当前位置:文档之家› 材料力学笔记(材力II)

材料力学笔记(材力II)

材料力学笔记(材力II)
材料力学笔记(材力II)

材料力学(土)笔记

第一章 弯曲问题的进一步研究

1.非对称纯弯曲梁的正应力

当梁不具有纵向对称平面

或者梁虽然具有纵向对称平面,但外力不作用在该平面内时

梁将发生非对称弯曲

这时对称弯曲的正应力公式将不再适用

1.1 非对称纯弯曲梁正应力的普遍公式

若梁的任意横截面上只有弯矩M (其值等于外力偶e M )

取x 轴为梁的轴线,y ,z 轴为横截面上任意一对相互垂直的形心轴

弯矩M 及其在y ,z 轴上的分量y M 和z M 均用矢量表示

对于非对称弯曲,平面假设依然成立

非对称弯曲梁横截面上任一点处正应力的普遍表达式为

2

()()

y z yz z y yz y z yz M zI yI M yI zI I I I σ---=-

上式称为广义弯曲正应力公式

式中y I 、z I 和yz I 依次为横截面对y 轴和z 轴的惯性矩及对y ,z 轴的惯性积 y 和z 代表横截面上任一点的坐标

可解出中性轴与y 轴间的夹角θ为

tan z y y yz

y z z yz M I M I M I M I θ+=+

横截面上的最大拉应力和最大压应力将分别发生在距中性轴最远的点处

对于具有棱角的横截面,其最大拉、压应力必发生在距中性轴最远的截面棱角处

对于周边为光滑曲线的横截面,可平行于中性轴作两直线分别与横截面周边相切于两点 该两点即为横截面上的最大拉、压应力点

将其坐标(,)y z 分别代入广义弯曲正应力公式,即可得横截面上的最大拉应力(压应力) 由于梁危险截面上的最大拉应力,max t σ和最大压应力,max c σ点均处于单轴应力状态 于是根据最大拉、压应力不得超过材料许用拉、压应力的强度条件

即可进行非对称纯弯曲梁的强度计算

1.2 广义弯曲正应力公式的讨论 不论梁是否有纵向对称平面,外力是否作用在纵向对称平面内,广义弯曲正应力公式都适用 即广义弯曲正应力公式包含了对称弯曲情况下的正应力计算公式

①梁具有纵向对称平面,且外力作用在该对称平面内

将0y M =、z M M =、0yz I =代入广义弯曲正应力公式,即得

z

M y I σ=- 上式即为对称弯曲情况下横截面上任一点处的正应力公式

在对称弯曲中已知,梁的挠曲线必定是外力作用平面内的一条平面曲线

这一类弯曲也称为平面弯曲

②梁不具有纵向对称平面

但外力作用在(或平行于)由梁的轴线与形心主惯性轴组成的形心主惯性平面内 将0y M =,z M M =、0yz I =代入广义弯曲整理公式,同样可得上面的公式 上式表明,只要外力作用在(或平行于)梁的形心主惯性平面内

对称弯曲时的正应力哦给你时仍然适用

可得tan θ=∞,90θ?

=,说明中性轴垂直于弯矩(即外力)所在平面

即梁弯曲变形后的挠曲线也将是外力作用平面内的平面曲线,属于平面弯曲范畴 ③梁具有纵向对称平面,但外力的作用平面与纵向对称平面间有一夹角

弯矩M 的矢量与y 轴间的夹角为?,将cos y M M ?=、sin z M M ?=、0yz I =代入 cos sin y z

M M z y I I ??σ=- 此时横截面上任一点处的正应力,可视作两相互垂直平面内对称弯曲情况下正应力的叠加 在此情况下,确定中性轴与y 轴间夹角的公式化简为

tan tan y y z y z z

I I M M I I θ?=?= 对于y z I I ≠,因而θ?≠

即中性轴不再垂直于弯矩(即外力)所在的平面

梁弯曲变形后,其挠曲线不再外力作用的平面内,这类弯曲也称为斜弯曲

2.两种材料的组合梁

设梁由材料1与材料2组成

其弹性模量分别为1E 和2E ,且12E E <,相应的横截面面积分别为1A 和2A

梁在纵对称平面内承受纯弯曲,横截面上的弯矩为M

当梁的两种材料的接触部分紧密结合,在弯曲变形过程中无相对错动时,视作整体 平面假设与单轴应力状态假设依然成立取截面的对称轴和中性轴分别为y 轴和z 轴 由平面假设可知,横截面上各点处的纵向线应变沿截面高度呈线性规律变化

任一点y 处的纵向线应变为

y

ερ=

式中,ρ为中性层的曲率半径

当梁的材料均处于线弹性范围,由单轴应力状态下的胡克定律

可得横截面上材料1与2部分的弯曲正应力分别为

11

22y E y E σρσρ?

=????=?? 由横截面上正应力所构成的法向分布内力系的合成等于内力的静力学关系,即得

1211220N A A dA dA F σσ+==??

121122

A A y dA y dA M σσ+=?? 与同一材料梁在对称弯曲时的推导相仿

若将组合梁的截面变换为仅由材料1构成的截面,则仅需将横截面上材料2的宽度换为

'21

E b b E = 于是两种材料的组合梁可变换为同一材料的均质梁进行计算

同一材料的截面相当于两种材料的实际截面,称为相当截面

应用相当截面,按同一材料梁算出的横截面上的正应力σ

于材料1部分,即为实际的应力

材料2部分(变换宽度部分),必须将其乘以两材料弹性模量之比值21/E E ,才是实际应力

上述按相当截面的计算方法,对于其他形状截面的两种材料组合梁也完全适用 只需将截面高度维持不变,将其宽度折算,即可得到相当于一种材料的相当截面 在计算相当截面时,将原来的截面折算为哪一种材料的相当接面,对计算结果无影响

3.开口薄壁截面梁的切应力·弯曲中心

3.1 开口薄壁截面梁的切应力

对于横向力作用下的非对称开口薄壁截面梁

横向力必须作用在平行于形心主惯性平面的某一特定平面内 才能保证梁只发生平面弯曲而不扭转

这以一特定平面,就是梁在形心主惯性平面内发生弯曲时横截面上剪力s F 所在的纵向平面 若横向力作用在平行于该特定平面的另一纵向平面内

则梁不仅发生平面弯曲,还将发生扭转

3.2开口薄壁截面的弯曲中心

非对称薄壁截面梁,其横截面上剪力Sy F 和Sz F 的作用线教育A 点

为使梁只发生弯曲而不扭转,梁很说那个横向外力所在的纵向平面就必须通过该交点A 这一交点称为截面的弯曲中心,或剪切中心 对于具有一根对称轴的截面,其弯曲中心都在截面的对称轴上

则仅需确定其垂直于对称轴的剪力作用线,剪力作用线与对称轴的交点即为截面的弯曲中心 若截面具有两根对称轴,则两根对称轴的交点(即截面形心)即是弯曲中心

对于由两个狭长矩形组成的截面,由于狭长矩形上的切应力方向平行于长边

且数值沿厚度不变,故剪力作用线必与狭长矩形的中线重合,

其弯曲中心应位于梁狭长矩形中心的交点

弯曲中心的位置仅与横截面的几何特征有关

因为弯曲中心仅决定于剪力作用线的位置,而与其方位及剪力的数值无关

4.开口薄壁截面梁约束扭转的概念

5.平面大曲率杆纯弯曲时的正应力

第二章 考虑材料塑性的极限分析

1.塑性变形·塑性极限分析的假设

1.1塑性变形的特征

塑性变形主要特征

①塑性变形时不可逆的永久变形,一旦产生后,即使荷载卸除也不会消失

产生塑性变形后再卸除荷载,往往会导致受力构件内的残余应力

②应力超过弹性范围后,应力-应变呈非线性关系

③塑性变形与加载的历程有关

应力超过弹性范围后,卸载时的应力-应变关系基本上按平行于弹性阶段的直线呈线性关系 直至达到材料在反向时的屈服极限,这就是材料的卸载规律

在考虑材料的塑性变形时,对于同一应力水平,不同加载过程对应的应变值不同 只有明确了加载过程,才能得到应力、应变间的对应关系

④金属材料的塑性变形远大于弹性变形量

当应力超过弹性范围后,其总应变包含弹性应变和塑性应变

通常所说的塑性变形,是指在常温下、与时间无关的不会消失的永久变形

在高温下随承载持续时间而引起的塑性变形,称为蠕变

1.2 塑性极限分析假设

实际工程中,为简化计算,通常作如下假设

①荷载为单调增加的静荷载,若多个荷载同时作用,则各个荷载按比例同时由零增至最终值 满足上述加载方式的荷载称为简单加载

②结构(或构件)虽局部产生塑性变形,但其总体的变形仍然足够小

因而其变形的几何相容条件仍保持为线性

结构(或构件)由于大的塑性变形变为几何可变机构时,称结构(或构件)达到了极限状态 ③结构(或构件)达到极限状态之前,应始终保持为几何不变体系

④材料具有屈服阶段,在塑性变形较小时,材料的应力-应变关系可理想化为理想塑性模型 其中,一种是不考虑弹性变形的影响,即材料在达到屈服极限之前,应变为零

而在达到屈服极限之后,应力保持不变,应变持续增长,称为刚性-理想塑性模型

另一种是考虑弹性变形的影响,即材料在屈服极限前,应力-应变关系保持为线性,并服从胡克定律,在达到屈服极限后,应力保持不变而应变可继续增长,称为弹性-理想塑性模型

2.拉、压杆系的极限荷载

对于静定的拉、压杆系,当其中受力最大的一杆的应力达到材料的屈服极限时

结构就将产生大的塑性变形而达到极限状态

因此,结构的极限荷载与弹性分析中最大应力达到屈服极限,使杆件开始屈服时荷载相同 对于一次超静定结构,当其中受力最大的杆件的应力达到材料的屈服极限

而使该杆开始屈服时,由于超静定结构存在多余约束,结构并不会产生大的塑性变形 若继续增加荷载,则开始屈服的杆件,其应力保持不变(保持为屈服极限)

其他杆的应力持续增长,直至其他某一杆内的应力也达到屈服极限时

结构开始大的塑性变形变成几何可变机构,而使结构达到极限状态

结构(或构件)开始出现塑性变形时的荷载,称为屈服荷载,记为s F

使结构(或构件)处于极限状态的荷载,称为极限荷载,记为u F

按弹性设计时,结构的破坏荷载为屈服荷载

考虑材料塑性的极限分析时,结构的破坏荷载为极限荷载

3.等直圆杆扭转时的极限扭矩

设直径为d ,长度为l 的等直圆杆承受扭转外力偶矩e M 的作用

圆杆的材料为弹性-理性塑性,其切应力τ与切应变γ的关系如正应力与应变的弹塑性关系 材料的弹性模量为G

弹性阶段,最大切应力和相对扭转角分别为

max 3

16e p M T W d τπ== max 2p l Tl GI Gd

τ?== 杆件开始产生塑性变形,横截面上的扭矩为屈服扭矩,其值为

3

16s p s s d T W πττ==

当几面各点处的切应力均达到s τ时,则横截面上各点处均将发生塑性变形

整个截面进入完全塑性状态,这时不需要再增大外力偶矩,杆件将继续扭转变形 引起大的塑性变形,即杆件达到极限状态

极限状态的极限扭矩为

u s A

T dA ρτ=? 3/220212d u s s s A d T dA d πρτπτρρτ===??

考虑材料的塑性时,增加了圆杆的承载能力

若等直圆杆在达到极限扭矩u T 后,卸除荷载,即反向施加外力偶矩e u M T = 则圆杆的横截面将有残余应力存在,残余应力有以下特征

①卸载后圆杆横截面上的残余应力必自相平衡

②残余应力的最大值为s τ,如在卸载后,继续翻向增大外力偶矩 当外力偶矩增大到23

e s M T =-时,横截面周边处的切应力将达到s τ

若继续增大外力偶矩,τ-γ关系将不再保持线性关系,不能用简单的线性叠加

4.梁的极限弯矩·塑性铰

4.1 纯弯曲梁的极限弯矩

设一承受纯弯曲的矩形截面梁,材料可理想化为弹性-理想塑性模型

且在拉伸和压缩时的弹性模量E 和屈服极限s σ均相同

在线弹性范围内,梁横截面上任一点的正应力与该点到中性轴的距离成正比 其中性轴为横截面的水平对称轴

当梁横截面上的最大正应力达到材料的屈服极限时,梁开始发生塑性变形 横截面上的弯矩为 2

6

s s s bh M W σσ==? 梁的曲率为

12s s E h

σρ??=? ??? 若继续增大外力偶矩,则截面上的弯矩也随之增大

并随着显影的增大,横截面上正应力达到s σ的区域将由其上、下边缘逐渐向中轴扩展 即线应变s εε=的点处的正应力达到s σ,而s εε>各点处的正应力均保持为s σ 这时梁处于弹性-塑性阶段,梁虽已产生塑性变形,但其值不大,是有限的 当整个横截面上各点处的正应力均达到s σ,则整个截面进入完全塑性状态 梁将发生明显的塑性变形而达到极限状态

梁横截面上受拉部分的面积为t A ,受压部分面积为c A ,t c A A =

横截面上轴力N F 是确定中性轴的条件

当梁达到极限状态时,中性轴将横截面分为两个面积相等的部分 对于具有水平对称轴的横截面,其中性轴与该对称轴重合

对于无水平对称轴的横截面,其中性轴将与线弹性范围内工作时的中性轴位置不同 中性或走将随塑性区的增加而不断移动

在极限状态下,横截面上法向内力元素所组成的力偶矩就是梁的极限弯矩u M

u s s M W σ=

s t c W S S =+

t S 和c S 分别为受拉部分的面积t A ,受压部分面积c A 对中性轴的静矩,均取正值 式中,s W 称为塑性弯曲截面系数,对于由水平对称轴的横截面t c S S =,//u s s M M W W =

材料力学笔记(第四章)(可编辑修改word版)

材料力学(土)笔记 第四章弯曲应力 1.对称弯曲的概念及梁的计算简图 1.1弯曲的概念 等直杆在包含其轴线的纵向平面内,承受垂直于杆轴线的横向外力或外力偶作用时 杆的轴线将变成曲线,这种变形称为弯曲 凡是以弯曲为主要变形的杆件,通称为梁 工程中常见的梁,其横截面都具有对称轴 若梁上所有的横向外力或(及)力偶均作用在包含该对称轴的纵向平面(称为纵对称面)内,由于梁的几何、物性和外力均对称于梁的纵对称面,则梁变形后的轴线必定是在该纵对称面内的平面曲线,这种弯曲称为对称弯曲 若梁不具有纵对称面,或者,梁虽然具有纵对称面但横向力或力偶不作用在纵对称面内,这种弯曲统称为非对称弯曲 1.2梁的计算简图 梁的计算简图可用梁的轴线表示 梁的支座按其对梁在荷载作用平面的约束情况,通常可简化为以下三种基本形式 ①固定端 这种支座使梁的端截面既不能移动,也不能转动 对梁端截面有3 个约束,相应地,就有3 个支反力,即水平支反力F Rx ,铅垂支反力F Ry 和支反力偶矩M R ②固定铰支座 这种支座限制梁在支座处沿平面内任意方向的移动,而不限制梁绕铰中心转动,相应地,就有2 个支反力,即水平支反力F Rx 和铅垂支反力F Ry ③可动铰支座 这种铰支座只限制梁在支座处沿垂直于支承面的支反力F R 如果梁具有1 个固定端,或具有1 个固定铰支座和1 个可动铰支座 则其3 个支反力可由平面力系的3 个独立的平衡方程求出,这种梁称为静定梁 工程上常见的三种基本形式的静定梁,分别称为简支梁、外伸梁和悬臂梁 梁的支反力数目多于独立的平衡方程的数目,此时仅用平衡方程就无法确定其所有的支反力,这种梁称为超静定梁 梁在两支座间的部分称为跨,其长度称为梁的跨长 常见的静定梁大多是单跨的 2.梁的剪力和弯矩·剪力图和弯矩图 2.1梁的剪力和弯矩 为计算梁的应力和位移,应先确定梁在外力作用下任一横截面上的内力 当作用在梁上的全部外力(包括荷载和支反力)均为已知时,用截面法即可求出其内力 梁的任一横截面m-m,应用截面法沿横截面m-m 假想地吧梁截分为二 可得剪力F S ,弯矩M 剪力和弯矩的正负号规定 dx 微段有左端向上右端向下的相对错动时,横截面m-m 上的剪力F 为正,反之为负 S dx 微段的弯曲为向下凸,即该段的下半部纵向受拉时,上半部纵向受压时,横截面上的弯矩为正,反之为负 为简化计算,梁某一横截面上的剪力和弯矩可直接从横截面任意一侧梁上的外力进行计算,即

完整版材料力学答案单辉祖版全部答案

第二章轴向拉压应力与材料的力学性能 13} 2-1 试画图示各杆的轴力图。 题2-1图 解:各杆的轴力图如图2-1所示。 图2-1 2-2 试画图示各杆的轴力图,并指出轴力的最大值。图a与b所示分布载荷 均沿杆轴均匀分布,集度为q。 A Bq <1a HD 题2-2图 (a)解:由图2-2a(1)可知, F N(X) 2qa qx 轴力图如图2-2a(2)所示, F N,max 叩 图2-2a (b)解:由图2-2b(2)可知, F R qa F N (X1) F R qa F N(X2)F R q(x2 a) 2qa qx2

F N,max qa 图 2-2b 2-3 图示轴向受拉等截面杆, 横截面面积A=500mm 2,载荷F=50kN 。试求图 示斜截面m-m 上的正应力与切应力,以及杆内的最大正应力与最大切应力。 题图 T ax — 50MPa 2 2-5 某材料的应力-应变曲线如图所示,图中还同时画出了低应变区的详图。 试确定材料的弹 性模量 E 、比例极限 p 、屈服极限s 、强度极限b 与伸长率 判断该材料属于何种类型(塑性或脆性材料) 。 T -sin2 a 50MPa sin( 100 ) 49.2MPa 2 杆内的最大正应力与最大切应力分别为 轴力图如图2-2b(2)所示, ^max lOOMPa F 50 103N — A 500 10- 6 m 2 斜截面m-m 的方位角 a 50,故有 解:该拉杆横截面上的正应力为 1.00 108Pa lOOMPa 题2-5 解:由题图可以近似确定所求各量。 2 2 (T ocos a lOOMPa cos ( 50 ) 41.3MPa A- 220 106Pa Ae 0.001 220 109Pa 220GPa -220MPa , - 240MPa ,并 -440MPa , 3 29.7%

金属材料力学性能最常用的几项指标

金属材料力学性能最常用的几项指标 硬度是评定金属材料力学性能最常用的指标之一。 对于金属材料的硬度,至今在国内外还没有一个包括所有试验方法的统一而明确的定义。就已经标准化的、被国内外普通采用的金属硬度试验方法而言,金属材料硬度的定义是:材料抵抗另一较硬材料压入的能力。硬度检测是评价金属力学性能最迅速、最经济、最简单的一种试验方法。硬度检测的主要目的就是测定材料的适用性,或材料为使用目的所进行的特殊硬化或软化处理的效果。对于被检测材料而言,硬度是代表着在一定压头和试验力作用下所反映出的弹性、塑性、强度、韧性及磨损抗力等多种物理量的综合性能。由于通过硬度试验可以反映金属材料在不同的化学成分、组织结构和热处理工艺条件下性能的差异,因此硬度试验广泛应用于金属性能的检验、监督热处理工艺质量和新材料的研制。金属硬度检测主要有两类试验方法。一类是静态试验方法,这类方法试验力的施加是缓慢而无冲击的。硬度的测定主要决定于压痕的深度、压痕投影面积或压痕凹印面积的大小。静态试验方法包括布氏、洛氏、维氏、努氏、韦氏、巴氏等。其中布、洛、维三种测试方法是最长用的,它们是金属硬度检测的主要测试方法。而洛氏硬度试验又是应用最多的,它被广泛用于产品的检测,据统计,目前应用中的硬度计70%是洛氏硬度计。另一类试验方法是动态试验法,这类方法试验力的施加是动态的和冲击性的。这里包括肖氏和里氏硬度试验法。动态试验法主要用于大型的及不可移动工件的硬度检测。 1.布氏硬度计原理 对直径为D的硬质合金压头施加规定的试验力,使压头压入试样表面,经规定的保持时间后,除去试验力,测量试样表面的压痕直径d,布氏硬度用试验

材料力学答案 第三版 单辉祖 北航教材

附录A 截面几何性质 A-1 试确定图示截面形心C 的横坐标y C 。 题A-1图 (a)解:坐标及微面积示如图A-1a 。 图A-1a ρρA d d d ?= 由此得 α αR ρ ρρρρA A y y R αα R α αA C 3sin 2d d d d cos d 0 = ?== ?????--??? (b)解:坐标及微面积示如图A-1b 。 图A-1b y ay y y h A n d )d (d ==

由此得 2)1(d d 0 ++=?= = ? ??n b n y ay y ay y A ydA y b n b n A C A-2 试计算图示截面对水平形心轴z 的惯性矩。 题A-2图 (a)解:取微面积如图A-2a 所示。 图A-2a y z A d 2d = 由于 α αb y α b y αa z d cos d sin cos === 故有 4πd )cos41(4 d cos cos 2)sin (d 32π 2 π- 3 2π 2π- 22 ab ααab ααb αa αb A y I A z =-= ??= =? ? ? (b)解:取微面积如图A-2b 所示。

图A-2b ??d cos 2 d 2d 22 d y z A == 且?在α与α-之间变化,而 d δ d α2sin -= 由此可得 ) 4 4sin (32)d cos41(64d 2sin 418 d cos 2)sin 2(d 4 4 2422 22 ααd d d d d A y I ααααα αA z -=-==?==????---????? ?? A-4 试计算图示截面对水平形心轴z 的惯性矩。 题A-4图 解:显然, 4 π1264π124 443R a d bh I z - =-= A-5 试计算图a 所示正六边形截面对水平形心轴z 的惯性矩。

常用材料力学性能.

常用材料性质参数 材料的性质与制造工艺、化学成份、内部缺陷、使用温度、受载历史、服役时间、试件尺寸等因素有关。本附录给出的材料性能参数只是典型范围值。用于实际工程分析或工程设计时,请咨询材料制造商或供应商。 除非特别说明,本附录给出的弹性模量、屈服强度均指拉伸时的值。 表 1 材料的弹性模量、泊松比、密度和热膨胀系数 材料名称弹性模量E GPa 泊松比V 密度 kg/m3 热膨胀系数a 1G6/C 铝合金-79 黄铜 青铜 铸铁 混凝土(压 普通增强轻质17-31 2300 2400 1100-1800

7-14 铜及其合金玻璃 镁合金镍合金( 蒙乃尔铜镍 塑料 尼龙聚乙烯 2.1-3.4 0.7-1.4 0.4 0.4 880-1100 960-1400 70-140 140-290 岩石(压 花岗岩、大理石、石英石石灰石、沙石40-100 20-70 0.2-0.3 0.2-0.3 2600-2900 2000-2900 5-9 橡胶130-200 沙、土壤、砂砾钢

高强钢不锈钢结构钢190-210 0.27-0.30 7850 10-18 14 17 12 钛合金钨木材(弯曲 杉木橡木松木11-13 11-12 11-14 480-560 640-720 560-640 1 表 2 材料的力学性能 材料名称/牌号屈服强度s CT MPa 抗拉强度b CT

MPa 伸长率 5 % 备注 铝合金LY12 35-500 274 100-550 412 1-45 19 硬铝 黄铜青铜 铸铁( 拉伸HT150 HT250 120-290 69-480 150 250 0-1 铸铁( 压缩混凝土(压缩铜及其合金 玻璃

材料力学读书笔记刘鸿文第四版

1.??? 2.??? 3.?? 学习好资料欢迎下载 第一章绪论 材料力学基本任务 强度(抵抗破坏) 刚度(抵抗变形) 稳定性(维持平衡) 变形固体的基本假设 连续性 均匀性 各向同性 外力及其分类 表面力(分布力集中力)作用方式 体积力 ?? 4.静载 动载(交变、周期、冲击) 内力、变形与应变 时间变化 线应变切应变(角应变)1Pa=1N/m2MPa应力 5.杆件变形基本形式 ?拉伸与压缩 ?剪切 ?扭转 ?弯曲 第二章拉伸、压缩与剪切 1.轴力、轴力图 拉伸为正压缩为负 2.圣维南原理 离端界面约截面尺寸范围受影响 3.直杆拉伸或压缩时斜截面上的应力 α=0时,σ αmax =σ α=45°,τ αmax =σ/2 4.低碳钢的拉伸性能(铸铁、球墨铸铁) ?弹性阶段(塑形变形、弹性变形比例极限弹性极限胡克定律) ?屈服阶段 ?强化阶段 ?紧缩阶段(局部变形阶段) 塑性指标:伸长率δ(工程上的划分:>5%塑形材料<5%脆性材料)、断面收缩率ψ 卸载定律:应力应变按直线规律变化 冷作硬化:第二次加载时比例极限得到提高,但塑性变形和伸长率有所降低(利用:起重钢索、建筑钢筋常用冷拔工艺提高强度;某些零件喷丸处理使其表面塑形变形形成冷硬层提高表面强度克服:冷作硬化使材料变硬变脆难于加工易产生表面裂纹,工序之间安排退火) 碳素钢随含碳量的增加,屈服极限和强度极限相应提高,但伸长率降低。 铸铁拉伸因没有屈服现象,强度极限成为唯一强度指标。 材料力学性能主要指标:比例极限、屈服极限、强度极限、弹性模量、伸长率、断面收缩

) 率 5. ? ? 6. ? ? ? 7. 8. 学习好资料 欢迎下载 温度和时间对材料力学性能的影响 低温脆性 高温蠕变(松弛) 强度设计 失效(强度不足、刚度不足、稳定性不足 高温、腐蚀等环境 加载方式) 许用应力 强度校核、截面设计、许可载荷强度计算 安全因素选取的考虑因素(载荷、材料、重要性、计算精度、经济性…… 拉伸时横向缩短轴向伸长 泊松比 固体在外力作用下因变形而储存的能量 应变能(功能关系) 拉伸、压缩超静定问题 力学静力平衡方程+几何变形协调方程 温度应力、装配应力 应力集中 几何外形突然变化引起局部应力集中增大(圆弧过渡) 理论应力集中系数(塑形材料静载条件下可以不考虑 脆性材料较敏感 灰铸铁:内部缺 陷和不均匀性) 周期性载荷和冲击载荷应力集中非常危险

工程力学静力学与材料力学(单辉祖谢传锋著)高等教育出版社课后答案

工程力学 静力学与材料力学 (单辉祖 谢传锋 著) 高等教育出版社 课后答案 1-1试画出以下各题中圆柱或圆盘的受力图。与其它物体接触处的摩擦力均略去。 解: 1-2 试画出以下各题中AB 杆的受力图。 (a) B (b) (c) (d) A (e) A (a) (b) A (c) A (d) A (e) (c) (a) (b)

工程力学 静力学与材料力学 (单辉祖 谢传锋 著) 高等教育出版社 课后答案 解: 1-3 试画出以下各题中AB 梁的受力图。 (d) (e) B B (a) B (b) (c) F B (a) (c) F (b) (d) (e)

解: 1-4 试画出以下各题中指定物体的受力图。 (a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。 解: (a) F (b) W (c) (d) D (e) F Bx (a) (b) (c) (d) D (e) W (f) (a) D (b) C B (c) B F D

1-5 试画出以下各题中指定物体的受力图。 (a) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。 解:(a) (d) F C (e) W B (f) F F BC (c) (d) AT F BA F (b) (e)

(b) (c) (d) (e) F AB F A C A A C ’C D D C’ B

材料力学答案第二章

第二章 拉伸、压缩与剪切 第二章答案 2.1 求图示各杆指定截面的轴力,并作轴力图。 40kN 50kN 25kN (a ) 4 4F R F N 4 40kN 3 F N 3 25kN 2F N 2 20kN 11 F N 1 解: F R =5kN F N 4 =F R =5 kN F N 3 =F R +40=45 kN F N 2 =-25+20=-5 kN F N 1 =20kN 45kN 5kN 20kN 5kN

(b) 1 10kN 6kN F N 1 =10 kN F N 2 =10-10=0 F N 3 =6 kN 1—1截面: 2—2截面: 3—3截面:10kN F N 1 1 1 10kN 10kN 2 2 F N 2 6kN 3 3 F N 3 2.2 图示一面积为100mm 200mm的矩形截面杆,受拉力F = 20kN的作用,试求:(1)

6 π = θ的斜截面m-m 上的应力;(2)最大正应力max σ和最大剪应力max τ的大小及其作用面的方位角。 解: 320101MPa 0.10.2 P A σ?===?2 303cos 14 σσα==?=3013sin600.433MPa 2 22 σ τ= = ?=max 1MPa σσ==max 0.5MPa 2 σ τ= =F 2.3 图示一正方形截面的阶梯形混凝土柱。设重力加速度g = 9.8m/s 2, 混凝土的密度为 33m /kg 1004.2?=ρ,F = 100kN ,许用应力[]MPa 2=σ。试根据强度条件选择截面宽度a 和b 。

b a 解: 2 4, a ρ?3 42 2.0410ρ=??11 [] a σσ=0.228m a ≥ = =22 342424431001021040.2282104a b b ρρ=?+?=??+???+???2[], b σσ≥0.398m 398mm b ≥ == 2.4 在图示杆系中,AC 和BC 两杆的材料相同,且抗拉和抗压许用应力相等,同为[]σ。BC 杆保持水平,长度为l ,AC 杆的长度可随θ角的大小而变。为使杆系使用的材料最省,试求夹角θ的值。

材料力学笔记

材料力学(土)笔记 第三章 扭 转 1.概 述 等直杆承受作用在垂直于杆轴线的平面内的力偶时,杆将发生扭转变形 若构件的变形时以扭转为主,其他变形为次而可忽略不计的,则可按扭转变形对其进行强度和刚度计算 等直杆发生扭转变形的受力特征是杆受其作用面垂直于杆件轴线的外力偶系作用 其变形特征是杆的相邻横截面将绕杆轴线发生相对转动,杆表面的纵向线将变成螺旋线 当发生扭转的杆是等直圆杆时,由于杆的物性和横截面几何形状的极对称性,就可用材料力学的方法求解 对于非圆截面杆,由于横截面不存在极对称性,其变形和横截面上的应力都比较复杂,就不能用材料力学的方法来求解 2.薄壁圆筒的扭转 设一薄壁圆筒的壁厚δ远小于其平均半径0r (10 r ≤ δ),其两端承受产生扭转变形的外力偶矩e M ,由截面法可知,圆筒任一横截面n-n 上的内力将是作用在该截面上的力偶 该内力偶矩称为扭矩,并用T 表示 由横截面上的应力与微面积dA 之乘积的合成等于截面上的扭矩可知,横截面上的应力只能是切应力 考察沿横截面圆周上各点处切应力的变化规律,预先在圆筒表面上画上等间距的圆周线和纵向线,从而形成一系列的正方格子 在圆筒两端施加外力偶矩e M 后,发现圆周线保持不变,纵向线发生倾斜,在小变形时仍保持直线 薄壁圆筒扭转变形后,横截面保持为形状、大小均无改变的平面,知识相互间绕圆筒轴线发生相对转动,因此横截面上各点处切应力的方向必与圆周相切。 相对扭转角:圆筒两端截面之间相对转动的角位移,用?来表示 圆筒表面上每个格子的指教都改变了相同的角度γ,这种直角的该变量γ称为切应变 这个切应变和横截面上沿沿圆周切线方向的切应力是相对应的 由于圆筒的极对称性,因此沿圆周各点处切应力的数值相等 由于壁厚δ远小于其平均半径0r ,故可近似地认为沿壁厚方向各点处切应力的数值无变化 薄壁圆筒扭转时,横截面上任意一点处的切应力τ值均相等,其方向与圆周相切 由横截面上内力与应力间的静力学关系,从而得 ?=?A T r dA τ 由于τ为常量,且对于薄壁圆筒,r 可以用其平均半径0r 代替,积分 ?==A r A dA δπ0 2 为圆筒横截面面积,引进π2 00r A =,从而得到 δ τ02A T = 由几何关系,可得薄壁圆筒表面上的切应变γ和相距为l 的两端面间相对扭转角?之间的关系式,式子中r 为薄壁圆筒的外半径 γ?γsin /==l r 当外力偶矩在某一范围内时,相对扭转角?与外力偶矩e M (在数值上等于T )之间成正比 可得τ和r 间的线性关系为 γτG = 上式称为材料的剪切胡克定律,式子中的比例常数G 称为材料的切变模量,其量纲和单位与弹性模量相同,钢材的切边模量的约值为GPa G 80=

材料力学答案解析第二章

第二章 拉伸、压缩与剪切 第二章答案 2.1 求图示各杆指定截面的轴力,并作轴力图。 40kN 50kN 25kN (a ) 4 4F R F N 4 40kN 3 F N 3 25kN 2F N 2 20kN 11 F N 1 解: F R =5kN F N 4 =F R =5 kN F N 3 =F R +40=45 kN F N 2 =-25+20=-5 kN F N 1 =20kN 45kN 5kN 20kN 5kN

(b) 1 10kN 6kN F N 1 =10 kN F N 2 =10-10=0 F N 3 =6 kN 1—1截面: 2—2截面: 3—3截面:10kN F N 1 1 1 10kN 10kN 2 2 F N 2 6kN 3 3 F N 3 2.2 图示一面积为100mm 200mm的矩形截面杆,受拉力F = 20kN的作用,试求:(1)

6 π = θ的斜截面m-m 上的应力;(2)最大正应力max σ和最大剪应力max τ的大小及其作用面的方位角。 解: 320101MPa 0.10.2 P A σ?===?2 303cos 14 σσα==?=3013sin600.433MPa 2 22 σ τ= = ?=max 1MPa σσ==max 0.5MPa 2 σ τ= =F 2.3 图示一正方形截面的阶梯形混凝土柱。设重力加速度g = 9.8m/s 2, 混凝土的密度为 33m /kg 1004.2?=ρ,F = 100kN ,许用应力[]MPa 2=σ。试根据强度条件选择截面宽度a 和b 。

b a 解: 2 4, a ρ?3 42 2.0410ρ=??11 [] a σσ=0.228m a ≥ = =22 342424431001021040.2282104a b b ρρ=?+?=??+???+???2[], b σσ≥0.398m 398mm b ≥ == 2.4 在图示杆系中,AC 和BC 两杆的材料相同,且抗拉和抗压许用应力相等,同为[]σ。BC 杆保持水平,长度为l ,AC 杆的长度可随θ角的大小而变。为使杆系使用的材料最省,试求夹角θ的值。

武汉理工大学《材料力学》考试复习重点笔记

考试复习重点资料(最新版) 资料见第二页 封 面 第1页

材料力学笔记 §1-1材料力学的任务 1.几个术语 ·构件与杆件:组成机械的零部件或工程结构中的构件统称为构件。如图1-1a 所示桥式起重机的主梁、吊钩、钢丝绳;图1-2所示悬臂吊车架的横梁AB,斜杆CD都是构件。实际构件有各种不同的形状,所以根据形状的不同将构件分为:杆件、板和壳、块体.

杆件:长度远大于横向尺寸的构件,其几何要素是横截面和轴线,如图1-3a 所示,其中横截面是与轴线垂直的截面;轴线是横截面形心的连线。 按横截面和轴线两个因素可将杆件分为:等截面直杆,如图1-3a、b;变截面直杆,如图1-3c;等截面曲杆和变截面曲杆如图1-3b。 板和壳:构件一个方向的尺寸(厚度)远小于其它两个方向的尺寸,如图1-4a 和b所示。 块体:三个方向(长、宽、高)的尺寸相差不多的构件, 如图1-4c所示。在本教程中,如未作说明,构件即认为是 指杆件。 ·变形与小变形:在载荷作用下,构件的形状及尺寸发生变化称为变形,如图1-2所示悬臂吊车架的横梁AB,受力后将由原来的位置弯曲到AB′位置,即产生了变形。 小变形:绝大多数工程构件的变形都极其微小,比构件本身尺寸要小得多,以至在分析构件所受外力(写出静力平衡方程)时,通常不考虑变形的影响,而仍可以用变形前的尺寸,此即所谓“原始尺寸原理”。如图1-1a所示桥式起重机主架,变形后简图如图1-1b所示,截面最大垂直位移f一般仅为跨度l 的l/1500~1/700,B支撑的水平位移Δ则更微小,在求解支承反力R A 、R B 时, 不考虑这些微小变形的影响。

材料力学读书笔记 第四版

第一章 绪论 1. 材料力学基本任务 ? 强度(抵抗破坏) ? 刚度(抵抗变形) ? 稳定性(维持平衡) 2. 变形固体的基本假设 ? 连续性 ? 均匀性 ? 各向同性 3. 外力及其分类 ? 表面力(分布力 集中力) ? 体积力 ? 静载 ? 动载(交变、周期、冲击) 4. 内力、变形与应变 线应变 切应变(角应变) 1Pa=1N/m 2 MPa 应力 5. 杆件变形基本形式 ? 拉伸与压缩 ? 剪切 ? 扭转 ? 弯曲 第二章 拉伸、压缩与剪切 1. 轴力、轴力图 拉伸为正 压缩为负 2. 圣维南原理 离端界面约截面尺寸范围受影响 3. 直杆拉伸或压缩时斜截面上的应力 α=0时,σαmax =σ α=45°,ταmax =σ/2 4. 低碳钢的拉伸性能 (铸铁、球墨铸铁) ? 弹性阶段(塑形变形、弹性变形 比例极限 弹性极限 胡克定律) ? 屈服阶段 ? 强化阶段 ? 紧缩阶段(局部变形阶段) 塑性指标:伸长率δ(工程上的划分:>5%塑形材料 <5%脆性材料)、断面收缩率ψ 卸载定律:应力应变按直线规律变化 冷作硬化:第二次加载时比例极限得到提高,但塑性变形和伸长率有所降低(利用:起重钢索、建筑钢筋常用冷拔工艺提高强度;某些零件喷丸处理使其表面塑形变形形成冷硬层提高表面强度 克服:冷作硬化使材料变硬变脆难于加工易产生表面裂纹,工序之间安排退火) 碳素钢随含碳量的增加,屈服极限和强度极限相应提高,但伸长率降低。 铸铁拉伸因没有屈服现象,强度极限成为唯一强度指标。 材料力学性能主要指标:比例极限、屈服极限、强度极限、弹性模量、伸长率、断面收缩率 作用方式 时间变化

材料力学答案解析单辉祖版全部答案解析

* * 第二章轴向拉压应力与材料的力学性能 2-1试画图示各杆的轴力图。 题2-1图 解:各杆的轴力图如图2-1所示。 图2-1 2-2试画图示各杆的轴力图,并指出轴力的最大值。图a与b所示分布载荷均沿杆轴均匀分布,集度为q。 题2-2图 (a)解:由图2-2a(1)可知, qx qa x F- =2 )( N 轴力图如图2-2a(2)所示, qa F2 m ax , N = 图2-2a (b)解:由图2-2b(2)可知, qa F= R

qa F x F ==R 1N )( 22R 2N 2)()(qx qa a x q F x F -=--= 轴力图如图2-2b(2)所示, qa F =m ax N, 图2-2b 2-3 图示轴向受拉等截面杆,横截面面积A =500mm 2 ,载荷F =50kN 。试 求图示斜截面m -m 上的正应力与切应力,以及杆内的最大正应力与最大切应力。 题2-3图 解:该拉杆横截面上的正应力为 100MPa Pa 1000.1m 10500N 105082 63=?=??==-A F σ 斜截面m -m 的方位角, 50-=α故有 MPa 3.41)50(cos MPa 100cos 22=-?== ασσα MPa 2.49)100sin(MPa 502sin 2 -=-?== ασ τα 杆内的最大正应力与最大切应力分别为 MPa 100max ==σσ MPa 502 max == σ τ 2-5 某材料的应力-应变曲线如图所示,图中还同时画出了低应变区的详 图。试确定材料的弹性模量E 、比例极限p σ、屈服极限s σ、强度极限b σ与伸长率δ,并判断该材料属于何种类型(塑性或脆性材料)。 题2-5

材料力学考研复习笔记

材料力学 (一)轴向拉伸与压缩 【内容提要】材料力学主要研究构件在外力作用下的变形、受力与破坏、失效的规律。为设计既安全可靠又经济合理的构件,提供有关强度、刚度与稳定性分析的基本理论与方法。 【重点、难点】重点考察基本概念,掌握截面法求轴力、作轴力图的方法,截面上应力的计算。 【内容讲解】 一、基本概念 强度——构件在外力作用下,抵抗破坏的能力,以保证在规定的使用条件下,不会发生意外的断裂或显著塑性变形。 刚度——构件在外力作用下,抵抗变形的能力,以保证在规定的使用条件下不会产生过分的变形。 稳定性——构件在外力作用下,保持原有平衡形式的能力,以保证在规定的使用条件下,不会产生失稳现象。 杆件——一个方向的尺寸远大于其它两个方向的尺寸的构件,称为杆件或简称杆。根据轴线与横截面的特征,杆件可分为直杆与曲杆,等截面杆与变截面杆。 二、材料力学的基本假设 工程实际中的构件所用的材料多种多样,为便于理论分析,根据它们的主要性质对其作如下假设。 (一)连续性假设——假设在构件所占有的空间内均毫无空隙地充满了物质,即认为是密实的。这样,构件内的一些几何量,力学量(如应力、位移)均可用坐标的连续函数表示,并可采用无限小的数学分析方法。 (二)均匀性假设——很设材料的力学性能与其在构件中的位置无关。按此假设通过试样所测得的材料性能,可用于构件内的任何部位(包括单元体)。 (三)各向同性假设——沿各个方向均具有相同力学性能。具有该性质的材料,称为各向同性材料。 综上所述,在材料力学中,一般将实际材料构件,看作是连续、均匀和各向同性的可变形固体。 三、外力内力与截面法 (一)外力对于所研究的对象来说,其它构件和物体作用于其上的力均为外力,例如载荷与约束力。 外力可分为:表面力与体积力;分布力与集中力;静载荷与动载荷等。

材料力学第二章

材料力学-第二章

————————————————————————————————作者:————————————————————————————————日期:

2005年注册岩土工程师考前辅导精讲班 材料力学 第四讲截面的几何性质 【内容提要】 本节主要了解静矩和形心、极惯性矩和惯性积的概念,熟悉简单图形静矩、形心、惯性矩和惯性积的计算,掌握其计算公式。掌握惯性矩和惯性积平行移轴公式的应用,熟练掌握有一对称轴的组合截面惯性矩的计算方法。准确理解形心主轴和形心主惯性矩的概念,熟悉常见组合截面形心主惯性矩的计算步骤。 【重点、难点】 重点掌握平行移轴公式的应用,形心主轴概念的理解和有一对称轴的组合截面惯性矩的计算步骤和方法 一、静矩与形心 (一)定义 设任意截面如图4-1所示,其面积为A,为截面所在平面内的任意直角坐标系。c 为截面形心,其坐标为,。则 截面对z轴的静矩 截面对轴的静矩 截面形心的位置 (二)特征 1.静矩是对一定的轴而言的,同一截面对不同轴的静矩值不同。静矩可能为

正,可能为负,也可能为零。 2.静矩的量纲为长度的三次方.即。单位为或。 3.通过截面形心的坐标称为形心轴。截面对任一形心轴的静矩为零;反之,若截面对某轴的静矩为零,则该轴必通过截面之形心。 4.若截面有对称轴,则截面对于对称轴的静矩必为零,截面的形心一定在该对称轴上。 5.组合截面(由若干简单截面或标准型材截面所组成)对某一轴的静矩,等于其组成部分对同一轴的静矩之代数和(图4-2),即 合截面的形心坐标为:

二、惯性矩惯性积 (一)定义 设任意截面如图4-3所示,其面积为A,为截面所在平面内任意直角坐标系。则

材料力学性能考试答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 2、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 3、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 4、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 5、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 6、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。 【P32】 答: 212?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承

材料力学考研《材料力学》刘鸿文配套真题与考点总结

材料力学考研《材料力学》刘鸿文配套真题 与考点总结 一、选择题解析 1如图1-1-1所示,四根悬臂梁,受到重量为W的重物由高度为H的自由落体,其中()梁动荷因数K d最大。[西安交通大学2005年研] 图1-1-1 【答案】D ~~ 【解析】物体自由落体条件下的动荷系数: 而ΔA,st=Wl3/(3EI)>ΔB,st=Wl3/(6EI)>ΔC,st=Wl3/(24EI)>ΔD,st =Wl3/(48EI),即ΔD,st最小,K d最大,且。

2图1-1-2所示重量为W的重物从高度h处自由下落在梁上E点,梁上C截面 的动应力σd=K dσst(),式中Δst为静载荷作用下梁上()的静挠度。[北京科技大学2011年研] 图1-1-2 A.D点 B.C点 C.E点 D.D点与E点平均值 【答案】C ~~ 【解析】Δst为静载荷时,在冲击物作用点处产生的静位移。 3当交变应力的()不超过材料疲劳极限时,试件可经历无限次应力循环,而不发生疲劳破坏。[哈尔滨工业大学2000年研] A.应力幅度 B.最小应力 C.平均应力 D.最大应力 【答案】D ~~

【解析】由疲劳极限的定义可知,σ1是材料经过无限次循环而不破坏的最大应力值。 4构件在交变应力作用下发生疲劳破坏,以下结论中错误的是()。[南京航空航天大学1999年研] A.断裂时的最大应力小于材料的静强度极限 B.用塑性材料制成的构件,断裂时有明显的塑性变形 C.用脆性材料制成的构件,破坏时呈脆性断裂 D.断口表面一般可明显地分为光滑区及粗糙状区 【答案】B ~~ 【解析】在交变应力作用下,即使塑性较好的材料,断裂时也没有明显的塑性变形。 反映固体材料强度的两个指标一般是指()。[北京科技大学2010年研] A.屈服极限和比例极限 B.弹性极限和屈服极限 C.强度极限和断裂极限 D.屈服极限和强度极限 【答案】D ~~ 【解析】衡量塑性材料的强度指标为屈服极限,衡量脆性材料强度的指标为强度极限。 3根据小变形假设,可以认为()。[西安交通大学2005年研] A.构件不变形 B.构件不破坏

材料力学答案单辉祖版全部答案

第二章 轴向拉压应力与材料的力学性能 2-1 试画图示各杆的轴力图。 题2-1图 解:各杆的轴力图如图2-1所示。 图2-1 2-2试画图示各杆的轴力图,并指出轴力的最大值。图a 与b 所示分布载荷 均沿杆轴均匀分布,集度为q 。 题2-2图 (a)解:由图2-2a(1)可知, qx qa x F -=2)(N 轴力图如图2-2a(2)所示, qa F 2m ax ,N = 图2-2a (b)解:由图2-2b(2)可知, qa F =R qa F x F ==R 1N )( 22R 2N 2)()(qx qa a x q F x F -=--=

轴力图如图2-2b(2)所示, qa F =m ax N, 图2-2b 2-3 图示轴向受拉等截面杆,横截面面积A =500mm 2 ,载荷F =50kN 。试求图 示斜截面m -m 上的正应力与切应力,以及杆的最大正应力与最大切应力。 题2-3图 解:该拉杆横截面上的正应力为 100MPa Pa 1000.1m 10500N 10508 2 63 =?=??== -A F σ 斜截面m -m 的方位角, 50-=α故有 MPa 3.41)50(cos MPa 100cos 22=-?== ασσα MPa 2.49)100sin(MPa 502sin 2 -=-?== ασ τα 杆的最大正应力与最大切应力分别为 MPa 100max ==σσ MPa 502 max == σ τ 2-5 某材料的应力-应变曲线如图所示,图中还同时画出了低应变区的详图。 试确定材料的弹性模量E 、比例极限p σ、屈服极限s σ、强度极限b σ与伸长率δ,并判断该材料属于何种类型(塑性或脆性材料)。 题2-5 解:由题图可以近似确定所求各量。 220GPa Pa 102200.001 Pa 10220ΔΔ96=?=?≈=εσE MPa 220p ≈σ, MPa 240s ≈σ MPa 440b ≈σ, %7.29≈δ

工程材料力学性能-第 版答案 束德林

《工程材料力学性能》束德林课后答案 机械工业出版社 2008第2版 第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指 数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对 组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格

(完整版)材料力学笔记(第四章)

材料力学(土)笔记 第四章 弯曲应力 1.对称弯曲的概念及梁的计算简图 1.1 弯曲的概念 等直杆在包含其轴线的纵向平面内,承受垂直于杆轴线的横向外力或外力偶作用时 杆的轴线将变成曲线,这种变形称为弯曲 凡是以弯曲为主要变形的杆件,通称为梁 工程中常见的梁,其横截面都具有对称轴 若梁上所有的横向外力或(及)力偶均作用在包含该对称轴的纵向平面(称为纵对称面)内,由于梁的几何、物性和外力均对称于梁的纵对称面,则梁变形后的轴线必定是在该纵对称面内的平面曲线,这种弯曲称为对称弯曲 若梁不具有纵对称面,或者,梁虽然具有纵对称面但横向力或力偶不作用在纵对称面内,这种弯曲统称为非对称弯曲 1.2 梁的计算简图 梁的计算简图可用梁的轴线表示 梁的支座按其对梁在荷载作用平面的约束情况,通常可简化为以下三种基本形式 ①固定端 这种支座使梁的端截面既不能移动,也不能转动 对梁端截面有3个约束,相应地,就有3个支反力,即水平支反力Rx F ,铅垂支反力Ry F 和支反力偶矩R M ②固定铰支座 这种支座限制梁在支座处沿平面内任意方向的移动,而不限制梁绕铰中心转动,相应地,就有2个支反力,即水平支反力Rx F 和铅垂支反力Ry F ③可动铰支座 这种铰支座只限制梁在支座处沿垂直于支承面的支反力R F 如果梁具有1个固定端,或具有1个固定铰支座和1个可动铰支座 则其3个支反力可由平面力系的3个独立的平衡方程求出,这种梁称为静定梁 工程上常见的三种基本形式的静定梁,分别称为简支梁、外伸梁和悬臂梁 梁的支反力数目多于独立的平衡方程的数目,此时仅用平衡方程就无法确定其所有的支反力,这种梁称为超静定梁 梁在两支座间的部分称为跨,其长度称为梁的跨长 常见的静定梁大多是单跨的 2.梁的剪力和弯矩·剪力图和弯矩图 2.1 梁的剪力和弯矩 为计算梁的应力和位移,应先确定梁在外力作用下任一横截面上的内力 当作用在梁上的全部外力(包括荷载和支反力)均为已知时,用截面法即可求出其内力 梁的任一横截面m-m ,应用截面法沿横截面m-m 假想地吧梁截分为二 可得剪力S F ,弯矩M 剪力和弯矩的正负号规定 dx 微段有左端向上右端向下的相对错动时,横截面m-m 上的剪力S F 为正,反之为负 dx 微段的弯曲为向下凸,即该段的下半部纵向受拉时,上半部纵向受压时,横截面上的弯 矩为正,反之为负 为简化计算,梁某一横截面上的剪力和弯矩可直接从横截面任意一侧梁上的外力进行计算,即

[理学]材料力学答案第三版单辉祖

第二章轴向拉压应力与材料的力学性能 2-1 试画图示各杆的轴力图。 题2-1图 解:各杆的轴力图如图2-1所示。 图2-1 2-2试画图示各杆的轴力图,并指出轴力的最大值。图a与b所示分布载荷均沿杆轴 均匀分布,集度为q。 题2-2图 (a)解:由图2-2a(1)可知, F(x),2qa,qxN 轴力图如图2-2a(2)所示,

1 F,2qaN,max 图2-2a (b)解:由图2-2b(2)可知, F,qaR F(x),F,qaN1R F(x),F,q(x,a),2qa,qxN2R22轴力图如图2-2b(2)所示, F,qaN,max 图2-2b 22-3 图示轴向受拉等截面杆,横截面面积A=500mm,载荷F=50kN。试求图示斜截 面m-m上的正应力与切应力,以及杆内的最大正应力与最大切应力。 题2-3图

解:该拉杆横截面上的正应力为 3F50,10N8ζ ,,,1.00,10Pa,100MPa,62A500,10m ,α,,50,斜截面m-m的方位角故有 2 22, ζ,ζcosα,100MPa,cos(,50),41.3MPa, ζ,η,sin2α,50MPa,sin(,100),,49.2MPa α2 杆内的最大正应力与最大切应力分别为 ζ,ζ,100MPa max ζη,,50MPa max2 2-5 某材料的应力-应变曲线如图所示,图中还同时画出了低应变区的详图。试确定材料的弹性模量E、比例极限、屈服极限、强度极限与伸长率,并判断该材料属,,,,psb于何种类型(塑性或脆性材料)。 题2-5 解:由题图可以近似确定所求各量。 6Δζ220,10Pa9 E,,,220,10Pa,220GPaΔε0.001 ζ,220MPa, ζ,240MPaps ζ,440MPaδ,29.7% , b

相关主题
文本预览
相关文档 最新文档