当前位置:文档之家› 高中数学立体几何垂直关系专题

高中数学立体几何垂直关系专题

高中数学立体几何垂直关系专题
高中数学立体几何垂直关系专题

立体几何垂直关系专题

高考中立体几何解答题中垂直关系的基本题型是:

证明空间线面垂直需注意以下几点:

①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面或辅助体)是解题的常用方法之一。

③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。

④三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑. 应用时常需先认清所观察的平面及它的垂线,从而明确斜线、射影、面内直线的位置,再根据定理由已知的两直线垂直得出新的两直线垂直.另外通过计算证明线线垂直也是常用的方

法之一。

垂直题目的解决方法须熟练掌握以下相互转化关系:

2 垂直转化:线线垂直线面垂直面面垂直;每一垂直判定就是从某一垂直开始转向另一垂直最终达到

目的。

例如:有两个平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直。

2.“升降维”思想

直线是一维的,平面是二维的,立体空间是三维的。运用降维的方法把立体空间问题转化为平面或直线问题进行研究和解题,可以化难为易,化新为旧,化未知为已知,从而使问题得到解决。运用升维的方法把平面或直线中的概念、定义或方法向空间推广,可以立易解难,温旧知新,从已知探索未知,是培养创新精神和能力,是“学会学习”的重要方法。平面图形的翻折问题的分析与解决,就是升维与降维思想方法的不断转化运用的过程。注意:证明线面关系,严禁跳步作答

证明线面位置关系的基本思想是转化与化归,根据线面平行、垂直关系的判定和性质,进行相互之间的转化,但分析问题时不能只局限在线上,要把相关的线归结到某个平面上,通过证明线面垂直达到证明线线垂直的目的,但证明线面垂直又要借助于线线垂直,在不断的相互转化中达到最终目的.

解决空间问题常添加的辅助线与辅助面

1. 遇到线面平行面面平行做辅助面引出平行线,遇到线面垂直做出过垂线的平面引出垂面

2.. 遇到面面垂直在一平面内做出两垂面交线的垂线引出线面垂直的条件添加辅助线的策略:

一、添加垂线策略。

因为立体几何的许多定义或定理是与垂线有关的,如线面角、二面角的定义,点到平面、线到平面、平面到平面距离的定义,三垂线定理,线面垂直、面面垂直的判定及性质定理,

正棱柱、正棱锥的性质,球的性质等,所以运用这些定义或定理,就需要把没有的垂线补上。尤其要注意平面的垂线,因为有了平面的垂线,才能建立空间直角坐标系,才能使用三垂线定理或其逆定理。

、添加平行线策略。

其目的是把不在一起的线,集中在一个图形中,构造出三角形、平行四边形、矩形、菱形,这样就可以通过解三角形等,求得要求的量,或者利用三角形、梯形的中位线来作出所需要的平行线。

三.向中心对称图形对称中心添加连线策略。

这主要是因为对称中心是整个图形的“交通” 枢纽,它可以与周围的点、线、面关联起来,常见的有对平行四边形连对角线,对圆的问题向圆心连线,对球体问题向球心连线。

四、名线策略。

即添加常用的、重要的线,如中位线、高、角平分线、面对角线和体对角线等。尽管这些线上面也有提到,但还是要在这里强化一下,这些线有着广泛的联系。尤其是添加三角形中位线或者梯形中位线,这主要是因为中位线占据了两个边的中点,并且中位线平行于底边,且是底边长的一半,它可以把底边与其他线面的角度关系平移,使已知和未知集中在一个三角形中。

典型例题精讲

空间垂直题型一线线垂直问题

1. 证明:体对角线与与侧面上无公用定点的对角线互相垂直,同一侧面上的两条对角线互

相垂直,不在同一侧面上的两条对角线的交角为60o,

(1)含AC的对角面共有几个分别是哪几个?

答A案:共三个分别是平面AA1CC1、平面A1B1CD、平面

A1BCD1

2. (06 江西卷)如图,在三棱锥A-BCD中,侧面ABD、ACD是全等的直角三角形,AD是公

共的斜边,且AD=3 ,BD=CD=1,另一个侧面是正三角形,求证:AD BC

3. 已知直三棱柱 ABC — A 1B 1C 1中,∠ ACB=900,∠BAC=300,BC=1,AA 1= 6 ,M 为 CC 1中点,求 证: AB 1⊥ A 1M 。

4. 已知矩形 ABCD ,过 A 作 SA ⊥平面 ABCD ,再过 A 作 AE ⊥SB 交 SB 于 E ,过 E 作 EF ⊥SC 交 SC 于F 。(1)求证: AF ⊥SC ;(2)若平面 AEF 交SD 于G ,求证: AG ⊥

SD

5. 如图,在正方体 ABCD - A 1B 1C 1D 1中, M 是棱 A 1A 的中点, 求证: C 1M ⊥ MN .

N 在 AB 上,且 AN ∶NB =1∶3, A B

A 1

B 1

6.正三棱柱ABC—A1B1C1的侧面三条对角线AB1、BC1、CA1中,AB1⊥ BC1. 求证:AB1⊥CA1.

7.2014 许郑平1.19. 将棱长为a 的正方体截去一半(如图甲所示)得到如图乙所示的几何体,点E,F 分别是BC,DC 的中点.

8.2014郑一测19在三棱柱ABC- A1B1C1中,侧面ABB1 A1为矩形,AB = 1,AA1 = 2,D 为AA1的中点,BD 与AB1交于点O,CO 侧面ABB1 A1 .

D1 (I) 证明:BC AB1;

空间垂直题型二

线面垂直问题

1.已知三棱锥P- ABC 中,E、F分别是 AC 、AB 的中点,△ ABC ,△ PEF 都是正三角形, PF ⊥AB .证明 PC ⊥平面 PAB

2. 在正方体 ABCD —A 1B 1C 1D 1,G 为 CC 1的中点, O 为底面 ABCD 的中心。求证: A 1O ⊥平面 GBD

3.(06 天津)如图,在五面体 ABCDEF 中,点 O 是矩形 ABCD 的对角线的交点,面 CDE 是等

1

边三角形,棱 EF ∥ BC . 2

(I )证明 FO ∥平面 CDE;

(II )设 BC 3CD,证明 EO 平面 CDF .

A

B

C 1

G

C

A O

D

B C

4. .( 福 建 卷 ) 如 图 , 四 面 体 ABCD 中 , O 、 E 分 别 是 BD 、 BC 的 中 点 , CA CB CD BD 2,AB AD 2.

(I )求证: AO 平面 BCD ; (II )求点 E 到平面 ACD 的距离。

PA ⊥矩形 ABCD 所在平面, M ,N 分别是 AB ,PC 的中点.

(1)求证: MN ⊥CD ;

(2) 若∠ PDA = 45°,求证: MN ⊥平面 PCD.

5.如图所示,已知

面面垂直问题

1. 如图所示,已知△ ABC 中,∠ ABC =90°,P为△ ABC 所在平面外一点,PA=PB=PC.

求证:平面PAC⊥平面ABC.

2. 如图,在直三棱柱ABC -A 1B1C1中,AC =BC,点D是AB 的中点.(1)求证:BC 1∥平面CA1D;(2)求证:平面CA1D ⊥平面AA 1B1B.

空间垂直题型三

P

C

专题4:立体几何中垂直关系的证明基础练习题

专题4:立体几何中垂直关系的证明基础练习题 1.如图,在四棱锥P–ABCD中,P A⊥平面ABCD,AD⊥CD,AD//BC,P A=AD=CD=2, BC=3.E为PD的中点,点F在PC上,且 1 3 PF PC =,求证:CD⊥平面P AD. 2.如图所示,P是边长为1的正六边形ABCDEF所在平面外一点,1 PA=,P在平面ABC内的射影为BF的中点O.证明PA BF ⊥. 3.如图所示,A1A是圆柱的母线,AB是圆柱底面圆的直径,C是底面圆周上异于A,B 的任意一点,A1A=AB=2.求证:BC⊥平面A1AC. 4.如图,在三棱锥P-ABC中,CD AB ⊥,垂足为D,PO⊥底面ABC,垂足为O,且O在CD上,求证:AB PC ⊥.

5.已知AB是圆的直径,PA垂直圆所在的平面,C是圆上任一点.求证:平面ABC⊥平面PAC. 6.三棱锥P—ABC中,PO⊥面ABC,垂足为O,若PA⊥BC,PC⊥AB,求证: (1)AO⊥BC (2)PB⊥AC 7.P为正方形ABCD所在平面外一点,PA⊥面ABCD,AE⊥PB,求证:AE⊥PC. 8.如图,边长为2的正方形ABCD所在的平面与半圆弧CD所在平面垂直,M是CD 上异于C,D的点.证明:平面AMD 平面BMC. 9.如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1,证明:BE⊥平面EB1C1

10.如图,在四棱锥P?ABCD 中,底面ABCD 为平行四边形,平面P AD ⊥平面ABCD ,P A =PD ,E 为AD 的中点.求证:PE ⊥BC . 11.如图所示,四面体ABCD 中,O 为BD 的中点,2AC BC CD BD ====,2AB AD ==,求证:AO ⊥平面BCD . 12.如图所示,在四棱锥P ABCD -中,底面为直角梯形,//AD BC ,90BAD ∠=,PA ⊥底面ABCD ,且2AP AD AB BC ===,M 、N 分别为PC 、PB 的中点.求证:DM PB .

高中数学立体几何证明定理及性质总结

一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 l 符号表示: 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。方法二:用面面平行实现。 m l m l l // // ? ? ? ? ? ? = ? ? β α β α m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α 方法三:用线面垂直实现。若α α⊥ ⊥m l,,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? 方法二:用面面平行实现。 α β β α // // l l ? ? ? ? ? 3.面面平行: 方法一:用线线平行实现。方法二:用线面平行实现 β α α β // ' ,' , ' // ' // ? ? ? ? ? ? ? ? ? ? 且相交 且相交 m l m l m m l l 。β α β α α // , // // ? ? ? ? ? ? ?且相交 m l m l 三.垂直关系: l

1. 线面垂直: 方法一:用线线垂直实现。 方法二:用面面垂直实现。 α α⊥??? ????? ?=?⊥⊥l AB AC A AB AC AB l AC l , αββαβα⊥???? ???⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 方法二:计算所成二面角为直角。 βαβα⊥?? ?? ?⊥l l 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥????

高中数学立体几何知识点归纳总结

高中数学立体几何知识点归纳总结 一、立体几何知识点归纳 第一章空间几何体 (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱 与棱的公共点叫做顶点。 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其 中,这条定直线称为旋转体的轴。 (2)柱,锥,台,球的结构特征 1.棱柱 1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都 互相平行,由这些面所围成的几何体叫做棱柱。 E'D' F' C'侧面 A'B' l 1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的 底面侧棱 关系: 斜棱柱 ED FC ① 底面是正多形 棱柱正棱柱 棱垂直于底面 直棱柱 其他棱柱 AB ②四棱柱底面为平行四边形平行六面体侧棱垂直于底面直平行六面体底面为矩形 长方体底面为正方形正四棱柱侧棱与底面边长相等正方体 1.3棱柱的性质: ①侧棱都相等,侧面是平行四边形; ②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形; ④直棱柱的侧棱长与高相等,侧面与对角面是矩形。 1.4长方体的性质: ①长方体一条对角线长的平方等于一个顶点上三条棱的 D1 C1 平方和;【如图】 2222 ACABADAA 11 A1 D B1 ②(了解)长方体的一条对角线 AC 与过顶点A 的三条 1 C AB 棱所成的角分别是,,,那么

第1页

222 coscoscos1, 222 sinsinsin2; ③(了解)长方体的一条对角线A C与过顶点A的相邻三个面所成的角分别是,,, 1 则 222 coscoscos2, 222 sinsinsin1. 2.侧面展开图:正n棱柱的侧面展开图是由n个全等矩形组成的以底面周长和侧棱长为邻 边的矩形. 3.面积、体积公式:S ch 直棱柱侧 直棱柱全底,V棱柱底 Sch2SSh (其中c为底面周长,h 为棱柱的高)1.5圆柱 2.1圆柱——以矩形的一边所在的直线为旋转轴,其 余各边旋转而形成的曲面所围成的几何体叫圆柱. 母线A' B' O' C' 轴 轴截面 2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形. 2.3侧面展开图:圆柱的侧面展开图是以底面周长和AOC 侧面B 母线长为邻边的矩形. 底面2.4面积、体积公式: S圆柱侧=2rh;S 圆柱全= 2 2rh2r,V 圆柱=S底h= 2 rh(其中r为底面半径,h为圆柱高) 1.6棱锥 3.1棱锥——有一个面是多边形,其余各 S 顶点侧面面是有一个公共顶点的三角形,由这些高 面所围成的几何体叫做棱锥。 侧棱正棱锥——如果有一个棱锥的底面 是正多边形,并且顶点在底面的射影是 底面的中心,这样的棱锥叫做正棱锥。 3.2棱锥的性质:底面 斜高DC ①平行于底面的截面是与底面相似的正 O AB H 多边形,相似比等于顶点到截面的距 离与顶点到底面的距离之比; ②正棱锥各侧棱相等,各侧面是全等的等腰三角形; ③正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面边长一半,构成四个直角三角形。)(如上图:SOB,SOH,SBH,OBH为直角三角形) 3.3侧面展开图:正n棱锥的侧面展开图是有n个全等的等腰三角形组成的。

立体几何证明垂直专项含练习题及答案

立体几何证明------垂直 一.复习引入 1.空间两条直线的位置关系有:_________,_________,_________三种。 2.(公理4)平行于同一条直线的两条直线互相_________. 3.直线与平面的位置关系有_____________,_____________,_____________三种。 4.直线与平面平行判定定理:如果_________的一条直线和这个平面的一条直线平行, 那么这条直线和这个平面平行 5.直线与平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这 个平面相交,那么_________________________. 6.两个平面的位置关系:_________,_________. 7.判定定理1:如果一个平面有_____________直线都平行于另一个平面,那么这两 个平面平行. 8.线面垂直性质定理:垂直于同一条直线的两个平面________. 9.如果两个平行平面同时和第三个平面相交,那么它们的________平行. 10.如果两个平面平行,那么其中一个平面的所有直线都_____于另一个平面. 二.知识点梳理 要点诠释:定义中“平面的任意一条直线”就是指“平面的所有直线”,这与“无数条直线”不同(线 线垂直线面垂直) Ⅰ.二面角:从一条直线出发的两个半平面所组成的图形叫二面角(dihedral angle ). 这条直线叫做二 面角的棱,这两个半平面叫做二面角的面. 记作二面角AB αβ--. (简记P AB Q --)

二面角的平面角的三个特征: ⅰ. 点在棱上 ⅱ. 线在面 ⅲ. 与棱垂直 Ⅱ.二面角的平面角:在二面角αβ-l -的棱l 上任取一点O ,以点O 为垂足,在半平面,αβ分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的AOB ∠叫做二面角的平面角. 作用:衡量二面角的大小;围:000180θ<<. 知识点四、平面和平面垂直的定义和判定 (垂直问题中要注意题目中的文字表述,特别是“任何”“ 随意”“无数”等字眼) 三.常用证明垂直的方法 立体几何中证明线面垂直或面面垂直都可转化为线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通过“平移”。 (2) 利用等腰三角形底边上的中线的性质。 (3) 利用勾股定理。 (4) 利用直径所对的圆周角是直角 (1) 通过“平移”,根据若则a //b,且b⊥平面α,a⊥平面α 1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB=2 1 DC ,中点为PD E . 求证:AE ⊥平面PDC. 2.如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD , ∠PDA=45°,点E 为棱AB 的中点.求证:平面PCE ⊥平面PCD ; (第2题

高中数学立体几何专项练习

立体几何简答题练习 1、正方形ABCD 与正方形ABEF 所在平面相交于AB,在AE 、BD 上各有一点P 、Q,且AP=DQ 。求证:PQ ∥平面BCE.(用两种方法证明) 2、如图所示,P 是平行四边形ABCD 所在平面外一点,E 、F 分别在PA 、BD 上,且PE:EA=BF:FD,求证:EF ∥平面PBC. 3、如图,E ,F ,G ,H 分别是正方体ABCD-A 1B 1C 1D 1的棱BC ,CC 1,C 1D 1,AA 1的中点。 求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .

4、如图所示,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别为AB 、PC 的中点,平面PAD ∩平面PBC =l. (1)求证:l ∥BC ; (2)MN 与平面PAD 是否平行?试证明你的结论。 5、如图,在四棱锥S-ABCD 中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA=SB ,点M 是SD 的中点,AN ⊥SC ,且交SC 于点N 。 (1)求证:SB ∥平面ACM ; (2)求证:平面SAC ⊥平面AMN ; (3)求二面角D-AC-M 的余弦值。 6、如图,在四棱锥P-ABCD 中,底面ABCD 是边长为2的正方形,侧面PAD ⊥底面ABCD,且PA=PD= 2 2 AD,E 、F 分别为PC 、BD 的中点. 求证:(1) 求证:EF ∥平面PAD; (2) 求证:平面PAB ⊥平面PDC; (3) 在线段AB 上是否存在点G,使得二面角C-PD-G 的余弦值为3 1 ?说明理由.

高中数学立体几何知识点总结(详细)

高中数学立体几何知识点总结 一 、空间几何体 (一) 空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各 个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 (二) 几种空间几何体的结构特征 1 、棱柱的结构特征 1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 棱柱的分类 棱柱 四棱柱 平行六面体直平行六面体 长方体正四棱柱 正方体 性质: Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 棱长都相等 底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是四边形

1.3 棱柱的面积和体积公式 ch S =直棱柱侧(c 是底周长,h 是高) S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h 2 、棱锥的结构特征 2.1 棱锥的定义 (1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 (2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 2.2 正棱锥的结构特征 Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积: 1 '2 S ch = 正棱椎(c 为底周长,'h 为斜高) 体积:1 3 V Sh = 棱椎(S 为底面积,h 为高) 正四面体: 对于棱长为a 正四面体的问题可将它补成一个边长为 a 2 2 的正方体问题。 A B C D P O H

§3.2 立体几何中的向量方法(二)——空间向量与垂直关系

§3.2立体几何中的向量方法(二) ——空间向量与垂直关系 课时目标 1.能利用平面法向量证明两个平面垂直.2.能利用直线的方向向量和平面的法向量判定并证明空间中的垂直关系. 1.空间垂直关系的向量表示 空间中的垂直关系 线线垂直线面垂直面面垂直 设直线l的方向向量为a =(a1,a2,a3),直线m 的方向向量为b=(b1,b2,b3),则l⊥m?______ 设直线l的方向向量是a= (a1,b1,c1),平面α的法向量 u=(a2,b2,c2),则l⊥α? ________ 若平面α的法向量u=(a1,b1 , c1),平面β的法向量为v= (a2,b2,c2),则α⊥β? ________ 线线垂直线面垂直面面垂直 ①证明两直线的方向向量的数 量积为______. ①证明直线的方向向量与平面的法向 量是______. ①证明两 个平面的 法向量 _________ ___. ②证明两直线所成角为 ______. ②证明直线与平面内的相交直线 ________. ②证明二 面角的平 面角为 ________._ _______. 一、选择题 1.设直线l1,l2的方向向量分别为a=(1,2,-2),b=(-2,3,m),若l1⊥l2,则m等于() A.1B.2C.3D.4 2.已知A(3,0,-1),B(0,-2,-6),C(2,4,-2),则△ABC是() A.等边三角形B.等腰三角形 C.直角三角形D.等腰直角三角形 3.若直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则() A.l∥αB.l⊥α C.l?αD.l与α斜交

4.平面α的一个法向量为(1,2,0),平面β的一个法向量为(2,-1,0),则平面α与平面β的位置关系是( ) A .平行 B .相交但不垂直 C .垂直 D .不能确定 5.设直线l 1的方向向量为a =(1,-2,2),l 2的方向向量为b =(2,3,2),则l 1与l 2的关系是( ) A .平行 B .垂直 C .相交不垂直 D .不确定 6. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,E 是上底面中心,则AC 1与CE 的位置关系 是( ) A .平行 B .相交 C .相交且垂直 D .以上都不是 二、填空题 7.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z =______. 8.已知a =(0,1,1),b =(1,1,0),c =(1,0,1)分别是平面α,β,γ的法向量,则α,β,γ三个平面中互相垂直的有______对. 9.下列命题中: ①若u ,v 分别是平面α,β的法向量,则α⊥β?u·v =0; ②若u 是平面α的法向量且向量a 与α共面,则u·a =0; ③若两个平面的法向量不垂直,则这两个平面一定不垂直. 正确的命题序号是________.(填写所有正确的序号) 三、解答题 10.已知正三棱柱ABC —A 1B 1C 1的各棱长都为1,M 是底面上BC 边的中点,N 是侧棱 CC 1上的点,且CN =1 4 CC 1.求证:AB 1⊥MN . 11.已知ABC —A 1B 1C 1是各条棱长均为a 的正三棱柱,D 是侧棱CC 1的中点,求证:平面AB 1D ⊥平面ABB 1A 1.

立体几何专题训练(附答案)

立体几何 G5 空间中的垂直关系 18.、[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF; (2)求二面角D- AF- E的余弦值. 图1-4 19.、[2014·湖南卷] 如图1-6所示,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD =O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形. (1)证明:O1O⊥底面ABCD; (2)若∠CBA=60°,求二面角C1-OB1-D的余弦值. 19.解:(1)如图(a),因为四边形ACC1A1为矩形,所以CC1⊥AC.同理DD1⊥BD. 因为CC1∥DD1,所以CC1⊥BD.而AC∩BD=O,因此CC1⊥底面ABCD. 由题设知,O1O∥C1C.故O1O⊥底面ABCD. (2)方法一:如图(a),过O1作O1H⊥OB1于H,连接HC1. 由(1)知,O1O⊥底面ABCD O1O⊥A1C1. 又因为四棱柱ABCD-A1B1C1D1的所有棱长都相等,所以四边形A1B1C1D1是菱形, 因此A1C1⊥B1D1,从而A1C1⊥平面BDD1B1,所以A1C1⊥OB1,于是OB1⊥平面O1HC1. 进而OB1⊥C1H.故∠C1HO1是二面角C1-OB1-D的平面角.

不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,OB 1=7. 在Rt △OO 1B 1中,易知O 1H =OO 1·O 1B 1OB 1=237.而O 1C 1=1,于是C 1H =O 1C 21+O 1H 2 = 1+12 7 = 197 . 故cos ∠C 1HO 1=O 1H C 1H = 23 7197 =25719. 即二面角C 1-OB 1-D 的余弦值为257 19 . 方法二:因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形ABCD 是菱形,因此AC ⊥BD .又O 1O ⊥底面ABCD ,从而OB ,OC ,OO 1两两垂直. 如图(b),以O 为坐标原点,OB ,OC ,OO 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O -xyz ,不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,于是相关各点的坐标为O (0,0,0), B 1(3,0,2), C 1(0,1,2). 易知,n 1=(0,1,0)是平面BDD 1B 1的一个法向量. 设n 2=(x ,y ,z )是平面OB 1C 1的一个法向量,则?????n 2·OB →1=0,n 2·OC →1=0,即???3x +2z =0, y +2z =0. 取z =-3,则x =2,y =23,所以n 2=(2,23,-3). 设二面角C 1-OB 1-D 的大小为θ,易知θ是锐角,于是 cos θ=|cos 〈,〉|=??????n 1·n 2|n 1|·|n 2|=2319=25719. 故二面角C 1-OB 1-D 的余弦值为25719 . 19. 、、[2014·江西卷] 如图1-6,四棱锥P - ABCD 中,ABCD 为矩形,平面PAD ⊥平面ABCD . 图1-6 (1)求证:AB ⊥PD .

高中数学立体几何专题证明题训练

A P B C F E D 立体几何专题训练 1.在四棱锥P -ABCD 中,PA =PB .底面ABCD 是菱形, 且∠ ABC =60°.E 在棱PD 上,满足DE =2PE ,M 是AB 的中点. (1)求证:平面PAB ⊥平面PMC ; (2)求证:直线PB ∥平面EMC . 2.如图,正三棱柱ABC —A 1B 1C 1的各棱长都相 等, D 、 E 分别是CC 1和AB 1的中点,点 F 在BC 上且满 足BF ∶FC =1∶3. (1)若M 为AB 中点,求证:BB 1∥平面EFM ; (2)求证:EF ⊥BC 。 3.如图,在长方体1111ABCD A B C D -中,,E P 分别是 11,BC A D 的中点,M 、N 分别是1,AE CD 的中点,1,2AD AA a AB a === (1)求证://MN 面11ADD A (2)求三棱锥P DEN -的体积 4如图1,等腰梯形ABCD 中,AD ∠ο 60⊥⊥⊥ 4a 2a (1)求证:平面PCF ⊥平面PDE ; (2)求四面体PCEF 的体积. 6如图,等腰梯形ABEF 中,//AB EF ,AB =2, 1AD AF ==,AF BF ⊥,O 为AB 的中点,矩形ABCD 所在的平面和平面ABEF 互相垂直. (Ⅰ)求证:AF ⊥平面CBF ; (Ⅱ)设FC 的中点为M ,求证://OM 平面DAF ; (Ⅲ)求三棱锥C BEF -的体积. 7在直三棱柱111C B A ABC -中,,900=∠ABC E 、F 分别为 11A C 、11B C 的中点,D 为棱1CC 上任一点. (Ⅰ)求证:直线EF ∥平面ABD ;(Ⅱ)求证:平面ABD ⊥平面11BCC B 8已知正六棱柱111111ABCDEF A B C D E F -的所有棱长均为2,G 为 AF 的中点。 (1)求证:1F G ∥平面11BB E E ; (2)求证:平面1F AE ⊥平面11DEE D ; D A B C P E M A B D C E A B C D E P F A B C D E F M O C 1 A B C D E F A 1 B 1

高中数学立体几何知识点总结

高中数学之立体几何 平面的基本性质 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 公理3 经过不在同一直线上的三个点,有且只有一个平面. 根据上面的公理,可得以下推论. 推论1 经过一条直线和这条直线外一点,有且只有一个平面. 推论2 经过两条相交直线,有且只有一个平面. 推论3 经过两条平行直线,有且只有一个平面. 空间线面的位置关系 共面平行—没有公共点 (1)直线与直线相交—有且只有一个公共点 异面(既不平行,又不相交) 直线在平面内—有无数个公共点 (2)直线和平面直线不在平面内平行—没有公共点 (直线在平面外) 相交—有且只有一公共点 (3)平面与平面相交—有一条公共直线(无数个公共点) 平行—没有公共点 异面直线的判定 证明两条直线是异面直线通常采用反证法. 有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”. 线面平行与垂直的判定 (1)两直线平行的判定 ①定义:在同一个平面内,且没有公共点的两条直线平行. ②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a∥α,aβ,α∩β=b,则a∥b. ③平行于同一直线的两直线平行,即若a∥b,b∥c,则a∥c. ④垂直于同一平面的两直线平行,即若a⊥α,b⊥α,则a∥b ⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a∥b ⑥如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行,即若α∩β=b,a∥α,a∥β,则a∥b. (2)两直线垂直的判定

立体几何空间中的垂直关系及答案

空间中的垂直关系 1.线线垂直 如果两条直线所成的角是______(无论它们是相交还是异面),那么这两条直线互相垂直. 2.直线与平面垂直 (1)定义:如果直线l与平面α内的任意一条直线都垂直,我们就说______________________,记作______.直线l叫做______________,平面α叫做______________.直线与平面垂直时,它们惟一的公共点P叫做______.垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段,垂线段的长度叫做这个点到平面的________. (2)判定定理:一条直线与一个平面内的______________都垂直,则该直线与此平面垂直. 推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.用符号表示:a∥b,a⊥α?b⊥α. (3)性质定理:垂直于同一个平面的两条直线__________. 3.直线和平面所成的角 平面的一条斜线和它在平面上的射影所成的________,叫做这条直线和这个平面所成的角. 一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角.任一直线与平面所成角θ的范围是____________. 4.二面角的有关概念 (1)二面角:从一条直线出发的______________________叫做二面角. (2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作______________的两条射线,这两条射线所成的角叫做二面角的平面角.二面角的范围是__________. 5.平面与平面垂直 (1)定义:一般地,两个平面相交,如果它们所成的二面角是____________,就说这两个平面互相垂直. (2)判定定理:一个平面过另一个平面的________,则这两个平面垂直. (3)性质定理:两个平面垂直,则一个平面内垂直于______的直线与另一个平面垂直. 自查自纠: 1.直角 2.(1)直线l与平面α互相垂直l⊥α平面α的垂线 直线l的垂面垂足距离(2)两条相交直线(3)平行 3.锐角[0°,90°] 4.(1)两个半平面所组成的图形(2)垂直于棱[0°,180°] 5.(1)直二面角(2)垂线(3)交线 (2018·广东清远一中月考)已知直线l⊥平面α,直线m?平面β,给出下列命题:①α⊥β?l ∥m;②α∥β?l⊥m;③l⊥m?α∥β;④l∥m?α⊥β,其中正确命题的序号是() A.①②③B.②③④C.①③D.②④ . (2017·全国卷Ⅲ)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则() A.A1E⊥DC1B.A1E⊥BD

立体几何平行垂直问题专题复习

立体几何平行、垂直问题【基础知识点】 一、平行问题 1.直线与平面平行的判定与性质 定义判定定理性质性质定理图形 条件a∥α 结论a∥αb∥αa∩α=a∥b 2. 面面平行的判定与性质 判定 性质 定义定理 图形 条件α∥β,a?β 结论α∥βα∥βa∥b a∥α 平行问题的转化关系: 二、垂直问题

一、直线与平面垂直 1.直线和平面垂直的定义:直线l与平面α内的都垂直,就说直线l 与平面α互相垂直. 2.直线与平面垂直的判定定理及推论 文字语言图形语言符号语言 判定定理 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直 推论 如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直这个平面 3.直线与平面垂直的性质定理 文字语言图形语言符号语言性质定理 垂直于同一个平面 的两条直线平行 ①直线垂直于平面,则垂直于平面内任意直

线. ②垂直于同一个平面的两条直线平行. ③垂直于同一条直线的两平面平行. 二、平面与平面垂直 【典例探究】 类型一、平行与垂直 例1、如图,已知三棱锥A BPC -中, ,,AP PC AC BC ⊥⊥M 为AB

F D E C1 A1 C A 中点,D 为PB 中点,且△PMB 为正三角形。(Ⅰ)求证:DM ∥平面APC ; (Ⅱ)求证:平面ABC ⊥平面APC ; (Ⅲ)若BC 4=,20AB =,求三棱锥D BCM -的体积。 例 2. 如图,已知三棱柱111ABC A B C -中,1AA ⊥底面ABC ,2AC BC ==,14AA =, 22AB =,M ,N 分别是棱1CC ,AB 中点. (Ⅰ)求证:CN ⊥平面11ABB A ; (Ⅱ)求证://CN 平面1AMB ; (Ⅲ)求三棱锥1B AMN -的体积. 【变式1】. 如图,三棱柱111C B A ABC -中,侧棱1AA ⊥平面ABC ,ABC ?为等腰直角 三角形, 90=∠BAC ,且1AA AB =,F E D ,,分别是BC CC A B ,,11的中点。 (1)求证://DE 平面ABC ; (2)求证:⊥F B 1平面AEF ; (3)设AB a =,求三棱锥D AEF -的体积。 二、线面平行与垂直的性质 例3、如图4,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知24BD AD ==,225AB DC == A B C A 1 B 1 C 1 M N

高中数学-立体几何位置关系-平行与垂直证明方法汇总

高中数学-立体几何位置关系-平行与垂直证明方法汇总 (一)立体几何中平行问题 证明直线和平面平行的方法有: ①利用定义采用反证法; ②平行判定定理; ③利用面面平行,证线面平行。 主要方法是②、③两法 在使用判定定理时关键是确定出面内的 与面外直线平行的直线. 常用具体方法:中位线和相似 例1、P是平行四边形ABCD所在平面外一点,Q是PA的中点. 求证:PC∥面BDQ. 证明:如图,连结AC交BD于点O. ∵ABCD是平行四边形, ∴A O=O C.连结O Q,则O Q在平面BDQ内, 且O Q是△APC的中位线, ∴PC∥O Q. ∵PC在平面BDQ外, ∴PC∥平面BDQ. 例2、在棱长为a的正方体ABCD-A1B1C1D1中,设M、N、E、F分别是棱A1B1、A1D1、C1D1、B1C1的中点.求证: (1)E、F、B、D四点共面; (2)面AMN∥面EFBD.

证明:(1)分别连结B 1D 1、ED 、FB ,如图, 则由正方体性质得 B 1D 1∥BD. ∵E 、F 分别是D 1C 1和B 1C 1的中点, ∴EF ∥ 21B 1D 1.∴EF ∥2 1 BD. ∴E 、F 、B 、D 对共面. (2)连结A 1C 1交MN 于P 点,交EF 于点Q ,连结AC 交BD 于点O ,分别连结PA 、Q O . ∵M 、N 为A 1B 1、A 1D 1的中点, ∴MN ∥EF ,EF ?面EFBD. ∴MN ∥面EFBD. ∵PQ ∥A O , ∴四边形PA O Q 为平行四边形. ∴PA ∥O Q. 而O Q ?平面EFBD , ∴PA ∥面EFBD.且PA ∩MN=P ,PA 、MN ?面AMN , ∴平面AMN ∥平面EFBD. 例3如图(1),在直角梯形P 1DCB 中,P 1D//BC ,CD ⊥P 1D ,且P 1D=8,BC=4,DC=4 6, A 是P 1D 的中点,沿A B 把平面P 1AB 折起到平面PAB 的位置(如图(2)),使二面角P —CD —B 成45°,设E 、F 分别是线段AB 、PD 的中点. 求证:AF//平面PE C ; 证明:如图,设PC 中点为G ,连结FG ,

高中数学立体几何知识点总结(详细)

高中数学立体几何知识点总结 一、空间几何体 (一)空间几何体的类型 1多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 (二)几种空间几何体的结构特征 1、棱柱的结构特征 1.1棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 棱柱的分类 「斜機柱 ①校*L曲査十底雨>直棱 柱]一IF 皱ft 他械柱… 底面是四边形底面是平行四边形 棱柱四棱柱平行六面体侧棱垂直于底面底面是矩形 直平行六面体'长方体 底面是正方形棱长都相等 正四棱柱正方体 性质: I、侧面都是平行四边形,且各侧棱互相平行且相等; n、两底面是全等多边形且互相平行; 川、平行于底面的截面和底面全等;

2 1.3棱柱的面积和体积公式 S 直棱柱侧ch ( c 是底周长,h 是咼) S 直棱柱表面=c ? h+ 2S 底 V 棱柱=S 底? h 2、棱锥的结构特征 2.1棱锥的定义 (1) 棱锥:有一个面是多边形,其余各面是有一个公共 顶点的三角形,由这些面所围成的几何体叫做棱锥。 (2) 正棱锥:如果有一个棱锥的底面是正多边形, 并且顶 点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 2.2正棱锥的结构特征 I 、平行于底面的截面是与底面相似的正多边形, 相似比 等于顶点到截面的距离与顶点到底面的距离之比;它们面积 的比等于截得的棱锥的高与原棱锥的高的平方比; 截得的棱 锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱 锥的高的立方 比; n >正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积: 1 S 正棱椎 (c 为底周长,h'为斜高) 2 1 体积:V 棱椎-Sh ( S 为底面积,h 为高) 3 正四面体: 对于棱长为a 正四面体的问题可将它补成一个边长为 2 -a 的正方体问题。 P O H C

历年高考数学真题精选31 立体几何中的垂直关系

历年高考数学真题精选(按考点分类) 专题31 垂直关系(学生版) 1.(2019?北京)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为菱形,E 为CD 的中点. (Ⅰ)求证:BD ⊥平面PAC ; (Ⅱ)若60ABC ∠=?,求证:平面PAB ⊥平面PAE ; (Ⅲ)棱PB 上是否存在点F ,使得//CF 平面PAE ?说明理由. 2.(2015?重庆)如图,三棱锥P ABC -中,平面PAC ⊥平面ABC ,2 ABC π ∠= ,点D 、E 在线段AC 上,且2AD DE EC ===,4PD PC ==,点F 在线段AB 上,且//EF BC . (Ⅰ)证明:AB ⊥平面PFE . (Ⅱ)若四棱锥P DFBC -的体积为7,求线段BC 的长. 3.(2015?福建)如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直 于圆O 所在的平面,且1PO OB ==, (Ⅰ)若D 为线段AC 的中点,求证;AC ⊥平面PDO ; (Ⅱ)求三棱锥P ABC -体积的最大值; (Ⅲ)若2BC =E 在线段PB 上,求CE OE +的最小值.

4.(2014?四川)在如图所示的多面体中,四边形11ABB A 和11ACC A 都为矩形 (Ⅰ)若AC BC ⊥,证明:直线BC ⊥平面11ACC A ; (Ⅱ)设D 、E 分别是线段BC 、1CC 的中点,在线段AB 上是否存在一点M ,使直线//DE 平面1A MC ?请证明你的结论. 5.(2014?福建)如图,三棱锥A BCD -中,AB ⊥平面BCD ,CD BD ⊥. (Ⅰ)求证:CD ⊥平面ABD ; (Ⅱ)若1AB BD CD ===,M 为AD 中点,求三棱锥A MBC -的体积. 6.(2014?广东)如图1,四边形ABCD 为矩形,PD ⊥平面ABCD ,1AB =,2BC PC ==作如图2折叠;折痕//EF DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF CF ⊥. (1)证明:CF ⊥平面MDF ; (2)求三棱锥M CDE -的体积.

高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

立体几何线线垂直专题史上最全

立体几何垂直总结 1、线线垂直的判断: 线面垂直的定义:若一直线垂直于一平面,这条直线垂直于平面内所有直线。 补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。 2、线面垂直的判断: (1)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。 (2)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。 (3)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 (4)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。 3、面面垂直的判断: 一个平面经过另一个平面的垂线,这两个平面互相垂直。 证明线线垂直的常用方法: 例1、(等腰三角形三线合一)如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。求证:(1)⊥AB 平面CDE;(2)平面CDE ⊥平面ABC 。 证明:(1) BC AC CE AB AE BE =??⊥?=? 同理,AD BD DE AB AE BE =? ?⊥?=? 又∵CE DE E ?= ∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC , ∴平面CDE ⊥平面ABC 例2、(菱形的对角线互相垂直、等腰三角形三线合一)已知四棱锥P ABCD -的底面是菱形.PB PD =,E 为PA 的中点.(Ⅰ)求证:PC ∥平面BDE ;(Ⅱ)求证:平面PAC ⊥平面BDE . A E D B C

例3、(线线、线面垂直相互转化)已知ABC ?中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 证明:90ACB ∠=∵° BC AC ∴⊥ 又SA ⊥面ABC SA BC ∴⊥ BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SC BC C ⊥?=AD ∴⊥面SBC 例4、(直径所对的圆周角为直角)如图2所示,已知PA 垂直于圆O 在平面,AB 是圆O 的直径,C 是圆O 的圆周上异于A 、B 的任意一点,且PA AC =,点E 是线段PC 的中点.求证: AE ⊥平面PBC . 证明:∵PA ⊥O e 所在平面,BC 是O e 的弦,∴BC PA ⊥. 又∵AB 是O e 的直径,ACB ∠是直径所对的圆周角,∴BC AC ⊥. ∵,PA AC A PA =?I 平面PAC ,AC ?平面PAC . ∴BC ⊥平面PAC ,AE ?平面PAC ,∴AE BC ⊥. ∵PA AC =,点E 是线段PC 的中点.∴AE PC ⊥. ∵PC BC C =I ,PC ?平面PBC ,BC ?平面PBC . ∴AE ⊥平面PBC . 例5、(证明所成角为直角)在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°,AE ⊥BD ,CB =CD =CF . 求证:BD ⊥平面AED ; 证明 因为四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°, 所以∠ADC =∠BCD =120°. 又CB =CD ,所以∠CDB =30°, 因此∠ADB =90°,即AD ⊥BD . 又AE ⊥BD ,且AE ∩AD =A ,AE ,AD ?平面AED , 所以BD ⊥平面AED . S D C B A A C B P E O g 图2

高中数学立体几何经典常考题型

高中数学立体几何经典常考题型 题型一:空间点、线、面的位置关系及空间角的计算 空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解. 【例1】如图,在△ABC 中,∠ABC = π4 ,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO ⊥平 面ABC ,2DA =2AO =PO ,且DA ∥PO. (1)求证:平面PBD ⊥平面COD ; (2)求直线PD 与平面BDC 所成角的正弦值. (1)证明 ∵OB =OC ,又∵∠ABC =π 4, ∴∠OCB =π4,∴∠BOC =π 2. ∴CO ⊥AB. 又PO ⊥平面ABC , OC ?平面ABC ,∴PO ⊥OC. 又∵PO ,AB ?平面PAB ,PO ∩AB =O , ∴CO ⊥平面PAB ,即CO ⊥平面PDB. 又CO ?平面COD , ∴平面PDB ⊥平面COD. (2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示. 设OA =1,则PO =OB =OC =2,DA =1. 则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD →=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1).

设平面BDC 的一个法向量为n =(x ,y ,z ), ∴?????n ·BC →=0,n · BD →=0,∴???2x -2y =0,-3y +z =0, 令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=????? ? ??PD →·n |PD →||n | =??????1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=222 11. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标. 第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角. 第六步:反思回顾.查看关键点、易错点和答题规范. 【变式训练】 如图所示,在多面体A 1B 1D 1-DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C . (2)求二面角E -A 1D -B 1的余弦值. (1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ?面A 1DE ,B 1C ?面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ?面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.

相关主题
文本预览
相关文档 最新文档