当前位置:文档之家› 材料力学复习笔记41页

材料力学复习笔记41页

材料力学复习笔记41页
材料力学复习笔记41页

材料力学

(一)轴向拉伸与压缩

【内容提要】

材料力学主要研究构件在外力作用下的变形、受力与破坏、失效的规律。为设计既安全可靠又经济合理的构件,提供有关强度、刚度与稳定性分析的基本理论与方法。

【重点、难点】

重点考察基本概念,掌握截面法求轴力、作轴力图的方法,截面上应力的计算。

【内容讲解】

一、基本概念

强度——构件在外力作用下,抵抗破坏的能力,以保证在规定的使用条件下,不会发生意外的断裂或显著塑性变形。

刚度——构件在外力作用下,抵抗变形的能力,以保证在规定的使用条件下不会产生过分的变形。

稳定性——构件在外力作用下,保持原有平衡形式的能力,以保证在规定的使用条件下,不会产生失稳现象。

杆件——一个方向的尺寸远大于其它两个方向的尺寸的构件,称为杆件或简称杆。

根据轴线与横截面的特征,杆件可分为直杆与曲杆,等截面杆与变截面杆。

二、材料力学的基本假设

工程实际中的构件所用的材料多种多样,为便于理论分析,根据它们的主要性质对其作如下假设。

(一)连续性假设——假设在构件所占有的空间内均毫无空隙地充满了物质,即认为是密实的。这样,构件内的一些几何量,力学量(如应力、位移)均可用坐标的连续函数表示,并可采用无限小的数学分析方法。

(二)均匀性假设——很设材料的力学性能与其在构件中的位置无关。按此假设通过试样所测得的材料性能,可用于构件内的任何部位(包括单元体)。

(三)各向同性假设——沿各个方向均具有相同力学性能。具有该性质的材料,称为各向同性材料。

综上所述,在材料力学中,一般将实际材料构件,看作是连续、均匀和各向同性的可变形固体。

三、外力内力与截面法

(一)外力对于所研究的对象来说,其它构件和物体作用于其上的力均为外力,例如载荷与约束力。

外力可分为:表面力与体积力;分布力与集中力;静载荷与动载荷等。

当构件(杆件)承受一般载荷作用时,可将载荷向三个坐标平面(三个平面均通过杆的轴线,其中两个平面为形心主惯性平面)内分解,使之变为两个平面载荷和一个扭转力偶作用情况。在小变形的情况下,三个坐标平面内的力互相独立,即一个坐标平面的载荷只引起这一坐标平面内的内力分量,而不会引起另一坐标平面内的内力分量。此即小变形条件的叠加法。

(二)内力与截面法

内力在外力作用下,构件发生变形,同时,构件内部相连各部分之间产生相互作用力,由于外力作用,构件内部相连两部分之间的相互作用力,称为内力。

截面法将构件假想地截(切)开以显示内力,并由平衡条件建立内力与部分外力间的关系或由部分外力确定内力的方法,称为截面法。

由连续性假设可知,内力是作用在切开面截面上的连续分布力。称连续分布内力。将连续分布内力向横截面的形心C简化,得主矢与主矩。为了分析内力,沿截面轴线建立轴,在所切横截

面内建立轴和轴,并将主矢与主矩沿x、y、z三轴分解,得内力分量,以及内力偶矩分量。这些内力及内力偶矩分量与作用在保留杆段上的部分外力,形成平衡力系,并由相应的平衡方程,建立内力与部分外力间的关系,或由部分外力确定内力。内力分量及内力偶矩分量,统称为内力分量。

(三)应力正应力与剪应力

为了描述内力的分布情况,引入内力分布集度即应力的概念。平均应力在截面m—m上任一点K 的周围取一微面积△A,设作用于该面积上的内力为△P,则△A内的平均应力:

单元体(微体)围绕某点(如K).切取一无限小的六面体,称为单元体(或微体)。为全面研究一点处在不同方位的截面上的应力(称为一点的应力状态)而切取的研究对象之一。

四、轴向拉伸与压缩的力学模型

轴向拉伸与压缩是杆件受力或变形的一种最基本的形式。

受力特征作用于等直杆两端的外力或其合力的作用线沿杆件的轴线,一对大小相等、矢向相反。

变形特征受力后杆件沿其轴向方向均匀伸长(缩短)即杆件任意两横截面沿杆件轴向方向

产生相对的平行移动。

拉压杆以轴向拉压为主要变形的杆件,称为拉压杆或轴向受力杆。作用线沿杆件轴向的载荷,称为轴向载荷

五、轴力轴力图

㈠轴力

拉压杆横截面上的内力,其作用线必是与杆轴重合,称为轴力。用N_表示。是拉压杆横截面上唯一的内力分量。

轴力N符号规定拉力为正,压力为负。

根据截面法和轴力N正负号规定,可得计算拉压杆轴力N的法则:横截面上的轴力N,在数值上等于该截面的左侧(或右侧)杆上所有轴向外力的代数和。

无论左侧或右侧杆上,方向背离截面的轴向外力均取正值:反之则取负值。

(二)轴力图

表示沿杆件轴向各横截面上轴力变化规律的图线。称为轴力图或N图。以x轴为横坐标平行于杆轴线,表示横截面位置,以N轴为纵坐标,表示相应截面上的轴力值。

六、拉压杆横截上、斜截面上的应力

(一) 拉压杆横截上的应力

(二)拉压杆斜截面上的应力

由拉压杆横截面上的应力均匀分布,可推断斜截面上的应力,也为均匀分布,且其方向必与杆轴平行。

斜截面上

剪应力符号规定:将截面外法线,沿顺时方向旋转900,与该方向同向的剪应力为正。

七、材料拉压时力学性能强度条件

㈠破坏(失效)许用应力

由于脆性材料均匀性较差,且断裂又是突然发生的,其达到极限应力时的危险性要比塑性材料大的多,因此,在普通荷载作用下,比大,一般取 =1.5~2.0;对脆性材料规定取 =2.5~3.0,甚至更大。

㈡强度条件

利用上述条件,可解决以下三类问题。

1.校核强度_

当已知拉压杆所受外力,截面尺寸和许用应力,通过比较工作应力与许用应力大小,以判断该杆在所受外力作用下能否安全工作。

2.选择截面尺寸

若已知拉压杆所受外力和许用应力,由强度条件确定该杆所需截面面积。对于等截面拉压杆,其所需横截面面积为

3.确定承载能力

若已知拉压杆截面尺寸和许用应力,由强度条件可以确定该杆所能承受的最大轴力,其值为

八、轴向拉压变形轴向拉压应变能

当杆件承受轴向载荷后,其轴向与横向尺寸均发生变化,杆件沿轴向方向的变形称为轴向变形或纵向变形;垂直于轴向方向的变形称为横向变形。与此同时,杆件因变形而贮存的能量,称为应变能。

(一)轴向变形与胡克定律

试验表明:轴向拉伸时,轴向伸长,横向尺寸减小;轴向压缩时,轴向缩短,横向尺寸增大,即横向线应变与轴向线应变恒为异号。且在比例极限内,横向线应变与轴向线应变成正比。比例系数用表示,称为泊松比。它是一个常数,其值随材料而异,由试验测定。

材料的弹性模量E、泊松比v与剪变模量G之间存在如下关系:

当已知任意两个弹性常数,即可由上式确定第三个弹性常数,可见各向同性材料只有两个独立的弹性常数。

(三)轴向拉压应变能

应变能在外力作用下,杆件发生变形,力在相应的位移上作功,同时在杆内贮存的能量称为应变能。用W表示外力功,用U表示相应应变能。在线弹性范围内,在静载荷作用下,杆内应变能等于外力功

轴向拉压应变能:

【例题1】等直杆承受轴向载荷如图,其相应轴力图为()。

A. (A)

B. (B)

C. (C)

D. (D)

答案:A

【例题5】在相距2m的AB两点之间,水平地悬挂一根直径d=1mm的钢型在中点C逐渐增加荷载P。设钢丝在断裂前服从虎克定律,E=2x 1O5MPa,在伸长率达到0.5%时拉断,则断裂时钢丝内的应力和C点的位移分别为( )

A.26.5

B. 51

C. 63.6

D. 47.1

答案:B

【例题8】低碳钢拉伸经过冷作硬化后,以下四种指标中得到提高为在()。

A. 强度极限

B. 比例极限

C. 断面收缩率

D. 伸长率(延伸率)

答案:B

(二)剪切

【内容提要】

本讲主要讲连接件和被连接件的受力分析,区分剪切面与挤压面的区别,剪切和挤压的计算分析,剪力互等定理的意义及剪切虎克定律的应用。

【重点、难点】

本讲的重点是剪切和挤压的受力分析和破坏形式及其实用计算,难点是剪切面和挤压面的区分,挤压面积的计算。

一、实用(假定)计算法的概念

螺栓、销钉、铆钉等工程上常用的连接件及其被连接的构件在连接处的受力与变形一般均较复杂,要精确分析其应力比较困难,同时也不实用,因此,工程上通常采用简化分析方法或称为实用(假定)计算法。具体是:

1.对连接件的受力与应力分布进行简化假定,从而计算出各相关部分的“名义应力”;

2.对同样连接件进行破坏实验,由破坏载荷采用同样的计算方法,确定材料的极限应力。

然后,综合根据上述两方面,建立相应的强度条件,作为连接件设计的依据。实践表明,只要简化假定合理,又有充分的试验依据,这种简化分析方法是实用可靠的。

二、剪切与剪切强度条件

当作为连接件的铆钉、螺栓、销钉、键等承受一对大小相等、方向相反、作用线互相平行且相距很近的力作用时,当外力过大;其主要破坏形式之一是沿剪切面发生剪切破坏,如图2-1所示的铆钉连接中的铆钉。因此必须考虑其剪切强度问题。

连接件(铆钉)剪切面上剪应力r:假定剪切面上的剪应力均匀分布。于是,剪应力与相应剪应力强度条件分别为

(2-1)

(2-2)

式中:为剪切面上内力剪力;为剪切面的面积;[ ]为许用剪应力,其值等于连接件的剪切强度极限除以安全系数。如上所述,剪切强度极限值,也是按式(2-1)由剪切破坏载荷确定的。

需要注意,正确确定剪切面及相应的剪力。例如图2-1(a)中铆钉只有一个剪切面,而图

2-1(b) 中铆钉则有两个剪切面。相应的剪力值均为P。

三、挤压与挤压强度条件

在承载的同时,连接件与其所连接的构件在相互直接接触面上发生挤压,因而产生的应力称为挤压应力。当挤压应力过大时,将导致两者接触面的局部区域产生显著塑性变形,因而影响它们的正常配合工作,连接松动。为此必须考虑它们的挤压强度问题。如图2—2所示的铆钉连接中的铆钉与钢板间的挤压。

连接件与其所连接的构件,挤压面上挤压应力。:假定挤压面上的挤压应力均匀分布。于是;挤压应力,与相应的挤压强度条件分别为

式中:Pc为挤压面上总挤压力;Ac为挤压面的面积。当挤压面为半圆柱形曲面时取垂直挤压力方向直径投影面积。如图2—2所示的取Ac=dt。[]为许用挤压应力其值等于挤压极限应力除以安全系数。在实用(假定)计算中的许用剪应力[]、许用挤压应力[ ],与许用拉应力[]之间关系有:对于钢材

[ ]=(0.75~0.80)[ ]

[]=(1.70~2.00)[]

四、纯剪切与剪应力互等定理

(一) 纯剪切:若单元体上只有剪应力而无正应力作用,称为纯剪切。如图2-3(a)所示,是单元体受力最基本、最简单的形式之一。

在剪应力作用下.相邻棱边所夹直角的改变量.称为剪应变,用表示,其单位为rad。如图

2-3(b)所示。

(二)剪应力互等定理:在互相垂直的两个平面上,垂直于两平面交线的剪应力,总是大小相等,而方向则均指向或离开该交线(图2-3),即

证明:设单元体边长分别为,单元体顶、底面剪应力为,左、右侧面的剪应力为(图2-4a)则由平衡方程

同理可证,当有正应力作用时(图2-3b),剪应力互等定理仍然成立

五、剪切胡克定律

试验表明,在弹性范围内,剪应力不超过材料的剪应力比例极限,剪应力与剪应变成正比,即

式中G称为材料的剪变模量。上述关系称为剪切胡克定律。

试验表明,对于各向同性材料,材料的三个弹性常数,有下列关系

上述关系式同样可从纯剪切时应力、应变关系中导得。所以,当知道任意两个弹性常数后,由上式可以确定第三个弹性常数。即E、G、v间只有两个独立常数。

【例题1】如图所示圆截面杆件,承受轴向拉力P作用,设拉杆的直径为d,端部墩头的直径为D,厚度为,已知许用应力[ ]=120MPa,许用剪应力[]=90MPa,许用挤压应力

[]=240MPa。试根据强度方面要求,则D,d,三者间的合理比值为()。

A.1:1:1 B.1:1.223:0.335 C.1.223:1:0.335 D:0.335:1:1.223 答案:C

【例题2】如图所示光圆钢筋,一端置于混凝土中,另一端外伸端施加一拉力P。(称钢筋与混

凝土之间抗拔力试验)。已知钢筋的直径d=14mm,埋置长度=300mm, P=20kN,则钢筋与混凝土接触面间平均剪应力为。

A. B. C. D.

答案:D

【例题3】一外径为250mm,壁厚为lOmm的钢管柱,底部垫置直径为d 的圆钢板,立于混凝土底座上(如图所示)。已知混凝土的许用挤压应力为15MPa,钢的许用挤压应力为150 MPa,管

柱能够承受的最大荷载P及所需钢板的最小直径d分别为。

A.1000310

B.1130310

C.1200310

D. 1200300

答案:B

【例题4】矩形截面的钢板拉伸试件,如图所示。为了使拉力P通过试件的轴线,在试件两端部,开有圆孔,孔内插入销钉,作用于试件设试件与销钉的材料相同,其许用剪应力[ ]=1OOMPa,许用挤压应力[]c=300MPa,许用拉应力[]=170MPa,试件拉伸时的强度极限=400MPa,为了使试件仅在中部被拉断,则该试件端部,所需尺寸的大小为( )。(试件中部横截面尺寸为20mm.5mm).

A.16 40 70

B.27 40 70

C.27 40 74 C.16 40 80

答案:C

【例题5】如图所示铆钉连接,已知铆钉的直径d=20mm,许用剪应力[]=130MPa,许用挤压应力=300MPa,钢板的许用拉应力[ ]=170MPa,则该连接的许可荷载[P]为( )。

A.180

B. 238

C. 245

D. 306

答案:A

【例题6】如图所示对接式螺栓连接,主板厚=10mm,盖板厚=6mm,板宽均为=250mm,已知螺栓直径d=20mm,许用剪应力[]=130MPa,设用挤压应力300MPa,钢板的许用

拉应力[]=170MPa,承受轴向拉力P=300kN,螺栓排列每列最多为二个,则该连接每边所需要的螺栓个数最少为( )。

A.3个

B. 4个

C. 5个

D. 6个

答案:C

【例题7】如图所示一横截面边长为200mm的正方形混凝土柱,竖立在边长=1m的正方形混凝土基础板上。柱顶上作用轴向压力P=100kN,设地基对混凝土板的支承压力为均匀分布,混凝土的许用抗剪应力[]=1.5MPa,则柱不会穿过混凝土板,板应有的最小厚度为( )。

A.70

B. 75

C. 80

D. 85

答案:C

【例题8】如图所所示摇臂,承受P1和P2作用。已知载荷P1=50kN,轴销D材料的许用剪应力[]=100MPa,许用挤压应力[ ]=240MPa,则轴销的最小直径d为( )。

A. 14

B. 15

C. 16

D. 17

答案:B

【例题9】一钢杆,直径为15mm,长度为5m,用直径为15mm的螺栓连接,固定在两墙之间。(没有任何初应力),如图所示,已知钢的,E=200GPa,若螺栓内产生的剪应力=60MPa时的温差△T0℃为()。

A.30℃ B.40℃ C.50℃ D.60℃

答案:C

(三) 扭转

【内容提要】

扭转是杆件的又一种基本变形形式,本节主要学习杆件发生扭转时的受力和变形特点,熟悉传动轴的外力偶矩计算,掌握求扭矩和作扭矩图的方法。掌握横截面上剪应力分布规律和剪应力计算,了解斜截面上的应力计算,掌握剪应力强度条件的应用。熟悉圆截面极惯性矩,抗扭截

面系数计算公式的应用。熟悉圆截面杆扭转角的计算和刚度条件的应用,了解受扭圆杆应变能的计算。

【重点、难点】

求扭矩和作扭矩图的方法,横截面上剪应力分布规律和剪应力计算,剪应力强度条件。

【内容讲解】

一、扭转的概念

受力特征:杆两端承受一对力偶矩相等.转向相反作用面与杆轴线相垂直的外力偶作用。

变形特征:杆件各横截面绕轴线作相对旋转。

截面间轴线的相对角位移,称为扭转角,用表示。杆件表面上的纵向线同时倾斜了一个角,即剪应变。以扭转变形为主要变形的直杆,简称为轴。

二、传动轴外力偶矩

传动轴所传递的功率、转速与外力偶矩之间关系

式中P为传递功率,常用单位为kW(千瓦),为转速,常用单位为r/min(转每分),T为外力偶矩,常用单位为N?m(牛?米)。

三、扭矩扭矩图

扭矩:受扭杆件横截面上产生的内力,是一个在横截面平面内的力偶,其力偶矩称为扭矩,用表示。

扭矩正负号规定扭矩以右手法则表示扭矩矢量方向,若该矢量方向与截面外向法线方向一致时为正,反之为负。

扭矩计算应用截面法和扭矩正负号的规定,可直接根据横截面左侧(或右侧)杆上作用的外力偶矩,计算该横截面上的扭矩法则:某横截面上的扭矩,在数值上等于该截面的左侧(或右侧)杆上所有外力偶矩的代数和,外力偶矩矢量方向(按右手法则离开该横截面的均取正值,反之取

负值。

扭矩图表示沿杆轴线各横截面上扭矩变化规律的图线。以横坐标轴表示横截面的位置.纵坐标表示相应横截面上扭矩。

根据平面假设,应用几何、物理与静力学三方面,可建立圆截面轴扭转剪应力,变形公式。

四、圆轴扭转剪应力与强度条件

(一)横截面上的剪应力

1.剪应力分布规律横截面上任一点的剪应力,其值与该点到圆心的距离成正比,方向垂直于该点所在的半径。剪应力沿截面半径线性变化。如下图所示。

2.剪应力计算公式横截面上距圆心为的任一点处剪应力。

横截面上最大剪应力,发生在横截面边缘各点处( ),其值为

上列两式中:为所要求剪应力的点所在横截面上的扭矩,称为截面的极惯性矩,称为抗扭截面系数。

、是仅与横截面尺寸有关的几何量,分别为实心圆截面。(直径为d)

空心圆截面(外径为D.内径为;

(二)圆轴扭转强度条件

为了保证圆轴扭转工作时,不致因强度不够而破坏,最大剪应力不得超过材料的扭转许用剪应力[],即要求,强度条件:

对于等截面圆轴

式中[]为扭转(纯剪切)许用剪应力,其值与许用应力[ ]之间存在下述关系:对于塑性材料.﹝0.5~0.577﹞[]

对于脆性材料,﹝0.8~1.0﹞

式中,代表许用拉应力。

由上述强度条件,可对受扭圆轴进行强度校核、截面设计以及许可载荷的确定等三类问题的计算。

五、圆轴扭转变形与刚度条件

(一)圆轴扭转变形

单位长度的扭转角,即扭转角沿轴线的变化率.

对于在长度范围内,均为常量,则扭转角

材料力学笔记(第四章)(可编辑修改word版)

材料力学(土)笔记 第四章弯曲应力 1.对称弯曲的概念及梁的计算简图 1.1弯曲的概念 等直杆在包含其轴线的纵向平面内,承受垂直于杆轴线的横向外力或外力偶作用时 杆的轴线将变成曲线,这种变形称为弯曲 凡是以弯曲为主要变形的杆件,通称为梁 工程中常见的梁,其横截面都具有对称轴 若梁上所有的横向外力或(及)力偶均作用在包含该对称轴的纵向平面(称为纵对称面)内,由于梁的几何、物性和外力均对称于梁的纵对称面,则梁变形后的轴线必定是在该纵对称面内的平面曲线,这种弯曲称为对称弯曲 若梁不具有纵对称面,或者,梁虽然具有纵对称面但横向力或力偶不作用在纵对称面内,这种弯曲统称为非对称弯曲 1.2梁的计算简图 梁的计算简图可用梁的轴线表示 梁的支座按其对梁在荷载作用平面的约束情况,通常可简化为以下三种基本形式 ①固定端 这种支座使梁的端截面既不能移动,也不能转动 对梁端截面有3 个约束,相应地,就有3 个支反力,即水平支反力F Rx ,铅垂支反力F Ry 和支反力偶矩M R ②固定铰支座 这种支座限制梁在支座处沿平面内任意方向的移动,而不限制梁绕铰中心转动,相应地,就有2 个支反力,即水平支反力F Rx 和铅垂支反力F Ry ③可动铰支座 这种铰支座只限制梁在支座处沿垂直于支承面的支反力F R 如果梁具有1 个固定端,或具有1 个固定铰支座和1 个可动铰支座 则其3 个支反力可由平面力系的3 个独立的平衡方程求出,这种梁称为静定梁 工程上常见的三种基本形式的静定梁,分别称为简支梁、外伸梁和悬臂梁 梁的支反力数目多于独立的平衡方程的数目,此时仅用平衡方程就无法确定其所有的支反力,这种梁称为超静定梁 梁在两支座间的部分称为跨,其长度称为梁的跨长 常见的静定梁大多是单跨的 2.梁的剪力和弯矩·剪力图和弯矩图 2.1梁的剪力和弯矩 为计算梁的应力和位移,应先确定梁在外力作用下任一横截面上的内力 当作用在梁上的全部外力(包括荷载和支反力)均为已知时,用截面法即可求出其内力 梁的任一横截面m-m,应用截面法沿横截面m-m 假想地吧梁截分为二 可得剪力F S ,弯矩M 剪力和弯矩的正负号规定 dx 微段有左端向上右端向下的相对错动时,横截面m-m 上的剪力F 为正,反之为负 S dx 微段的弯曲为向下凸,即该段的下半部纵向受拉时,上半部纵向受压时,横截面上的弯矩为正,反之为负 为简化计算,梁某一横截面上的剪力和弯矩可直接从横截面任意一侧梁上的外力进行计算,即

完整版材料力学答案单辉祖版全部答案

第二章轴向拉压应力与材料的力学性能 13} 2-1 试画图示各杆的轴力图。 题2-1图 解:各杆的轴力图如图2-1所示。 图2-1 2-2 试画图示各杆的轴力图,并指出轴力的最大值。图a与b所示分布载荷 均沿杆轴均匀分布,集度为q。 A Bq <1a HD 题2-2图 (a)解:由图2-2a(1)可知, F N(X) 2qa qx 轴力图如图2-2a(2)所示, F N,max 叩 图2-2a (b)解:由图2-2b(2)可知, F R qa F N (X1) F R qa F N(X2)F R q(x2 a) 2qa qx2

F N,max qa 图 2-2b 2-3 图示轴向受拉等截面杆, 横截面面积A=500mm 2,载荷F=50kN 。试求图 示斜截面m-m 上的正应力与切应力,以及杆内的最大正应力与最大切应力。 题图 T ax — 50MPa 2 2-5 某材料的应力-应变曲线如图所示,图中还同时画出了低应变区的详图。 试确定材料的弹 性模量 E 、比例极限 p 、屈服极限s 、强度极限b 与伸长率 判断该材料属于何种类型(塑性或脆性材料) 。 T -sin2 a 50MPa sin( 100 ) 49.2MPa 2 杆内的最大正应力与最大切应力分别为 轴力图如图2-2b(2)所示, ^max lOOMPa F 50 103N — A 500 10- 6 m 2 斜截面m-m 的方位角 a 50,故有 解:该拉杆横截面上的正应力为 1.00 108Pa lOOMPa 题2-5 解:由题图可以近似确定所求各量。 2 2 (T ocos a lOOMPa cos ( 50 ) 41.3MPa A- 220 106Pa Ae 0.001 220 109Pa 220GPa -220MPa , - 240MPa ,并 -440MPa , 3 29.7%

材料力学第五版(孙训方)课后题答案

材料力学第五版课后答案 [习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。 解:由题意可得: 33 233 110 ,,3/()3/(/)l l N fdx F kl F k F l F x Fx l dx F x l =====? ?1 有3 [习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如图所示。荷载kN F 1000=,材料的密度 3/35.2m kg =ρ,试求墩身底部横截面上的压应力。 解:墩身底面的轴力为: g Al F G F N ρ--=+-=)( 2-3图 )(942.31048.935.210)114.323(10002kN -=????+?--= 墩身底面积: )(14.9)114.323(22m A =?+?= 因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。 MPa kPa m kN A N 34.071.33914.9942.31042 -≈-=-== σ

[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。 2-7图 解:取长度为dx 截离体(微元体)。则微元体的伸长量为: )()(x EA Fdx l d = ? ,??==?l l x A dx E F dx x EA F l 00) ()( l x r r r r =--121,22112 112d x l d d r x l r r r +-=+?-=, 22 11 222)(u d x l d d x A ?=??? ??+-=ππ,dx l d d du d x l d d d 2)22(12112 -==+-

材料力学答案 第三版 单辉祖 北航教材

附录A 截面几何性质 A-1 试确定图示截面形心C 的横坐标y C 。 题A-1图 (a)解:坐标及微面积示如图A-1a 。 图A-1a ρρA d d d ?= 由此得 α αR ρ ρρρρA A y y R αα R α αA C 3sin 2d d d d cos d 0 = ?== ?????--??? (b)解:坐标及微面积示如图A-1b 。 图A-1b y ay y y h A n d )d (d ==

由此得 2)1(d d 0 ++=?= = ? ??n b n y ay y ay y A ydA y b n b n A C A-2 试计算图示截面对水平形心轴z 的惯性矩。 题A-2图 (a)解:取微面积如图A-2a 所示。 图A-2a y z A d 2d = 由于 α αb y α b y αa z d cos d sin cos === 故有 4πd )cos41(4 d cos cos 2)sin (d 32π 2 π- 3 2π 2π- 22 ab ααab ααb αa αb A y I A z =-= ??= =? ? ? (b)解:取微面积如图A-2b 所示。

图A-2b ??d cos 2 d 2d 22 d y z A == 且?在α与α-之间变化,而 d δ d α2sin -= 由此可得 ) 4 4sin (32)d cos41(64d 2sin 418 d cos 2)sin 2(d 4 4 2422 22 ααd d d d d A y I ααααα αA z -=-==?==????---????? ?? A-4 试计算图示截面对水平形心轴z 的惯性矩。 题A-4图 解:显然, 4 π1264π124 443R a d bh I z - =-= A-5 试计算图a 所示正六边形截面对水平形心轴z 的惯性矩。

材料力学第1章

材料力学第一章、第二章练习题 一、 选择题 1.根据均匀性假设 , 可认为构件的 ( ) 在各处相同。 A . 应力 B . . 应变 C . 材料的弹性系数 D .位移 . 2.构件的强度是指 ( ) , 刚度是指 ( ) , 稳定性 是 指 ( ) 。 A . 在外力作用下构件抵抗变形的能力 B . 在外力作用下构件保持原有平衡 状 态的能力 C . 在外力作用下构件抵抗 强度 3.下列结论中( ) 是正确的 。 A . 内力是应力的代数和 ; B . 应力是内力的平均值 ; C . 应力是内力的集度 ; D . 内力必大于应力 ; 4.两根截面面积相等但截面形状和材料不同的拉杆受同样大小的轴向拉力 , 它们的应 力是否相等 ( ) 。 A . 不相等 ; B . 相等 ; C . 不能确定 ; 5. 为把变形固体抽象为力学模型 , 材料力学课程对变形固体作出一些假设 , 其中均匀 性假设是指 ( ) 。 A. 认为组成固体的物质不留空隙地充满了固体的体积 ; B. 认为沿任何方向固体的力学性能都是相同的 ; C. 认为在固体内到处都有相同的力学性能 ; D. 认为固体内到处的应力都是相同的 。 6. 适用于:( ) (A )各向同性材料;(B )各向异性材料; (C )各向同性材料和各向异性材料。 7. 所有脆性材料,它与塑性材料相比,其拉伸力学性能的最大特点是( )。 (A )强度低,对应力集中不敏感; (B )相同拉力作用下变形小; (C )断裂前几乎没有塑性变形; (D )应力-应变关系严格遵循胡克定律。 8.轴向拉伸细长杆件如图所示 , 其中 1-1 面靠近集中力作用的左端面 , 则正确的说法 应是( ) )] 1(2υ+=E G

材料力学读书笔记刘鸿文第四版

1.??? 2.??? 3.?? 学习好资料欢迎下载 第一章绪论 材料力学基本任务 强度(抵抗破坏) 刚度(抵抗变形) 稳定性(维持平衡) 变形固体的基本假设 连续性 均匀性 各向同性 外力及其分类 表面力(分布力集中力)作用方式 体积力 ?? 4.静载 动载(交变、周期、冲击) 内力、变形与应变 时间变化 线应变切应变(角应变)1Pa=1N/m2MPa应力 5.杆件变形基本形式 ?拉伸与压缩 ?剪切 ?扭转 ?弯曲 第二章拉伸、压缩与剪切 1.轴力、轴力图 拉伸为正压缩为负 2.圣维南原理 离端界面约截面尺寸范围受影响 3.直杆拉伸或压缩时斜截面上的应力 α=0时,σ αmax =σ α=45°,τ αmax =σ/2 4.低碳钢的拉伸性能(铸铁、球墨铸铁) ?弹性阶段(塑形变形、弹性变形比例极限弹性极限胡克定律) ?屈服阶段 ?强化阶段 ?紧缩阶段(局部变形阶段) 塑性指标:伸长率δ(工程上的划分:>5%塑形材料<5%脆性材料)、断面收缩率ψ 卸载定律:应力应变按直线规律变化 冷作硬化:第二次加载时比例极限得到提高,但塑性变形和伸长率有所降低(利用:起重钢索、建筑钢筋常用冷拔工艺提高强度;某些零件喷丸处理使其表面塑形变形形成冷硬层提高表面强度克服:冷作硬化使材料变硬变脆难于加工易产生表面裂纹,工序之间安排退火) 碳素钢随含碳量的增加,屈服极限和强度极限相应提高,但伸长率降低。 铸铁拉伸因没有屈服现象,强度极限成为唯一强度指标。 材料力学性能主要指标:比例极限、屈服极限、强度极限、弹性模量、伸长率、断面收缩

) 率 5. ? ? 6. ? ? ? 7. 8. 学习好资料 欢迎下载 温度和时间对材料力学性能的影响 低温脆性 高温蠕变(松弛) 强度设计 失效(强度不足、刚度不足、稳定性不足 高温、腐蚀等环境 加载方式) 许用应力 强度校核、截面设计、许可载荷强度计算 安全因素选取的考虑因素(载荷、材料、重要性、计算精度、经济性…… 拉伸时横向缩短轴向伸长 泊松比 固体在外力作用下因变形而储存的能量 应变能(功能关系) 拉伸、压缩超静定问题 力学静力平衡方程+几何变形协调方程 温度应力、装配应力 应力集中 几何外形突然变化引起局部应力集中增大(圆弧过渡) 理论应力集中系数(塑形材料静载条件下可以不考虑 脆性材料较敏感 灰铸铁:内部缺 陷和不均匀性) 周期性载荷和冲击载荷应力集中非常危险

工程力学静力学与材料力学(单辉祖谢传锋著)高等教育出版社课后答案

工程力学 静力学与材料力学 (单辉祖 谢传锋 著) 高等教育出版社 课后答案 1-1试画出以下各题中圆柱或圆盘的受力图。与其它物体接触处的摩擦力均略去。 解: 1-2 试画出以下各题中AB 杆的受力图。 (a) B (b) (c) (d) A (e) A (a) (b) A (c) A (d) A (e) (c) (a) (b)

工程力学 静力学与材料力学 (单辉祖 谢传锋 著) 高等教育出版社 课后答案 解: 1-3 试画出以下各题中AB 梁的受力图。 (d) (e) B B (a) B (b) (c) F B (a) (c) F (b) (d) (e)

解: 1-4 试画出以下各题中指定物体的受力图。 (a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。 解: (a) F (b) W (c) (d) D (e) F Bx (a) (b) (c) (d) D (e) W (f) (a) D (b) C B (c) B F D

1-5 试画出以下各题中指定物体的受力图。 (a) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。 解:(a) (d) F C (e) W B (f) F F BC (c) (d) AT F BA F (b) (e)

(b) (c) (d) (e) F AB F A C A A C ’C D D C’ B

材料力学第五版孙训方版课后习题答案高等教育出版社

材料力学 高等教育出版社 孙训方 [习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。 解:由题意可得: 33 233 110 ,,3/()3/(/)l l N fdx F kl F k F l F x Fx l dx F x l =====? ?1 有3 [习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如图所示。荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。 解 : 墩 身 底 面 的 轴 力 为 : g Al F G F N ρ--=+-=)( 2-3 图 )(942.31048.935.210)114.323(10002kN -=????+?--= 墩身底面积:)(14.9)114.323(22m A =?+?= 因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。 MPa kPa m kN A N 34.071.33914.9942.31042 -≈-=-== σ

[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。 2-7图 解:取长度为dx 截离体(微元体)。则微元体的伸长量为: ) ()(x EA Fdx l d = ? ,??==?l l x A dx E F dx x EA F l 00 ) ()( l x r r r r =--121,22112 112d x l d d r x l r r r +-=+?-=, 2 2 11 222)(u d x l d d x A ?=??? ??+-=ππ, dx l d d du d x l d d d 2)22( 1 2112-==+- du d d l dx 1 22-= ,)()(22)(221212u du d d l du u d d l x A dx -?-=?-=ππ 因此, )()(2)()(2 02100 u du d d E Fl x A dx E F dx x EA F l l l l ??? --===?π l l d x l d d d d E Fl u d d E Fl 0 112 21021221)(21)(2?? ???? ??????+--=??? ???-=ππ ???? ? ? ??? ???-+ --=21221)(2111 221d d l l d d d d E Fl π ??? ???--= 12 2122)(2d d d d E Fl π214d Ed Fl π=

材料力学笔记

材料力学(土)笔记 第三章 扭 转 1.概 述 等直杆承受作用在垂直于杆轴线的平面内的力偶时,杆将发生扭转变形 若构件的变形时以扭转为主,其他变形为次而可忽略不计的,则可按扭转变形对其进行强度和刚度计算 等直杆发生扭转变形的受力特征是杆受其作用面垂直于杆件轴线的外力偶系作用 其变形特征是杆的相邻横截面将绕杆轴线发生相对转动,杆表面的纵向线将变成螺旋线 当发生扭转的杆是等直圆杆时,由于杆的物性和横截面几何形状的极对称性,就可用材料力学的方法求解 对于非圆截面杆,由于横截面不存在极对称性,其变形和横截面上的应力都比较复杂,就不能用材料力学的方法来求解 2.薄壁圆筒的扭转 设一薄壁圆筒的壁厚δ远小于其平均半径0r (10 r ≤ δ),其两端承受产生扭转变形的外力偶矩e M ,由截面法可知,圆筒任一横截面n-n 上的内力将是作用在该截面上的力偶 该内力偶矩称为扭矩,并用T 表示 由横截面上的应力与微面积dA 之乘积的合成等于截面上的扭矩可知,横截面上的应力只能是切应力 考察沿横截面圆周上各点处切应力的变化规律,预先在圆筒表面上画上等间距的圆周线和纵向线,从而形成一系列的正方格子 在圆筒两端施加外力偶矩e M 后,发现圆周线保持不变,纵向线发生倾斜,在小变形时仍保持直线 薄壁圆筒扭转变形后,横截面保持为形状、大小均无改变的平面,知识相互间绕圆筒轴线发生相对转动,因此横截面上各点处切应力的方向必与圆周相切。 相对扭转角:圆筒两端截面之间相对转动的角位移,用?来表示 圆筒表面上每个格子的指教都改变了相同的角度γ,这种直角的该变量γ称为切应变 这个切应变和横截面上沿沿圆周切线方向的切应力是相对应的 由于圆筒的极对称性,因此沿圆周各点处切应力的数值相等 由于壁厚δ远小于其平均半径0r ,故可近似地认为沿壁厚方向各点处切应力的数值无变化 薄壁圆筒扭转时,横截面上任意一点处的切应力τ值均相等,其方向与圆周相切 由横截面上内力与应力间的静力学关系,从而得 ?=?A T r dA τ 由于τ为常量,且对于薄壁圆筒,r 可以用其平均半径0r 代替,积分 ?==A r A dA δπ0 2 为圆筒横截面面积,引进π2 00r A =,从而得到 δ τ02A T = 由几何关系,可得薄壁圆筒表面上的切应变γ和相距为l 的两端面间相对扭转角?之间的关系式,式子中r 为薄壁圆筒的外半径 γ?γsin /==l r 当外力偶矩在某一范围内时,相对扭转角?与外力偶矩e M (在数值上等于T )之间成正比 可得τ和r 间的线性关系为 γτG = 上式称为材料的剪切胡克定律,式子中的比例常数G 称为材料的切变模量,其量纲和单位与弹性模量相同,钢材的切边模量的约值为GPa G 80=

武汉理工大学《材料力学》考试复习重点笔记

考试复习重点资料(最新版) 资料见第二页 封 面 第1页

材料力学笔记 §1-1材料力学的任务 1.几个术语 ·构件与杆件:组成机械的零部件或工程结构中的构件统称为构件。如图1-1a 所示桥式起重机的主梁、吊钩、钢丝绳;图1-2所示悬臂吊车架的横梁AB,斜杆CD都是构件。实际构件有各种不同的形状,所以根据形状的不同将构件分为:杆件、板和壳、块体.

杆件:长度远大于横向尺寸的构件,其几何要素是横截面和轴线,如图1-3a 所示,其中横截面是与轴线垂直的截面;轴线是横截面形心的连线。 按横截面和轴线两个因素可将杆件分为:等截面直杆,如图1-3a、b;变截面直杆,如图1-3c;等截面曲杆和变截面曲杆如图1-3b。 板和壳:构件一个方向的尺寸(厚度)远小于其它两个方向的尺寸,如图1-4a 和b所示。 块体:三个方向(长、宽、高)的尺寸相差不多的构件, 如图1-4c所示。在本教程中,如未作说明,构件即认为是 指杆件。 ·变形与小变形:在载荷作用下,构件的形状及尺寸发生变化称为变形,如图1-2所示悬臂吊车架的横梁AB,受力后将由原来的位置弯曲到AB′位置,即产生了变形。 小变形:绝大多数工程构件的变形都极其微小,比构件本身尺寸要小得多,以至在分析构件所受外力(写出静力平衡方程)时,通常不考虑变形的影响,而仍可以用变形前的尺寸,此即所谓“原始尺寸原理”。如图1-1a所示桥式起重机主架,变形后简图如图1-1b所示,截面最大垂直位移f一般仅为跨度l 的l/1500~1/700,B支撑的水平位移Δ则更微小,在求解支承反力R A 、R B 时, 不考虑这些微小变形的影响。

孙训方版 材料力学公式总结大全

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类:表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dP A P p A =??=→?lim 0正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不再变化的载荷。 动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为 极限应力理想情形。 塑性材料、脆性材料的许用应力分别为: []3n s σσ=, []b b n σ σ=,强度条件: []σσ≤??? ??=max max A N ,等截面杆 []σ≤A N m a x 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横

截面上的应力分别为:l l ?= ε,A P A N ==σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-=' 。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA Nl l = ? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx d φργρ=。物理关系——胡克定律dx d G G φργτρρ==。力学关系dA dx d G dx d G dA T A A A ???===2 2ρφφρρτρ 圆轴扭转时的应力:t p W T R I T == max τ;圆轴扭转的强度条件: ][max ττ≤=t W T ,可以进行强度校核、截面设计和确定许可载荷。 圆轴扭转时的变形:??== l p l p dx GI T dx GI T ?;等直杆:p GI Tl =? 圆轴扭转时的刚度条件: p GI T dx d == '??,][max max ??'≤='p GI T 弯曲内力与分布载荷q 之间的微分关系 )() (x q dx x dQ =; ()()x Q dx x dM =;()()()x q dx x dQ dx x M d ==2 2 Q 、M 图与外力间的关系 a )梁在某一段内无载荷作用,剪力图为一水平直线,弯矩图为一斜直线。 b )梁在某一段内作用均匀载荷,剪力图为一斜直线,弯矩图为一抛物线。 c )在梁的某一截面。 ()()0==x Q dx x dM ,剪力等于零,弯矩有一最大值或最小值。 d )由集中力作用截面的左侧和右侧,剪力Q 有一突然变化,弯矩图的斜率也发生突然变化形成一个转折点。

材料力学读书笔记 第四版

第一章 绪论 1. 材料力学基本任务 ? 强度(抵抗破坏) ? 刚度(抵抗变形) ? 稳定性(维持平衡) 2. 变形固体的基本假设 ? 连续性 ? 均匀性 ? 各向同性 3. 外力及其分类 ? 表面力(分布力 集中力) ? 体积力 ? 静载 ? 动载(交变、周期、冲击) 4. 内力、变形与应变 线应变 切应变(角应变) 1Pa=1N/m 2 MPa 应力 5. 杆件变形基本形式 ? 拉伸与压缩 ? 剪切 ? 扭转 ? 弯曲 第二章 拉伸、压缩与剪切 1. 轴力、轴力图 拉伸为正 压缩为负 2. 圣维南原理 离端界面约截面尺寸范围受影响 3. 直杆拉伸或压缩时斜截面上的应力 α=0时,σαmax =σ α=45°,ταmax =σ/2 4. 低碳钢的拉伸性能 (铸铁、球墨铸铁) ? 弹性阶段(塑形变形、弹性变形 比例极限 弹性极限 胡克定律) ? 屈服阶段 ? 强化阶段 ? 紧缩阶段(局部变形阶段) 塑性指标:伸长率δ(工程上的划分:>5%塑形材料 <5%脆性材料)、断面收缩率ψ 卸载定律:应力应变按直线规律变化 冷作硬化:第二次加载时比例极限得到提高,但塑性变形和伸长率有所降低(利用:起重钢索、建筑钢筋常用冷拔工艺提高强度;某些零件喷丸处理使其表面塑形变形形成冷硬层提高表面强度 克服:冷作硬化使材料变硬变脆难于加工易产生表面裂纹,工序之间安排退火) 碳素钢随含碳量的增加,屈服极限和强度极限相应提高,但伸长率降低。 铸铁拉伸因没有屈服现象,强度极限成为唯一强度指标。 材料力学性能主要指标:比例极限、屈服极限、强度极限、弹性模量、伸长率、断面收缩率 作用方式 时间变化

材料力学答案解析单辉祖版全部答案解析

* * 第二章轴向拉压应力与材料的力学性能 2-1试画图示各杆的轴力图。 题2-1图 解:各杆的轴力图如图2-1所示。 图2-1 2-2试画图示各杆的轴力图,并指出轴力的最大值。图a与b所示分布载荷均沿杆轴均匀分布,集度为q。 题2-2图 (a)解:由图2-2a(1)可知, qx qa x F- =2 )( N 轴力图如图2-2a(2)所示, qa F2 m ax , N = 图2-2a (b)解:由图2-2b(2)可知, qa F= R

qa F x F ==R 1N )( 22R 2N 2)()(qx qa a x q F x F -=--= 轴力图如图2-2b(2)所示, qa F =m ax N, 图2-2b 2-3 图示轴向受拉等截面杆,横截面面积A =500mm 2 ,载荷F =50kN 。试 求图示斜截面m -m 上的正应力与切应力,以及杆内的最大正应力与最大切应力。 题2-3图 解:该拉杆横截面上的正应力为 100MPa Pa 1000.1m 10500N 105082 63=?=??==-A F σ 斜截面m -m 的方位角, 50-=α故有 MPa 3.41)50(cos MPa 100cos 22=-?== ασσα MPa 2.49)100sin(MPa 502sin 2 -=-?== ασ τα 杆内的最大正应力与最大切应力分别为 MPa 100max ==σσ MPa 502 max == σ τ 2-5 某材料的应力-应变曲线如图所示,图中还同时画出了低应变区的详 图。试确定材料的弹性模量E 、比例极限p σ、屈服极限s σ、强度极限b σ与伸长率δ,并判断该材料属于何种类型(塑性或脆性材料)。 题2-5

孙训方材料力学第五版1课后习题答案

第二章轴向拉伸和压缩 2-1 2-2 2-3 2-4 2-5 2-6 2-7 页 2-8 2-9 下 横截面上的轴力,并作轴力图。 2-1 试求图示各杆 1-1 和 2-2 横截面上的轴力,并作轴力图。 (a)解:解 ; ; (b)解:解 ; ; (c)解:解 ; 。 (d) 解: 。 返回上的轴力, 2-2 试求图示等直杆横截面 1-1,2-2 和 3-3 上的轴力,并作轴力图。并作轴力图。若横截面面积上的应力。上的应力。,试求各横截面 解: 返回 2 -3 上的轴力,试求图示阶梯状直杆横截面 1-1,2-2 和 3-3 上的轴力,并作轴力图。作轴力图。若横截面面积,, ,并求各横截面上的应力。并求各横截面上的应力。 解: 返回图示一混合屋架结构的计算简图。屋架的上弦用钢筋混凝土制成。 2-4 图示一混合屋架结构的计算简图。屋架的上弦用钢筋混凝土制成。下面的拉杆和中间竖向撑杆用角钢构成,75mm× 的等边角钢。拉杆和中间竖向撑杆用角钢

构成,其截面均为两个75mm×8mm 的等边角钢。已知屋面承受集度为应力。应力。的竖直均布荷载。的竖直均布荷载。试求拉杆 AE 和 EG 横截面上的 解: 1)求内力 = 取 I-I 分离体 得 (拉) 取节点 E 为分离体 , 故 2)求应力 (拉) 75×8 等边角钢的面积 A=11.5 cm2 (拉) (拉) 返回 2-5(2-6) 图示拉杆承受轴向拉力 5(2- ,杆的横截面面积 。 表示斜截面与横截面的夹角,30 ,45 ,60 ,90 时如以表示斜截面与横截面的夹角,试求当各斜截面上的正应力和切应力,并用图表示其方向。各斜截面上的正应力和切应力,并用图表示其方向。 解: 返回一木桩柱受力如图所示。的正方形, 2-6(2-8) 一木桩柱受力如图所示。柱的横截面为边长 200mm 的正方形,材料 6(2GPa。如不计柱的自重,试求:可认为符合胡克定律,可认为符合胡克定律,其弹性模量 E=10 GPa。如不计柱的自重,试求:(1)作轴力图;作轴力图;(2)各段柱横截面上的应力;各

材料力学考研复习笔记

材料力学 (一)轴向拉伸与压缩 【内容提要】材料力学主要研究构件在外力作用下的变形、受力与破坏、失效的规律。为设计既安全可靠又经济合理的构件,提供有关强度、刚度与稳定性分析的基本理论与方法。 【重点、难点】重点考察基本概念,掌握截面法求轴力、作轴力图的方法,截面上应力的计算。 【内容讲解】 一、基本概念 强度——构件在外力作用下,抵抗破坏的能力,以保证在规定的使用条件下,不会发生意外的断裂或显著塑性变形。 刚度——构件在外力作用下,抵抗变形的能力,以保证在规定的使用条件下不会产生过分的变形。 稳定性——构件在外力作用下,保持原有平衡形式的能力,以保证在规定的使用条件下,不会产生失稳现象。 杆件——一个方向的尺寸远大于其它两个方向的尺寸的构件,称为杆件或简称杆。根据轴线与横截面的特征,杆件可分为直杆与曲杆,等截面杆与变截面杆。 二、材料力学的基本假设 工程实际中的构件所用的材料多种多样,为便于理论分析,根据它们的主要性质对其作如下假设。 (一)连续性假设——假设在构件所占有的空间内均毫无空隙地充满了物质,即认为是密实的。这样,构件内的一些几何量,力学量(如应力、位移)均可用坐标的连续函数表示,并可采用无限小的数学分析方法。 (二)均匀性假设——很设材料的力学性能与其在构件中的位置无关。按此假设通过试样所测得的材料性能,可用于构件内的任何部位(包括单元体)。 (三)各向同性假设——沿各个方向均具有相同力学性能。具有该性质的材料,称为各向同性材料。 综上所述,在材料力学中,一般将实际材料构件,看作是连续、均匀和各向同性的可变形固体。 三、外力内力与截面法 (一)外力对于所研究的对象来说,其它构件和物体作用于其上的力均为外力,例如载荷与约束力。 外力可分为:表面力与体积力;分布力与集中力;静载荷与动载荷等。

材料力学考研《材料力学》刘鸿文配套真题与考点总结

材料力学考研《材料力学》刘鸿文配套真题 与考点总结 一、选择题解析 1如图1-1-1所示,四根悬臂梁,受到重量为W的重物由高度为H的自由落体,其中()梁动荷因数K d最大。[西安交通大学2005年研] 图1-1-1 【答案】D ~~ 【解析】物体自由落体条件下的动荷系数: 而ΔA,st=Wl3/(3EI)>ΔB,st=Wl3/(6EI)>ΔC,st=Wl3/(24EI)>ΔD,st =Wl3/(48EI),即ΔD,st最小,K d最大,且。

2图1-1-2所示重量为W的重物从高度h处自由下落在梁上E点,梁上C截面 的动应力σd=K dσst(),式中Δst为静载荷作用下梁上()的静挠度。[北京科技大学2011年研] 图1-1-2 A.D点 B.C点 C.E点 D.D点与E点平均值 【答案】C ~~ 【解析】Δst为静载荷时,在冲击物作用点处产生的静位移。 3当交变应力的()不超过材料疲劳极限时,试件可经历无限次应力循环,而不发生疲劳破坏。[哈尔滨工业大学2000年研] A.应力幅度 B.最小应力 C.平均应力 D.最大应力 【答案】D ~~

【解析】由疲劳极限的定义可知,σ1是材料经过无限次循环而不破坏的最大应力值。 4构件在交变应力作用下发生疲劳破坏,以下结论中错误的是()。[南京航空航天大学1999年研] A.断裂时的最大应力小于材料的静强度极限 B.用塑性材料制成的构件,断裂时有明显的塑性变形 C.用脆性材料制成的构件,破坏时呈脆性断裂 D.断口表面一般可明显地分为光滑区及粗糙状区 【答案】B ~~ 【解析】在交变应力作用下,即使塑性较好的材料,断裂时也没有明显的塑性变形。 反映固体材料强度的两个指标一般是指()。[北京科技大学2010年研] A.屈服极限和比例极限 B.弹性极限和屈服极限 C.强度极限和断裂极限 D.屈服极限和强度极限 【答案】D ~~ 【解析】衡量塑性材料的强度指标为屈服极限,衡量脆性材料强度的指标为强度极限。 3根据小变形假设,可以认为()。[西安交通大学2005年研] A.构件不变形 B.构件不破坏

材料力学第一章

第一章绪论 1. 判断改错题 1-1-1 铸铁结构由于没有屈服阶段,所以在静载作用时可以不考虑其应力集中的影响。 ( × ) 应考虑其应力集中的影响。 因铸铁属脆性材料,因此构件在静载作用时,在尺寸突变处,没有明显的塑性变形来缓和应力的增加,应力集中使该处的应力远大于其它各处的应力,构件首先从该处破坏,所以静载作用时应该考虑应力集中的影响。 1-1-2 构件内力的大小不但与外力大小有关,还与材料的截面形状有关。 ( × )。静定构件内力的大小只与外力大小有关,与材料的截面无关。 1-1-3 钢筋混凝土柱中,钢筋与混凝土柱高度相同,受压后,钢筋与混凝土柱的压缩量相同,所以二者所受的内力也相同。 ( × ) 它们的内力大小不一定相同。 钢筋混凝土柱受压后,由于钢筋的弹性模量E 1不等于混凝土的弹性模量E 2,钢筋横截面积A 1 也不等于混凝土的横截面积A 2,所以有 , 2 2112122 1112 12 2221 111,,,2 A E A E N N A E N A E N l l A E l N l A E l N l ==?=?= ?= ? 故在E 1 A 1=E 2 A 2 时,才有N 1=N 2 。否则21N N ≠。 1-1-4 杆件的某横截面上,若各点的正应力均为零,则该截面上的轴力为零。 ( √) 1-1-5 只要构件的强度得到保证,则该构件就能正常的工作。 ( × )。只有构件的强度、刚度、稳定性都得到满足,构件才能正常工作。 1-1-6 两根材料、长度l 都相同的等直柱子,一根的横截面面积为A 1,另一根为A 2,且A 2>A 1. 如图所示。两杆都受自重作用。则两杆的最大压应力相等,最大压缩量也相等。 ( √ )。自重作用时,最大压应力在两杆底端,即 l A Al A N ννσ=== max max 也就是说,最大应力与面积无关,只与杆长有关。所以两者的最大压应力相等。 最大压缩量为E l EA l Al l 222 max νν= ?=? 即最大压缩量与面积无关,只与杆长有关。所以两杆的最大压缩量也相等。 (a) A 1 A 2 (b) 题1-1-6图 题1-1-7图

材料力学答案单辉祖版全部答案

第二章 轴向拉压应力与材料的力学性能 2-1 试画图示各杆的轴力图。 题2-1图 解:各杆的轴力图如图2-1所示。 图2-1 2-2试画图示各杆的轴力图,并指出轴力的最大值。图a 与b 所示分布载荷 均沿杆轴均匀分布,集度为q 。 题2-2图 (a)解:由图2-2a(1)可知, qx qa x F -=2)(N 轴力图如图2-2a(2)所示, qa F 2m ax ,N = 图2-2a (b)解:由图2-2b(2)可知, qa F =R qa F x F ==R 1N )( 22R 2N 2)()(qx qa a x q F x F -=--=

轴力图如图2-2b(2)所示, qa F =m ax N, 图2-2b 2-3 图示轴向受拉等截面杆,横截面面积A =500mm 2 ,载荷F =50kN 。试求图 示斜截面m -m 上的正应力与切应力,以及杆的最大正应力与最大切应力。 题2-3图 解:该拉杆横截面上的正应力为 100MPa Pa 1000.1m 10500N 10508 2 63 =?=??== -A F σ 斜截面m -m 的方位角, 50-=α故有 MPa 3.41)50(cos MPa 100cos 22=-?== ασσα MPa 2.49)100sin(MPa 502sin 2 -=-?== ασ τα 杆的最大正应力与最大切应力分别为 MPa 100max ==σσ MPa 502 max == σ τ 2-5 某材料的应力-应变曲线如图所示,图中还同时画出了低应变区的详图。 试确定材料的弹性模量E 、比例极限p σ、屈服极限s σ、强度极限b σ与伸长率δ,并判断该材料属于何种类型(塑性或脆性材料)。 题2-5 解:由题图可以近似确定所求各量。 220GPa Pa 102200.001 Pa 10220ΔΔ96=?=?≈=εσE MPa 220p ≈σ, MPa 240s ≈σ MPa 440b ≈σ, %7.29≈δ

(完整版)材料力学笔记(第四章)

材料力学(土)笔记 第四章 弯曲应力 1.对称弯曲的概念及梁的计算简图 1.1 弯曲的概念 等直杆在包含其轴线的纵向平面内,承受垂直于杆轴线的横向外力或外力偶作用时 杆的轴线将变成曲线,这种变形称为弯曲 凡是以弯曲为主要变形的杆件,通称为梁 工程中常见的梁,其横截面都具有对称轴 若梁上所有的横向外力或(及)力偶均作用在包含该对称轴的纵向平面(称为纵对称面)内,由于梁的几何、物性和外力均对称于梁的纵对称面,则梁变形后的轴线必定是在该纵对称面内的平面曲线,这种弯曲称为对称弯曲 若梁不具有纵对称面,或者,梁虽然具有纵对称面但横向力或力偶不作用在纵对称面内,这种弯曲统称为非对称弯曲 1.2 梁的计算简图 梁的计算简图可用梁的轴线表示 梁的支座按其对梁在荷载作用平面的约束情况,通常可简化为以下三种基本形式 ①固定端 这种支座使梁的端截面既不能移动,也不能转动 对梁端截面有3个约束,相应地,就有3个支反力,即水平支反力Rx F ,铅垂支反力Ry F 和支反力偶矩R M ②固定铰支座 这种支座限制梁在支座处沿平面内任意方向的移动,而不限制梁绕铰中心转动,相应地,就有2个支反力,即水平支反力Rx F 和铅垂支反力Ry F ③可动铰支座 这种铰支座只限制梁在支座处沿垂直于支承面的支反力R F 如果梁具有1个固定端,或具有1个固定铰支座和1个可动铰支座 则其3个支反力可由平面力系的3个独立的平衡方程求出,这种梁称为静定梁 工程上常见的三种基本形式的静定梁,分别称为简支梁、外伸梁和悬臂梁 梁的支反力数目多于独立的平衡方程的数目,此时仅用平衡方程就无法确定其所有的支反力,这种梁称为超静定梁 梁在两支座间的部分称为跨,其长度称为梁的跨长 常见的静定梁大多是单跨的 2.梁的剪力和弯矩·剪力图和弯矩图 2.1 梁的剪力和弯矩 为计算梁的应力和位移,应先确定梁在外力作用下任一横截面上的内力 当作用在梁上的全部外力(包括荷载和支反力)均为已知时,用截面法即可求出其内力 梁的任一横截面m-m ,应用截面法沿横截面m-m 假想地吧梁截分为二 可得剪力S F ,弯矩M 剪力和弯矩的正负号规定 dx 微段有左端向上右端向下的相对错动时,横截面m-m 上的剪力S F 为正,反之为负 dx 微段的弯曲为向下凸,即该段的下半部纵向受拉时,上半部纵向受压时,横截面上的弯 矩为正,反之为负 为简化计算,梁某一横截面上的剪力和弯矩可直接从横截面任意一侧梁上的外力进行计算,即

[理学]材料力学答案第三版单辉祖

第二章轴向拉压应力与材料的力学性能 2-1 试画图示各杆的轴力图。 题2-1图 解:各杆的轴力图如图2-1所示。 图2-1 2-2试画图示各杆的轴力图,并指出轴力的最大值。图a与b所示分布载荷均沿杆轴 均匀分布,集度为q。 题2-2图 (a)解:由图2-2a(1)可知, F(x),2qa,qxN 轴力图如图2-2a(2)所示,

1 F,2qaN,max 图2-2a (b)解:由图2-2b(2)可知, F,qaR F(x),F,qaN1R F(x),F,q(x,a),2qa,qxN2R22轴力图如图2-2b(2)所示, F,qaN,max 图2-2b 22-3 图示轴向受拉等截面杆,横截面面积A=500mm,载荷F=50kN。试求图示斜截 面m-m上的正应力与切应力,以及杆内的最大正应力与最大切应力。 题2-3图

解:该拉杆横截面上的正应力为 3F50,10N8ζ ,,,1.00,10Pa,100MPa,62A500,10m ,α,,50,斜截面m-m的方位角故有 2 22, ζ,ζcosα,100MPa,cos(,50),41.3MPa, ζ,η,sin2α,50MPa,sin(,100),,49.2MPa α2 杆内的最大正应力与最大切应力分别为 ζ,ζ,100MPa max ζη,,50MPa max2 2-5 某材料的应力-应变曲线如图所示,图中还同时画出了低应变区的详图。试确定材料的弹性模量E、比例极限、屈服极限、强度极限与伸长率,并判断该材料属,,,,psb于何种类型(塑性或脆性材料)。 题2-5 解:由题图可以近似确定所求各量。 6Δζ220,10Pa9 E,,,220,10Pa,220GPaΔε0.001 ζ,220MPa, ζ,240MPaps ζ,440MPaδ,29.7% , b

材料力学笔记

作者简介:郭志明,现在就读天津大学固体力学专业 绪论 基本概念 材料力学的任务: 载荷,弹性变形,塑性变形 设计构件需要满足以下三个方面的要求:强度,刚度,稳定性 强度:构件抵抗破坏的能力 刚度:构件抵抗变形的能力 稳定性:构件维持其原有平衡形式的能力 基本假设:连续均匀性,各项同性,小变形 研究对象及变形形式: 杆:构件的某一方向的尺寸远大于其他两个方面的尺寸 平板,壳,块体 变形形式:拉伸(压缩),剪切,扭转,弯曲 基本概念 内力:构件内部相邻两部分之间由此产生的相互作用 截面法:假象切开,建立平衡方程,求截面内力 第一章:轴向拉伸,压缩和剪切 基本概念 轴力:截面内力FN及FN’的作用线与轴线重合,称为内力轴 力图:表示轴力随横截面位置的变化 应力:轴力FN均匀分布在杆的横截面上 F A 圣维南原理 斜截面上的应力:P cos 拉压杆的变形:F NE l(弹性范围内) A l EA称为杆件的抗拉(压)刚度 泊松比:弹性范围内。横向应变和纵向应变之比的绝对值 工程材料的力学性能:材料在外力作用下在强度和变形方面表现出的性能。Eg:应力极限值,弹性模量,泊松比等。力学性能决定于材料的成分和结构组织,与应力状态,温度和加载方式 相关,力学性能,需要通过实验方法获得。 弹性变形: 塑性变形: 低碳钢拉伸实验 四个阶段:弹性,屈服,强化,颈缩 屈服:应力在应力-应变曲线上第一次出现下降,而后几乎不变,此时的应变却显著增加,这 种现象叫做屈服 冷作硬化:常温下经过塑性变形后材料强度提高,塑性降低的现象 ln(1),l/l0(工程应变) 真应力应变: t

其他材料的拉伸实验 温度,时间及加载速率对材料力学性能的影响 蠕滑现象: 松弛现象: 冲击韧性:材料抵抗冲击载荷的能力(可以通过冲击实验测定) 许用应力:对于某种材料,应力的增长是有限的,超过这一限度,材料就要破坏,应力可能达到的这个限度称为材料的极限应力。通常把材料的极限应力/n作为许用应力[σ],[]u 强度条件:杆内的最大工作应力max(FN)[] n u A n 节点位移计算 集中应力:由于试件截面尺寸急剧改变而引起的应力局部增大的现象 应力集中系数:K max/n,σn是指同一截面上认为应力均匀分布时的应力值 超静定问题:未知力的数目超过独立的平衡方程的数目,因此只由平衡方程不能求出全部未知 力,这类问题成为超静定问题。超静定结构具有多余约束,解决这类问题需要考虑力学,几何 和物理三方面 温度应力:温度变化时杆件会伸长或者缩短,在静定结构中,杆能自由变形,所以杆内不会产 生应力。在超静定结构中,具有多余约束,温度变化将使杆内产生应力,即温度应力。杆的变 形包括由温度引起的变形和由力引起的变形。 第二章:扭转 基本概念 轴:以扭转变形为主的杆件 受力特点:垂直于杆件轴线的两个相隔平面内作用有反向等值力偶 变形特点:任两个相邻横截面绕杆轴线发生相对转动 力偶矩:使杆件发生扭转变形的力偶矩Me等于杆件承受的外力对杆轴的力矩,有时也称Me 为转矩。P=Mexω(相当于P=FxV) 扭矩:作用在横截面内的这一内力偶矩称为该截面的扭矩,T(相当于拉压时候的轴力) 扭矩图:表示扭矩随截面位置的变化 薄壁筒扭转 扭转角?:右端面相对左端面转动的角度,它表示杆的扭转变形 切应变γ:由于错动而形成的直角改变量 切应力互等定理:单元体中互相垂直的两个面上,垂直于公共棱边的切应力数值相等,它们的 方向指向公共棱边或背离公共棱边。 纯剪切状态:四个侧面上只有切应力而没有正应力的作用的应力状态。 剪切胡克定律:G ,G为切变模量 圆轴扭转时的应力与变形 几何方程: d ,θυ ρ=d ,半径为ρ,切应变为γ/d x dx

相关主题
文本预览
相关文档 最新文档