中, 因为AB=AC, ∠BAD= ∠CAD,AD=AD 所以ΔABD ≌ΔACD 所以BD=CD, ∠ADB=∠ADC=90? 所以AD是ΔABC的角平分线、底边上的中线、底边上的高。 ⑷知识推广 1.等边三角形的有关概念有几条对称轴? 2. 你能发现等边三角形的哪些特征? ⑸知识应用

相似三角形解题思路赏析

相似三角形解题思路赏析(3.29) 姓名_______ 评价 内容解读:人们在对两个物体或图形的形状和大小进行认识时,全等和相似的感知是伴生的.在数学上全等和相似是特殊与一般、共性与个性的关系,形状相同是二者的共性.全等形是相似比等于1时的相似形;同时我们应学会应用两个三角形相似的判定方法去解决问题。 例题讲解: 1、如图,在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足的关系式是( ) A 、b a c =+ B 、b ac = C 、2 2 2 b a c =+ D 、22b a c == 2、已知矩形ABCD 的边长3cm 6cm AB BC ==,.某一时刻,动点M 从A 点出发沿AB 方向以1cm/s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方向以2cm /s 的速度向A 点匀速运动,问:(1)经过多少时间,AMN △的面积等于矩形ABCD 面积的 1 9 ? (2)是否存在时刻t ,使以A M N ,,为顶点的三角形与ACD △ 相似?若存在,求t 的值;若不存在,请说明理由. 3、如图1,在Rt ABC △中,90BAC ∠=°,AD BC ⊥于点D ,点O 是AC 边上一点,连接BO 交AD 于F ,OE OB ⊥交BC 边于点E . (1)求证:ABF COE △∽△; (2)当O 为AC 边中点,2AC AB =时,如图2,求 OF OE 的值; (3)当O 为AC 边中点,AC n AB =时,请直接写出 OF OE 的值. 4、已知9023ABC AB BC AD BC P ∠===°,,,∥,为线段BD 上的动点,点Q 在射线AB 上,且满足PQ AD PC AB = (如图1所示). B A D E C O F 图2 B A C E D 图1 F

八年级数学 构造等腰三角形解题的辅助线常用做法

构造等腰三角形解题的辅助线常用做法 等腰三角形是一种特殊的三角形,常与全等三角形的相关知识结合在一起考查。在许多几何问题中,通常需要构造等腰三角形才能使问题获解。那么如何构造等腰三角形呢?一般有以下四种方法: (1)依据平行线构造等腰三角形; (2)依据倍角关系构造等腰三角形; (3)依据角平分线+垂线构造等腰三角形; (4)依据120°角或60°角,常补形构造等边三角形。 1、依据平行线构造等腰三角形 例1:如图。△ABC中,AB=AB,E为AB上一点,F为AC延长线上一点,且BE=CF,EF交BC于D,求证DE=DF. [点拔]:若证DE=DF,则联想到D是EF的中点,中点的两旁容易构造全等三角形,方法是过E或F作平行线,构造X型的基本图形,只需证两个三角形全等即可。 证明:过E作EG∥AC交BC于G ∴∠1=∠ACB,∠2=∠F ∵AB=AC ∴∠B=∠ACB ∴∠1=∠B ∴BE=GE ∵BE=CF ∴GE=CF 在△EDG和△FDC中 ∠3=∠4 ∠2=∠F GE=CF

∴△EDG≌△FDC ∴DE=DF [评注]:此题过E作AC的平行线后,构造了等腰△BEG,从而达到转化线段的目的。 2、依据倍角关系构造等腰三角形 例2:如图。△ABC中,∠ABC=2∠C,AD是∠BAC的平分线 求证:AB+BD=AB [点拔]:在已知条件中出现了一个角是另一个角的2倍,可延长CB,构造等 腰三角形,问题即可解决。 证明:延长CB至E,使BE=BA, 连接AE ∵BE=BA ∴∠BAE=∠E ∵∠ABC=2∠C, ∠ABC=∠E+∠BAE=2∠E ∴∠C=∠E AC=AE ∵AD平分∠BAC ∴∠1=∠2 ∴∠EAD=∠BAE+∠1=∠E+∠1=∠C+∠2=∠BDA ∴EA=ED ∵ED=EB+BD,EB=AB,AC=AE ∴AC=AB+BD [评注]:当一个三角形中出现了一个角是另一个角的2倍时,我们就可以通过转化倍角寻找等腰三角形。

解直角三角形及其应用--知识讲解

解直角三角形及其应用—知识讲解 【学习目标】 1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形; 2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题. 【要点梳理】 要点一、解直角三角形 在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形. 在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角. 设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有: ①三边之间的关系:a2+b2=c2(勾股定理). ②锐角之间的关系:∠A+∠B=90°. ③边角之间的关系: ,,, ,,. ④,h为斜边上的高. 要点诠释: (1)直角三角形中有一个元素为定值(直角为90°),是已知值. (2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系). (3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解. 要点二、解直角三角形的常见类型及解法 已知条件解法步骤 Rt△ABC 两 边两直角边(a,b) 由求∠A, ∠B=90°-∠A, 斜边,一直角边(如c,a) 由求∠A, ∠B=90°-∠A, 一边一直角边 和一锐角 锐角、邻边 (如∠A,b) ∠B=90°-∠A, ,

一 角 锐角、对边 (如∠A ,a) ∠B=90°-∠A , , 斜边、锐角(如c ,∠A) ∠B=90°-∠A , , 要点诠释: 1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算. 2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边. 要点三、解直角三角形的应用 解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键. 解这类问题的一般过程是: (1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型. (2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题. (3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形. (4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解. 拓展: 在用直角三角形知识解决实际问题时,经常会用到以下概念: (1)坡角:坡面与水平面的夹角叫做坡角,用字母表示. 坡度(坡比):坡面的铅直高度h 和水平距离的比叫做坡度,用字母表示,则,如图, 坡度通常写成=∶的形式. (2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.

轴对称图形全等三角形

全等三角形轴对称测试题 班级:_________ 姓名:___________ 小组:__________ 分数:___________ 【错题滚动】 1.锐角三角形中,最大角α的取值范围是( ) A.6090α?≤2b ),以a 、b 为边作等腰三角形,则( ) A. 只能作以a 为底边的等腰三角形 B. 只能作以b 为底边的等腰三角形 C. 可以作分别以a 、b 为底的等腰三角形 D. 不能作符合条件的等腰三角形 6.小亮在镜中看到身后墙上的时钟如下,你认为实际时间最接近8:00的是( ) A. B. C. D. 7.如右图,在△ABC 中,∠C=90°,AB 的垂直平分线MN 分别交AC ,AB 于点D ,E .若∠CBD : ∠DBA =3:1,则∠A 为( ). A. 18° B. 20° C. 22.5° D. 30° 8.如图,在△ABC 和△FED 中,AC=FD ,BC=ED ,要利用“SSS”来判定△ABC

中考数学专题训练 轴对称图形与等腰三角形(无答案)

轴对称图形与等腰三角形 一、选择题 1.如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为() A.30° B.45° C.60° D.75° 2.正方形的对称轴的条数为() A.1 B.2 C.3 D.4 3.正三角形△ABC的边长为3,依次在边AB、BC、CA上取点A1、B1、C1,使AA1=BB1=CC1=1,则△A1B1C1的面积是() A.B.C.D. 4.在Rt△ABC中,∠C=90°,AB=10.若以点C为圆心,CB为半径的圆恰好经过AB的中点D,则AC=() A.5 B.C.D.6 5.如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为() A.6 B.6 C.9 D.3 6.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()

A.B.1 C.D.2 7.如图,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD.若BD=1,则AC的长是() A.2 B.2 C.4 D.4 8.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为() A.2 B.C.D. 9.如图,直角坐标系中的五角星关于y轴对称的图形在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 10.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()

北师版数学九年级上册相似三角形---构造相似基本恩图形,为解题打开一扇智慧之门

构造相似基本恩图形,为解题打开一扇智慧之门 相似三角形问题解答时,常遇到或构造一个重要解题基本图形,这个基本图形构成元件非常简单,但是这个图形的解题内涵非常丰富,能为很多问题的破解提供强有力的方法支撑.一起走进这个基本图形. 一、认识基本图形 如图1,在△ABC中,点D,E分别是AB,AC上的点,且DE∥BC.则△ADE∽△ABC. 常见基本结论: 一“=”型比例式: AD:BD=AE:EC;AD:AB=AE:AC;AD:AE=BD:CE. 连“=”型比例式: AD:AB=AE:AC=DE:BC. 二、基本图形的解题应用 (一).直接应用型 1.1探求被截线段的长度 例1 (2019年四川内江市)如图2,在△ABC中,DE∥BC,AD=9,DB=3,CE=2,则AC的长为() A.6 B.7 C.8 D.9 解析:因为DE∥BC,所以=,即=,所以AE=6,所以AC=AE+EC=6+2=8. 所以选C. 点评:这是平行线分线段成比例定理的简易图形,是定理的一个重要缩影,更是解题的一个重要工具性图形,识记图形是基础,活用图形解题是根本,据图正确选择比例式是解题的关键. 1.2探求与截线平行线段的长度 例2 (2019年广西贺州市)如图3,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC,若AD=2,AB=3,DE=4,则BC等于() A.5 B.6 C.7 D.8

解析: 因为DE∥BC,所以△ADE∽△ABC,所以=,即=,解得:BC=6,所以选B. 点评:基本图形中,当求与截线平行的线段长时,要转换解题思路,把平行线分线段成比例定理转型为“A”字型的三角形相似问题解决,这种转化思想很重要. 1.3探求非比例线段,非平行线段的线段的长度 例3 (2019年广西贵港市)如图4,在△ABC中,点D,E分别在AB,AC边上,DE∥BC,∠ACD=∠B,若AD=2BD,BC=6,则线段CD的长为() A.2B.3C.2D.5 解析:设AD=2x,BD=x,所以AB=3x,因为DE∥BC,所以△ADE∽△ABC,所以=,所以=,所以DE=4,=,因为∠ACD=∠B, ∠ADE=∠B,所以∠ADE=∠ACD,因为∠A=∠A,所以△ADE∽△ACD, 所以=,设AE=2y,AC=3y,所以=,所以AD=y, 所以=,所以CD=2,所以选:C. 点评:在“A”字型基本图形中解题,实现三个维度的目标:一是三角形相似,构造连等比例式;二是巧妙引进未知数表示未知线段,化抽象线段为具体表达线段,利于计算;三是依托基本图形为基础,提供新条件,为新三角形的相似奠基,为问题的最终解决搭桥. 1.4 甄别比例式 例4 (2019年浙江省杭州市)如图5,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M 为BC边上一点(不与点B,C重合),连接AM交DE于点N,则() A.=B.=C.=D.=

相关主题
文本预览
相关文档 最新文档