当前位置:文档之家› 2017-2018学年高中数学第一章立体几何初步1.1简单几何体学案北师大版必修2

2017-2018学年高中数学第一章立体几何初步1.1简单几何体学案北师大版必修2

2017-2018学年高中数学第一章立体几何初步1.1简单几何体学案北师大版必修2
2017-2018学年高中数学第一章立体几何初步1.1简单几何体学案北师大版必修2

§1 简单几何体

1.1 简单旋转体 1.2 简单多面体

1.了解柱、锥、台、球的结构特征,并能运用这些特征描述现实生活中简单物体的结构.

2.掌握简单几何体的分类.

3.理解圆柱、圆锥、圆台及球的概念.(重点、难点)

4.理解棱柱、棱锥、棱台等简单几何体的概念.(重点、难点

)

[基础·初探]

教材整理1 两个平面平行及直线与平面垂直的概念 阅读教材P 3“1.1 简单旋转体”以上部分,完成下列问题. 1.两个平面平行:称无公共点的两个平面是平行的.

2.直线与平面垂直:直线与平面内的任意一条直线都垂直,称为直线与平面垂直

.

长方体相对的两个侧面的位置关系是( ) A.平行 B.相交 C.平行或相交

D.无法确定

【解析】 根据两个平面平行的定义可知长方体相对的两个侧面平行,故选A. 【答案】 A

教材整理2 简单的旋转体

阅读教材P 3“1.1 简单旋转体”以下至P 4“1.2 简单多面体”以上部分,完成下列问题.

1.定义:一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面;封闭的旋转面围成的几何体叫作旋转体.

2.球、圆柱、圆锥、圆台的概念及比较:

下列说法正确的是( ) A.直线绕定直线旋转形成柱面 B.半圆绕定直线旋转形成球体

C.矩形绕任意一条直线旋转都可以围成圆柱

D.圆柱的任意两条母线所在的直线是相互平行的

【解析】 直线与定直线平行时,直线绕定直线旋转才形成柱面,故A 错误;半圆面以直径所在直线为轴旋转形成球体,故B 错误;矩形绕对角线所在直线旋转,不能围成圆柱,故C 错误,所以应选D.

【答案】 D

教材整理3 简单的多面体

阅读教材P 4“1.2 简单多面体”以下至P 5部分,完成下列问题. 1.简单多面体的定义

把若干个平面多边形围成的几何体叫作多面体.其中棱柱、棱锥、棱台是简单多面体. 2.棱柱、棱锥、棱台的结构特征

下列几何体中,是棱锥的是( )

【解析】 由棱锥的定义可知,选B. 【答案】 B

[小组合作型]

下列叙述中,正确的个数是( )

(1)以直角三角形的一边所在直线为轴旋转所得的旋转体是圆锥; (2)以直角梯形的一腰所在直线为轴旋转所得的几何体是圆台; (3)用一个平面去截圆锥,得到一个圆锥和一个圆台; (4)圆面绕它的任一直径所在直线旋转形成的几何体是球. A.0个 B.1个 C.2个

D.3个

【精彩点拨】 解答时可根据旋转体的概念和性质进行具体分析.

【自主解答】 (1)应以直角三角形的一条直角边所在的直线为旋转轴旋转才可得到圆锥,故(1)错;(2)以直角梯形垂直于底边的一腰所在直线为旋转轴旋转可得到圆台,故(2)错;(3)用平行于圆锥底面的平面去截圆锥,可得到一个圆锥和一个圆台,用不平行于圆锥

底面的平面不能得到,故(3)错;(4)正确.

【答案】 B

1.圆柱、圆锥、圆台和球都是一个平面图形绕其特定直线旋转而成的几何体,必须准确认识各旋转体对旋转轴的具体要求.

2.只有理解了各旋转体的生成过程,才能明确由此产生的母线、轴、底面等概念,进而判断与这些概念有关的命题的正误.

[再练一题]

1.下列说法正确的是________.

①一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;

②圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;

③在空间中,到定点的距离等于定长的点的集合是球.

【解析】①错.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示.

②正确.

③错.应为球面.

【答案】②

(1)用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;

(2)棱柱的侧面一定是平行四边形;

(3)棱锥的侧面只能是三角形;

(4)由四个面围成的封闭图形只能是三棱锥;

(5)棱锥被平面截成的两部分不可能都是棱锥.

其中正确说法的序号是________.

【导学号:39292000】【精彩点拨】根据棱锥、棱台的结构特征判断.

【自主解答】 (1)错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截面之间的部分不是棱台;

(2)正确,棱柱的侧面是对边平行的四边形; (3)正确,由棱锥的定义知棱锥的侧面只能是三角形; (4)正确,由四个面围成的封闭图形只能是三棱锥; (5)错误,如图所示四棱锥被平面截成的两部分都是棱锥. 【答案】

(2)(3)(4)

判断棱柱、棱锥、棱台形状的两个方法: (1)举反例法:

结合棱柱、棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.

(2)直接法:

[再练一题]

2.给出下列几个结论:

①棱锥的侧面为三角形,且所有侧面都有一个公共顶点; ②多面体至少有四个面;

③棱台的侧棱所在直线均相交于同一点. 其中,错误的个数是( ) A.0个 B.1个 C.2个

D.3个

【解析】 ①正确;对于②,一个图形要成为空间几何体,它至少需有四个顶点,因为三个顶点只围成一个平面图形是三角形,有四个顶点时,易知它可围成四个面,因而一个多面体至少应有四个面,故这样的面必是三角形,所以②是正确的;对于③,棱台的侧棱所在的直线就是原棱锥的侧棱所在的直线,而棱锥的侧棱都有一个公共的点,即棱锥的顶点,于是棱台的侧棱所在的直线均相交于同一点,所以③是正确的.

【答案】 A

[探究共研型]

探究1

图1-1-1

【提示】 (1)可看作由一个四棱柱和一个三棱柱组合而成,(4)可看作由两个四棱柱组合而成.

探究2 试描述下列几何体的结构特征.

图1-1-2

【提示】 图①所示的几何体是由两个圆台拼接而成的组合体;图②所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图③所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.

如图1-1-3所示,用一个平行于圆锥SO 底面的平面截这个圆锥,截得圆台上、

下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm ,求圆台O ′O 的母线长.

图1-1-3

【精彩点拨】 过圆锥的轴作截面,利用三角形的相似来解决.

【自主解答】 设圆台的母线长为l ,由截得圆台上、下底面面积之比为1∶16,可设截得圆台的上、下底面的半径分别为r,4r .

过轴SO 作截面,如图所示.

则△SO ′A ′∽△SOA ,SA ′=3 cm , ∴

SA ′SA =O ′A ′OA ,∴33+l =r 4r =1

4

, 解得l =9(cm), 即圆台的母线长为9 cm.

1.识别简单组合体的构成方法:

组合体是由简单几何体通过拼接、截去或挖去一部分而形成的,因此,要仔细观察组合体的组成,结合柱、锥、台、球体的几何结构特征,对原组合体进行分割.

2.与圆锥有关的截面问题的解决策略:

求解有关圆锥的基本量的问题时,一般先画出圆锥的轴截面,得到一等腰三角形,进而可得到直角三角形,将问题转化为有关直角三角形的问题进行求解.通常在求圆锥的高、母线长、底面圆的半径长等问题时,都是通过取其轴截面,化归求解.巧妙之处就是将空间问题转化为平面问题来解决

.

[再练一题]

3.一个正方体内接于高为40 cm ,底面圆的半径为30 cm 的圆锥中,求正方体的棱长. 【解】 如图,过正方体的体对角线作圆锥的轴截面, 设正方体的棱长为x , 则OC =22x ,∴22x 30=40-x

40,

解得x =120(3-22),

∴正方体的棱长为120(3-

22)cm.

1.给出下列命题:

①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线;

③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线; ④圆柱的任意两条母线所在的直线是互相平行的. 其中正确的是( )

A.①②

B.②③

C.①③

D.②④

【解析】 依据圆柱、圆锥和圆台的定义及母线的性质可知,②④正确,①③错误. 【答案】 D

2.下列说法中正确的是( )

【导学号:39292001】

A.棱柱的面中,至少有两个面互相平行

B.棱柱中两个互相平行的平面一定是棱柱的底面

C.棱柱的侧棱就是棱柱的高

D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形

【解析】棱柱的两底面互相平行,故A正确;棱柱的侧面也可能有平行的面(如正方体),故B错;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C错;由棱柱的定义知,棱柱的侧面一定是平行四边形,但它的底面可以是平行四边形,也可以是其他多边形,故D错.

【答案】 A

3.下面几何体的截面一定是圆面的是( )

A.圆柱

B.圆锥

C.球

D.圆台

【解析】无论用怎样的平面去截球,截面一定是圆面,其他三个旋转体截面则不一定是圆面.

【答案】 C

4.已知圆锥的轴截面是正三角形,它的面积是3,则圆锥的高与母线的长分别为________.

【解析】设正三角形的边长为a,则

3

4

a2=3,∴a=2.由于圆锥的高即为圆锥的轴

截面三角形的高,所以所求的高为

3

2

a=3,圆锥的母线即为圆锥的轴截面正三角形的边,

所以母线长为2.

【答案】3,2

5.如图1-1-4所示为长方体ABCD-A′B′C′D′,E、F分别为棱A′B′,C′D′上的点,且B′E=C′F,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由.

图1-1-4

【解】截面BCFE上方部分是棱柱,为棱柱BEB′-CFC′,其中△BEB′和△CFC′是底面.

截面BCFE下方部分也是棱柱,为棱柱ABEA′-DCFD′,其中四边形ABEA′和四边形DCFD′是底面.

高中数学空间几何专题练习(供参考)

一、选择题 1、下图(1)所示的圆锥的俯视图为 ( ) 2 3 + 为 ( ) C 、120; 。 3、边长为a 正四面体的表面积是 ( ) A 、34; B 、312a ; C 、24 a ; D 2。 4、对于直线:360l x y -+=的截距,下列说法正确的是 ( ) A 、在y 轴上的截距是6; B 、在x 轴上的截距是6; C 、在x 轴上的截距是3; D 、在y 轴上的截距是3-。 5、已知,a b αα?//,则直线a 与直线b 的位置关系是 ( ) A 、平行; B 、相交或异面; C 、异面; D 、平行或异面。 6、已知两条直线12:210,:40l x ay l x y +-=-=,且12l l //,则满足条件a 的值为A 、12-; B 、12 ; C 、2-; D 、2。 7、在空间四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 的中点。 若AC BD a ==,且AC 与BD 所成的角为60,则四边形EFGH 的面积为 ( ) A 2; B 2a ; C 2; D 2。 8、在右图的正方体中,M 、N 分别为棱BC 和棱CC 1的中点, 则异面直线AC 和MN 所成的角为( ) A .30° B .45° C .90° D . 60° 9、下列叙述中错误的是 ( ) A 、若P αβ∈且l αβ=,则P l ∈; B 、三点,,A B C 确定一个平面; C 、若直线a b A =,则直线a 与b 能够确定一个平面; 图(1) 1 A

D 、若,A l B l ∈∈且,A B αα∈∈,则l α?。 10、两条不平行的直线,其平行投影不可能是 ( ) A 、两条平行直线; B 、一点和一条直线; C 、两条相交直线; D 、两个点。 11、长方体的一个顶点上的三条棱长分别为3、4、5,且它的8个顶点都在同一个球面上,则这个球的表面积是 ( ) A 、25π; B 、50π; C 、125π; D 、都不对。 12、给出下列命题 ①过平面外一点有且仅有一个平面与已知平面垂直 ②过直线外一点有且仅有一个平面与已知直线平行 ③过直线外一点有且仅有一条直线与已知直线垂直 ④过平面外一点有且仅有一条直线与已知平面垂直 其中正确命题的个数为( ) A .0个 B .1个 C .2个 D .3个 二、填空题 13、圆柱的侧面展开图是边长分别为2,a a 的矩形,则圆柱的体积为 ; 14.一个圆柱和一个圆锥的底面直径.. 和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为 . 15、过点(1 16、已知,a b (1) a b αβ////,,则a b //; (2) ,a b γγ⊥⊥,则a b //; (3) ,a b b α?//,则a α//; (4) ,a b a α⊥⊥,则b α//; M

高中数学立体几何测试题及答案一)

高中数学必修2立体几何测试题及答案(一)一,选择(共80分,每小题4分) 1,三个平面可将空间分成n个部分,n的取值为() A,4;B,4,6;C,4,6,7 ;D,4,6,7,8。 2,两条不相交的空间直线a、b,必存在平面α,使得() A,a?α、b?α;B,a?α、b∥α;C,a⊥α、b⊥α;D,a?α、b⊥α。 3,若p是两条异面直线a、b外的任意一点,则() A,过点p有且只有一条直线与a、b都平行;B,过点p有且只有一条直线与a、b都垂直;C,过点p有且只有一条直线与a、b都相交;D,过点p有且只有一条直线与a、b都异面。 4,与空间不共面四点距离相等的平面有()个 A,3 ;B,5 ;C,7;D,4。 5,有空间四点共面但不共线,那么这四点中() A,必有三点共线;B,至少有三点共线;C,必有三点不共线;D,不可能有三点共线。 6,过直线外两点,作与该直线平行的平面,这样的平面可有()个 A,0;B,1;C,无数;D,涵盖上三种情况。 7,用一个平面去截一个立方体得到的截面为n边形,则() A,3≤n≤6 ;B,2≤n≤5 ;C,n=4;D,上三种情况都不对。 8,a、b为异面直线,那么() A,必然存在唯一的一个平面同时平行于a、b;B,过直线b 存在唯一的一个平面与a平行;C,必然存在唯一的一个平面同时垂直于a、b;D,过直线b 存在唯一的一个平面与a垂直。 9,a、b为异面直线,p为空间不在a、b上的一点,下列命题正确的个数是() ①过点p总可以作一条直线与a、b都垂直;②过点p总可以作一条直线与a、b都相交;③

过点p 总可以作一条直线与a 、b 都平行;④过点p 总可以作一条直线与一条平行与另一条垂直;⑤过点p 总可以作一个平面与一条平行与另一条垂直。 A ,1; B ,2; C ,3; D ,4。 10,异面直线a 、b 所成的角为80°,p 为空间中的一定点,过点p 作与a 、b 所成角为40° 的直线有( )条 A ,2; B ,3; C ,4; D ,6。 11,P 是△ABC 外的一点,PA 、PB 、PC 两两互相垂直,PA=1、PB=2、PC=3,则△ABC 的 面积为( )平方单位 A ,25; B ,611; C ,27; D ,2 9。 12,空间四个排名两两相交,以其交线的个数为元素构成的集合是( ) A ,{2,3,4}; B ,{1,2,3,}; C ,{1,3,5}; D ,{1,4,6}。 13,空间四边形ABCD 的各边与对角线的长都是1,点P 在AB 上移动 ,点Q 在CD 上移 动,点P 到点Q 的最短距离是( ) A ,21; B ,22; C ,23; D ,4 3。 14,在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC ,PA=8,则P 到BC 的距离是( ) A ,45; B ,43; C ,25; D ,23。 15,已知m ,n 是两条直线,α,β是两个平面,下列命题正确的是( ) ①若m 垂直于α内的无数条直线,则m ⊥α;②若m 垂直于梯形的两腰,则m 垂直于梯形所 在的平面;③若n ∥α,m ?α,则n ∥m ;④若α∥β,m ?α,n ⊥β,则n ⊥m 。 A ,①②③; B ,②③④; C ,②④; D ,①③。 16,有一棱长为1的立方体,按任意方向正投影,其投影最大面积为( )

高一数学立体几何练习题及部分答案大全

立 体几何试题 一.选择题(每题4分,共40分) 1.已知AB 0300300150空间,下列命题正确的个数为( ) (1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形 (3)平行于同一条直线的两条直线平行 ;(4)有两边及其夹角对应相等的两个三角形全等 A 1 B 2 C 3 D 4 3.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是( ) A 平行 B 相交 C 在平面内 D 平行或在平面内 4.已知直线m αα过平面α外一点,作与α平行的平面,则这样的平面可作( ) A 1个 或2个 B 0个或1个 C 1个 D 0个 6.如图,如果MC ⊥菱形ABCD 所在平面,那么MA 与BD 的位置关系是( ) A 平行 B 垂直相交 C 异面 D 相交但不垂直 7.经过平面α外一点和平面α内一点与平面α垂直的平面有( ) A 0个 B 1个 C 无数个 D 1个或无数个 8.下列条件中,能判断两个平面平行的是( ) A 一个平面内的一条直线平行于另一个平面; B 一个平面内的两条直线平行于另一个平面 C 一个平面内有无数条直线平行于另一个平面 D 一个平面内任何一条直线都平行于另一个平面 9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( ) A //,,m n n m βα⊥? B //,,m n n m βα⊥⊥ C ,,m n m n αβα⊥=?I D ,//,//m n m n αβ⊥ 10 .已知四棱锥,则中,直角三角形最多可以有( ) A 1个 B 2个 C 3个 D 4个 二.填空题(每题4分,共16分) 11.已知?ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________ 12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有 _____________条 13.一块西瓜切3刀最多能切_________块

最新人教A版高中数学必修2空间立体几何知识点归纳

第一章 空间几何体知识点归纳 1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体 ⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。简单组合体的构成形式: 一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成。 ⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所 围成的多面体叫做棱柱。 ⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。 1、空间几何体的三视图和直观图 投影:中心投影 平行投影 (1)定义:几何体的正视图、侧视图和俯视图统称为几何体的三视图。 (2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等” 2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形. 3、斜二测画法的基本步骤: ①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x O y ∠,使''' x O y ∠=450(或1350 ),注意它们确定的平面表示水平平面; ③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘ 轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘ 轴,且长度变为原来的一半; ⑴圆柱侧面积;l r S ??=π2侧面⑵圆锥侧面积:l r S ??=π侧面 ⑶圆台侧面积:()S r R l π=+侧面 ⑷体积公式: h S V ?=柱体;h S V ?=31锥体; ()1 3 V h S S =下 台体上 ⑸球的表面积和体积:

高中数学必修二立体几何入门试题精选

高中数学必修二立体几何入门试题精选 内容:空间几何体与异面直线 时间:90分钟 分值:100分 一、选择题(本大题共8小题,每小题5分,共40分?在每小题给出的四个选项中,只 有一项是符合题目要求的) 1. 下列说法不正确的是 ( ) A. 圆柱的侧面展开图是一个矩形 B. 圆锥过轴的截面是一个等腰三角形 C. 平行于圆台底面的平面截圆台截面是圆面 D .直角三角形绕它的一边旋转一周形成的曲面围成的几何体是圆锥 2. 下列四个几何体中,每个几何体的三视图 有且仅有两个视图相同的是( ) 3. 如右图,一个空间几何体的主视图和左视图都是边长为 1的正三角形,俯视图是一个圆,那么几何体的侧面积为 ( B. ①正方体 A .①② B .①③ C .①④ D .②④ C. _2 D. 4 A i B i C i D i 中,既与 AB 共面也与CC i 共面的棱的条数为( 4.平面六面体ABCD

5. 一个几何体的三视图如右图所示,其中正视图中厶 ABC 是 边长为2的正三角形,俯视图为正六边形,那么该几何体的 9. 在平面上,若两个正三角形的边长的比为 1 : 2,则它们的面积比为 1 : 4,类似地,在空 间内,若两个正四面体的棱长的比为 1 : 2,则它们的体积比为 _」 10. 过圆锥高的三等分点作平行于底面的截面, 它们把圆锥侧面分成的三部分的面积之比为 11.直三棱柱ABC A1B 1C 1的各顶点都在同一球面上, 若AB AC AAA 2 , BAC 120,则此球的表面积等于 _______________________ 侧视图的面积为( )? A. 12 B . 2 3 C . 3 2 D . 6 6 ?—个骰子由1~6六个数字组成 ,请你根据图中三种状态所显 示的数字,推出 “? ”处的数字是( : ) A. 6 B 3 C 1 D 7. 如右图所示的直观 图, 其平面图形的面积为( ) 3”2 A. 3 B . 2 C . 6 D . . 3 2 则该几何体的表面积为() ?(不考虑接触 点) A. 6+ .3 B. 18+ .3 4 C. 32 D. 18+ 2.3 亠「3 丿 、填空题(本大题共5小题,每小题 4分,满分20分?把答案填在题中横线上 正迄要 8.如右图为一个几何体的三视图,尺寸如图所示, 俯视 侧视

高中数学必修2立体几何专题资料

专题一浅析中心投影与平行投影 中心投影与平行投影是画空间几何体的三视图和直观图的基础,弄清楚中心投影与平行投影能使我们更好地掌握三视图和直观图,平行投影下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小完全相同;而中心投影则不同.下表简单归纳了中心投影与平行投影,结合实例让我们进一步了解平行投影和中心投影. 例1如何才能使如图所示的两棵树在同一时刻的影长分别与它们的原长相等? 解析:方法一:可在同一方向上画出与原长相等的影长,分别连结它们影子顶点与树的顶点,此时为平行投影. 方法二:可在两树外侧不同方向上画出与原长相等的影子,连结影子顶点与树的顶点相交于P,此时为中心投影,P为光源位置. 点评:这是一道平行投影和中心投影相结合的题目,答案不唯一.连结物体顶点与其影子顶点,如果得到的是平行线,即为平行投影;如果得到的是相交线,则为中心投影,这是判断平行投影与中心投影的方法,也是确定中心投影光源位置的基本作法,还应注意,若中心投影光源在两树同侧时,图中的两棵树的影子不可能与原长相等. 例2 如图所示,点O为正方体ABCD-A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的面上的正投影可能是________(填出所有可能的序号).

解析:在下底面ABCD上的投影为③,在右侧面B′BCC′上的投影为②,在后侧面D′DCC′上的投影为①. 答案:①②③ 点评:画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点、端点等,方法是先画出这些关键点的投影,再依次连接各投影点即可得此图形在该平面上的投影. 专题二不规则几何体体积的求法 当所给几何体形状不规则时,无法直接利用体积公式求解,可尝试用以下几种常用的方法求出原几何体的体积,下面逐一介绍,供同学们参考. 一、等积转换法 当所给几何体的体积不能直接套用公式或套用公式时某一量(底面积或高)不易求出时, 可以转换一下几何体中有关元素的相对位置进行计算求解,该方法尤其适用于求三棱锥的体积. 例1在边长为a的正方体ABCD—A1B1C1D1中,M,N,P 分别是棱A1B1,A1D1,A1A上的点,且满足A1M = 1 2A1B1, A1N=2ND1,A1P= 3 4A1A(如图1),试求三棱锥A1—MNP的体 积. 分析:若用公式V= 1 3Sh直接计算三棱锥A1—MNP的体积, 则需要求出△MNP的面积和该三棱锥的高,这两者显然都不易求出, 但若将三棱锥A1—MNP的顶点和底面转换一下,变为求三棱锥P—A1MN的体积,便能很容易的求出其高和底面△A1MN的面积,从而代入公式求解. 解:V A 1-MNP =V A1—MNP = 1 3·S△A1MN ·h = 1 3× 1 2·A1M1·A1N·A1P= 1 3× 1 2× 1 2a· 2 3a· 3 4a= 1 24a 3.

高中数学立体几何专题

高中课程复习专题——数学立体几何 一空间几何体 ㈠空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 ㈡几种空间几何体的结构特征 1 棱柱的结构特征 棱柱的定义:有两个面互相平行,其余各面都是四边形, 并且每相邻两个四边形的公共边都互相平行,由这些面所 围成的几何体叫做棱柱。 % 棱柱的分类 棱柱的性质 , ⑴侧棱都相等,侧面是平行四边形; ⑵两个底面与平行于底面的截面是全等的多边形; ⑶过不相邻的两条侧棱的截面是平行四边形; ⑷直棱柱的侧棱长与高相等,侧面的对角面是矩形。 长方体的性质 ⑴长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC12 = AB2 + AC2 + AA12 ⑵长方体的一条对角线AC1与过定点A的三条棱所成 ` 的角分别是α、β、γ,那么: cos2α + cos2β + co s2γ = 1 sin2α + sin2β + sin2γ = 2 ⑶长方体的一条对角线AC1与过定点A的相邻三个面所组成的角分别为α、β、γ,则: cos2α + cos2β + cos2γ = 2 sin2α + sin2β + sin2γ = 1 图1-1 棱柱 图1-2 长方体 图1-1 棱柱

棱柱的侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱为邻边的矩形。 棱柱的面积和体积公式 S 直棱柱侧面 = c ·h (c 为底面周长,h 为棱柱的高) S 直棱柱全 = c ·h+ 2S 底 【 V 棱柱 = S 底 ·h 2 圆柱的结构特征 2-1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。 2-2 圆柱的性质 ⑴ 上、下底及平行于底面的截面都是等圆; ⑵ 过轴的截面(轴截面)是全等的矩形。 2-3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。 - 2-4 圆柱的面积和体积公式 S 圆柱侧面 = 2π·r ·h (r 为底面半径,h 为圆柱的高) S 圆柱全 = 2π r h + 2π r 2 V 圆柱 = S 底h = πr 2h 3 棱锥的结构特征 3-1 棱锥的定义 ⑴ 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 ⑵ 正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心, 这样的棱锥叫做正棱锥。 3-2 正棱锥的结构特征 ⑴ 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比; ⑵ 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; ⑶ 正棱锥中的六个元素,即侧棱(SB)、高(SO)、斜高(SH)、侧棱在底面上的射影(OB)、斜高在底面上的射影(OH)、底面边长的一半(BH),构成四个直角三角形(三角形SOB 、SOH 、SBH 、OBH 均为直角三角形)。 3-3 正棱锥的侧面展开图:正n 棱锥的侧面展开图是由n 个全等的等腰三角形组成。 3-4 正棱锥的面积和体积公式 图1-3 圆柱 )

高中数学空间立体几何讲义

第1讲 空间几何体 高考《考试大纲》的要求: ① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. ② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图. ③ 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. ④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). ⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式). (一)例题选讲: 例1.四面体ABCD 的外接球球心在CD 上,且CD =2,AB =3,在外接球面上两点A 、B 间的球面距离是( ) A . 6π B .3 π C .32π D .65π 例2.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为( ) A .π2 B .π2 3 C .π332 D .π2 1 例3.在正三棱柱ABC —A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角 是 . 例4.如图所示,等腰△ABC 的底边AB =66,高CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记BE =x ,V (x )表示四棱锥P-ACFE 的体积. (1)求V (x )的表达式; (2)当x 为何值时,V (x )取得最大值? (3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值。 (二)基础训练: 1.下列几何体各自的三视图中,有且仅有两个视图相同的是( ) A .①② B .①③ C .①④ D .②④ 2.设地球半径为R ,若甲地位于北纬045东经0120,乙地位于南纬度0 75东经0120,则甲、乙两地球面距离为( ) (A )3R (B) 6 R π (C) 56 R π (D) 23R π ①正方形 ②圆锥 ③三棱台 ④正四棱锥

高中数学立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA⊥矩形ABCD 所在平面,M、N 分别为AB、PC 的中点; (1)求证:MN// 平面PAD (2)若∠ PDA=45 °,求证:MN ⊥平面PCD 2(本小题满分12 分) 如图,在三棱锥P ABC中,E,F 分别为AC,BC 的中点. 1)求证:EF // 平面PAB ; 2)若平面PAC 平面ABC,且PA PC ,求 证:平面PEF 平面PBC . ABC 90 , A P C F B

(1)证明:连结EF , Q E、F 分别为AC 、BC的中点, EF // AB. ???????? 2 分又EF 平面PAB ,AB 平面PAB ,EF∥平面PAB. ????????5 分 (2)Q PA PC,E为AC的中点, PE AC ???????? 6 分 又Q 平面PAC 平面ABC PE 面ABC ????????8 分 PE BC ????????9 分 又因为F 为BC 的中点, EF // AB Q ABC 900, BC EF ????????10 分 Q EF I PE E BC 面PEF ????????11 分 又Q BC 面PBC 面PBC 面PEF ????????12 分 3. 如图,在直三棱柱ABC—A1B1C1中,AC=BC,点D是AB的中点。 1)求证:BC1// 平面CA1D; 2)求证:平面CA1D⊥平面AA1B1B。 4.已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F 分 别是AB、PC的中点. (1) 求证:EF∥平面PAD; (2) 求证:EF⊥ CD; (3) 若∠ PDA=45°,求EF与平面ABCD 所成的角的大小.

高中数学立体几何三视图练习题

立体几何-三视图练习题 1.下列四个几何体中,每个几何体的三视图中有且仅有两个视图相同的是( ). A .①② B .①③ C .③④ D .②④ 2.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( ). 3.一个几何体的三视图如图所示,则该几何体的直观图可以是 ( ) 4.在一个几何体的三视图中,正(主)视图和俯视图如图所示,则相应的侧(左)视图可以为( ). 5.如图,直观图所示的原平面图形是( ) A.任意四边形 B.直角梯形 C.任意梯形 D.等腰梯形 6.将正三棱柱截去三个角(如图1所示A B C ,,分别是GHI △三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )

7. 一个多面体的三视图分别为正方形、等腰三角形和矩形,如图所示,则该多面体的体积为( ) A .24 cm 3 B .48 cm 3 C .32 cm 3 D .28 cm 3 第7题 第8题 8.若正四棱锥的正(主) 视图和俯视图如图所示,则该几何体的表面积是( ). A .4 B .4+410 C .8 D .4+411 9.如下图是某几何体的三视图,其中正(主)视图是腰长为2的等腰三角形,侧(左)视图是半径为1的半圆,则该几何体的体积是( ). A .π B ..π 3 C .3π D .3π3 第9题 第10题 10.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( ) A. 34000cm 3 B.3 8000cm 3 C.32000cm D.34000cm 11.3 ,且一个内角为60o 的菱形,俯视图为正方形,那么这个几何体的表面积为( ) A .23 B .43 C . 4 D . 8 E F D I A H G B C E F D A B C 侧视 图1 图2 B E A . B E B . B E C . B E D .

高中数学必修2空间立体几何大题

必修2空间立体几何大题 一.解答题(共18小题) 1.如图,在三棱锥V﹣ABC中,平面V AB⊥平面ABC,△V AB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,V A的中点. (1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面V AB(3)求三棱锥V﹣ABC的体积. 2.如图,三棱锥P﹣ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°. (1)求三棱锥P﹣ABC的体积; (2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值. 3.如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形 (Ⅰ)在图中画出这个正方形(不必说出画法和理由) (Ⅱ)求平面α把该长方体分成的两部分体积的比值. 4.如图,直三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点, (Ⅰ)证明:平面AEF⊥平面B1BCC1; (Ⅱ)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F﹣AEC的体积.

5.如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E. 求证: (1)DE∥平面AA1C1C;(2)BC1⊥AB1. 6.如题图,三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4, 点F在线段AB上,且EF∥BC. (Ⅰ)证明:AB⊥平面PFE.(Ⅱ)若四棱锥P﹣DFBC的体积为7,求线段BC的长. 7.如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1, (Ⅰ)若D为线段AC的中点,求证;AC⊥平面PDO; (Ⅱ)求三棱锥P﹣ABC体积的最大值; 8.如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD. (Ⅰ)证明:平面AEC⊥平面BED; (Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.

高中数学立体几何知识点及练习题

点、直线、平面之间的关系 ㈠平面的基本性质 公理一:如果一条直线上有两点在一个平面内,那么直线在平面内。 公理二:不共线的三点确定一个平面。 推论一:直线与直线外一点确定一个平面。 推论二:两条相交直线确定一个平面。 推论三:两条平行直线确定一个平面。 公理三:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线(两个平面的交线)。 ㈡空间图形的位置关系 1 直线与直线的位置关系(相交、平行、异面) 1.1 平行线的传递公理:平行于同一直线的两条直线相互平行。 即:a∥b,b∥c a∥c 1.2 异面直线 定义:不在任何一个平面内的两条直线称为异面直线。 1.3 异面直线所成的角 ⑴异面直线成角的范围:(0°,90°]. ⑵作异面直线成角的方法:平移法。 注意:找异面直线所成角时,经常把一条异面直线平移到另一条异面直线的特殊点(如中点、端点等),形成异面直线所成的角。 2 直线与平面的位置关系(直线在平面内、相交、平行) 3 平面与平面的位置关系(平行、斜交、垂直) ㈢平行关系(包括线面平行和面面平行) 1 线面平行 1.1 线面平行的定义:平面外的直线与平面无公共点,则称为直线和平面平行。 1.2 判定定理: 1.3 性质定理:

2 线面角: 2.1 直线与平面所成的角(简称线面角):若直线与平面斜 交,则平面的斜线与该斜线在平面内射影的夹角θ。 2.2 线面角的范围:θ∈[0°,90°] 3 面面平行 3.1 面面平行的定义:空间两个平面没有公共点,则称为两平面平行。 3.2 面面平行的判定定理: ⑴ 判定定理1:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面相互平行。 即: 推论:一个平面内的两条相交直线分别平行于另一个 平面的两条线段,那么这两个平面平行。即: ⑵ 判定定理2:垂直于同一条直线的两平面互相平 行。即: 3.3 面面平行的性质定理 ⑴ (面面平行 线面平行) ⑵ ⑶ 夹在两个平行平面间的平行线段相等。 ㈣ 垂直关系(包括线面垂直和面面垂直) 1 线面垂直 1.1 线面垂直的定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。 1.2 线面垂直的判定定理: 图2-3 线面角 图2-5 判定1推论 图2-6 判定2

高中数学空间向量与立体几何经典题型与答案

空间向量与立体几何经典题型与答案 1 已知四棱锥P ABCD -的底面为直角梯形,//AB DC ,⊥=∠PA DAB ,90ο 底面ABCD ,且 1 2 PA AD DC === ,1AB =,M 是PB 的中点 (Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角; (Ⅲ)求面AMC 与面BMC 所成二面角的大小 证明:以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为 1 (0,0,0),(0,2,0),(1,1,0),(1,0,0),(0,0,1),(0,1,)2 A B C D P M (Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=?==所以故 由题设知AD DC ⊥,且AP 与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD 又DC 在面 PCD 上,故面PAD ⊥面PCD (Ⅱ)解:因),1,2,0(),0,1,1(-==PB AC . 510 | |||,cos ,2,5||,2||=??>=<=?==PB AC PB AC PB AC PB AC PB AC 所以故 (Ⅲ)解:在MC 上取一点(,,)N x y z ,则存在,R ∈λ使,MC NC λ= ..2 1 ,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x MC z y x NC 要使14 ,00,.25 AN MC AN MC x z λ⊥=-==u u u r u u u u r g 只需即解得 ),5 2 ,1,51(),52,1,51(,. 0),5 2 ,1,51(,54=?-===?=MC BN BN AN MC AN N 有此时能使点坐标为时可知当λ ANB MC BN MC AN MC BN MC AN ∠⊥⊥=?=?所以得由.,0,0为 所求二面角的平面角 30304||,||,. 555 2 cos(,).3||||2 arccos(). 3 AN BN AN BN AN BN AN BN AN BN ===-∴==-?-u u u r u u u r u u u r u u u r Q g u u u r u u u r u u u r u u u r g u u u r u u u r 故所求的二面角为

高二数学立体几何试题及答案(完整资料).doc

【最新整理,下载后即可编辑】 【模拟试题】 一. 选择题(每小题5分,共60分) 1. 给出四个命题: ①各侧面都是正方形的棱柱一定是正棱柱; ②各对角面是全等矩形的平行六面体一定是长方体; ③有两个侧面垂直于底面的棱柱一定是直棱柱; ④长方体一定是正四棱柱。 其中正确命题的个数是() A. 0 B. 1 C. 2 D. 3 2. 下列四个命题: ①各侧面是全等的等腰三角形的四棱锥是正四棱锥; ②底面是正多边形的棱锥是正棱锥; ③棱锥的所有面可能都是直角三角形; ④四棱锥中侧面最多有四个直角三角形。 正确的命题有________个 A. 1 B. 2 C. 3 D. 4 3. 长方体的一个顶点处的三条棱长之比为1:2:3,它的表面积为88,则它的对角线长为() A. 12 B. 24 C. 214 D. 414 4. 湖面上漂着一个球,湖结冰后将球取出,冰面上留下一个面直径为24cm,深为8cm的空穴,则该球的半径是() A. 8cm B. 12cm C. 13cm D. 82cm 5. 一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积为侧面积的比是() A. 12 2 +π π B. 14 4 +π π C. 12 +π π D. 14 2 +π π 6. 已知直线l m ⊥? 平面,直线平面 αβ,有下面四个命题: ①αβ//?⊥l m;②αβ⊥?l m //;③l m //?⊥ αβ;④l m⊥?αβ//。 其中正确的两个命题是() A. ①② B. ③④ C. ②④ D. ①③

7. 若干毫升水倒入底面半径为2cm 的圆柱形器皿中,量得水面的高度为6cm ,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是( ) A. 63cm B. 6cm C. 2182 D. 3123 8. 设正方体的全面积为242cm ,一个球内切于该正方体,那么这个球的体积是( ) A. 63πcm B. 32 3 3 πcm C. 8 3 3 πcm D. 4 3 3 πcm 9. 对于直线m 、n 和平面αβ、能得出αβ⊥的一个条件是( ) A. m n m n ⊥,,////αβ B. m n m n ⊥=?,,αβα C. m n n m //,,⊥?βα D. m n m n //,,⊥⊥αβ 10. 如果直线l 、m 与平面αβγ、、满足: l l m m =?⊥βγααγ ,,,//,那么必有( ) A. αγ⊥⊥和l m B. αγβ////,和m C. m l m //β,且⊥ D. αγαβ⊥⊥且 11. 已知正方体的八个顶点中,有四个点恰好为正四面体的顶点,则该正四面体的体积与正方体的体积之比为( ) A. 13: B. 12: C. 2:3 D. 1:3 12. 向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如图所示,那么水瓶的形状是( ) 二. 填空题(每小题4分,共16分) 13. 正方体的全面积是a 2,它的顶点都在球面上,这个球的表面积是__________。 14. 正四棱台的斜高与上、下底面边长之比为5:2:8,体积为143cm ,则棱台的高为____________。 15. 正三棱柱的底面边长为a ,过它的一条侧棱上相距为b 的

高中数学立体几何专题

高中课程复习专题 ——数学立体几何 一空间几何体 ㈠空间几何体的类型 1多面体:由若干个平面多边形围成的几何体。 围成多面体的各个 多边形叫做多面体的面, 相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭 几何体。 其中, 这条直线称为旋转体的轴。 ㈡几种空间几何体的结构特征 1棱柱的结构特征 1.1棱柱的定义:有两个面互相平行, 其余各面都是四边 形,并且每相邻 两个四边形的公共边都互相平行,由这些 面所围成的几何体叫做棱柱。 1.2棱柱的分类 瓦他棱柱… ②四检杆 底血为甲行四边遊 T-trAfij 休 侧检旺亢丁底向 A-'K'tf'AlkJtt 囱向为和序 ------------------ ? ------------- - ----------------- ■ ------------------ A 长方体I 屁血为止方册.1』四棱相 傭棱打底血边怅*||簞 止方体 1.3棱柱的性质 ⑴侧棱都相等,侧面是平行四边形; ⑵ 两个底面与平行于底面的截面是全等的多边形; ⑶过不相邻的两条侧棱的截面是平行四边形; ⑷直棱柱的侧棱长与高相等,侧面的对角面是矩形。 1.4长方体的性质 ⑴长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC 12 = AB 2 + AC 2 + AA 12 ⑵长方体的一条对角线 AC 1与过定点A 的三条棱所成 的角分别是a 伙Y 那么: 2 2 2 cos a + cos 3 + COS 丫= 1 sin 2 a + sin 3 + siny =2 ⑶ 长方体的一条对角线 AC 1与过定点A 的相邻三个面所组成的角分别为 a 3 Y 则: .咬llLI 昭|1.呂出 *正棱柱 够一 ;I ;从 图1-2长方体 2 COs a 2 2 + cos 3 + COSY = 2 sin 2 a 2 2 + sin 3 + sinY =1 E' A 图图1棱柱棱柱

高中数学立体几何专:空间距离的各种计算(含答案)

高中数学立体几何 空间距离 1.两条异面直线间的距离 和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异 面直线间的线段的长度,叫做两条异面直线的距离. 2.点到平面的距离 从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离 如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离 和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离. 题型一:两条异面直线间的距离 【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离; 【规解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线. (2)在Rt △BEF 中,BF = a 23 ,BE =a 21, 所以EF 2=BF 2-BE 2=a 2 12,即EF =a 22 . 由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为 a 2 2 . 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED . ∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB . ∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离. ∵CE =23,∴CF =FD =21,∠EFC =90°,EF =2221232 2 =??? ??-??? ? ??. ∴AB 、CD 的距离是 2 2 . 【解后归纳】 求两条异面直线之间的距离的基本方法: (1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度. (2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. (3)如果两条异面直线分别在两个互相平行的平面,可以转化为求两平行平面的距离. 题型二:两条异面直线间的距离 【例3】 如图(1),正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离; 过A 作AO ⊥平面BCD 于O ,连BO 并延长与CD 相交于E ,连AE . ∵AB =AC =AD ,∴OB =OC =OD .∴O 是△BCD 的外心.又BD =BC =CD , ∴O 是△BCD 的中心,∴BO = 3 2BE =332332= ?. 例1题图 例2题图 例3题图

高中数学立体几何习题

1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 A E D 1 C B 1 D A A H G F E D C B A E D B C

4、已知ABC ?中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 6、正方体''''ABCD A B C D -中, 求证:(1)''AC B D DB ⊥平面; (2)''BD ACB ⊥平面. S D C B A D 1 O D B A C 1 B 1 A 1 C

N M P C B A 7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 8、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且2 2 EF AC = , 90BDC ∠=o ,求证:BD ⊥平面ACD 9、如图P 是ABC ?所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的点, 3AN NB = (1)求证:MN AB ⊥; (2)当90APB ∠=o ,24AB BC ==时,求MN 的长。 A A B 1 C 1 C D G E F

高中数学立体几何专项练习

立体几何简答题练习 1、正方形ABCD 与正方形ABEF 所在平面相交于AB,在AE 、BD 上各有一点P 、Q,且AP=DQ 。求证:PQ ∥平面BCE.(用两种方法证明) 2、如图所示,P 是平行四边形ABCD 所在平面外一点,E 、F 分别在PA 、BD 上,且PE:EA=BF:FD,求证:EF ∥平面PBC. 3、如图,E ,F ,G ,H 分别是正方体ABCD-A 1B 1C 1D 1的棱BC ,CC 1,C 1D 1,AA 1的中点。 求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .

4、如图所示,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别为AB 、PC 的中点,平面PAD ∩平面PBC =l. (1)求证:l ∥BC ; (2)MN 与平面PAD 是否平行?试证明你的结论。 5、如图,在四棱锥S-ABCD 中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA=SB ,点M 是SD 的中点,AN ⊥SC ,且交SC 于点N 。 (1)求证:SB ∥平面ACM ; (2)求证:平面SAC ⊥平面AMN ; (3)求二面角D-AC-M 的余弦值。 6、如图,在四棱锥P-ABCD 中,底面ABCD 是边长为2的正方形,侧面PAD ⊥底面ABCD,且PA=PD= 2 2 AD,E 、F 分别为PC 、BD 的中点. 求证:(1) 求证:EF ∥平面PAD; (2) 求证:平面PAB ⊥平面PDC; (3) 在线段AB 上是否存在点G,使得二面角C-PD-G 的余弦值为3 1 ?说明理由.

相关主题
文本预览
相关文档 最新文档