当前位置:文档之家› 钢筋混凝土外文翻译

钢筋混凝土外文翻译

钢筋混凝土外文翻译
钢筋混凝土外文翻译

外文文献翻译

Reinforced concrete

From 《English on Civil Engineering》

Concrete and reinforced concrete are used as building materials in every country. In many, including the United States and Canada, reinforced concrete is a dominant structural material in engineered construction. The universal nature of reinforced concrete construction stems from the wide availability of reinforcing bars and the constituents of concrete, gravel, sand, and cement, the relatively simple skills required in concrete construction, and the economy of reinforced concrete compared to other forms of construction. Concrete and reinforced concrete are used in bridges, buildings of all sorts underground structures, water tanks, television towers, offshore oil exploration and production structures, dams, and even in ships.

Reinforced concrete structures may be cast-in-place concrete, constructed in their final location, or they may be precast concrete produced in a factory and erected at the construction site. Concrete structures may be severe and functional in design, or the shape and layout and be whimsical and artistic. Few other building materials off the architect and engineer such versatility and scope.

Concrete is strong in compression but weak in tension. As a result, cracks develop whenever loads, or restrained shrinkage of temperature changes, give rise to tensile stresses in excess of the tensile strength of the concrete. In a plain concrete beam, the moments about the neutral axis due to applied loads are resisted by an internal tension-compression couple involving tension in the concrete. Such a beam fails very suddenly and completely when the first crack forms. In a reinforced concrete beam, steel bars are embedded in the concrete in such a way that the tension forces needed for moment equilibrium after the concrete cracks can be developed in the bars.

The construction of a reinforced concrete member involves building a from of mold in the shape of the member being built. The form must be strong enough to support both the weight and hydrostatic pressure of the wet concrete, and any forces applied to it by workers, concrete buggies, wind, and so on. The reinforcement is placed in this form and held in place during the concreting operation. After the concrete has hardened, the forms are removed. As the forms are removed, props of shores are installed to support the weight of the concrete until it has reached sufficient strength to support the loads by itself.

The designer must proportion a concrete member for adequate strength to resist the loads and adequate stiffness to prevent excessive deflections. In beam must be proportioned so that it can be constructed. For example, the reinforcement must be detailed so that it can be assembled in the field, and since the concrete is placed in the

form after the reinforcement is in place, the concrete must be able to flow around, between, and past the reinforcement to fill all parts of the form completely.

The choice of whether a structure should be built of concrete, steel, masonry, or timber depends on the availability of materials and on a number of value decisions. The choice of structural system is made by the architect of engineer early in the design, based on the following considerations:

1. Economy. Frequently, the foremost consideration is the overall const of the structure. This is, of course, a function of the costs of the materials and the labor necessary to erect them. Frequently, however, the overall cost is affected as much or more by the overall construction time since the contractor and owner must borrow or otherwise allocate money to carry out the construction and will not receive a return on this investment until the building is ready for occupancy. In a typical large apartment of commercial project, the cost of construction financing will be a significant fraction of the total cost. As a result, financial savings due to rapid construction may more than offset increased material costs. For this reason, any measures the designer can take to standardize the design and forming will generally pay off in reduced overall costs.

In many cases the long-term economy of the structure may be more important than the first cost. As a result, maintenance and durability are important consideration.

2. Suitability of material for architectural and structural function. A reinforced concrete system frequently allows the designer to combine the architectural and structural functions. Concrete has the advantage that it is placed in a plastic condition and is given the desired shape and texture by means of the forms and the finishing techniques. This allows such elements ad flat plates or other types of slabs to serve as load-bearing elements while providing the finished floor and / or ceiling surfaces. Similarly, reinforced concrete walls can provide architecturally attractive surfaces in addition to having the ability to resist gravity, wind, or seismic loads. Finally, the choice of size of shape is governed by the designer and not by the availability of standard manufactured members.

3. Fire resistance. The structure in a building must withstand the effects of a fire and remain standing while the building is evacuated and the fire is extinguished. A concrete building inherently has a 1- to 3-hour fire rating without special fireproofing or other details. Structural steel or timber buildings must be fireproofed to attain similar fire ratings.

4. Low maintenance. Concrete members inherently require less maintenance than do structural steel or timber members. This is particularly true if dense, air-entrained concrete has been used for surfaces exposed to the atmosphere, and if care has been taken in the design to provide adequate drainage off and away from the structure. Special precautions must be taken for concrete exposed to salts such as deicing chemicals.

5. Availability of materials. Sand, gravel, cement, and concrete mixing facilities are very widely available, and reinforcing steel can be transported to most job sites more easily than can structural steel. As a result, reinforced concrete is frequently used in remote areas.

On the other hand, there are a number of factors that may cause one to select a material other than reinforced concrete. These include:

1. Low tensile strength. The tensile strength concrete is much lower than its compressive strength ( about 1/10 ), and hence concrete is subject to cracking. In structural uses this is overcome by using reinforcement to carry tensile forces and limit crack widths to within acceptable values. Unless care is taken in design and construction, however, these cracks may be unsightly or may allow penetration of water. When this occurs, water or chemicals such as road deicing salts may cause deterioration or staining of the concrete. Special design details are required in such cases. In the case of water-retaining structures, special details and / ofprestressing are required to prevent leakage.

2. Forms and shoring. The construction of a cast-in-place structure involves three steps not encountered in the construction of steel or timber structures. These are ( a ) the construction of the forms, ( b ) the removal of these forms, and (c) propping or shoring the new concrete to support its weight until its strength is adequate. Each of these steps involves labor and / or materials, which are not necessary with other forms of construction.

3. Relatively low strength per unit of weight for volume. The compressive strength of concrete is roughly 5 to 10% that of steel, while its unit density is roughly 30% that of steel. As a result, a concrete structure requires a larger volume and a greater weight of material than does a comparable steel structure. As a result, long-span structures are often built from steel.

4. Time-dependent volume changes. Both concrete and steel undergo-approximately the same amount of thermal expansion and contraction. Because there is less mass of steel to be heated or cooled, and because steel is a better concrete, a steel structure is generally affected by temperature changes to a greater extent than is a concrete structure. On the other hand, concrete undergoes frying shrinkage, which, if restrained, may cause deflections or cracking. Furthermore, deflections will tend to increase with time, possibly doubling, due to creep of the concrete under sustained loads.

In almost every branch of civil engineering and architecture extensive use is made of reinforced concrete for structures and foundations. Engineers and architects requires basic knowledge of reinforced concrete design throughout their professional careers. Much of this text is directly concerned with the behavior and proportioning of components that make up typical reinforced concrete structures-beams, columns, and slabs. Once the behavior of these individual elements is understood, the designer will

have the background to analyze and design a wide range of complex structures, such as foundations, buildings, and bridges, composed of these elements.

Since reinforced concrete is a no homogeneous material that creeps, shrinks, and cracks, its stresses cannot be accurately predicted by the traditional equations derived in a course in strength of materials for homogeneous elastic materials. Much of reinforced concrete design in therefore empirical, i.e., design equations and design methods are based on experimental and time-proved results instead of being derived exclusively from theoretical formulations.

A thorough understanding of the behavior of reinforced concrete will allow the designer to convert an otherwise brittle material into tough ductile structural elements and thereby take advantage of concrete’s desirable characteristics, its high compressive strength, its fire resistance, and its durability.

Concrete, a stone like material, is made by mixing cement, water, fine aggregate ( often sand ), coarse aggregate, and frequently other additives ( that modify properties ) into a workable mixture. In its unhardened or plastic state, concrete can be placed in forms to produce a large variety of structural elements. Although the hardened concrete by itself, i.e., without any reinforcement, is strong in compression, it lacks tensile strength and therefore cracks easily. Because unreinforced concrete is brittle, it cannot undergo large deformations under load and fails suddenly-without warning. The addition fo steel reinforcement to the concrete reduces the negative effects of its two principal inherent weaknesses, its susceptibility to cracking and its brittleness. When the reinforcement is strongly bonded to the concrete, a strong, stiff, and ductile construction material is produced. This material, called reinforced concrete, is used extensively to construct foundations, structural frames, storage takes, shell roofs, highways, walls, dams, canals, and innumerable other structures and building products. Two other characteristics of concrete that are present even when concrete is reinforced are shrinkage and creep, but the negative effects of these properties can be mitigated by careful design.

A code is a set technical specifications and standards that control important details of design and construction. The purpose of codes it produce structures so that the public will be protected from poor of inadequate and construction.

Two types f coeds exist. One type, called a structural code, is originated and controlled by specialists who are concerned with the proper use of a specific material or who are involved with the safe design of a particular class of structures.

The second type of code, called a building code, is established to cover construction in a given region, often a city or a state. The objective of a building code is also to protect the public by accounting for the influence of the local environmental conditions on construction. For example, local authorities may specify additional provisions to account for such regional conditions as earthquake, heavy snow, or tornados. National structural codes genrally are incorporated into local building codes.

The American Concrete Institute ( ACI ) Building Code covering the design of reinforced concrete buildings. It contains provisions covering all aspects of reinforced concrete manufacture, design, and construction. It includes specifications on quality of materials, details on mixing and placing concrete, design assumptions for the analysis of continuous structures, and equations for proportioning members for design forces.

All structures must be proportioned so they will not fail or deform excessively under any possible condition of service. Therefore it is important that an engineer use great care in anticipating all the probable loads to which a structure will be subjected during its lifetime.

Although the design of most members is controlled typically by dead and live load acting simultaneously, consideration must also be given to the forces produced by wind, impact, shrinkage, temperature change, creep and support settlements, earthquake, and so forth.

The load associated with the weight of the structure itself and its permanent components is called the dead load. The dead load of concrete members, which is substantial, should never be neglected in design computations. The exact magnitude of the dead load is not known accurately until members have been sized. Since some figure for the dead load must be used in computations to size the members, its magnitude must be estimated at first. After a structure has been analyzed, the members sized, and architectural details completed, the dead load can be computed more accurately. If the computed dead load is approximately equal to the initial estimate of its value ( or slightly less ), the design is complete, but if a significant difference exists between the computed and estimated values of dead weight, the computations should be revised using an improved value of dead load. An accurate estimate of dead load is particularly important when spans are long, say over 75 ft ( 22.9 m ), because dead load constitutes a major portion of the design load.

Live loads associated with building use are specific items of equipment and occupants in a certain area of a building, building codes specify values of uniform live for which members are to be designed.

After the structure has been sized for vertical load, it is checked for wind in combination with dead and live load as specified in the code. Wind loads do not usually control the size of members in building less than 16 to 18 stories, but for tall buildings wind loads become significant and cause large forces to develop in the structures. Under these conditions economy can be achieved only by selecting a structural system that is able to transfer horizontal loads into the ground efficiently.

中文译文

钢筋混凝土

来自《土木工程英语》

在每一个国家,混凝土及钢筋混凝土都被用来作为建筑材料。很多地区,包括美国和加拿大,钢筋混凝土在工程建设中是主要的结构材料。钢筋混凝土建筑的普遍性源于钢筋的广泛供应和混凝土的组成成分,砾石,沙子,水泥等,混凝土施工所需的技能相对简单,与其他形式的建设相比,钢筋混凝土更加经济。混凝土及钢筋混凝土用于桥梁、各种地下结构建筑、水池、电视塔、海洋石油勘探建筑、工业建筑、大坝,甚至用于造船业。

钢筋混凝土结构可能是现浇混凝土结构,在其最后位置建造,或者他们可能是在一家工厂生产混凝土预制件,再在施工现场安装。混凝土结构在设计上可能是普通的和多功能的,或形状和布局是奇想和艺术的。其他很少几种建材能够提供建筑和结构如此的通用性和广泛适用性。

混凝土有较强的抗压力但抗拉力很弱。因此,混凝土,每当承受荷载时,或约束收缩或温度变化,引起拉应力,在超过抗拉强度时,裂缝开始发展。在素混凝土梁中,中和轴的弯矩是由在混凝土内部拉压力偶来抵抗作用荷载之后的值。这种梁当出现第一道裂缝时就突然完全地断裂了。在钢筋混凝土梁中,钢筋是那样埋置于混凝土中,以至于当混凝土开裂后弯矩平衡所需的拉力由纲筋中产生。

钢筋混凝土构件的建造包括以被建构件的形状支摸板。模型必须足够强大,以至于能够支承自重和湿混凝土的静水压力,工人施加的任何力量都适用于它,具体的手推车,风压力,等等。在混凝土的运作过程中,钢筋将被放置在摸板中。在混凝土硬化后,模板都将被移走。当模板被移走时,支撑将被安装来承受混凝土的重量直到它达到足够的强度来承受自重。

设计师必须使混凝土构件有足够的强度来抵抗荷、载和足够的刚度来防止过度的挠度变形。除此之外,梁必须设计合理以便它能够被建造。例如,钢筋必须按构造设计,以便能在现场装配。由于当钢筋放入摸板后才浇筑混凝土,因此混凝土必须能够流过钢筋及摸板并完全充满摸板的每个角落。

被建成的结构材料的选择是混凝土,还是钢材、砌体,或木材,取决于是否有材料和一些价值决策。结构体系的选择是由建筑师或工程师早在设计的基础上决定的,考虑到下列因素:

1.经济。常常首要考虑的是结构的总造价。当然,这是随着材料的成本和安装构件的必需劳动力改变的。然而,总投资常常更受总工期的影响,因为承包商和业主必须借款或贷款以便完成建设,在建筑物竣工前他们从此项投资中将得不到任何回报。在一个典型的大型公寓或商业项目中,建筑成本的融资将是总费用的一个重要部分。因此,金融储蓄,由于快速施工可能多于抵消增加材料成本。基于这个原因,设计师可以采取任何措施规范设计来减轻削减的成本。

在许多情况下,长期的经济结构可能比第一成本更重要。因此,维修和耐久性是重要的考虑因素。

2 .用于建筑与结构功能适宜的材料。钢筋混凝土体系经常让设计师将建筑与结构的功能相结合。混凝土被放置在塑性条件下借助于模板和表面加工来造出想要的形状和结构,这是它具有的优势。在提供成品楼或天花板表面时,这使得平板或其他形式的板作为受力构件。同样,钢筋混凝土墙壁能提供有吸引力的建筑表面,还有能力抵御重力、风力,或地震荷载。最后,大小和形状的选择是由设计师而不是由提供构件的标准决定的。

3 .耐火性。建筑结构必须经受得住火灾的袭击,并且当人员疏散及大火扑灭之时建筑物仍然保持不倒。钢筋混凝土建筑特殊的防火材料及其他构造措施情况下,自身具有1-3个小时的耐火极限。钢结构或木结构必须采取防火措施才能达到类似的耐火极限。

4 .低维护。混凝土构件本身比结构钢或木材构件需要更少的维修。如果致密,尤其如此,加气混凝土已经被用于暴露于大气中的表面,如果在设计中已经采取谨慎措施,以提供足够的排水和远离的结构。必须采取的特别预防措施是让混凝土接触到盐,如除冰化学品。

5 .材料的供应。砂、碎石、水泥和混凝土搅拌设备是被非常广泛使用的,以及钢筋比结构钢更容易运到多数工地。因此,钢筋混凝土在偏远地区经常使用。

另一方面,有一些因素可能会导致选择钢筋混凝土以外的材料。这些措施包括:

1 .低抗拉强度。混凝土的抗拉强度是远低于其抗压强度(约 1 / 10 ),因此,混凝土易经受裂缝。在结构用途时,用钢筋承受拉力,并限制裂缝宽度在允许的范围内来克服。不过,在设计和施工中如果不采取措施,这些裂缝可能会有碍观瞻,或可允许水的浸入。发生这种情况时,水或化学物质如道路除冰盐可能会导致混凝土的恶化或污染。这种情况下,需要特别设计的措施。在水支挡结构这种情况下,需要特别的措施和/或预应力,以防止泄漏。

2 .支摸。建造一个现浇结构包括三个步骤,在钢或木结构的施工中是遇不到的。这些都是(a)支摸(b)拆摸( c )安装支撑,直至其达到足够的强度以支承其重量。上述每个步骤,涉及劳动力和/或材料,在其他结构形式中,这是没有必要的。

3 . 每单位重量或量的相对低强度。该混凝土抗压强度大约是钢材抗压强度5至10 %,,而其单位密度大约是钢材密度的30 %。因此,一个混凝土结构,与钢结构相比,需要较大的体积和较大重量的材料。因此,大跨度结构,往往建成钢结构。

4 .时间依赖的量的变化。混凝土与钢进行大约同样数量的热膨胀和收缩时,有比较少量的钢材加热或冷却,因为钢与混凝土相比是一个较好的导体,钢结构

比混凝土结构在更大程度上更易受温度变化。另一方面,混凝土经历了干缩,如果被抑制,可能会导致变形或开裂。此外,变形随着时间的推移将趋于增加,由于混凝土在持续的负荷下的徐变,可能会增加一倍。

几乎在土木工程和建筑的每一个分支中,钢筋混凝土在结构和基础领域内都得到了广泛的使用。因此,工程师及建筑师在其整个职业生涯中需要钢筋混凝土设计的基本知识。文章的大部分是直接关于组成典型的钢筋混凝土结构的部件如梁、柱和板他们之间的作用、协调。一旦这些个别要素的作用被理解,设计师将有能力分析和设计这些元素组成的各种各样的复杂结构,例如地基,建筑物和桥梁。

由于钢筋混凝土是一个徐变、收缩,并出现裂缝的非匀质材料,它的应力不能由适用于材料强度均匀弹性材料的传统方程推导出的方程准确预测。因此,许多钢筋混凝土的设计基于实证,即设计方程和设计方法是基于实验和费时的证明,而不是从理论的提法被完全导出的结果。

对钢筋混凝土性能彻底的了解将允许设计师将脆性材料转换变成强硬的韧性结构材料,从而利用混凝土良好的特点,其高抗压强度,其耐火性,其耐久性。

混凝土--石状的物质,是由搅拌水泥,水,细骨料(通常砂),粗骨料,并经常添加其他外加剂(即改善特性)而成为的一种和易性好的混合物。在其未硬化或塑性状态下,混凝土可放置在模板里产生大量的各种结构要素。虽然硬化的混凝土本身,也就是说,没有任何钢筋,它具有较强的抗压强度,但缺乏抗拉强度,因此很容易产生裂缝。因为无钢筋的混凝土是脆性的,它在荷载作用下不能进行大变形,并在没有预兆下突然断裂。钢筋与混凝土相结合,可以减少其主要的两个固有弱点的负面影响,其易开裂性和其脆性。当钢筋牢固黏结于混凝土时,一种强大、刚性、延性的建筑材料就诞生了。这种材料,所谓的钢筋混凝土,被广泛用于建筑基础、结构框架、仓库、网状结构、公路、墙壁、水坝、运河及无数的其他结构和建筑产品。混凝土的其他两个特点,是混凝土被加固时会发生收缩和徐变,但采用仔细的设计可以减轻这些特性的负面影响。

规范,是一套技术规格和控制设计与施工重要细节的标准。规范的目的是产生合理的结构,使使用者将免于劣质和不合格的设计和结构。

现有两种规范。其中一类,所谓的结构规范,是源于关心正确使用具体材料或关心某一特定类别结构安全设计的专家。

第二种类型的规范,所谓的建筑条例,涵盖了建设在某一地区,往往是一个城市或一个国家的建筑。建筑条例的目标,也是以对抗当地环境条件对建设的影响来保障公众的权益。例如,地方当局可以规定其他的条款,以对抗这样的区域条件,地震、大雪或龙卷风。国家结构规范常常被纳入当地的建筑法规。

美国混凝土学会( ACI )的建筑规范包括钢筋混凝土建筑物的设计。它包括涵盖钢筋混凝土制造的各个方面--设计和施工的条文。它包括材料质量的规格、

混合和现浇混凝土的细节,连续结构分析的设计假定,配料成分的设计方程。

所有构件必须协调,这样它们在任何可能的工作条件下就不会失效或发生过大变形。因此,一名工程师非常谨慎地预期结构在其一生中所有可能经受的荷载,这是非常重要的。

虽然大部分构件的设计是由同时作用的恒载和活载所控制,但还必须考虑到风、冲击、收缩、温度变化、徐变和地基沉陷、地震等等所产生的的力。

与结构自重和固有的构件重量有关的荷载称为恒载。混凝土构件的恒载是固有的,在设计计算过程中是必须要考虑的。恒载值的大小直到构件尺寸确定后才能清楚的知道。由于恒载的一些数值在计算构件尺寸时要用到,所以首先要估计他们值的大小。在结构进行了分析构件、构件尺寸确定、建筑的细节完成后,恒载可以计算更准确。如果计算的恒载大约等于它的初步估计值(或略少),但设计完成后,如果计算值和估计值之间存在显着性差异时,计算应用改进的恒载值加以修正。当跨度较长时,恒载的准确估计是特别重要的,因为当跨度超过七十五英尺( 22.9米)时,恒载是设计荷载的一个重要组成部分。

建设使用的相关活荷载是由城市或国家结构规范规定的。设计构件均布活荷载的值是由结构规范规定的,而不是根据设备的特定项目和某一个特定地区的使用者来估计。

结构在竖向荷载下定了尺寸后,还要根据风荷载和规范中规定的恒载活载组合后的结果来进行验算。风荷载在少于16到18层楼房中通常不控制构件的大小,但对于高层建筑,风荷载在结构中成为重要的控制因素和引起强大作用力的因素。在这种情况下,只有选择一个能够有效地将横向荷载传递到地面的结构体系,经济才能实现。

现代汉语语法分析:第一节 层次分析

第一节层次分析 1.1句法结构的层次性和层次分析 1、句法结构的层次性: 一个句子或是句法格式表面上看是线性排列,内部有一种层次的透景。(松紧程度不一样) 如:他刚来。(这三个词内部的松紧程度不一样。“刚”和“来”关系紧密,“他”和“刚”关系疏远,“刚”和“来”先组合,再和“他”组合) 2、结构的三个特点: *整体性(作为一个结构,一定具有整体性。) *可分割性(作为一个结构,一定可以被分割成多个部分。) *有规则性(一个结构作为一个整体,一定是由好几部分组成的,这好几个部分组合的时候,它是按照一定规则组成的。) 如:形声字:形+声,再+字(“形声字”这个词,不是一些语素随便凑成,而是按一定规则组成的。)【有两个以上语素组合时,其内部一定有层次结构。】 *音节也是有层次的,如:天[tian55] 这个音节也是有层次的: 声调——超音段成分 声母+韵母——音段成分 韵母——韵头+韵部(韵基) 韵基——韵腹(主要元音)+韵尾 【由此,我们可以说的宽泛一点,这叫语言的层次构造,这种构造,是语言的基本特性。不论是语音、词汇、句子都有这样的层析构造问题。】 3、层次分析:在分析一个句子,或是句法结构的时候,将句法构造的层次性考虑进来,并按其构造层次,逐层进行分析,在分析时,指出每一层面的直接组成成分,并说明直接组成成分之间的关系。这种分析手段就是层次分析。 如:他刚来 “他刚来”的直接组成成分:他+刚来主谓 谓语“刚来”的直接组成成分:刚+来状中 4、层次分析包含两个内容: 二他所写的文章怎么切分? 切分:怎样断句 定性: 层次分析的三种主要表示方法:从小到大、框式、树型图: 5、怎么切分? 同一结构如何切分 例句:他所参观的工厂。 名词性偏正结构定中 他所参观? 他所参观的工厂 他所参观的工厂会导致他和工厂有领属关系 所以他所参观的工厂 他所参观怎么分析? 他参观

层次分析法详解

构建风险层次结构 通过选取的指标可以看出这是一个多目标的且问题涉及到许多因素,各种因素的作用相互,情况复杂。依据层次分析法处理这类复杂的问题就需要对所涉及的因素指标进行分析:哪些是需相互比较的;哪些是需相互影响的。把那些需相互比较的因素归成同一类,构造出一个各因素类之间相互联结的层次结构模型。各因素类的层次级别由其与目标的关系而定: 第一层是目标层,也就是国家风险的评价排序 第二层是准则层,这一层中是国家风险排序所涉及的国家风险类型,即政治风险、经济风险、社会风险。 第三层是子准则层,这一层是评价衡量准则层中各要素的影响因素及评价指标, 即政权凝聚力、腐败状况、相关法律政策、国际关系、官僚主义、经济政策、汇率稳定性、金融环境、内部冲突、外部冲突、民族差异等。 第四层也就是我们要选择的方案即所要选择的并购方案国家。 为了方便计算以及模型的理解,层次结构中各层次均用字母代替,目标层为A i 准则层为B,子准则层为C,方案层为D。 522重要性程度描述 为了将上述复杂的多因素综合比较问题转化为简单的两因素相对比较问题。首先找出所有两两比较的结果,并且把它们定量化;然后再运用适当的数学方法从所有两两相对比较的结果之中求出多因素综合比较的结果。进行定性的成对比较时, 我们将比较结果分为5种等级:相同、稍强、强、明显强、绝对强并将我们所做出的比较结果应用1?9个数字尺度来进行定量化,比较具体含义及相应数字对应如下表: 表5.2 AHP重要程度描述表 子准则层 方案层 图5.1风险层次结构模型 Fig.5.1 The hierarchical structure model of country

道路规划外文文献1

道路设计 1.道路设计的历史 首先,本文主要依靠大量的文字叙述,若对您造成理解上的困难,敬请谅解。 由于本文所涵盖的资料单一,本文是此系列中唯一的一篇文章。本文不像其他文章 一样有大量图片说明。其次,本文主要内容是关于欧洲公路修筑的历史。 在西欧,罗马人是具有重大意义的公路修筑的开创者。他们看到了修筑公路能 使人较快的移动地理位置的作用,这一作用对军用和民用都是极其重要的。罗马人 率先指出,要使公路发展为主要道路,就必须把地坪线提高一米。公路的最大特点 就是没有角落,这是为了降低埋伏的风险。罗马人对道路的耐久性设定了标准,这 一成就远超过了罗马帝国灭亡后所取得的其它成就。 罗马人设计公路的方法本质上与现代使用的是相同。公路由几个不同层次构成,这从基层增加了公路的强度。最底层的通常是碎石子,中间层是掺加了石灰的混凝土,而上层则是铺路石或者掺有石灰的厚石板。每一层的厚度由当地的地质条件决定。 罗马帝国消亡后,它的道路系统一直处于无人修善的状态。到了中世纪末期, 全国的道路系统几乎处于瘫痪状态,唯一的路途就是没有铺石板的路。一到冬季就 泥泞不堪,夏天则尘土飞扬,根本无法通行。同时为了绕开贫穷的地区,更是导致 了道路弯弯曲曲,加大了通行难度。这种路况加上法律监管不严,意味着除非是疯 子或者是无可奈何的情况,没人愿意去走这些路。 这种情况直到1555年国会通过了所有地方政府有责任维修损坏道路的行动后有 所改善。这次行动还包括建立高速公路拯救员职位。没有薪金和材料再加上技术匮乏,所以这个告示明显地无人理睬且效率低下也就不怎么奇怪了。 …… 2.交通量分析 2.1、交通密度:

2.2、交通负荷: 3.交通密度 4.交通负载 5.土方工程 6.开挖 History of Road Design Firstly let me apologise for this page. It is largely text based due to the nature of it and if reading is difficult then I am sorry. This is due solely to the material covered and is the only page in the series. This is not typical as the rest have graphics or images to keep you amused. Secondly this page is very much a history of road building in the United Kingdom. The first road builders of any significance in Western Europe were the Romans, who saw the ability to move quickly as essential for both military and civil reasons. It is from the Romans that the term highway comes as all their roads were elevated 1m above the local level of the land. This was to minimise the risk of an ambush, as was the best known characteristic of the roads, their lack of corners. The standards set by the Romans in terms of durability far exceeded anything achieved after the fall of the empir e. The Roman approach to road design is essentially the same as that in current use. The roads were constructed of several different layers, increasing in strength from the bottom. The lowest layer was normally a rubble, intermediate layers were made of li me bound concrete and the upper layer was a flag or lime grouted stone slabs. The thickness of the layers was varied according to the local ground conditions. After the fall of the Roman Empire the road system fell into a state of disrepair and by the end of the middle ages, there was in effect no road

农业产业化外文翻译文献

农业产业化外文翻译文献(文档含中英文对照即英文原文和中文翻译)

农业产业化:从农场到交易市场 Mark R. Edwards and Clifford. J. Shultz 摘要 农业产业化就是农业以市场需求为导向,有效的满足客户以及市场要求的一系列的链条。这种变革需要一个更广泛的概念化和更准确的定义,传达一个致力于创造价值和可持续利用食物,纤维,可再生资源的更有活力,系统性,综合性和纪律性的系统。我们讨论的力量,推动这一转移到市场,提供了新的和更具有代表性农业产业化的定义,提供模型以说明一些最引人注目的趋势,并阐明这些模型关键因素和影响。 关键词:农业产业化的定义,概念模型,市场为中心,市场体系

1 绪论 农业产业化在1955年开始作为一个独特的研究领域,当时约翰.戴维斯将它定义为:农业产业化是以农场生产为中心,然后商品化。这个定义当时是最适当的,那是农业行动的重点是最大限度地生产食物和纤维。戴维斯和高德博格用新鲜的见解,将农业产业化定义为:制造和分销农场用品:在该农场生产经营、储存、加工、分销所有的农产品的商品和物品所涉及的所有业务的总和。类似的定义也有其他的人提出,如唐尼和埃里克森:农业产业化,包括所有这些业务和管理活动由公司提供投入到农业部门,生产农产品,运输,金融,处理农产品的全部过程。 这些传统的定义,随着时间的推移,对农场或生产的单位所反映农业产业化的焦点,如农业交易中心已数十年之久。今天,一个就业散点图显示,虽然超过百分之三十的就业机会农业产业化提供的,少于百分之一的人直接参与农场生产。农业产业化已不再是以农场为中心。二十一世纪农业产业化包含了更广泛的一系列行动,主要是外围行动,包括以市场为导向的可持续利用食物,纤维,和可再生资源。

汽车专业毕业设计外文翻译

On the vehicle sideslip angle estimation through neural networks: Numerical and experimental results. S. Melzi,E. Sabbioni Mechanical Systems and Signal Processing 25 (2011):14~28 电脑估计车辆侧滑角的数值和实验结果 S.梅尔兹,E.赛博毕宁 机械系统和信号处理2011年第25期:14~28

摘要 将稳定控制系统应用于差动制动内/外轮胎是现在对客车车辆的标准(电子稳定系统ESP、直接偏航力矩控制DYC)。这些系统假设将两个偏航率(通常是衡量板)和侧滑角作为控制变量。不幸的是后者的具体数值只有通过非常昂贵却不适合用于普通车辆的设备才可以实现直接被测量,因此只能估计其数值。几个州的观察家最终将适应参数的参考车辆模型作为开发的目的。然而侧滑角的估计还是一个悬而未决的问题。为了避免有关参考模型参数识别/适应的问题,本文提出了分层神经网络方法估算侧滑角。横向加速度、偏航角速率、速度和引导角,都可以作为普通传感器的输入值。人脑中的神经网络的设计和定义的策略构成训练集通过数值模拟与七分布式光纤传感器的车辆模型都已经获得了。在各种路面上神经网络性能和稳定已经通过处理实验数据获得和相应的车辆和提到几个处理演习(一步引导、电源、双车道变化等)得以证实。结果通常显示估计和测量的侧滑角之间有良好的一致性。 1 介绍 稳定控制系统可以防止车辆的旋转和漂移。实际上,在轮胎和道路之间的物理极限的附着力下驾驶汽车是一个极其困难的任务。通常大部分司机不能处理这种情况和失去控制的车辆。最近,为了提高车辆安全,稳定控制系统(ESP[1,2]; DYC[3,4])介绍了通过将差动制动/驱动扭矩应用到内/外轮胎来试图控制偏航力矩的方法。 横摆力矩控制系统(DYC)是基于偏航角速率反馈进行控制的。在这种情况下,控制系统使车辆处于由司机转向输入和车辆速度控制的期望的偏航率[3,4]。然而为了确保稳定,防止特别是在低摩擦路面上的车辆侧滑角变得太大是必要的[1,2]。事实上由于非线性回旋力和轮胎滑移角之间的关系,转向角的变化几乎不改变偏航力矩。因此两个偏航率和侧滑角的实现需要一个有效的稳定控制系统[1,2]。不幸的是,能直接测量的侧滑角只能用特殊设备(光学传感器或GPS惯性传感器的组合),现在这种设备非常昂贵,不适合在普通汽车上实现。因此, 必须在实时测量的基础上进行侧滑角估计,具体是测量横向/纵向加速度、角速度、引导角度和车轮角速度来估计车辆速度。 在主要是基于状态观测器/卡尔曼滤波器(5、6)的文学资料里, 提出了几个侧滑角估计策略。因为国家观察员都基于一个参考车辆模型,他们只有准确已知模型参数的情况下,才可以提供一个令人满意的估计。根据这种观点,轮胎特性尤其关键取决于附着条件、温度、磨损等特点。 轮胎转弯刚度的提出就是为了克服这些困难,适应观察员能够提供一个同步估计的侧滑角和附着条件[7,8]。这种方法的弊端是一个更复杂的布局的估计量导致需要很高的计算工作量。 另一种方法可由代表神经网络由于其承受能力模型非线性系统,这样不需要一个参

层次分析法的基本步骤和要点

层次分析法的基本步骤和要点 结合一个具体例子,说明层次分析法的基本步骤和要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。 1. 建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成: ●目标层(最高层):指问题的预定目标; ●准则层(中间层):指影响目标实现的准则; ●措施层(最低层):指促使目标实现的措施; 通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。很明显,这两个方案于所有准则都相关。 将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。同时,为了方便后面的定量表示,一般从上到下用A、B、C、D。。。代表不同层次,同一层次从左到右用1、2、3、4。。。代表不同因素。这样构成的递阶层次结构如下图。

道路与桥梁专业外文翻译中英对照

道路与桥梁专业外文翻译 中英对照 Jenny was compiled in January 2021

本科毕业设计(论文) 专业名称:土木工程专业(道路与桥 梁) 年级班级:道桥08-5班学生姓名: 指导教师: 二○一二年五月十八日 专业外文翻译

Geometric Design of Highways The road is one kind of linear construction used for travel. It is made of the roadbed, the road surface, the bridge, the culvert and the tunnel. In addition, it also has the crossing of lines, the protective project and the traffic engineering and the route facility. The roadbed is the base of road surface, road shoulder, side slope, side ditch foundations. It is stone material structure, which is designed according to route's plane position .The roadbed, as the base of travel, must guarantee that it has the enough intensity and the stability that can prevent the water and other natural disaster from corroding. The road surface is the surface of road. It is single or complex structure built with mixture. The road surface require being smooth, having enough intensity, good stability and anti-slippery function. The quality of road surface directly affects the safe, comfort and the traffic. Highway geometry designs to consider Highway Horizontal Alignment, Vertical Alignment two kinds of linear and cross-sectional composition of coordination, but also pay attention to the smooth flow of the line of sight, etc. Determine the road geometry, consider the topography, surface features, rational use of land and environmental protection factors, to make full use of the highway geometric components of reasonable size and the linear combination. Design The alignment of a road is shown on the plane view and is a series of straight lines called tangents connected by circular. In modern practice it is common to interpose transition or spiral curves between tangents and circular curves.

农业产业化组织的营销策略分析-外文翻译

外文翻译 原文 Title:Agricultural Industrialization Organization of Marketing Strategy Analysis Material source:2010 International Conference on Industry Engineering and Management Author:Zhao Yanhong, Ren Aihua Abstraet:Agricultural industrialization is the development direction of world agriculture, it is also the main form of the agricultural operation in developed countries. Vigorously develop the industrialization of agriculture is to enhance the competitiveness of China’s agricultu re is an effective means of marketing innovation in agriculture. It is related to the industrialization of agriculture an important factor in business success. In this paper, product, place, promotion, three organizations, the face of the industrialization of agriculture marketing innovation of the corresponding development proposals. Keywords:Product;Channel Innovation;Promotion 1 Introduction Although China has already established a number of agricultural industrialization organization, but very few successful cases, reason, the product can not sell that influence their development, an important factor. At present the industrialization of agriculture organizations in product development, sales channels and marketing methods. There are many ways to solve urgent problems, we can say, marketing has become a bottleneck restricting development of the organization. In this Paper, the development of marketing concept, mainly based on the content of the theory of 4P, from development to meet consumer demand for products. Innovation in the channel, flexible use of marketing mix and so the organization seeking to promote the industrialization of agriculture marketing of innovative measures. 2 Development of Products to Meet Consumer Demand 4C theory holds that companies should give top priority to the pursuit of customer satisfaction, then theagricultural industry of the organization must first develop a customer satisfaction products. Marketing believes that demand for the

公路毕业设计文献综述

本科生毕业论文(设计)题目文献综述文献综述随着改革开放的深入,交通运输在生活中的作用越来越明显,高速公路的建设成为了国民建设中的一个重大问题。由于高速公路具有汽车专用,分隔行驶,全部立交,控制出入以及高标准,高要求,设备功能完善等功能,与一般公路相比具有很多优点,所以具有很强的实用性。目前,我国高等级公路建设正处在“质”与“量”并重的重要发展阶段。从大陆第一条高速公路——沪嘉高速开始,中国大陆高速公路建设进入了一个崭新的时期。高速公路在二十多年间展现出了巨大的优越性,在以建成的高速公路沿线及腹地迅速兴起了工业企业建设的热【1】潮,地价增值,地方税收增加,投资环境发生巨大变化。目前我国的高速公路主要分布在东南沿海,我国的沿海地带,大部分是淤泥质海岸。因此,沿海特别是大江大河河口附近多为河相、海相或泻湖相沉积层,在地质上属于第四纪全新纪Q4 土层,多属于【2】东南海岸土的类别多为淤泥,淤泥质亚黏饱和的正常压密黏土。土。这类地基的主要特点是:具有高含水量、大孔隙、低密度、低强度、高压缩性、低透水性、中等灵敏度等特点;具有一定的结构性。由于这类地基存在这些特点,在软粘土地基上建造建筑物普遍存在稳定及变形的问题。以高速为例,由于高速的路堤高度不大,所以稳定问题并不突出,但是变形问题很明显。目前高速桥头跳车以及高填方段、填挖结合部等位置因地基差异沉降对路面结构造成的不良影响已引起公路建设、设计、监理、施工等部门的日益重视。如何解决高等级公路桥头跳车问题已成为刻不容缓的大事。造成桥头跳车的原因【3】有很多:1、土质不良引起的地基沉陷:土质不良,由此产生沉陷是桥头跳车的主要原因。桥涵通常位于沟壑地方,地下水位较高,此类土天然含水量大于液限,天然孔隙比大,常含有机质,压缩性高,抗剪强度低,一旦受到扰动,天然结构易受破坏,强度便显著降低,桥头路基填筑高度较大,产生基底应力相对较大,在车辆荷载作用下,更容易引起地基沉陷,且变形稳定历时往往持续数年乃至更长的时间。既便是在一些稳定地基,在外荷作用下,也无可避免出现这个问题。2、台后填料的压缩沉降:台后填料一

现代汉语语法的五种分析方法

现代汉语语法的五种分析方法

现代汉语语法的五种分析方法 很有用,请好好学习之。 北语之声论坛专业精华转贴 现代汉语语法的五种分析方法是语法学基础里 很重要的一个内容,老师上课也会讲到,我在这 里把最简略的内容写在下面,希望能对本科生的专业课学习有所帮助 详细阐释中心词分析法、层次分析、变换分析法、语义特征分析法和语义指向分析的具体内涵:一. 中心词分析法: 分析要点: 1.分析的对象是单句; 2.认为句子又六大成分组成——主语、谓语(或述语)、宾语、补足语、形容词附加语(即定语)和副词性附加语(即状语和补语)。 这六种成分分为三个级别:主语、谓语(或述语)是主要成分,宾语、补足语是连 带成分,形容词附加语和副词性附加语是附加成分; 3.作为句子成分的只能是词; 4.分析时,先找出全句的中心词作为主语和谓

语,让其他成分分别依附于它们; 5.分析步骤是,先分清句子的主要成分,再决定有无连带成分,最后指出附加成分。 标记: 一般用║来分隔主语部分和谓语部分,用══标注主语,用——标注谓语,用~~~~~~标注宾语,用()标注定语,用[ ]标注状语,用< >标注补语。 作用: 因其清晰明了得显示了句子的主干,可以一下子把握住一个句子的脉络,适合于中小学语文教学,对于推动汉语教学语法的发展作出了很大贡献。 还可以分化一些歧义句式。比如:我们五个人一组。 (1)我们║五个人一组。(2)我们五个人║一组。 总结:中心词分析法可以分化一些由于某些词或词组在句子中可以做不同的句子成分而造成的歧义关系。 局限性: 1.在一个层面上分析句子,

层次性不强; 2.对于一些否定句和带有修饰成分的句子,往往难以划分; 如:我们不走。≠我们走。 封建思想必须清除。≠思想清除。 3. 一些由于句子的层次关系 不同而造成的歧义句子无法分析; 如:照片放大了一点儿。咬死了猎人的狗。 二. 层次分析: 含义: 在分析一个句子或句法结构时,将句法构造的层次性考虑进来,并按其构造层次逐层进行分析,在分析时,指出每一层面的直接组成成分,这种分析就叫层次分析。 朱德熙先生认为,层次分析不能简单地将其看作是一种分析方法,而是应当看做一种分析原则,是必须遵守的。(可以说说为什么) 层次分析实际包含两部分内容:一是切分,一是定性。切分,是解决一个结构的直接组成成分到底是哪些;而定性,是解决切分所得的直接组成成分之间在句法上是什么关系。

AHP层次分析法详细讲解

AHP层次分析法详细讲解 。它是一种定性和定量相结合的、系统化、层次化的分析方法。由于它在处理复杂的决策问题上的实用性和有效性很快在世界范围得到重视。它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。 层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。不妨用假期旅游为例假如有3个旅游胜地A、B、C供你选择你会根据诸如景色、费用和居住、饮食、旅途等一些准则去反复比较这3个候选地点首先你会确定这些准则在你的心目中各占多大比重如果你经济宽绰、醉心旅游自然分别看重景色而平素俭朴或手头拮据的人则会优先考虑费用中老年旅游者还会对居住、饮食等寄以较大关注。其次你会就每一个准则将3个地点进行对比譬如A 景色最好B次之B费用最低C次之C居住等较好等等。最后你要将这两个层次的比较判断进行综合在A、B、C中确定哪个作为最佳地点。 层次分析法的基本步骤 1、建立层次结构模型。在深入分析实际问题的基础上将有关的各个因素按照不同属性自上而下 2 / 8 AHP指南-层次分析法详解地分解成若干层次同一层的诸因素从属于上一层的因素或对上层因素有影响同时又支配下一层的因素或受到下层因素的作用。最上层为目标层通常只有1个因素最下层通常为方案或对象层中间可以有一个或几个层次通常为准则或指标层。当准则过多时譬如多于9个应进一步分解出子准则层。 2、构造成对比较阵。从层次结构模型的第2层开始对于从属于或影响上一层每个因素的同一层诸因素用成对比较法和1—9比较尺度构追成对比较阵直到最下层。 3、计算权向量并做一致性检验。对于每一个成对比较阵计算最大特征根及对应特征向量利用一致性指标、随机一致性指标和一致性比率做一致性检验。若检验通过特征向量归一化后即为权向量若不通过需重新构追成对比较阵。 4、计算组合权向量并做组合一致性检验。计算最下层对目标的组合权向量并根据公式做组合一致性检验若检验通过则可按照组合权向量表示的结果进行决策否则需要重新考虑模型或重新构造那些一致性比率较大的成对比较阵。 层次分析法的优点运用层次分析法有很多优点其中最重要的一点就是简单明了。层次分析法不仅适用于存在不确定性和主观信息的情况还允许以合乎逻辑的方式运用经验、洞察力和直觉。也许层次分析法最大的优点是提出了层次本身它使得买方能够认真地考虑和衡量指标的相对重要性。 建立层次结构模型将问题包含的因素分层最高层解决问题的目的中间层实现总目标而采取的各种措施、必须考虑的准则等。也可称策略层、约束层、准则层等最低层用于解决问题的各种措施、方案等。把各种所要考虑的因素放在适当的层次内。用层次结构图清晰地表达这些因素的关系。 〔例1〕购物模型某一个顾客选购电视机时对市场正在出售的四种电视机考虑了八项准则作为评估依据建立层次分析模型如下 3 / 8 AHP指南-层次分析法详解〔例2〕选拔干部模型对三个干部候选人y1、y2 、y3按选拔干部的五个标准品德、才能、资历、年龄和群众关系构成如下层次分析模型假设有三个干部候选人y1、y2 、y3按选拔干部的五个标准品德才能资历年龄和群众关系构成如下层次分析模型构造成对比较矩阵比较第 i 个元素与第 j 个元素相对上一层某个因素的重要性时使用数量化的相对权重aij来描述。设共有 n 个元素参与比较则称为成对比较矩阵。

道路设计外文翻译

道路设计外文翻译 摘要部分的翻译: 各种断面形状钢管混凝土的单轴应力应变关系 K.A.S. Susantha ,Hanbin Ge, Tsutomu Usami* 土木工程学院,名古屋大学, Chikusa-ku ,名古屋464-8603, 日本 收讫于2000年5月31日; 正式校定于2000年12月19日; 被认可于2001年2月14日 ?? 摘要 一种预测受三轴压应力混凝土的完全应力-应变曲线的方法被提出,这种三轴压应力是由环形、箱形和八角形的钢管混凝土中的限制作用导致的轴向荷载加测向压力所产生的。有效的经验公式被用来确定施加于环形钢管混凝土柱内混凝土的侧向压力。FEM(有限元)分析法和混凝土-钢箍交互作用模型已被用来估计施加于箱形和八角形柱的混凝土侧向压版权所有2001 Elsevier科学技术有限公司。 力。接着,进行了广泛的参数研究,旨在提出一个经验公式,确定不同的筒材料和结构特性下的最大平均侧向压力。如此计算出的侧向压力通过一个著名经验公式确定出侧向受限混凝土强度。对于高峰之后的应力-应变关系的确定,使用了有效的试验结果。基于这些测试结果,和近似表达式来推算下降段的斜度和各种断面形状的筒内侧向受限混凝土在确认的混凝土强度下的应变。推算出的混凝土强度和后峰值性能在允许的界限内与测试结果吻合得非常好。所提出的模型可用于包括梁柱构件在内的纤维分析,以确定抗震结构设计中混凝土填充钢柱筒的极限状态的推算标准。? 关键词: 钢管混凝土;限制;混凝土强度;延性;应力应变关系;纤维分析 Uniaxial stress–strain relationship of concrete confined by various shaped steel tubes K.A.S. Susantha, Hanbin Ge, Tsutomu Usami * Department of Civil Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan Received 31 May 2000; received in revised form 19 December 2000; accepted 14 February 2001 Abstract

美国农业合作社与农业产业化外文文献翻译中英文

美国农业合作社与农业产业化外文文献翻译中英文最新 (节选重点翻译) 英文 Managing uncertainty and expectations: The strategic response of U.S. agricultural cooperatives to agricultural industrialization Julie Hogeland Abstract The 20th century industrialization of agriculture confronted U.S. agricultural cooperatives with responding to an event they neither initiated nor drove. Agrarian-influenced cooperatives used two metaphors, “serfdom” and “cooperatives are like a family” to manage uncertainty and influence producer expectations by predicting industrialization's eventual outcome and cooperatives’ producer driven compensation. The serfdom metaphor alluded to industrialization's potential to either bypass family farmers, the cornerstone of the economy according to agrarian ideology, or to transform them into the equivalent of piece-wage labor as contract growers. The “family” metaphor reflects how cooperatives personalized the connection between cooperative and farmer-member to position themselves as the exact opposite of serfdom. Hypotheses advanced by Roessl (2005) and Goel (2013) suggest that intrinsic characteristics of family businesses such as a resistance to change and operating according to a myth of unlimited choice and

层次分析法步骤解析—根法、和法、幂法

层次分析法(AHP) AHP(Analytic Hierarchy Process)方法,是由20世纪70年代由美国著名运筹学学家T.L.Satty提出的。它是指将决策问题的有关元素分解成目标、准则、方案等层次,在此基础上进行定性分析和定量分析的一种决策方法。这一方法的特点,是在对复杂决策问题的本质、影响因素及其内在关系等进行深入分析之后,构建一个层次结构模型,然后利用较少的定量信息,把决策的思维过程数学化,从而为求解多准则或无结构特性的复杂决策问题提供了一种简便的决策方法。 AHP十分适用于具有定性的,或定性定量兼有的决策分析。这是一种十分有效的系统分析和科学决策方法,现在已广泛地应用在企业信用评级、经济管理规划、能源开发利用与资源分析、城市产业规划、企业管理、人才预测、科研管理、交通运输、水资源分析利用等方面。 一、递阶层次结构的建立 一般来说,可以将层次分为三种类型: (1)最高层:只包含一个元素,表示决策分析的总目标,因此也称为总目标层。 (2)中间层:包含若干层元素,表示实现总目标所涉及的各子目标,包含各种准则、约束、策略等,因此也称为目标层。 (3)最低层:表示实现各决策目标的可行方案、措施等,也称为方案层。 典型的递阶层次结构如下: 一个好的递阶层次结构对解决问题极为重要,因此在建立递阶层次结构时,应注意到: (1)从上到下顺序地存在支配关系,用直线段(作用线)表示上一层次因素与下一层次因素之间的关系,同一层次及不相邻元素之间不存在支配关系。 (2)整个结构不受层次限制。 (3)最高层只有一个因素,每个因素所支配元素一般不超过9个,元素过多可进一步分层。 (4)对某些具有子层次结构可引入虚元素,使之成为典型递阶层次结构。 二、构造比较判断矩阵 设有m个目标(方案或元素),根据某一准则,将这m个目标两两进行比较,把第i个目标(i=1,2,…,m)对第j个目标的相对重要性记为a ij,(j=1,2,…,m),这样构造的m阶矩阵用于求解各个目标关于某准则的优先权重,成为权重解析判断矩阵,

道路交通安全毕业论文中英文外文翻译文献

道路交通安全毕业论文中英文资料外文翻译文献 毕业论文中英文资料外文翻译视觉零——道路交通安全的一项实施政策罗杰约翰逊道路安全司,瑞典公路管理局,罗达沃根 1,78187 Borlange,瑞典关键词:视觉零、道路安全、实施摘要:本文的范畴是一个提纲,一般来说,道路安全理念本来就存在于现在道路和道路设计中。追踪这种理念的起源,提出了新的街道道路的设计原则有人会争辩说,在目前的道路设计理念的缺陷。是主要的原因全球道路安全危机,清楚表明其人造的性质。一个由决策过程所构成的简短的描述,导致零视觉在 1997 年作为瑞典交通安全政策确立。通过对问题的分析,为寻求解决之道提出建议。这些解决方案基于视觉零中的一些原则。这些措施包括一个用于创建错误容忍的道路系统的新的基本机制,和道路、街道新的设计原则。因此,传统的“怪罪受害者”的质疑和焦点放在了需要专业人士基于这些新的标准所采取的行动。在过去 10 年在瑞典的死亡人数已经从大约 550 /年下降到 450 /年。重新设计的道路中央分隔带已经减少了 80%在死亡。街道以 30 公里/小时的设计速度显示出类似的结果。这表明,从视觉零衍生出来的策略是有效的,但还没有大规模实施。1、过程自 1993 年,在瑞典瑞典公路管理局(SRA)的有一个整体的责任道路交通安全。在 1996 年,这一责任被政府进一步澄清。瑞典已有非常小的部委(人员数)。因此,像 SRA 的管理部门经常有半政治任务,如发展政策和目标。政策决定、长期目标和总体预算是由政府或议会做出的,而发展是在管理部门做出的。继 1994 年秋季瑞典有

了一个新选举的交通部长。交通部长宣布,安全将是她的优先事项之一。部长的工作人员就如何使部长能够做出交通安全优先课题和 SRA之间展开对话。在 1994 年春天,SRA 和主要利益相关者一起对 1994-2000 年的行车安全提出了一项短期方案。它不仅有和先前工作的连续性,而且更加强调关键行动和重视成果之间的协作。这个方案后,直接推动 SRA 开始制定交通安全长期战略的基本思路。它已经被确认为当代一些交通安全问题的范例(约翰逊,1991)。部分问题的原因是许多措施缺乏预期的效益,这被 Gerald Wilde 等承认(2001 年,在 Wilde 中最好的描述)。详细概述可以在经合组织(1990)中找到。即使不是所有的崩溃或冲突是可以避免的,非常严重受伤可以在原则上是可以避免的,新的安全模式——视觉零是建立在这一基本思想上的。基本思想是建立预测碰撞事故,将健康损失控制在容忍范围以内的安全体系。部长和她的工作人员认识到在视觉零的想法和政治背景下工作是可能,迅速采用了这一基本思路,制定了文本(翻译 Belin 等,1997),1997 年在议会上提出这一思路,它被所有的政党接受(Tingvall,1998 年)。从那时起议会多次在不同场合重复这一思路。“视觉零”的概念在其他很多领域已经成为了“高度的政治野心”的代名词。2008 年,政府对视觉零做了一个自杀决定。1995 年,关于视觉零的许多政治辩论和在 1997 年议会的决策都集中在这样的一个问题“死亡人数是多少,我们才能接受?当时,瑞典大约有 500 人死于交通事故中。(比较与其他运输方式情况下作出安全水平,显然是零死亡率的目标),职业安全(每年

相关主题
文本预览
相关文档 最新文档