当前位置:文档之家› 初中数学一题多变一题多解(六)

初中数学一题多变一题多解(六)

初中数学一题多变一题多解(六)
初中数学一题多变一题多解(六)

一题多解,一题多变(六)

中考几何母题的一题多解(多变)

一、三角形一题多解

如图:已知AB=AC,E是AC延长线上一点,且有BF=CE,连接FE交BC

于D。求证:FD=DE。

证法一

证明:过E点作EM ∥AB交DC延长线于M点,则∠M=∠B,又因为∠

ACB=∠B

∠ACB=∠ECM=∠M,所以CE=EM,又EC=BF 从而EM=BF,

∠BFD=∠DEM

则△DBF≌△DME,故FD=DE;

证法二

证明:过E点作EM ∥AB交DC延长线于M点,则∠M=∠B,又

因为∠ACB=∠B

∠ACB=∠ECM=∠M,所以CE=EM,又EC=BF 从而EM=BF,

∠BFD=∠DEM

则△DBF≌△DME,故 FD=DE;

证法二

证明:过F点作FM∥AE,交BD于点M,

则∠1=∠2 = ∠B 所以BF=FM,

又∠4=∠3 ∠5=∠E

所以△DMF≌△DCE,故 FD=DE。

二、平行四边形一题多解

如图4,平行四边形ABCD中AD=2AB,E、F在直线AB上,

且AE=BF=AB,求证:DF⊥CE.

证法一、易知ΔADF、ΔBCE为等腰三角形,故∠1=∠F, ∠2=∠E,又CD∥AB,故∠3=∠F, ∠4=∠E,从而∠1=∠3,∠2=∠4,而∠1+∠2+∠3+∠4=1800,故∠3+∠4=900,表明∠COD=900,所以DF⊥CE。

证法二、如图5,连接MN,则CD=BF,且CD∥BF,故BFCD为平行四边形,则CN=BN=AB,同理,DM=MA=AB,故CN=DM且CN∥

DM,得平行四边形CDMN,易见CD=DM,故CDMN也是菱形,根

据菱形的对角线互相垂直,结论成立。

证法三、如图6,连接BM、AN, 可证ΔAFN中,BN=BF=BA,则Δ

AFN为直角三角形,即DF⊥AN,利用中位线定理可知AN∥CE,故DF

⊥CE。

证法四、如图7,作DG∥CE交AE延长线于G,则EG=CD=AB=AE,故AD=AG=AF,从而DF⊥DG,而DGCE,故DF⊥CE

四\一题多解、多变《四边形面积》

1.如图所示,一个长为a,宽为b的矩形,两个阴影

都是长为c的矩形与平行四边形,则阴影部分面

积是多少。

解法一

将大矩形进行平移将平行四边形

进行转换。

(a-c)(b-c)

解法二

重叠面积为c的平方,大矩形面积为ab,小矩形为ac,平行四边形为bc,阴影面积为ab-ac-bc+cc=(a-c)(b-c)

2如图所示一个长为500dm宽为300dm的花坛要修两条过道,两条过道一样宽,花坛面积1340平方米,求过道宽。

方法一:将大矩形进行平移将平行四边形进行转换。

解:1500-80x=1340

X=2

过道宽两米。

方法二:

解:(300-x)(500-x)=1340

X=2

过道宽两米

五\正方形一题多变

1已知正方形ABCD ,∠EOF=90`,O是对角线交点,

点E F 在BC ,CD上,求证EO=FO

明四边形ABCD是正方形

BO=CF

∠BOC=-90 ∠OBE=∠COF 又∠EOF=90`

k

m

F

E

D

C

A

图2

∠BOE=∠COF

△BOE ≌△COF

EO=FO

变式一

已知正方形ABCD , ∠EOF=90` ,O 是对角线交点,点E F 在BC ,CD 边延长线上 ,求证 EO=FO 证

四边形ABCD 是正方形

BO=CF ∠BOC=-90

∠OBE=∠COF 又∠

EOF=90`

∠BOE=∠COF

△BOE ≌△COF

EO=FO

变式二

已知正方形ABCD ,O 是AC 任意一点 ∠BOF=90`点E 在BC 边上 ,求证 BO=EO 过O 作ON , OM ⊥AB ,DC

四边形ABCD 是正方形

∠OCM=45

ON , OM ⊥AB ,

DC MO=CM=NB

∠ONB=∠OMC

MOE=∠NBO

△MOE ≌△

NBO BO=EO

F

D

C A

N

M E

C

B

参考答案

证法一 ∵AD ∥BC

∴将AB 平移到DC 由平行四边形ABDE ∴AB ∥=DE ∵DG ∥=AB ∴DG=ED

∵AD ∥BC, 即DF ∥BC ∴EF=FC

如图:已知梯形ABCD ,AD ∥BC,,以AB 、BD 为边,作平行四边形ABDE ,AD 的延长线交CE 于F 。求证:EF=FC.

证法二

连接BE 交AD 于O ∵平行四边形ABDE ∴OB=OE

∵AD ∥BC, 即OF ∥BC 中位线 ∴EF=CF

小学数学一题多解浅见

小学数学一题多解浅见内容摘要: 在数学教学中,我们常遇到同一道题有几种解法的现象,人们通常称之为一题多解。一题多解确实是一种在各级数学教学中都常见到的数学现象,怎样才能提高学生以题多解的能力呢?我认为可以从四个方面入手,要告诉学生一题多解是一种常见的数学现象;要教育学生充分认识培养一题多解对学好数学的重要意义;要指导学生一题多解的方法;引入竞争机制,鼓励一题多解;从而调动学生一题多解的积极性,达到逐步提高学生一题多解能力的目的。 关键词:小学数学一题多解方法与技巧积极性 在数学教学中,我们常遇到同一道题有几种解法的现象,人们通常称之为一题多解。如“一千零一针,仨半孩子分,每人分几根?”解法一,用整数计算,可得1001÷7×2= 286;解法二,用小数计算,可得出1001÷3.5 =286;解法三,用列方程计算,设每个孩子分ⅹ根针,可列方程

3.5ⅹ=1001,解之,得ⅹ=286由此可见,一题多解确实是一种在各级数学教学中都常见到的数学现象。 数学教学是以各种数学现象作为教学内容的,既然一题多解是一种常见的数学现象,就不能不引起我们每位数学教师的高度重视,而且大量的教学实践已经证明,加强对学生一题多解能力的培养,对大面积提高数学成绩确实大有好处。由于同一道数学题大多有几种解法,并能在最短的时间内拿出最正确的答案。如果不放心还可以用其他方法来验证。这样既能开拓学生的思路,节省学生的时间,还能提高学生做题的准确率。 那么怎样才能提高学生以题多解的能力呢?我认为可以从几个方面入手: 一、要告诉学生一题多解是一种常见的数学现象,虽然并非每道数学题都有几种解法,但多种数学题有多种解法却是事实。 二、要教育学生充分认识培养一题多解对学好数学的重要意义,引起学生对自己一题多解能力的高度重视。 三、要指导学生一题多解的方法。这就要求数学教师

初中数学一题多解与一题多变详解

初中数学一题多解与一题多变 时代在变迁,教育在进步,理念在更新。前两年提出考试要改革,有了《指导意见》,于是一批批探索性、开放性和应用性试题不断涌现;如今又提出课程要改革,有了《课程标准》,其中突出了学生自主探索的学习过程,强调应用数学和创新能力的培养,鼓励教师创造性教学,学生学会学习。 面临这种崭新的教育形势,我们会思考这样一些问题:教学要如何从静态转为动态?怎样有效地指导学生独立地分析问题、解决问题,形成有效的学习策略,提高效益?该如何引导和组织学生从事观察、实验、猜想、验证、推理与交流等数学活动,激发学生的学习兴趣和创新意识,培养创新能力?等等。我个人在实际教学过程中,对这些问题作过一些深思和一些尝试,其中比较突出的是引导学生进行一题多解和一题多变的训练。下面,我提出几个实例来分析其引导过程与方法,抛砖引玉,仅供参考。 一、一题多解,多解归一 对于"一题多解",我是从两个方面来认识和解释的:其一,同一个问题,用不同的方法和途径来解决;其二,同一个问题,其结论是多元的,即结论开放性问题。一题多解,有利于沟通各知识的内涵和外延,深化知识,培养发散性和创造性思维;多解归一,有利于提炼分析问题和解决问题的通性、通法,从中择优,培养聚合思维。 例1:如图,已知D 、E 在BC 上,AB=AC ,AD=AE , 求证:BD=CE. E D C B A

(本题来自《几何》第2册69页例3) 思路与解法一:从△ABC和△ADE是等腰三角形这一角度出发,利用"等腰三角形底边上的三线合一"这一重要性质,便得三种证法,即过点A作底边上的高,或底边上的中线或顶角的平分线。其通法是"等腰三角形底边上的三线合一",证得BH=CH. 思路与解法二:从证线段相等常用三角形全等这一角度出发,本题可设法证△ABD≌△ACE或证△ABE≌△ACD,于是又得两种证法,而证这两对三角形全等又都可用AAS、ASA、SAS进行证明,所以实际是六种证法。其通性是"全等三角形对应边相等"。 思路与解法三:从等腰三角形的轴对称性这一角度出发,于是用叠合法可证。 例2:已知,如图,在⊙O中,AD是直径,BC是弦,AD⊥BC,E 添加字母,不写推理过程) D 思路与解法一:从相等的线段这一角度出发,可得如下结论: 1.OA=OD; 2.BE=CE; 3.AB=AC; 4.BD=CD.

例谈高中数学一题多解和一题多变的意义

例谈高中数学一题多解和一题多变的意义 杨水长 摘 要:高中数学教学中,用一题多解和一题多变的形式,可以使所学的知识得到活化,融会贯通,而且可以开阔思路,培养学生的发散思维和创新思维能力,从而达到提高学生的学习兴趣,学好数学的效果。 关键词:一题多变 一题多解 创新思维 数学效果 很大部分的高中生对数学的印象就是枯燥、乏味、不好学、没兴趣.但由于高考“指挥棒”的作用,又只能硬着头皮学.如何才能学好数学?俗话说“熟能生巧”,很 多人认为要学好数学就是要多做.固然,多做题目可以 使学生提高成绩,但长期如此,恐怕也会使学生觉得数学越来越枯燥。 我觉得要使学生学好数学,首先要提高学生的学 习兴趣和数学思维能力。根据高考数学“源于课本, 高于课本”的命题原则,教师在教学或复习过程中可 以利用书本上的例题和习题,进行对比、联想,采取 一题多解与一题多变的形式进行教学.这是提高学生数学学习兴趣和思维能力的有效途径。下面举例说明: 例题: 已知tanα=4 3 ,求sinα,cosα的值 分析:因为题中有sinα、cosα、tanα,考虑他们之间的关系,最容易想到的是用同角三角函数关系式和方程解此题: 法一 根据同角三角函数关系式tanα= 4 3= α αcos sin , 且sina2α + cos2α =1。 两式联立,得出:cos2α=2516,cosα= 5 4 或者 cosα= -54 ;而sinα=53或者sinα=-53 。 分析:上面解方程组较难且繁琐,充分利用用同角三角函数关系式“1”的代换,不解方程组,直接求解就简洁些: 法二 tanα=4 3 :α在第一、三象限 在第一象限时: cos2α = ααcos sin cos 2 2 2 5+=αtan 2 11+=2516 cosα=5 4 sinα=αcos 21-=5 3 而在第三象限时: cosa=- 5 4 sina=- 53 分析:利用比例的性质和同角三角函数关系式,解此题更妙: 法三 tanα= 43= αα cos sin ?4cos α= 3sin α ?4cos α= 3sin α= ± 3 4cos sin 2 2 2 2 ++α α ∴sinα=53,cosα= 54 或sinα=-53,cosα=-54 分析: 上面从代数法角度解此题,如果单独考虑sinα、cosα、tanα,可用定义来解此题。初中时,三角函数定义是从直角三角形引入的,因此我们可以尝试几何法来解之: 法四 当α为锐角时,由于tana=4 3,在直角△ABC 中,设α=A,a=3x,b=4x ,则勾股定理,得,c=5x sinA=AB BC = 53 ,cosA=AB AC =5 4

小学数学一题多解与一题多变

小学数学一题多解与一题多变B 摘要:在本文里,一题多用特指渗透于同一数学问题里的不同的数学思想;而一题多变则是指对同类数学问题的不同问法与解答的归纳,并进而构建数学模型。在小学数学教学过程中,教师可结合教学内容和学生的实际情况,采取多种形式的训练,培养学生思维的敏捷性和灵活性,以达到诱导学生思维发散,培养发散思维能力的目的。 关键词:数学,一题多解,一题多变,创造性,创设思维 思维的广阔性是发散思维的又一特征。思维的狭窄性表现在只知其一,不知其二,稍有变化,就不知所云。反复进行一题多解、一题多变的训练,是帮助学生克服思维狭窄性的有效办法。可通过讨论,启迪学生的思维,开拓解题思路,在此基础上让学生通过多次训练,既增长了知识,又培养了思维能力。教师在教学过程中,不能只重视计算结果,要针对教学的重难点,精心设计有层次、有坡度,要求明确、题型多变的练习题。要让学生通过训练不断探索解题的捷径,使思维的广阔性得到不断发展。要通过多次的渐进式的拓展训练,使学生进入广阔思维的佳境。 一、一题多解,有利于加强学生的思维训练 一题多解,指对同一数学问题的结论可以由多种途径获得。就是启发和引导学生从不同角度、不同思路,运用不同的方法和不同的运算过程,解答同一道数学问题,它属于解题的策略问题。上这种课的主要目的有三条:一是为了充分调动学生思维的积极性,提高他们综合运用已学知识解答数学问题的技能技巧;二是为了锻炼学生思维的灵活性,促进他们长知识、长智慧;三是为了开阔学生的思路,引导学生灵活地掌握知识的纵横联系,培养和发挥学生的创造性。 心理学研究表明,在解决问题的过程中,如果主体所接触到的不是标准的模

初中数学十大常见解题方法

初中数学十大常见解题方法 1、配方法:所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法:换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c∈R,a≠0)根的判别式△=b2-4ac,不仅用来判定根的性质,

而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法:在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的重要方法之一。 6、构造法:在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。 7、反证法:反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的

初中数学说题

初中数学教师基本功比赛一等奖说题稿 中考数学压轴题历来是初三师生关注的焦点,它一般有动态问题、开放性题型、探索性题型、存在性题型等类型,涉及到代数、几何多个知识点,囊括初中重要的数学思想和方法。对于考生而言,中考压轴题是一根标尺,可以比较准确的衡量学生综合解题能力以及数学素养,同时它的得失,可以直接影响到学生今后的发展。下面我就2012年德州市数学中考第23题第2问进行讲评。 中考题 如图所示,现有一张边长为4的正方形纸片ABCD ,点P 为正方形AD 边上的一点(不与点A 、点D 重合)将正方形纸片折叠,使 点B 落在P 处,点C 落在G 处,PG 交DC 于H ,折痕为EF ,连接BP 、BH . (1)求证:∠APB =∠BPH ; (2)当点P 在AD 边上移动时,△PDH 的周长是否发生变化?并证明你 的结论; (3)设AP 为x ,四边形EFGP 的面积为S ,求出S 与x 的函数关系式,试问S 是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由. 1.审题分析 本题涉及的知识点有:折叠问题;勾股定理;全等三角形的判定与性质;相似三角形的判定与性质;正方形的性质。本题通过翻折将全等变换,相似构造,勾股定理运用,融进正方形,不失一道好的压轴题,很值得推敲。由于此图形是正方形,因此里面隐含着很多直角,这是学生所不注意的地方,也正是解决问题的突破口和切入点。题目的难点是学生无法将分散的条件集中到有效的图形上进行解决,总有“老虎吃天无从下口”的感觉。用好直角三角形和构造直角三角形是解决此题的关键。由于此题综合性较强,条件较分散,对学生分析问题的能力要求较高,因此难度较大,难度系数是0.19。 2.解题过程 同一个问题,从不同的角度探究与分析,可有不同的解法。一题多解,有利于沟通各知识的联系,培养学生思维的发散性和创造性。 思路与解法一:从线段AD 上有三个直角这一条件出发,运用“一线三角两相似”这一规律(见课件),可将条件集中到△EAP 与△PDH 上,通过勾股定理、相似三角形的判定与性质来解决。 解法如下: P H G F E D C B A 图1

整理小学数学一题多解行程问题

小学数学一题多解行程问题

1.简案 1课时

师引导学生对两道题目进行表述,根据表述内容列式计算,明确用除法计算的两种情况。(播放动画,单击)探究一:平均分 (1)呈现问题,出示教科书第23页例3左图。(播放动画,单击) 引导学生明确数学信息和数学问题。学生先独立思考,画图并列式计算,然后小组内交流方法。教师巡视,对画图有困难学生进行指导。 (2)反馈交流 学生可能会有画一画,摆一摆,分一分,列算式的方法得出结果。教师在评价中予以肯定,重点讲解算式,配合学生的图予以理解。请学生说一说15、3、5分别指什么,算式15÷3=5表示什么意思。 师生共同分析明确,这个问题实际上就是在解决把15平均分成3份,每份是多少的问题。(播放动画,单击)在回顾与反思环节,请学生说一说他们的方法,师生共同得出可以用乘法帮助检验结果是否正确。 探究二:按给定的每几个为一份分 教学方法同例3左图,引导学生明确数学信息和数学问题。学生独立思考,画图并列式计算。 学生列式:15÷5=3(个)。师追问为什么要用除法计算,这

个问题实际是在解决什么。分析得出这个问题就是在求15里面有 几个5,用除法计算。 在回顾与反思环节,请学生说一说他们的方法,师生共同得出可以用乘法检验结果是否正确。(播放动画,单击) 探究三:比较异同,体会内在联系 师引导学生对比两题的异同,明确用除法计算的两种情况。 求把一个数平均分成几份,每份是几和求一个数里有几个几的问 题。(播放动画,单击) 练习一:教科书第24页,练习五第1题。(单击) 练习二:教科书第24页,练习五第3题。(单击) 2.详案 课前预习:

高三数学《一题多解 一题多变》试题及详解答案

高三《一题多解 一题多变》题目 一题多解 一题多变(一) 原题:482++=x mx x f )( 的定义域为R ,求m 的取值范围 解:由题意0482≥++x mx 在R 上恒成立 0>∴m 且Δ0≤,得4≥m 变1:4823++=x mx x f log )(的定义域为R ,求m 的取值范围 解:由题意0482>++x mx 在R 上恒成立 0>∴m 且Δ0<,得4>m 变2:)(log )(4823++=x mx x f 的值域为R ,求m 的取值范围 解:令=t 482++x mx ,则要求t 能取到所有大于0的实数, ∴ 当0=m 时,t 能取到所有大于0的实数 当0≠m 时,0>m 且Δ0≥4≤0?m < 40≤≤∴m 变3:182 23++=x n x mx x f log )(的定义域为R,值域为[]20,,求m,n 的值 解:由题意,令[]911 82 2,∈+++=x n x mx y ,得0-8--2=+n y x x m y )( m y ≠时,Δ0≥016-)(-2≤++?mn y n m y - ∴ 1和9时0162=++-)(-mn y n m y 的两个根 ∴ 5==n m ∴ 当m y =时,08 ==m n x - R x ∈ ,也符合题意 ∴5==n m 一 题 多 解- 解不等式523<<3-x 解法一:根据绝对值的定义,进行分类讨论求解

(1)当03-≥x 2时,不等式可化为53-<x x x x ?-3-或且 综上:解集为}{0x 1-<<<<或43x x 解法三:利用等价命题法 原不等式等价于 -33-2x 5-53-<<<<或x 23,即0x 1-<<<<或43x 解集为}{0x 1-<<<<或43x x 解法四:利用绝对值的集合意义 原不等式可化为 2 5 23<<23-x ,不等式的几何意义时数轴上的点23到x 的距离大于 23,且小于2 5 ,由图得, 解集为} {0x 1-<<<<或43x x 一题多解 一题多变(二) 已知n s 是等比数列的前n 想项和,963s s s ,,成等差数列,求证: 852a a a ,,成等差数列 法一:用公式q q a s n n 一一111)(=,

初中数学典型错题分析报告

初中数学解答错典型例题分析与反思 杨青春 众所周知,初中学生的心理正从依赖向独立过度,因此这正是培养学生自信心和自我调节能力的时机。在新课程教学的要求下,数学教学变得更加强调学生的自主学习和自主探究。因此,在这个过程中,出现认知上的偏差也是正常的。作为教师,就应该深刻认识到这个时期的学生的心理特征以及从提高学生数学素质的根本点出发,对学生出现的错题进行深刻分析和反思。相信这样的一个分析和反思,是可以成为学生以后学习的积极动力的。在下面的文章中,将具体从初中一些数学典型错题进行分析与反思。 (一)解答错典型题——几何证明题 初中数学涉及到几何证明的问题。对于几何,很多学生都会感到比较困扰。因此,在初中几何数学的教学中,教师应该针对学生的特点,找出适合学生的教学方法。 【典型解答错例题】在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF;如图所示: (1)求证BD=CD; (2)AB=AC,试判断四边形AFBD的形状。 【错解】(1)证明:∵AF//BC ∴∠AFE=∠DCE 又∵∠AFE=∠CED ∵E是AD的中点

∴AE=DE ∴△AEF≌△CED ∴AF=CD 又∵AF=BD ∴BD=CD (2)四边形AFBD是平行四边形 证明:∵AF//BC即AF//BD 又∵AF=BD ∴四边形AFBD是平行四边形 【错误原因】题目主要考查的是几何图形边相等的证明以及判断图形形状。错解的答案中(2)的结论是错误的。从边平行和对应边相等推出图形是平行四边形是正确的,可是题目中还给出了△ABC中,D是BC边上的一点,还给出如果AB=AC这一条件,学生在完成这一题时忽视了给的如果这一已知条件,考虑和分析问题不全面。 【正解】四边形AFBD是矩形 证明:∵AF//BC即AF//BD 又∵AF=BD ∴四边形AFBD是平行四边形 又∵AB=AC ∴△ABC是等腰三角形 又∵BD=CD即D是BC的中点 ∴AD是BC边上的高

小学数学“一题多解”的探究

小学数学“一题多解”的探究 数学是一种应用非常广泛的学科,它将数与量、结构和空间关系在生活中具体应用和体现。“一花独放不是春,百花齐放春满园”。数学自身同样存在“百花齐放”的状态。数学中存在的“百花齐放”,指的是数学的多种表现形式,数学题中的一题多解便是其中之一。一题多解表现了思维的灵活性和广阔性,对沟通知识引起多路思维大有益处,它是激发学生学习兴趣,调动学生学习积极性的有效方法,与此同时,它也是数学教学的一种重要方法,是在不改变条件和问题的情况下,让学生多角度、多侧面地进行分析和思考,探求不同的解题思路。在探求的过程中,由于学生思维发散点不同,因而能找出多种解题途径,收到培养求异思维的效果。六至十二岁的小学生新鲜感强,目的性不够明确,爱动、好问,注意力不够稳定,很难长时间把注意力集中到同一学习活动上;教师教给学生的是现成的结论、现成的论证、现成的说明,一切都是现成的,无需学生动手实践就可以将知识快速地储存于自己的大脑。因此,教师付出再多辛苦劳动的结果却是学生学习完许多知识便忘。此时巧妙地引入一题多解,更好地好地体现了以学生为本的主导思想,同时又减轻教师教学负担,转变教师教学模式。 例如,有这样一题“两辆汽车同时从甲、乙两地相对开出,5小时后相遇。一辆汽车的速度是每小时55千米,另一辆汽车的速度是每小时45千米,甲、乙两地相距多少千米?”它的解法就有多种。 【分析1】先求两辆汽车各行了多少千米,再求两辆汽车行驶路程的和,即得甲、乙两地相距多少千米。 【解法1】一辆汽车行驶了多少千米? 55×5=275(千米) 另一辆汽车行驶了多少千米? 45×5=225(千米) 甲、乙两地相距多少千米? 275+225=500(千米) 综合算式:55×5+45×5 =275+225=500(千米) 【分析2】先求出两辆汽车每小时共行驶多少千米,再乘以相遇时间,即得甲、乙两地相距多少千米。 【解法2】两车每小时共行驶多少千米? 55+45=100(千米) 甲、乙两地相距多少千米? 100×5=500(千米) 综合算式:(55+45)×5 =100×5 =500(千米) 【分析3】甲、乙两地的距离除以相遇时间,就等于两辆汽车的速度和。由此可列出方程,求甲、乙两地相距多少千米。 【解法3】设甲乙两地相距x千米。 x÷5=55+45 x=100×5 x=500 【分析4】甲乙两地距离减去一辆汽车行驶的路程,就等于另一辆汽车行驶的路程,由此列

中考数学专题训练---一题多变

中考数学专题训练-------一题多变 1、已知如图:在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 边上的中点,求证:四边形EFGH 是平行四边形。 分析:欲证四边形EFGH 是平行四边形,根据条件需从边上着手分析,由E 、F 、G 、H 分别是各边上的中点,可联想到三角形的中位线定理,连结AC 后,EF 和GH 的关系就明确了,此题也便得证。(证明略) 变式1:顺次连结矩形四边中点所得的四边形是菱形。 变式2:顺次连结菱形四边中点所得的四边形是矩形。 变式3:顺次连结正方形四边中点所得的四边形是正方形。 变式4:顺次连结等腰梯形四边中点所得的四边形是菱形。 变式5:若AC =BD ,AC ⊥BD ,则四边形EFGH 是正方形。 变式6:在四边形ABCD 中,若AB =CD ,E 、F 、G 、H 分别为AD 、BC 、BD 、AC 的中点,求证:EFGH 是菱形。 娈式6图 娈式7图 变式7:如图:在四边形ABCD 中,E 为边AB 上的一点,△ADE 和△BCE 都是等边三角形,P 、Q 、M 、N 分别是AB 、BC 、CD 、DA 边上的中点,求证:四边形PQMN 是菱形。 2、在正方形ABCD 的CD 边上取一点G ,在CG 上向原正方形外作正方形GCEF , 求证:DE ⊥BG ,DE=BG 。 变式:如图,ABCD 、CEFG 是正方形,E 在CD 上,直线BE 、DG 交于H ,且HE ·HB =4-BD 、AH 交于M ,当E 在线段CD (不与C 、D 重合)上运动时,下列四个结论:① BE ⊥GD ;② AH 、GD 所夹的锐角为45°;③ ;④ 若BE 平分∠DBC ,则正方形ABCD 的面积为4。其中正确的结论个数有(D ) A. 1个 B. 2个 C. 3个 D. 4个 由①对,知∠BHD=90,由∠BAD=90知:A 、B 、H 、D 四点共圆,∴∠AHD=∠ABD=45.∴②对。 由△DBE ∽△DAM ∴AM BE AD BD AM BE 22=∴==∵DG=BE ∴AM DG 2=∴③对。 由BE 平分∠DBC 知:∠HDE=∠DBH ,∴△HDE ∽△HBD ∴2242-=?=HB HE DH .∴DH=2816212-=∴DG DG ()CG BC CG BC BG BD DG CG DC =-∴+===+12222 , 例2图

初中数学一题多变、一题多解

C B A S 2 S 3 S 1 C B A S 3 S 2 S 1 S 3 S 2S 1 C B A 一题多解、一题多变 原题条件或结论的变化 所谓条件或结论的变化,就是对某一问题的条件或结论进行变化探讨,并针对问题的内涵与外延进行深入与拓展,从而得到一类变式题组。通过对问题的分析解决,使我们掌握某类问题的题型结构,深入认识问题的本质,提高解题能力。 例1 求证:顺次连接平行四边形各边中点所得的四边形是平行四边形。 变式1 求证:顺次连接矩形各边中点所得的四边形是菱形。 变式2 求证:顺次连接菱形各边中点所得的四边形是矩形。 变式3 求证:顺次连接正方形各边中点所得的四边形是正方形。 变式4 顺次连接什么四边形各边中点可以得到平行四边形? 变式5 顺次连接什么四边形各边中点可以得到矩形? 变式6 顺次连接什么四边形各边中点可以得到菱形? …… 通过这样一系列变式训练,使学生充分掌握了四边形这一章节所有基础知识和基本概念,强化沟通了常见特殊四边形的性质定理、判定定理、三角形中位线定理等,极大地拓展了学生的解题思路,活跃了思维,激发了兴趣。 一、几何图形形状的变化 如图1,分别以Rt ABC 的三边为边向外作三个正方形,其面积分别为321S S S 、、,则 321S S S 、、之间的关系是 图1 图2 图3

E S 3 S 2 S 1 D C B A S 3S 2 S 1 A B C D A B C D S 3S 2 S 1 变式1:如图2,如果以Rt ?ABC 的三边为直径向外作三个半圆,其面积分别为321S S S 、、,则321S S S 、、之间的关系是 变式2:如图3,如果以Rt ?ABC 的三边为边向外作三个正三角形,其面积分别为 321S S S 、、,则321S S S 、、之间的关系是 变式3:如果以Rt ?ABC 的三边为边向外作三个一般三角形,其面积分别为321S S S 、、,为使321S S S 、、之间仍具有上述这种关系,所作三角形应满足什么条件?证明你的结论。 ,2,90,//,44321321S S S S S S BC AB DA AB DC BCD ADC DC AB ABCD 、、,则、、,其面积分别为为边向梯形外作正方形、、分别以且中,梯形:如图变式=?=∠+∠之间的关系是 图4 图5 图6 ,2,90,//,55321321S S S S S S BC AB DA AB DC BCD ADC DC AB ABCD 、、,则、、形,其面积分别为为边向梯形外作正三角、、分别以 且中,梯形:如图变式=?=∠+∠之间的关系是 ,2,90,//,66321321S S S S S S BC AB DA AB DC BCD ADC DC AB ABCD 、、,则、、,其面积分别为为直径向梯形外作半圆、、分别以且中,梯形:如图变式=?=∠+∠之间的关系是 上述题组设置由易到难,层次分明,把学生的思维逐渐引向深入。这样的安排不仅使学生复习了勾股定理,又在逐渐深入的问题中品尝到成功的喜悦;既掌握了基础知识,也充分认识了问题的本质,可谓是一举两得。 二、图形内部结构的变化 例2.已知:如图7,点C 为线段AB 上一点,?ACM 、?CBN 是等边三角形。

一题多解之五种方法解一道经典数学题

1 O B C D ① A 一题多解之五种方法解一道经典数学题 江苏海安紫石中学 黄本华 一题多解是我们学习数学的特好方法!通过一题多解,我们可以多角度、多方位地去思考解题的方案,这样不仅能加强知识间的联系,同时也增添新颖性和趣味性,优化我们的思维结构,提升我们的思维能力。更重要的是,一题多解让我们不仅只满足解题目标的实现,而是让我们拥有了研究学问的态度! 例题 如图,在平面直角坐标系中,点A (-1,0),B (0,3),直线BC 交坐标轴于B , C 两点,且∠CBA =45°.求直线BC 的解析式. 【分析】要求BC 解析式,现在已经知道了B 点坐标,所以只要求到C 点坐标就好了。这就要用到条件∠CBA =45°。但这个条件如何用呢?这是本题的难点,也是关键点。考虑到这个角是45°,我们可以尝试做垂线,构造等腰直角三角形。如图①,作AD ⊥BC 于D ,由A 、B 的坐标可知1OA =,3OB =,根据勾股定理2 2 10AB OA OB =+=, 5BD AD ==AC x =,则1OC x =+,25DC x =-255BC x =-,在 RT OBC ?中, 根据勾股定理得出222OC OB BC +=,即()2 222 13(55)x x ++=-,解得15 2 x =- (舍去),25x =,求得6OC =,得出C (﹣6,0),然后根据待定系数法即可求得BC 的解析式. 解法一:如图①,作AD ⊥BC 于D , ∵点A (﹣1,0),B (0,3), ∴1OA =,3OB =,∴2 2 10AB OA OB =+=, ∵∠CBA =45°,∴△ABD 是等腰直角三角形, ∴5BD AD == 设AC x =,则1OC x =+, ∴25DC x =-,∴BC=+255BC x = -+, 在152 x =- 中,222OC OB BC +=2 ,即()222213(55)x x ++=-), 解得x 1=﹣ (舍去),25x =, ∴5AC =,6OC =,∴C (﹣6,0), 设直线BC 的解析式为3y kx =+,

初中数学一题多解与一题多变

____________________________________________________________________________________________ 初中数学一题多解与一题多变 时代在变迁,教育在进步,理念在更新。前两年提出考试要改革,有了《指导意见》,于是一批批探索性、开放性和应用性试题不断涌现;如今又提出课程要改革,有了《课程标准》,其中突出了学生自主探索的学习过程,强调应用数学和创新能力的培养,鼓励教师创造性教学,学生学会学习。 面临这种崭新的教育形势,我们会思考这样一些问题:教学要如何从静态转为动态?怎样有效地指导学生独立地分析问题、解决问题,形成有效的学习策略,提高效益?该如何引导和组织学生从事观察、实验、猜想、验证、推理与交流等数学活动,激发学生的学习兴趣和创新意识,培养创新能力?等等。我个人在实际教学过程中,对这些问题作过一些深思和一些尝试,其中比较突出的是引导学生进行一题多解和一题多变的训练。下面,我提出几个实例来分析其引导过程与方法,抛砖引玉,仅供参考。 一、一题多解,多解归一 对于"一题多解",我是从两个方面来认识和解释的:其一,同一个问题,用不同的方法和途径来解决;其二,同一个问题,其结论是多元的,即结论开放性问题。一题多解,有利于沟通各知识的内涵和外延,深化知识,培养发散性和创造性思维;多解归一,有利于提炼分析问题和解决问题的通性、通法,从中择优,培养聚合思维。 例1:如图,已知D 、E 在BC 上,AB=AC ,AD=AE , E D C B A

求证:BD=CE. (本题来自《几何》第2册69页例3) 思路与解法一:从△ABC和△ADE是等腰三角形这一角度出发,利用"等腰三角形底边上的三线合一"这一重要性质,便得三种证法,即过点A作底边上的高,或底边上的中线或顶角的平分线。其通法是"等腰三角形底边上的三线合一",证得BH=CH. 思路与解法二:从证线段相等常用三角形全等这一角度出发,本题可设法证△ABD≌△ACE或证△ABE≌△ACD,于是又得两种证法,而证这两对三角形全等又都可用AAS、ASA、SAS进行证明,所以实际是六种证法。其通性是"全等三角形对应边相等"。 思路与解法三:从等腰三角形的轴对称性这一角度出发,于是用叠合法可证。 例2:已知,如图,在⊙O中,AD是直径,BC是弦,AD⊥BC,E 添加字母,不写推理过程) D 思路与解法一:从相等的线段这一角度出发,可得如下结论: 1.OA=OD; 2.BE=CE; ____________________________________________________________________________________________

一题多解对小学生数学思维的促进作用

一题多解对小学生数学思维的促进作用 一题多解对小学生数学思维的促进作用■文/魏成艳 在小学数学教学中,教师要注重培养学生的数学思维能力,让他们在分析问题时能从多角度、多层次出发,深刻理解和领悟所学内容,能用多种方法解决问题,促进他们数学思维的深入发展。在进行一题多解的教学中,教师要把学生放到学习主体的位置上,发挥学生的学习主动性,让他们在教师的引导下进行深入思考,通过联想和比较找出解决问题的方法,促进他们数学发散思维的发展,实现高效的课堂教学。 一、一题多解拓宽学生的思维面在小学数学教学中让学生运用一题多解的方式进行学习,教师要引导学生从不同的角度对问题进行分析和思考,摆脱定势思维的影响和束缚,找出不同的解决方法。在一题多解教学中,激发学生的好胜心,让他们利用已有知识进行充分探究,找到不同的解决方法。在解题过程中,学生的思维不断深入,让他们从已有的知识中选择有用的信息,顺利解决问题。在数学教学中,教师要加强对学生思维能力的训练,提高学生的思维灵敏性,拓宽他们的思维面,促进数学综合能力的发展。二、一题多解培养学生的创设思维能力随着素质教育的进行,小学生成为了课堂学习的主体,在教学过程中,教师要根据他们的学习情况进行教学设计,发挥学生的学习主动性,让他们通过

积极的思考和分析掌握所学知识,并能用掌握的知识分析和解决问题。在教学改革的进程中,教师要实现高效的课堂教学效率,在激发学生学习兴趣的同时,还要培养他们的创新思维能力。因此,在教学过程中,教师可以采用一题多解的方式来对学生进行思维训练,让他们在用知识的过程中提高思维的灵敏性,加深对知识的理解,能够灵活运用知识分析问题,从多个角度探究问题,找到解决问题的多种方法。在一题多解过程中,学生的创造力得到了充分发挥,他们在学习中能够举一反三,有效提高数学学习能力,促使他们的数学综合素质获得发展,实现高效的课堂教学。三、一题多解促进学生的发散思维在小学数学教学中进行一题多解的思维训练,有助于促进学生发散思维的发展,让他们对题目进行全面分析,从题干中找出有用信息,提高他们的审题能力和解题能力,大大提高学习效率。在进行一题多解的训练时,教师要给学生充足的思考和探究时间,让他们能对问题进行深入分析,从不同的角度找到解决问题的切入点,用多种方法解决问题,促进他们发散思维的发展。在数学教学过程中,教师在引导学生分析问题时,要让他们从各个角度进行大胆尝试,利用知识之间的联系进行分析和思考,通过联想、比较找到解决问题的方法。在培养学生的发散思维时,运用一题多解的方式能够让学生的思维变通性得到发展,让他们的数学思维摆脱定势思维的束缚,促进思维灵活性的发

初中数学一题多解与一题多变(1)

初中数学一题多解与一题多变 北兴中学 王成录 时代在变迁,教育在进步,理念在更新。前两年提出考试要改革,有了《指导意见》,于是一批批探索性、开放性和应用性试题不断涌现;如今又提出课程要改革,有了《课程标准》,其中突出了学生自主探索的学习过程,强调应用数学和创新能力的培养,鼓励教师创造性教学,学生学会学习。 面临这种崭新的教育形势,我们会思考这样一些问题:教学要如何从静态转为动态?怎样有效地指导学生独立地分析问题、解决问题,形成有效的学习策略,提高效益?该如何引导和组织学生从事观察、实验、猜想、验证、推理与交流等数学活动,激发学生的学习兴趣和创新意识,培养创新能力?等等。我个人在实际教学过程中,对这些问题作过一些深思和一些尝试,其中比较突出的是引导学生进行一题多解和一题多变的训练。下面,我提出几个实例来分析其引导过程与方法,抛砖引玉,仅供参考。 一、一题多解,多解归一 对于"一题多解",我是从两个方面来认识和解释的:其一,同一个问题,用不同的方法和途径来解决;其二,同一个问题,其结论是多元的,即结论开放性问题。一题多解,有利于沟通各知识的内涵和外延,深化知识,培养发散性和创造性思维;多解归一,有利于提炼分析问题和解决问题的通性、通法,从中择优,培养聚合思维。 例1:如图,已知D 、E 在BC 上,AB=AC ,AD=AE , 求证:BD=CE. E D C B A

(本题来自《几何》第2册69页例3) 思路与解法一:从△ABC和△ADE是等腰三角形这一角度出发,利用"等腰三角形底边上的三线合一"这一重要性质,便得三种证法,即过点A作底边上的高,或底边上的中线或顶角的平分线。其通法是"等腰三角形底边上的三线合一",证得BH=CH. 思路与解法二:从证线段相等常用三角形全等这一角度出发,本题可设法证△ABD≌△ACE或证△ABE≌△ACD,于是又得两种证法,而证这两对三角形全等又都可用AAS、ASA、SAS进行证明,所以实际是六种证法。其通性是"全等三角形对应边相等"。 思路与解法三:从等腰三角形的轴对称性这一角度出发,于是用叠合法可证。 例2:已知,如图,在⊙O中,AD是直径,BC是弦,AD⊥BC,E 为垂足,由这些条件你能推出哪些结论?(要求:不添加辅助线,不添加字母,不写推理过程) 思路与解法一:从相等的线段这一角度出发,可得如下结论: 1.OA=OD; A Array 2.BE=CE; 3.AB=AC; 4.BD=CD. D

2014高中数学 一题多变一题多解特训(一)

高中数学一题多解和一题多变 根据高考数学“源于课本,高于课本”的命题原则,教师在教学或复习过程中可以利用书本上的例题和习题,进行对比、联想,采取一题多解与一题多变的形式进行教学.这是提高学生数学学习兴趣和思维能力的有效途径。下面举例说明: 一题多解和一题多变(一) 类型一:一题多解 例题: 已知tan α=43 ,求sin α,cos α的值 分析:因为题中有sin α、cos α、tan α,考虑他们之间的关系,最容易想到的是用同角三角函数关系式和方程解此题: 法一 根据同角三角函数关系式tan α= 43= αα cos sin ,且sina2α + cos2α =1。 两式联立,得出:cos2α=2516,cos α= 54 或者cos α= -54 ;而s in α=53或者sin α=-53 。 分析:上面解方程组较难且繁琐,充分利用用同角三角函数关系式“1”的代换,不解方程组,直接求解就简洁些: 法二 tan α=43 :α在第一、三象限 在第一象限时: cos2α = ααcos sin cos 2 2 2 5+=αtan 2 11+=25 16 cos α=54 sin α=αcos 2 1-=5 3 而在第三象限时: cosa=- 54 sina=- 53 分析:利用比例的性质和同角三角函数关系式,解此题更妙:

法三 tan α= 43= αα cos sin ?4cos α= 3sin α ?4cos α= 3sin α = ± 3 4cos sin 2 2 2 2 ++α α ∴sin α=53,cos α= 54 或sin α=-53,cos α=-54 分析: 上面从代数法角度解此题,如果单独考虑sin α、cos α、tan α,可用定义来解此题。初中时,三角函数定义是从直角三角形引入的,因此我们可以尝试几何法来解之: 法四 当α为锐角时,由于tana=43 ,在直角△ABC 中,设α=A,a=3x,b=4x ,则勾股定理,得, c=5x sinA=AB BC = 53 ,cosA=AB AC =54 ∴sin α= 53 ,cos α=54 或sin α= -53 ,cos α= -54 分析 :用初中三角函数定义解此题,更应该尝试用三角函数高中的定义解此题,因为适用范围更广: 法五 当α为锐角时,如下图所示,在单位圆中,设α=∠AOT , 因为tan α= 43 ,则T 点坐 标是T(1, 43 ),由勾股定理得:OT= ?? ? ??+432 1= 45

小学数学一题多解启发式教学策略

小学数学“一题多解”启发式教学策略 研究报告 吉首市第六小学课题组 课题批准文号:JCJY2011014 课题类别:湘西自治州“十二五”教育科研规划课题 学科分类:基础教育数学 课题主持人:吴福笔 主要研究人员:吴福笔陈江平韩景翠梁卫忠周萍赵苗杨满芝 唐辉明向海燕陈先文高满英石柳红胡银军田玉琢摘要:本课题通过对小学生自主学习习惯,自学方法以及“一题多解”的意识与能力等问题进行研究,探究出培养小学生自主学习习惯的途径;寻找到培养小学生养成“一题多解”的习惯,解决问题策略的多样化和最优化意识的方法,为培养创新型人才提供理论实践经验。 关键词:小学数学一题多解启发式教学策略 一、问题提出 解决问题是数学课程标准的一块重要内容。新的数学课程标准对解决问题的目标这样阐述:“形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。”“了解同一问题可以有不同的解决办法”;“能探索出解决问题的有效方法,并试图寻找其他方法”。数学新课标在第二学段教学建议中也提出:“加强估算,鼓励解决问题策略多样化,教学应尊重每一个学生的个性特征,允许不同的学生从不同的角度认识问题,采用不同的方式表达自己的想法,用不同的知识与方法解决问题。鼓励问题策略的多样化,是是因材施教,促进每一个学生充分发展的有效途径。” 然而,从调查学生作业中可发现如下情形: 1.一个班学生对解答某一个应用题方法是何等的相似,千篇一律,一种方法,同种模式。 2.答案正确,但过程繁锁、复杂。 3.只会用教师讲的方法做,思维不顺畅。 4.只满足于一种解法。

为了改变这一现状,体现学生的个性差异,培养学生的创新意识、培养学生的解决问题策略多样化和最优化意识,故把《小学数学“一题多解”启发式教学策略》作为个人课题进行研究。 二、理论依据 1.马克思主义思想——事物联系形式多样性和转化论认为:尽管唯物主义的表现形式可以多种多样,但是有一点是一致,它们都是以一个总的联系来理解这个世界的一切现象。凡是我们意识到的东西,不管是精神现象、社会现象,还是其他一切现象,全都不出这个总的联系之外。 一切事物都有转化,有发展,各部分之间都存在内在的必然的联系,某些部分可向另一些部分转化。 2.启发式教育论:启发式教育的主要特点,是强调自学为主,学生要在教师主导启发作用下,通过自学主动学习掌握知识,自学的好坏是关系到启发式教学方法成功与否的关键,也是学生逐渐不依赖他人而独立获得知识成为学习主人的关键。 3.创新教育论认为:创新思维培养技法中提到,视野拓展法是创新思维培养的主要技法之一。它强调,问题解决可否借用别的方案,问题解决可否还有其他方案,问题解决可否有更好的方案。 4.2001年6月教育部印发的《基础教育课程纲要》强调“教师应尊重学生的人格,关注个体差异,满足不同学生的学习需要……使每个学生都能得到充分发展”。同时,还强调学生在教师的指导下“主动地、富有个性地学习”,发展学生发现问题和解决问题的能力。 三、研究目标与研究内容 “一题多解”启发式教学:是指在小学教学课堂中,教师利用启发式教学,启发、引导学生自学而获得解决问题多样性。它强调的是自主探索而非教师灌输。根据这一界定,我们确定了以下研究目标和内容: (一)研究目标 1.培育小学生数学兴趣和自主学习习惯与能力。 2.学生掌握一定自学方法的并形成自己的见解。 3.使学生初步具有解决问题策略多样化和最优化的意识。 4.构建“一题多解”启发式教学策略。 (二)研究内容 1.研究培养小学生自主学习的习惯。 2.研究培养小学生自学能力的方法。 3.研究培养小学生“一题多解”的习惯,解决问题策略的多样化和最优化意识。

相关主题
文本预览
相关文档 最新文档