当前位置:文档之家› 溶胶聚沉值的测定(精)

溶胶聚沉值的测定(精)

溶胶聚沉值的测定(精)
溶胶聚沉值的测定(精)

《物理化学实验》

溶胶聚沉值的测定

1 实验要求

(1) 了解溶胶聚沉方法。

(2) 了解溶胶的保护。

(3) 掌握聚沉值的测定及其一些规律。

(4) 回答本次实验需要讨论的3个问题。

2 注意事项

(1) 废液集中回收。

(2) 各个移液管专用。

(3) 了解本实验是如何较快得到最佳值的实验方法。

3 问题讨论

(1) 什么是聚沉值?

(2) 做好本实验的关键是什么?

(3) 各支试管中电解质浓度如何计算?

4 参考文献

(1) 于跃芹,武玉民,牛德重.电解质对氢氧化铝镁正电溶胶的聚沉作用[J].

山东轻工业学院学报, 2000,(04)

(2) 刘晓艳,于伟东.溶胶-凝胶法改善芳纶织物的耐光性[J].纺织学报,2005,2

(3) 廖世军,谌敏.有机溶胶法制备Pt/C催化剂的影响因素[J].华南理工大学

学报(自然科学版),2008,11

(4) 朱慧仙,王力. 酸性硅溶胶的制备、性质及其稳定性研究进展[J].广东化

工, 2008,(02)

(5) 毕先钧, 吴佑礼.铟离子的水解及其对溶胶的聚沉和稳定作用[J].云南师

范大学学报(自然科学版), 1989,(04)

胶体的稳定性和聚沉作用

8.4 胶体的稳定性和聚沉作用 8.4.1 溶胶的稳定 根据胶体的各种性质。溶胶稳定的原因可归纳为: (1) 溶胶的动力稳定性 胶粒因颗粒很小,布朗运动较强,能克服重力影响不下沉而保持均匀分散。这种性质称为溶胶的动力稳定性。影响溶胶动力稳定性的主要因素是分散度。分散度越大,颗粒越小,布朗运动越剧烈,扩散能力越强,动力稳定性就越大,胶粒越不溶易下沉。此外分散介质的粘度越大,胶粒与分散介质的密度差越小,溶胶的动力稳定性也越大,胶粒也越不溶易下沉。 (2) 胶粒带电的稳定作用 下图表示的是一个个胶团。蓝色虚线圆是扩散层的边界,虚线圆以外没有净电荷, 呈电中性。因此,当两个胶团不重迭时,如左图,它们之间没有静电作用力,只有胶粒间的引力,这种引力与它们之间距离的三次方成反比,这和分子之间的作用力(分子之间的作用力与分子之间距离的六次方成反比)相比,是一种远程力,这种远程力驱使胶 团互相靠近。当两个胶团重迭时,如右图,它们之间就产生静电排斥力。重叠越多,静电排斥力越大。如果静电排斥力大于胶粒之间的吸引力,两胶粒相撞后又分开,保持了溶胶的稳定。胶粒必须带有一定的电荷才具有足够的静电排斥力,而胶粒的带电量与ζ电势的绝对值成正比。因此,胶粒具有一定的ζ电势是胶粒稳定的主要原因。 (3) 溶剂化的稳定作用 物质和溶剂之间所起的化合作用称为溶剂化,溶剂若为水,则称水化。憎液溶胶的胶核是憎水的,但它吸附的离子都是水化的,因此增加了胶粒的稳定性。由于紧密层和分散 层中的离子都是水化的,这样在胶粒周围形成了水化层。实验证明,水化层具有定向排列 + + + + + + + + - - - - - - - - 胶核 + + + + + + + + - - - - - - - - 胶核

实验二溶胶的制备与性质实验报告

实验二溶胶的制备与性质实验报告 篇一:Fe3溶胶制备纯化及性质实验报告 溶胶的制备、纯化及稳定性研究 1、实验背景 胶体现象无论在工农业生产中还是在日常生活中,都是常见的问题。为了了解胶体现象,进而掌握其变化规律,进行胶体的制备及性质研究实验很有必要。 氢氧化铁胶体因其制备简单、带有颜色和稳定性好等特点被广泛应用于大学物理化学实验中,并且是高中化学中的一个重要实验。但是采用电泳方法测定溶胶的电动电势(ζ)却是始终是一个难点,因为溶胶的电泳受诸多因素影响如:溶胶中胶粒形状、表面电荷数量、溶剂中电解质的种类、离子强度、PH、温度和所加电压。

2、实验要求 了解制备胶体的不同方法,学会制备Fe3溶胶。 实验观察胶体的电泳现象,掌握电泳法测定胶体电动电势的技术。 探讨不同外加电压、电泳时间、溶胶浓度、辅助液的pH值等因素对Fe3溶胶电动电势测定的影响。 探讨不同电解质对所制备Fe3溶胶的聚沉值,掌握通过聚沉值判断溶胶荷电性质的方法。 二、实验部分 1.实验原理 溶胶的制备方法可分为分散法和凝聚法。分散法是用适当方法把较大的物质颗粒变为胶体大小的质点,如机械法,电弧法,超声波法,胶溶法等;凝聚法是先制成难溶物的分子的过饱和溶液,再使之相互结合成胶体粒子而得到溶胶,如物质蒸汽凝结法、变换分散介质法、化学反应法等。Fe3溶胶的制备就是采用化学反应法使生成物呈过饱和状

态,然后粒子再结合成溶胶。 在胶体分散系统中,由于胶体本身电离,或胶体从分散介质中有选择地吸附一定量的离子,使胶粒带有一定量的电荷。显然,在胶粒四周的分散介质中,存在电量相同而符号相反的对应离子。荷电的胶粒与分散介质间的电位差,称为ξ电位。在外加电场的作用下,荷电的胶粒与分散介质间会发生相对运动。胶粒向正极或负极(视胶粒荷负电或正电而定)移动的现象,称为电泳。同一胶粒在同一电场中的移动速度由ξ电位的大小而定,所以?电位也称为电动电位。 测定ξ电位,对研究胶体系统的稳定性具有很大意义。溶胶的聚集稳定性与胶体的ξ电 位大小有关,对一般溶胶,ξ电位愈小,溶胶的聚集稳定性愈差,当ξ电位等于零时,溶胶的聚集稳定性最差。所以,无论制备胶体或破坏胶体,都需要了解所研究胶体的ξ电位。原则上,任

溶胶制备纯化及性质实验报告

溶胶的制备、纯化及稳定性研究 ——时间的影响和用K2SO4溶液测聚沉值 一、前言 1、实验背景 胶体现象无论在工农业生产中还是在日常生活中,都是常见的问题。为了了解胶体现象,进而掌握其变化规律,进行胶体的制备及性质研究实验很有必要。 胶体因其制备简单、带有颜色和稳定性好等特点被广泛应用于大学物Fe(OH) 3 理化学实验中,并且是高中化学中的一个重要实验。但是采用电泳方法测定溶胶的电动电势(ζ)却是始终是一个难点,因为溶胶的电泳受诸多因素影响如:溶胶中胶粒形状、表面电荷数量、溶剂中电解质的种类、离子强度、PH、温度和所加电压。 2、实验要求 (1)了解制备胶体的不同方法,学会制备Fe(OH)3溶胶。 (2)实验观察胶体的电泳现象,掌握电泳法测定胶体电动电势的技术。 (3)探讨不同外加电压、电泳时间、溶胶浓度、辅助液的pH值等因素对 Fe(OH) 溶胶电动电势测定的影响。 3 (4)探讨不同电解质对所制备Fe(OH)3溶胶的聚沉值,掌握通过聚沉值判断溶胶荷电性质的方法。 二、实验部分 1.实验原理 溶胶的制备方法可分为分散法和凝聚法。分散法是用适当方法把较大的物质颗粒变为胶体大小的质点,如机械法,电弧法,超声波法,胶溶法等;凝聚法是先制成难溶物的分子(或离子)的过饱和溶液,再使之相互结合成胶体粒子而得到

溶胶,如物质蒸汽凝结法、变换分散介质法、化学反应法等。Fe(OH) 3 溶胶的制备 就是采用化学反应法使生成物呈过饱和状态,然后粒子再结合成溶胶。 在胶体分散系统中,由于胶体本身电离,或胶体从分散介质中有选择地吸附一定量的离子,使胶粒带有一定量的电荷。显然,在胶粒四周的分散介质中,存在电量相同而符号相反的对应离子。荷电的胶粒与分散介质间的电位差,称为ξ电位。在外加电场的作用下,荷电的胶粒与分散介质间会发生相对运动。胶粒向正极或负极(视胶粒荷负电或正电而定)移动的现象,称为电泳。同一胶粒在同一电场中的移动速度由ξ电位的大小而定,所以电位也称为电动电位。 测定ξ电位,对研究胶体系统的稳定性具有很大意义。溶胶的聚集稳定性与胶体的ξ电位大小有关,对一般溶胶,ξ电位愈小,溶胶的聚集稳定性愈差,当ξ电位等于零时,溶胶的聚集稳定性最差。所以,无论制备胶体或破坏胶体,都需要了解所研究胶体的ξ电位。原则上,任何一种胶体的电动现象(电泳、电渗、液流电位、沉降电位)都可以用来测定ξ电位,但用电泳法来测定更方便。 电泳法测定胶体ξ电位可分为两类,即宏观法和微观法。宏观法原理是观察与另一不含胶粒的辅助液体的界面在电场中的移动速度。微观法则是直接测定单 个胶粒在电场中的移动速度。对于高分散度的溶胶,如Fe(OH) 3 胶体,不易观察个别粒子的运动,只能用宏观法。对于颜色太浅或浓度过稀的溶胶,则适宜用微观法。本实验采用宏观法。 宏观法测定Fe(OH) 3的ξ电位时,在U形管中先放入棕红色的Fe(OH) 3 溶胶,然 后小心地在溶胶面上注入无色的辅助溶液,使溶胶和溶液之间有明显的界面,在U 形管的两端各放一根电极,通电一定时间后,可观察到溶胶与溶液的界面在一端上升,另一端下降。胶体的ξ电位可依如下电泳公式计算得到:

Fe(OH)3溶胶制备纯化及性质实验报告

溶胶的制备、纯化及稳定性研究 1、实验背景 胶体现象无论在工农业生产中还是在日常生活中,都是常见的问题。为了了解胶体现象,进而掌握其变化规律,进行胶体的制备及性质研究实验很有必要。 氢氧化铁胶体因其制备简单、带有颜色和稳定性好等特点被广泛应用于大学物理化学实验中,并且是高中化学中的一个重要实验。但是采用电泳方法测定溶胶的电动电势(ζ)却是始终是一个难点,因为溶胶的电泳受诸多因素影响如:溶胶中胶粒形状、表面电荷数量、溶剂中电解质的种类、离子强度、PH、温度和所加电压。 2、实验要求 (1)了解制备胶体的不同方法,学会制备Fe(OH)3溶胶。 (2)实验观察胶体的电泳现象,掌握电泳法测定胶体电动电势的技术。 (3)探讨不同外加电压、电泳时间、溶胶浓度、辅助液的pH值等因素对Fe(OH)3溶胶电 动电势测定的影响。 (4)探讨不同电解质对所制备Fe(OH)3溶胶的聚沉值,掌握通过聚沉值判断溶胶荷电性质的方法。 二、实验部分 1.实验原理 溶胶的制备方法可分为分散法和凝聚法。分散法是用适当方法把较大的物质颗粒变为胶体大小的质点,如机械法,电弧法,超声波法,胶溶法等;凝聚法是先制成难溶物的分子(或离子)的过饱和溶液,再使之相互结合成胶体粒子而得到溶胶,如物质蒸汽凝结法、变换分散介质法、化学反应法等。Fe(OH)3溶胶的制备就是采用化学反应法使生成物呈过饱和状态,然后粒子再结合成溶胶。 在胶体分散系统中,由于胶体本身电离,或胶体从分散介质中有选择地吸附一定量的离子,使胶粒带有一定量的电荷。显然,在胶粒四周的分散介质中,存在电量相同而符号相反的对应离子。荷电的胶粒与分散介质间的电位差,称为ξ电位。在外加电场的作用下,荷电的胶粒与分散介质间会发生相对运动。胶粒向正极或负极(视胶粒荷负电或正电而定)移动的现象,称为电泳。同一胶粒在同一电场中的移动速度由ξ电位的大小而定,所以 电位也称为电动电位。 测定ξ电位,对研究胶体系统的稳定性具有很大意义。溶胶的聚集稳定性与胶体的ξ电

胶体粒子的结构与胶体的聚沉

胶体粒子的结构与胶体的聚沉 一,胶体的结构 以Agl胶体为例说明胶体的形成及结构: 1?胶核及吸附 ①胶核的形成 若将稀溶液与KI稀溶液混合后,将发生如下的化学反应: 生成m个Agl分子聚集成直径为1nm?100nm范围内的微晶粒子是分散质的核心,称之为胶核. ②胶核的选择性吸附 体系中有多种离子,如等,胶核吸附何者实验表明胶核选择性吸附与其组成有关,浓度较大的离子,例如制备Agl时,如果KI过量,胶核就优先吸附了n个而带负电荷仮之,若过量,则吸附了n个而带正电荷. ③反离子的分布 与体系中的胶核所带电荷电性相反的离子称为反离子,如KI过量时的或过量时的就是反离 子,体系中的反离子受到两种相反的作用力. 静电作用力:由于反离子带有与胶核表面电荷电性相反的电荷,所以反离子与胶核间将产生静 电作用,使反离子尽量靠近胶核分布. 分子热运动:反离子在不停地运动之中,这种运动驱使反离子趋向均匀分布 静电作用和分子热运动共同作用的结果,使体系反离子按一定的梯度分布,即自胶核表面向外 单位体积的反离子数目越来越少. 2.胶粒与胶团 靠近胶粒表面的n-x个反离子,由于受到较强的静电作用,因而较紧密地束缚在胶核周围,与胶核表面吸附的离子共同组成吸附层,吸附层与胶核构成胶粒. 胶粒与扩散层包括在一起称为胶团.较外层的x个反离子,由于受到静电作用力很弱,很疏松地 分布在胶粒的周围,称为扩散层. 从胶团的结构可知,由于吸附层内离子或离子数目少于或,因此胶粒是带电的,但整个胶团是 电中性的.由于扩散层并不与胶粒一起运动,因此,在外电场作用下,胶粒作为一个整体而向某 一电极移动,而扩散层的离子移向另一电极. 二,胶体的稳定性与聚沉 1.胶体的稳定性 从理论上讲,胶体是热力学不稳定体系,胶粒有相互聚集成大颗粒而沉降析出的趋势.然而实际上经过纯化的胶体往往可以保存数日甚至更长时间也不会沉降析出.其原因主要有以下两 占: 八、、- ①胶粒的静电作用 同一体系胶粒带有同种电荷,相互排斥,阻止了胶粒的靠近,聚集. ②水化膜的保护作用 胶粒中的吸附离子和反离子都是水化的(即离子外围包裹着水分子),所以胶粒是带水化膜的 粒子.水化膜犹如一层弹性隔膜,起到了防止运动中的胶粒在碰撞时相互聚集变大的作用. 2.胶体的聚沉 胶体的稳定性是相对的,是有条件的.只要减弱或消除使胶体稳定的因素,就能使胶体胶粒聚集成较大的颗粒而沉降,这种使胶粒聚集成较大颗粒而沉降的现象称为聚沉. (1)电解质对胶体的聚沉作用 在胶体体系中,加入少量电解质后,增加了体系中离子的浓度,将有较多的反离子挤入吸附层,从而减少甚至完全中和了胶粒所带的电荷,使胶粒之间的相互斥力减少甚至丧失,导致胶粒聚集合

实验32 Fe(OH)3 溶胶的聚沉值、ξ电势及粒径分布的测定

实验32 Fe(OH)3 溶胶的聚沉值、ξ电势及粒径分布的测定 一、目的要求 1.制备Fe(OH)3 溶胶并将其纯化。 2.测量Fe(OH)3 溶胶的聚沉值、ξ电势及粒径的分布。 3.分析影响聚沉值及ξ电势的主要因素。 二、原理 胶体溶液是分散相线度为1nm~100 nm的高分散多相体系。胶核大多是分子或原子的聚集体,由于其本身电离或与介质磨擦或因选择性吸附介质中的某些离子而带电。由于整个胶体体系是电中性的,介质中必然存在与胶核所带电荷相反的离子(称为反离子),反离子中有一部分因静电引力的作用,与吸附离子一起紧密地吸附于胶核表面,形成了紧密层。于是胶核、吸附离子和部分紧靠吸附离子的反离子构成胶粒。反离子的另一部分由于热运动以扩散方式分布于介质中,故称为扩散层。扩散层和胶粒构成胶团。扩散层与紧密层之交界区称为滑动面,滑动面上存在电势差,称为ξ电势。此电势只有在电场中才能显示出来。在电场中胶粒会向正极(胶粒带负电)或负极(胶粒带正电)移动,称为电泳。ξ电势越大,胶体体系越稳定,因此ξ电势大小是衡量溶胶稳定性的重要参数。ξ电势的大小与胶粒的大小、胶粒浓度,介质的性质、成分、pH值及温度等因素有关。 从能量观点来看,胶体体系是热力学不稳定体系,因高分散度体系界面能特别高,胶核有自发聚集而聚沉的倾向。但由于胶粒带同种电荷,因此在一定条件下又能相对地稳定存在。在实际中有时需要胶体稳定存在,有时需要破坏胶体使之发生聚沉。使胶体聚沉的最有效方法是加入适量的电解质来中和胶粒所带

电荷,降低ξ电势。一定量某种溶胶在一定时间内发生明显聚沉所需电解质的最低浓度称为该电解质的聚沉值。 聚沉值、ξ电势和胶粒粒径的测量常用比较纯净的溶胶,这就要求对溶胶进行纯化。本实验采用渗析法,即通过半透膜除去溶胶中多余的电解质达到纯化目的。 三、仪器与试剂 稳流稳压电泳仪1台,0~300V;电泳管1支;250ml、800ml烧杯各1个;10ml、100ml量筒各1个;1ml移液管2支,5ml移液管1支,10ml移液管4支;150 ml棕色试剂瓶1个;150ml大口锥瓶1个;25ml 试管6支,试管架1个;电导率仪1台;直径为2 cm长约4cm的空心玻管1根;棉线,细铜线、直尺等。800W电炉1台。 粒径分析仪一台(美国COULTER 公司N4 Plus submicron Particle size analyzer) 10% FeCl3溶液;2.000 mol/L NaCl溶液; 0.010 mol/L Na2SO4溶液; 0.005 mol/L Na3PO4 .12H2O;市售6%火棉胶溶液;KCl或KNO3稀溶液。 四、实验步骤 1.水解法制备Fe(OH)3溶胶 在250ml烧杯中加入120ml蒸馏水,加热煮沸。在沸腾条件下约1min滴加完3ml 10%FeCl3溶液,并不断搅拌,加完后继续煮沸3分钟。水解得到深红色的Fe(OH)3 溶胶约100ml。 2.制备火棉胶半透膜

溶胶的制备、纯化、稳定性研究及溶胶聚沉值的测定.

溶胶的制备、纯化、稳定性研究及溶胶聚沉值的测定 一、前言 (一)实验背景 电泳法测定氢氧化铁溶胶ξ-电势是大多数高校化学专业开设的基础物理化学实验之一, 要保证实验在有限的时间内快速、准确地取得良好的实验结果,三个实验步骤都必须科学、合理设置。一是氢氧化铁溶胶的制备;二是溶胶的纯化;三是辅助液的选择。每一步都会影响实验结果和实验速度,偏颇不可。本文从水解法制备Fe(OH)3溶胶、Fe(OH)3溶胶的纯化、电泳实验、测定不同电解质对Fe(OH)3溶胶的聚沉值等四个方面对Fe(OH)3溶胶的性质进行深入的探究。 (二)实验要求 1、了解制备胶体的不同方法,学会制备Fe(OH)3溶胶。 2、实验观察胶体的电泳现象,掌握电泳法测定胶体电动电势的技术。 3、探讨不同外加电压、电泳时间、溶胶浓度、辅助液的pH值等因素对Fe(OH)3溶胶电动电势测定的影响。 4、探讨不同电解质对所制备Fe(OH)3溶胶的聚沉值,掌握通过聚沉值判断溶胶荷电性质的方法。 二、实验部分 (一)实验原理 胶体现象无论在工农业生产中还是在日常生活中,都是常见的问题。为了了解胶体现象,进而掌握其变化规律,进行胶体的制备及性质研究实验很有必要。 1、溶胶的制备 溶胶的制备方法可分为分散法和凝聚法。分散法是用适当方法把较大的物质颗粒变为胶体大小的质点,如机械法,电弧法,超声波法,胶溶法等;凝聚法是先制成难溶物的分子(或离子)的过饱和溶液,再使之相互结合成胶体粒子而得到溶胶,如物质蒸汽凝结法、变换分散介质法、化学反应法等。Fe(OH)3溶胶的制备就是采用化学反应法使生成物呈过饱和状态,然后粒子再结合成溶胶。 2、溶胶的纯化 制成的Fe(OH)3溶胶溶液中常有其它杂质存在,而影响其稳定性,而且制得的Fe(OH)3水溶胶冷却时,反应要逆向进行,因此必须纯化。常用的纯化方法是半透膜渗析法。渗析时以半透膜隔开胶体溶液和纯溶剂,胶体溶液中的杂质,如电解质及小分子能透过半透膜,进入溶剂中,而大部分胶粒却不透过. 如果不断换溶剂,则可把胶体中的杂质除去. 要提高渗析速度,可用热渗析或电渗析的方法。 3、溶胶的电动电势研究 在胶体分散系统中,由于胶体本身电离,或胶体从分散介质中有选择地吸附一定量的离子,使胶粒带有一定量的电荷。显然,在胶粒四周的分散介质中,存在电量相同而符号相反的对应离子。荷电的胶粒与分散介质间的电位差,称为ξ电位。在外加电场的作用下,荷电的胶粒与分散介质间会发生相对运动。胶粒向正极或负极(视胶粒荷负电或正电而定)移动的现象,称为电泳。同一胶粒在同一电场中的移动速度由ξ电位的大小而定,所以 电位也称为电动电位。

Fe(OH)3溶胶的制备、纯化及稳定性研究实验报告

实验报告 Fe(OH)3溶胶的制备、纯化及稳定性研究摘要:胶体现象无论在工农业生产中还是在日常生活中,都是常见的问题。为了解胶体现象,进而掌握其变化规律,进行胶体的制备及性质研究实验很有必 溶胶并对它的纯化方法及稳定性进行了一系要。本实验采用水解法制备Fe(OH) 3 列的探究。实验结果表明,不同外加电压、电泳时间、溶胶浓度、辅助液的pH 溶胶电动电势的测定具有一定的影响。最后,本实验还探究值等因素对Fe(OH) 3 溶胶的聚沉值,通过聚沉值判断溶胶的荷电性了不同电解质对所制备的Fe(OH) 3 质。 关键词:Fe(OH) 溶胶;电泳;电动电位;聚沉值;影响因素 3 0 引言 溶胶的制备方法可分为分散法和凝聚法。Fe(OH) 溶胶的制备是采用化学反 3 应法使生成物呈过饱和状态,然后粒子再结合成溶胶。在胶粒四周的分散介质中,存在电量相同而符号相反的对应离子。荷电的胶粒与分散介质间的电位差,称为ξ电位。测定ξ电位,对研究胶体系统的稳定性具有很大意义。在外加电场的作用下,荷电的胶粒与分散介质间会发生相对运动。胶粒向正极或负极(视胶粒荷负电或正电而定)移动的现象,称为电泳。同一胶粒在同一电场中的移动速度由ξ电位的大小而定,所以 电位也称为电动电位。根据胶体体系的动力性质,强烈的布朗运动使得溶胶分散相质点不易沉降,具有—定的动力稳定性。此外,由于溶胶质点表面常带有电荷,带有相同符号电荷的质点不易聚结,从而又提高了体系的稳定性。另一方面,由于溶胶分散相有大的相界面,具有强烈的聚结趋势,因而这种体系又是热力学的不稳定体系。带电质点对电解质十分敏感,在电解质作用下溶胶质点因聚结而下沉的现象称为聚沉。研究不同电解质对胶体聚沉的影响对保存胶体具有指导性意义。 1 实验原理 溶胶的制备方法可分为分散法和凝聚法。分散法是用适当方法把较大的物质颗粒变为胶体大小的质点,如机械法,电弧法,超声波法,胶溶法等;凝聚法是先制成难溶物的分子(或离子)的过饱和溶液,再使之相互结合成胶体粒子而得到

Fe(OH)3溶胶制备纯化及性质实验报告 华师

溶胶的制备、纯化及稳定性研究 一、前言 1、实验背景 胶体现象无论在工农业生产中还是在日常生活中,都是常见的问题。为了了解胶体现象,进而掌握其变化规律,进行胶体的制备及性质研究实验很有必要。 氢氧化铁胶体因其制备简单、带有颜色和稳定性好等特点被广泛应用于大学物理化学实验中,并且是高中化学中的一个重要实验。但是采用电泳方法测定溶胶的电动电势(ζ)却是始终是一个难点,因为溶胶的电泳受诸多因素影响如:溶胶中胶粒形状、表面电荷数量、溶剂中电解质的种类、离子强度、PH、温度和所加电压。 2、实验要求 (1)了解制备胶体的不同方法,学会制备Fe(OH)3溶胶。 (2)实验观察胶体的电泳现象,掌握电泳法测定胶体电动电势的技术。 (3)探讨不同外加电压、电泳时间、溶胶浓度、辅助液的pH值等因素对Fe(OH)3溶胶电动电势测定的影响。 (4)探讨不同电解质对所制备Fe(OH)3溶胶的聚沉值,掌握通过聚沉值判断溶胶荷电性质的方法。 二、实验部分 1.实验原理 溶胶的制备方法可分为分散法和凝聚法。分散法是用适当方法把较大的物质颗粒变为胶体大小的质点,如机械法,电弧法,超声波法,胶溶法等;凝聚法是先制成难溶物的分子(或离子)的过饱和溶液,再使之相互结合成胶体粒子而得到溶胶,如物质蒸汽凝结法、变换分散介质法、化学反应法等。Fe(OH)3溶胶的制备就是采用化学反应法使生成物呈过饱和状态,然后粒子再结合成溶胶。 在胶体分散系统中,由于胶体本身电离,或胶体从分散介质中有选择地吸附一定量的离子,使胶粒带有一定量的电荷。显然,在胶粒四周的分散介质中,存在电量相同而符号相反的对应离子。荷电的胶粒与分散介质间的电位差,称为ξ电位。在外加电场的作用下,荷电的胶粒与分散介质间会发生相对运动。胶粒向正极或负极(视胶粒荷负电或正电而定)移动的现象,称为电泳。同一胶粒在同一电场中的移动速度由ξ电位的大小而定,所以 电位也

溶胶的聚沉

第十二章胶体化学 溶胶的聚沉

溶胶的聚沉 溶胶粒子合并、长大,进而发生沉淀的现象,称为聚沉。 溶胶从本质上说是不稳定的,许多因素可导致溶胶聚沉,如加热、辐射、加入电解质等。溶胶对电解质很敏感,这方面的研究也较深入。

电解质的聚沉作用 电解质的浓度或反离子价数增加时,都会压缩扩散层,使扩散层变薄,斥力势能降低,当电解质的浓度足够大时就会使溶胶发生聚沉; 若加入的反离子发生特性吸附时,斯特恩层内的反离子数量增加,使胶粒的带电量降低,而导致碰撞聚沉。

E R E A E c 1 c 2 c 3 势 能 0 电解质浓度: c 3> c 2> c 1 聚沉值 ? 溶胶发生明显聚沉所需电解质的最小 浓度 聚沉能力? 聚沉值的倒数 电解质浓度↑: E R ↓,E max ↓, 溶胶稳定性↓

电解质对溶胶的聚沉规律: 反离子的价数起主要作用 价数↑,聚沉值↓,聚沉能力↑ 聚沉值∝1/Z 6,聚沉能力∝Z 6 ??Schultz-Hardy规则例如:对于带负电荷的As2S3 溶胶,用几种电解质聚沉,其聚沉值分别为: KCl: 49.5 mol?m-3 ; MgCl2 : 0.7 mol?m-3 ; AlCl3 : 0.093 mol?m-3 ; 聚沉能力之比 = 1/ 聚沉值 KCl : MgCl : AlCl3 =1 : 70 : 532 2 反离子价数之比: 16 : 26 : 36 = 1 : 64 : 729

同价离子,有感胶离子序 正离子的聚沉能力: H+ > Cs+ > Rd+ > NH + > K+ > Na+ > Li+ 4 负离子的聚沉能力: F —> Cl —> Br —> NO —> I—> OH— 3 ◆正离子水化能力强, r↓, 水化能力↑, 水化层厚, 进入 紧密层少, 聚沉能力↓ ◆负离子水化能力弱, 水化层薄, r↓进入紧密层多, 聚 沉能力↑

胶体的稳定性和聚沉作用

胶体的稳定性和聚沉作用 摘要:化学物品胶体已经广泛应用于现代生活,了解胶体的稳定性和聚沉作用对于我们高效利用有很大帮助。 关键词:稳定性胶体聚沉电解质 溶胶的稳定 根据胶体的各种性质。溶胶稳定的原因可归纳为: (1)溶胶的动力稳定性 胶粒因颗粒很小,布朗运动较强,能克服重力影响不下沉而保持均匀分散。这种性质称为溶胶的动力稳定性。影响溶胶动力稳定性的主要因素是分散度。分散度越大,颗粒越小,布朗运动越剧烈,扩散能力越强,动力稳定性就越大,胶粒越不溶易下沉。此外分散介质的粘度越大,胶粒与分散介质的密度差越小,溶胶的动力稳定性也越大,胶粒也越不溶易下沉。 (2) 胶粒带电的稳定作用 下图表示的是一个个胶团。蓝色虚线圆是扩散层的边界,虚线圆以外没有净电荷,呈电中性。因此,当两个胶团不重迭时,如左图,它们之间没有静电作用力,只有胶粒间的引力,这种引力与它们之间距离的三次方成反比,这和分子之间的作用力(分子之间的作用力与分子之间距离的六次方成反比)相比,是一种

远程力,这种远程力驱使胶 团互相靠近。当两个胶团重迭时,如右图,它们之间就产生静电排斥力。重叠越多,静电排斥力越大。如果静电排斥力大于胶粒之间的吸引力,两胶粒相撞后又分开,保持了溶胶的稳定。胶粒必须带有一定的电荷才具有足够的静电排斥力,而胶粒的带电量与ζ电势的绝对值成正比。因此,胶粒具有一定的ζ电势是胶粒稳定的主要原因。 (3) 溶剂化的稳定作用 物质和溶剂之间所起的化合作用称为溶剂化,溶剂若为水,则称水化。憎液溶胶的胶核是憎水的,但它吸附的离子都是水化的,因此增加了胶粒的稳定性。由于紧密层和分散层中的离子都是水化的,这样在胶粒周围形成了水化层。实验证明,水化层具有定向排列结构,当胶粒接近时,水化层被挤压变形,它有力图恢复定向排列结构的能力,使水化层具有弹性,这成了胶粒接近时的机械阻力,防止了溶胶的聚沉。 以上影响溶胶稳定的三种因素中,尤以带电因素最重要。 溶胶的聚沉 溶胶中的分散相颗粒相互聚结而变大,以至最后发生沉降的现象称为聚沉。一般ζ电势的绝对值大于0.03伏时,溶胶是稳定的。造成溶胶聚沉的因素很多,如浓度、温度、光的作用、搅拌、外加电解质、胶体相互作用和高分子化合物的作用等,其中尤以外加电解质和胶体相互作用最为重要。

第十二章胶体化学作业题解

第十二章作业题解 12.11 Ba(NO 3)2的稀溶液中滴加Na 2SO 4溶液可制备Ba SO 4溶胶。分别写出(1)Ba(NO 3)2 溶液过量,(2)Na 2SO 4溶液过量时的胶团结构表示式。 解:(1)Ba(NO 3)2 溶液过量,则Ba(NO 3)2为稳定剂,溶胶选择性吸附Ba 2+ 而带电,胶团结构式为 {[Ba(NO 3)2]m nBa 2+·(2n – x) NO -3}x+ xNO -3 或 {[Ba(NO 3)2]m nBa 2+·2(n – x) NO -3}2x+ 2xNO -3 (2)Na 2SO 4溶液过量时,溶胶选择性吸附SO 42- 而带负电,胶团结构式为 {[Ba(NO 3)2]m n SO 42-·(2n – x) Na +}x- xNa + 或 {[Ba(NO 3)2]m n SO 42-·2 (n – x) Na +}2x- 2xNa + 12.13 以等体积的0.08 mol.dm -3 AgNO 3溶液和0.1 mol.dm -3 KCl 溶液制备AgCl 溶胶。 (1) 写出胶团结构式,指出电场中胶体粒子的移动方向; (2) 加入电解质MgSO 4,AlCl 3和Na 3PO 4使上述溶胶发生聚沉,则电解质聚沉能力大小顺序是什么? 解:(1)相同体积的两种溶液,KCl 溶液的浓度大于AgNO 3溶液,故KCl 过量,为稳定剂。所以胶团结构式为 [(Ag Cl )m n Cl -? (n -x )K +] x - x K + 该AgCl 溶胶带负电荷,电泳时向正极移动。 (2)对上述溶胶起聚沉作用的是正离子,根据价数规则,三种电解质的聚沉能力大小顺序为AlCl 3 > MgSO 4 > Na 3PO 4 12.14 某带正电荷溶胶,KNO 3作为沉淀剂时,聚沉值为50*10-3 mol.dm -3,若用K 2SO 4溶液作为沉淀剂,其聚沉值大约为多少? 解: KNO 3作为沉淀剂时,聚沉值为50*10-3 mol.dm -3 ,则聚沉能力为1/50*10-3 = 20dm.mol -3 电解质的聚沉能力之比可以近似地表示为反离子价数的6次方之比,即 Me - : Me 2- : Me 3- = 16 : 26 : 36 K 2SO 4溶液作为沉淀剂时,聚沉能力为20dm.mol -3 * 26 =1280 dm.mol -3 则聚沉值为 1/1280 dm.mol -3 = 7.81*10-4 mol.dm -3 12.15 在三个烧瓶中分别盛有0.020 dm 3的Fe(OH)3 溶胶,分别加入NaCl 、Na 2SO 4及Na 3PO 4 溶液使溶胶发生聚沉,最少需要加入:1.00 mol.dm -3的NaCl 溶液0.021 dm 3;5.0*10-3 mol.dm -3 的Na 2SO 4溶液0.125 dm 3;3.333*10-3 mol.dm -3的Na 3PO 4溶液0.0074 dm 3。试计算各电解质的聚沉值、聚沉能力之比,并指出胶体粒子的带电符号。 解:NaCl 溶液的聚沉值 = ;33-dm mol 105120.021 0.0200.0211.00-??=+?;333-mol dm 1.953dm mol 105121--?=??=聚沉能力 Na 2SO 4溶液的聚沉值 = 333dm mol 10314125 00.020********---??=+??....

物理化学实验 氢氧化铁溶胶的制备与纯化

实验二 氢氧化铁溶胶的制备与纯化 一.实验目的 1.掌握Fe(OH)3溶胶的制备方法及纯化 2.理解渗透原理及学会半透膜的制备 二.实验原理 溶胶系指极细的固体颗粒分散在液体介质中的分散体系,其颗拉大小约在1nm 至1mm 之间,若颗粒再大则称之为悬浮液。要制备出比较稳定的溶胶或悬浮液一般须满足两个条件:①固体分散相的质点大小必须在胶体分散度的范围内;②固体分散质点在液体介质中要保持分散不聚结,为此,一般需加稳定剂。 制备溶胶或悬浮液原则上有两种方法:①特大块固体分割到胶体分散度的大小,此法称分散法;②使小分子或离子聚集成胶体大小,此法称为凝聚法。 影响聚沉的主要因素有反离子的价数、离子的大小及同号离子的作用等。一般来说,反离子价数越高,聚沉效率越高,聚沉值越小,聚沉值大致与反离子价数的6次方成反比。同价无机小离子的聚沉能力常随其水比半径增大而减小,这一顺序称为感胶离子序。与胶体质点带有同号电荷的2价或高价离子对胶体体系常有稳定作用,即使该体系的聚沉值有所增加。此外,当使用高价或大离子聚沉时,少量的电解质可使溶胶聚沉;电解质浓度大时,聚沉形成的沉淀物又重新分散;浓度再提高时,又可使溶胶聚沉。这种现象称为不规则聚沉。不规则聚沉的原因是,低浓度的高价反离子使溶胶聚沉后,增大反离子浓度,它们在质点上强烈吸附使其带有反离子符号的电荷而重新稳定;继续增大电解质浓度,重新稳定的胶体质点的反离子又可使其聚沉。 (3) 溶胶的稳定性 ①聚沉值的测定 测定聚沉值的溶胶一般都应经渗析纯化。根据使溶胶刚发生聚沉时所需电解质溶液的体积V 1、电解质溶液的浓度c 和溶胶的体积V 2可计算出聚沉值 聚沉值=211 V V cV Fe(OH)3溶胶聚沉值的测定。用移液管向3个干净并烘干的100ml 锥形瓶中各移人10ml 经过渗析的Fe(OH)3溶胶,然后分别以NaCl 溶液(0.2mol .l -1)、Na 2SO 4溶液(0.2mol .l -1 )及K[Fe(CN)6]溶液(0.001mol .l -1)滴定锥形瓶中的Fe(OH)3溶胶。每滴1滴电解质溶液,都必须充分搅动,直到溶胶刚刚产生浑浊为止。记下此时所需各电解质溶液的体积数,计算聚沉值。 1. FeCl 3+3H 2O= Fe(OH)3+3HCl 2.半透膜只允许离子或小分子通过,胶体不能通过

盐析与聚沉概念辨析

盐析与聚沉概念辨析: 胶体的微粒在一定条件下发生聚集的现象叫做聚沉。胶体稳定的原因是胶粒带有某种相同的电荷互相排斥,胶粒间无规则的热运动也使胶粒稳定。因此,要使胶体聚沉、其原理就是:①中和胶粒的电荷、②加快其胶粒的热运动以增加胶粒的结合机会,使胶粒聚集而沉淀下来。其方法有: 1.加入电解质。在溶液中加入电解质,这就增加了胶体中离子的总浓度,而给带电荷的胶体粒子创造了吸引相反电荷离子的有利条件,从而减少或中和原来胶粒所带电荷,使它们失去了保持稳定的因素。这时由于粒子的布朗运动,在相互碰撞时,就可以聚集起来。迅速沉降。 如由豆浆做豆腐时,在一定温度下,加入CaSO4(或其他电解质溶液),豆浆中的胶体粒子带的电荷被中和,其中的粒子很快聚集而形成胶冻状的豆腐(称为凝胶)。 一般说来,在加入电解质时,高价离子比低价离子使胶体凝聚的效率大。如:聚沉能力: Fe(3+)>Ca(2+)>Na(+),PO4(3-)>SO4(2-)>Cl(-)。 2.加入带相反电荷的胶体,也可以起到和加入电解质同样的作用,使胶体聚沉。 如把Fe(OH)3胶体加入硅酸胶体中,两种胶体均会发生凝聚。 3.加热胶体,能量升高,胶粒运动加剧,它们之间碰撞机会增多,而使胶核对离子的吸附作用减弱,即减弱胶体的稳定因素,导致胶体凝聚。 如长时间加热时,Fe(OH)3胶体就发生凝聚而出现红褐色沉淀。 蛋白质溶液的盐析是在盐溶液的作用下,蛋白质的溶解度降低而析出的情况。例如蛋白质和皂化反应中的产物硬脂酸钠等的盐析。 教材中是按分散质微粒直径的大小来给分散系分类的。淀粉、蛋白质等高分子溶于水形成的分散系可称为胶体。但是判断一种分散系是属于胶体还是溶液,单从分散质微粒直径的大小这一方面来考察,其结论是不全面的,甚至是错误的。正确判断一种分散系是溶液还是胶体,还要看分散质微粒的结构。如果分散质微粒的结构简单,比如是单个的分子或较小聚合度的分子或离子,那么这样的分散系应称为溶液。由于淀粉、蛋白质溶于水后都是以单个分子的形式分散在水中的,因此,尽管这些高分子很大,这些分散系仍应称为溶液。只是因为高分子的大小与胶粒相仿,高分子溶液才具有胶体的一些特性,如扩散慢、不通过半透膜、有丁达尔现象等。化学上常把Fe(OH)3,AgI等难溶于水的物质形成的胶体称为憎液胶体,简称溶胶;而把淀粉、蛋白质等易溶于水的物质形成的分散系称为亲液胶体,更多地是称为高分子溶液。 凝聚是憎液(水)胶体的性质,胶体的凝聚过程就是胶粒聚集成较大颗粒的过程。由于憎液(水)胶体的分散质都难溶于水,因此,再采用一般的溶解方法用水来溶解胶体的凝聚物是不可能的,也就是说,胶体的凝聚是不可逆的。盐析实际上就是加入电解质使分散质溶解度减小 而使其析出的过程。盐析不是憎液胶体的性质,它是高分子溶液或普通溶液的性质,能发生盐析的分散质都是易溶的,如淀粉溶液、蛋白质溶液、肥皂的甘油溶液,由于分散质都是易溶的,所以盐析是可逆的。

第十二章 胶体化学概念题

第十二章 胶体化学 §12.2 概念题 12.2.1填空题 1.胶体系统的主要特征(高分散、多相和热力学不稳定的系统)。 2.丁达尔现象是指(将一束经聚焦的光投射到胶体系统 ,在与入射光垂直的方向上,可观察到一法律的光锤的现象)。胶体系统产生丁达尔现象的实质是(胶体粒子对光的散射作用)。 3.晴朗的天空呈蓝色的原因是(在大气层中分散烟、雾和灰尘等微小粒子构成胶体系统(称气溶胶)。当包括各种波长的白光照射到大气层时,上述的微粒对光产生散射,根据瑞利公式可知,散射光的强度与入射光的波长的四次方成反比,所以当白光照射到无色胶体上时,其散射光呈蓝紫色,透射光呈橙红色,这就是人们在白天晴朗天空看到天是蔚蓝色,而太阳下山时看到天空呈橙红色)。 4.胶体的动力性质包括有(布朗运动、扩散和沉降与沉降平衡)。 5.溶胶的电动现象说明分散相与分散介质两者(带有相反符号的电荷)。 6. ζ电势是指( )电势差。ζ电势的数值可以作为衡量溶胶稳定性的原因是( )。 解:当分散相(胶粒)与分散介质发生相对运动时,胶粒的滑动面和与溶液本体之间的电势差,称ζ电势。ζ电势之所以能作为衡量溶胶稳定性的原因,是因为溶胶能稳定存在的最重要的原因是溶胶的胶粒带相同的符号的电荷而存在着静电排斥力,阻止了胶粒的聚沉。ζ电势的大小是反映脱粒上所带电荷的多少,ζ亦即电势越大则胶粒间静电排斥力越大,所以ζ电势的数值可以衡量溶胶稳定性。 7.用AgI (s )制成多孔圆柱体,并将一玻璃管分隔成两部分。在柱体两端紧贴着两片电极。当多孔圆体中冲满KI 溶液,并将两电极与直流电源连通时,则溶液向( )极流动。这一现象称( )。 解:向负极流动,称为电渗。溶液向负极流动的原因是因为AgI 溶胶中充满KI 溶液时,AgI 溶胶的胶团结构为x m [AgI](n x)K ]xK +-+?-。当电极接通直流电源后,带负电荷的胶粒与带正电荷的溶液要发生相对移动,即胶粒向正极移动而溶液向负极移动,但因胶粒被固定,所以只看到负极处有液体流出。 8. 323NaNO NaCl MgCl AlCl ,,和四种电解质对某溶胶的聚沉值(-3 mmol dm ?)分别为300,295,25和0.5,根据以上数据可以说明该溶胶的胶粒是带( )电荷。 解:题中溶胶的胶粒是带负电。根据NaNO 3与NaCl 的聚沉值看,两者基本相同,但从NaCl,2MgCl 及AlCl 3三者聚沉值看,这三种电解质的阴离子均为Cl -,而不同为阳离子,而且随着阳离子价数增大,聚沉值明显下降,说明只有该溶胶的胶粒带负电荷时阳离子的聚沉作用才显著。从本题可以知道,利用电解质令深胶发生聚沉亦能判断深胶的胶粒带何种电荷。 9.DLVO 理论认为胶体稳定的因素是(胶体粒子之间存在范德华力和双电层重叠的排斥力)。

溶胶的制备、纯化及稳定性研究

溶胶的制备、纯化及稳定性研究 ——辅助液pH值的影响 学生姓名甘汉麟学号 20112401024 专业化学教育年级、班级 11级化五 室温 22.0℃大气压 101.71kPa 合作者王冠煊实验日期 2014 年 5 月 7 日 指导老师李国良实验分数 【前言】 氢氧化铁溶胶的制备在工业上非常重要。目前,工业上一般选用的胶溶法工艺非常复杂。本次实验探究是以三氯化铁为原料,用凝聚法制备氢氧化铁溶胶,比较简单,适合实验中操作,而结果表明这种方法效果也是比较好的。 本实验首先根据化学反应法制备了Fe(OH)3溶胶,再以火棉胶/乙醚溶液为原料制备了半透膜。通过热渗析法进行纯化。然后围绕胶体性质,分别进行胶体的电泳及其定量分析、胶体的聚沉两个实验。 【实验部分】 一、实验原理 溶胶是溶解度极小的固体在液体中高度分散所形成的胶态体系,其颗粒直径变动在10-7~10-9m 范围。一般来说,溶胶的制备有两种常见的方法,是分散法和凝聚法。分散法是用适当方法把较大的物质颗粒变成溶胶大小的质点,凝聚法是先制成难容物的分子(或离子)的过饱和溶液,再使之相互结合成溶胶粒子大小而得到溶胶。Fe(OH)3溶胶的制备就是采用化学法即通过化学反应使生产物呈现过饱和状态,然后粒子再结合为溶胶。 溶胶的制备方法可分为分散法和凝聚法。分散法是用适当方法把较大的物质颗粒变为胶体大小的质点,如机械法,电弧法,超声波法,胶溶法等;凝聚法是先制成难溶物的分子(或离子)的过饱和溶液,再使之相互结合成胶体粒子而得到溶胶,如物质蒸汽凝结法、变换分散介质法、化学反应法等。Fe(OH)3溶胶的制备就是采用化学反应法使生成物呈过饱和状态,然后粒子再结合成溶胶。 在胶体分散系统中,由于胶体本身电离,或胶体从分散介质中有选择地吸附一定量的离

肥皂水是加入氯化钠是胶体的聚沉还是盐析

肥皂水是加入氯化钠是胶体的聚沉还是盐析? 应当算是盐析吧,它加水后可溶,而聚沉一般不可逆。胶体的微粒在一定条件下发生聚集的现象叫做聚沉。引起胶体聚沉的因素(即破坏胶体稳定的条件)有多种,如升高温度、加入电解质、加带相反电荷的溶胶、光学作用和长期渗析等,其中最主要的是加入电解质。升高温度能减弱胶粒对离子的吸附,破坏胶团的水化膜,使胶粒运动加快,增加胶粒间的碰撞机会,从而使胶粒聚沉。加入电解质后,增加胶体溶液中的离子浓度,使胶粒吸附相反电荷,会减少或中和所带的电荷,削弱胶粒之间的静电斥力,使之因碰撞而聚沉。加入带相反电荷的溶胶,如向带正电荷的氢氧化铁溶胶中加入带负电荷的三硫化二砷溶胶。由于胶粒的电荷被中和,两种溶胶都发生聚沉。研究胶体的聚沉现象有应用价值。例如,制肥皂(采用盐析)和豆腐、除尘和净水都是要求胶体发生聚沉;制墨水、涂料、胶体石墨等都要使胶体稳定,防止聚沉。研究江河三角洲形成和生命现象也跟胶体的聚沉有关 1)定义: 通过加人大量电解质使高分子化合物聚沉的作用 称为盐析。 胶体分散系中的分散质从分散剂中分离出来的过 程称为溶胶聚沉。 (2)区别: 盐析除中和高分子化合物所带的电荷外,更重要的是破坏其水化膜,需加大量电解质;溶胶聚沉只需加少量的电解质。 凝聚是憎液(水)胶体的性质,胶体的凝聚过程就是胶粒聚集成较大颗粒的过程。由于憎液(水)胶体的分散质都难溶于水,因此,再采用一般的溶解方法用水来溶解胶体的凝聚物是不可能的,也就是说,胶体的凝聚是不可逆的。盐析实际上就是加入电解质使分散质溶解度减小而使其析出的过程。盐析不是憎液胶体的性质,它是高分子溶液或普通溶液的性质,能发生盐析的分散质都是易溶的,如淀粉溶液、蛋白质溶液、肥皂的甘油溶液,由于分散质都是易溶的,所以盐析是可逆的。 附:教材中是按分散质微粒直径的大小来给分散系分类的。淀粉、蛋白质等高分子溶于水形

实验32FeOH3溶胶的聚沉值ξ电势及粒径分布的测定

实验32 Fe(0H)3溶胶的聚沉值、E电势及粒径分布的测定 一、目的要求 1.制备Fe(OH) 3 溶胶并将其纯化。 2. 测量Fe(OH) 3溶胶的聚沉值、E电势及粒径的分布。 3 ?分析影响聚沉值及E电势的主要因素。 二、原理 胶体溶液是分散相线度为1nm~100 nm 的高分散多相体系。胶核大多是分子或原子的聚集体,由于其本身电离或与介质磨擦或因选择性吸附介质中的某些离子而带电。由于整个胶体体系是电中性的,介质中必然存在与胶核所带电荷相反的离子 (称为反离子),反离子中有一部分因静电引力的作用,与吸附离子一起紧密地吸附于胶核表面,形成了紧密层。于是胶核、吸附离子和部分紧靠吸附离子的反离子构成胶粒。反离子的另一部分由于热运动以扩散方式分布于介质中,故称为扩散层。扩散层和胶粒构成胶团。扩散层与紧密层之交界区称为滑动面,滑动面上存在电势差,称为E 电势。此电势只有在电场中才能显示出来。在电场中胶粒会向正极(胶粒带负电)或负极(胶粒带正电)移动,称为电泳。E 电势越大,胶体体系越稳定,因此E电势大小是衡量溶胶稳定性的重要参数。E电势的大小与胶粒的大小、胶粒浓度,介质的性质、成分、pH 值及温度等因素有关。 从能量观点来看,胶体体系是热力学不稳定体系,因高分散度体系界面能特别高,胶核有自发聚集而聚沉的倾向。但由于胶粒带同种电荷,因此在一定条件下又能相对地稳定存在。在实际中有时需要胶体稳定存在,有时需要破坏胶体使之发生聚沉。使胶体聚沉的最有效方法是加入适量的电解质来中和胶粒所带电荷,降低E

电势。一定量某种溶胶在一定时间内发生明显聚沉所需电解质的最低浓度称为该电解质的聚沉值。 聚沉值、E电势和胶粒粒径的测量常用比较纯净的溶胶,这就要求对溶胶进行纯化。本实验采用渗析 法,即通过半透膜除去溶胶中多余的电解质达到纯化目的。 三、仪器与试剂 稳流稳压电泳仪1台,0~300V ;电泳管1支;250ml、800ml烧杯各1个;10ml、100ml量筒各 1 个;1ml 移液管 2 支,5ml 移液管1 支,10ml 移液管4 支;150 ml 棕色试剂瓶1 个;150ml 大口锥瓶 1 个;25ml 试管6支,试管架1 个;电导率仪1 台;直径为 2 cm 长约4cm 的空心玻管1 根;棉线,细 铜线、直尺等。800W 电炉 1 台。 粒径分析仪一台(美国COULTER 公司N4 Plus submicron Particle size analyzer ) 10% FeCl 3 溶液;2.000 mol/L NaCI 溶液;0.010 mol/L Na 2SO4溶液;0.005 mol/L Na 3PO4 .12H2O;市售6%火棉胶溶液;KCl或KNO 3稀溶液。 四、实验步骤 1 ?水解法制备Fe(OH) 3溶胶 在250ml烧杯中加入120ml蒸馏水,加热煮沸。在沸腾条件下约1min滴加完3ml 10%FeCI 3溶液,并不断搅拌,加完后继续煮沸 3 分钟。水解得到深红色的Fe(OH)3 溶胶约100ml。

相关主题
文本预览
相关文档 最新文档