当前位置:文档之家› 4.pcm编译码 - 通信原理实验报告

4.pcm编译码 - 通信原理实验报告

4.pcm编译码 - 通信原理实验报告

PCM是指Pulse Code Modulation(脉冲编码调制)的缩写,是一种数字通信技术,

它常用于将模拟信号转换为数字信号,并将其传输到接收站。它通过将实时信号转换为一

系列数字并进行抽样数据,以到达目标呈现出模拟信号序列从而实现数据通信的传输。

一般来说,编码技术会将模拟信号处理成“文本”,PCM 将处理成已经精确编号的digit,最后的处理都是电信号。PCM编码的完整过程可以分为三步:第一步是模拟信号的采样,把时域中的信号采集成数次采样,第二步是编码,将采样的信号的值编码成digits,第三步是字节组装,把编码的digits 放进字节中,再发出。下面就重点介绍PCM编码的

模拟信号采样过程和字符组装过程。

首先介绍模拟信号采样。PCM编码首先会把信号采样,即把时间域中的模拟信号,采

集成离散点并组织成序列,如此会确定数字采样值。采样频率越高、采样数据越多,就可

以更好地反映出模拟信号的变化,即保留越多的信号特性,由此可以看出,采样是PCM编

码的重要环节。

接下来介绍字节组装。PCM编码会将采样的数据进行编码,将数据放入字节中,最后

进行发送。数据编码是将A/D转换的精确采样数据转换为一个数字码,以便可以传输或存

储数据。通常压缩率会越高,所需的传输带宽也会越小,这就可以大幅度节省传输成本。

以上就是PCM编码的基本流程。PCM编码是一种把模拟信号转换为数字信号的重要技术,被广泛应用于通信系统、数字音频传输系统中。优点是能够实现远程传输、信号增强,同时有较高的稳定性。

pcm编译码实验报告

pcm编译码实验报告 PCM编码实验报告 引言 在数字通信领域中,编码和解码是非常重要的环节。编码是将原始信号转换为数字信号的过程,而解码则是将数字信号还原为原始信号的过程。PCM编码(Pulse Code Modulation)是一种常用的数字信号编码方法,广泛应用于音频和视频传输等领域。本实验旨在通过实际操作,深入理解PCM编码的原理和实现过程。 实验目的 1. 了解PCM编码的基本原理和概念; 2. 掌握PCM编码的实验操作方法; 3. 分析PCM编码的优缺点及应用领域。 实验设备和材料 1. 信号发生器; 2. 示波器; 3. PCM编码器; 4. 解码器; 5. 音频播放器。 实验步骤 1. 连接信号发生器和示波器,调节信号发生器输出为正弦波信号; 2. 将信号发生器的输出连接到PCM编码器的输入端; 3. 设置PCM编码器的采样率和量化位数;

4. 将PCM编码器的输出连接到解码器的输入端; 5. 连接解码器的输出到音频播放器; 6. 调节示波器观察PCM编码器输出信号的波形; 7. 播放音频,观察解码器输出的音频效果。 实验原理 PCM编码是一种将连续模拟信号转换为离散数字信号的方法。其基本原理是将模拟信号进行采样和量化。采样是指在一定时间间隔内对模拟信号进行取样,将连续信号转换为离散信号。量化是指将采样得到的离散信号映射到离散的量化级别上,以便数字化表示。 在本实验中,信号发生器产生的正弦波信号作为输入信号,经过PCM编码器进行采样和量化处理后,输出为数字信号。解码器接收到数字信号后,通过解码过程将其还原为模拟信号,最终通过音频播放器播放出来。 PCM编码的优点是可以准确地还原原始信号,保持良好的信号质量。同时,由于PCM编码是一种线性编码方式,具有较好的抗噪声能力。然而,PCM编码的缺点是需要较大的存储空间和传输带宽,不适用于对存储和传输资源要求较高的场景。 实验结果与分析 通过实验观察,可以发现PCM编码器输出的信号波形与输入信号相似,但存在一定的误差。这是由于采样和量化过程中引入的误差所致。随着采样率和量化位数的增加,PCM编码的精度会提高,但同时也会增加存储和传输的成本。 解码器输出的音频效果与输入信号相比,存在一定的失真。这是由于解码过程中的误差累积以及解码器本身的性能限制所导致的。因此,在实际应用中,需

通信原理实验报告

实验一、PCM编译码实验 实验步骤 1. 准备工作:加电后,将交换模块中的跳线开关KQ01置于左端PCM编码位置,此时MC145540工作在PCM编码状态。 2. PCM串行接口时序观察 (1)输出时钟和帧同步时隙信号观测:用示波器同时观测抽样时钟信号(TP504)和输出时钟信号(TP503),观测时以TP504做同步。分析和掌握PCM编码抽样时钟信号与输出时钟的对应关系(同步沿、脉冲宽度等)。 (2)抽样时钟信号与PCM编码数据测量:用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。 3. PCM编码器 (1)方法一: (A)准备:将跳线开关K501设置在测试位置,跳线开关K001置于右端选择外部信号,用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。 (B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。分析为什么采用一般的示波器不能进行有效的观察。 (2)方法二: (A)准备:将输入信号选择开关K501设置在测试位置,将交换模块内测试信号选择开关K001设置在内部测试信号(左端)。此时由该模块产生一个1KHz的测试信号,送入PCM编码器。(B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以内部测试信号(TP501)做同步(注意:需三通道观察)。分析和掌握PCM编码输出数据与帧同步时隙信号、发送时钟的对应关系。 4. PCM译码器 (1)准备:跳线开关K501设置在测试位置、K504设置在正常位置,K001置于右端选择外部信号。此时将PCM输出编码数据直接送入本地译码器,构成自环。用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。 (2) PCM译码器输出模拟信号观测:用示波器同时观测解码器输出信号端(TP506)和编码器输入信号端口(TP501),观测信号时以TP501做同步。定性的观测解码信号与输入信号的关系:质量、电平、延时。 5. PCM频率响应测量:将测试信号电平固定在2Vp-p,调整测试信号频率,定性的观测解码恢复出的模拟信号电平。观测输出信号信电平相对变化随输入信号频率变化的相对关系。

PCM编译码的实验报告

PCM编译码的实验报告 篇一:实验十一:PCM编译码实验报告 实验报告 哈尔滨工程大学教务处制 实验十一PCM编译码实验 一、实验目的 1. 掌握PCM编译码原理。 2. 掌握PCM基带信号的形成过程及分接过程。 3. 掌握语音信号PCM编译码系统的动态范围和频率特性的定义及测量方法。 二、实验仪器 1. 双踪示波器一台 2. 通信原理Ⅵ型实验箱一台 3. M3:PCM与ADPCM编译码模块和M6数字信号源模块 4. 麦克风和扬声器一套 三、实验步骤 1.实验连线 关闭系统电源,进行如下连接: 非集群方式 2. 熟悉PCM编译码模块,开关K1接通SL1,打开电源开关。3.用示波器观察STA、STB,将其幅度调至2V。 4. 用示波器观察PCM编码输出信号。 当采用非集群方式时:

测量A通道时:将示波器CH1接SLA(示滤波器扫描周期不超过SLA的周期, 以便观察到一个完整的帧信号),CH2接PCM A OUT,观察编码后的数据与时隙同步信号的关系。 测量B通道时:将示波器CH1接SLB,(示滤波器扫描周期不超过SLB的周期, 以便观察到一个完整的帧信号),CH2接PCM B OUT,观察编码后的数据与时隙同步信号的关系。 当采用集群方式时:将示波器CH1接SL0,(示滤波器扫描周期不超过SL0的周期, 以便观察到一个完整的帧信号),CH2分别接SLA、PCM A OUT、SLB、PCM B OUT以及PCM_OUT,观察编码后的数据所处时隙位置与时隙同步信号的关系以及PCM信号的帧结构(注意:本实验的帧结构中有29个时隙是空时隙,SL0、SLA及SLB的脉冲宽度等于一个时隙宽度)。开关S2分别接通SL1、SL2、SL3、SL4,观察PCM基群帧结构的变化情况。 5. 用示波器观察PCM译码输出信号 示波器的CH1接STA,CH2接SRA,观察这两个信号波形是否相同(有相位差)。 示波器的CH1接STB,CH2接SRB,观察这两个信号波形是否相同(有相位差)。 6. 用示波器定性观察PCM编译码器的动态范围。

pcm编译码实验报告

项目二 实验十一PCM编译码实验 一、实验目的 1.掌握PCM编码原理。 2.掌握PCM基带信号的形成过程及分接过程。 3.掌握语音信号PCM编译码系统的动态范围和频率特性的定义及测量方法。 二、实验仪器 1.双踪示波器一台 2.通信原理VI型实验箱一台 3.M3:PCM与ADPCM编译码模块和M6数字信号源模块 4.麦克风和扬声器一套 三、实验原理及基本内容 1.点到点PCM多路电话通信原理 脉冲编码调制(PCM)技术与增量调制(△M)技术已经在数字通信系统中得到广泛应用。当信道噪声较小时一般用PCM,否则一般用△M。目前速率在155MB以下的准同步数字系列(PDH)中,国际上存在A律和u律两种编译码标准系列,在155MB以上的同步数字系列(SDH)中,将这两个系列统一起来,在同一个等级上两个系列的码速率相同,而△M在国际上无统一标准,但它在通信环境比较恶劣时显示了巨大的优越性。 点到点PCM多路电路通信原理可用11—1表示。对于基带通信系统,广义信道包括传输媒质、收滤波器、发滤波器等。对于频带系统,广义信道包括传输媒质、调制器、解调器、发滤波器、收滤波器等。 本实验模块可以传输两路话音信号。采用MC145503编译器,它包括了图11—1中的收、发低通滤波器及PCM编译码器。编码器输入信号可以是本实验系统内部产生的正弦信号,也可以是外部信号源的正弦信号或电话信号。本实验模块中不含电话机和混合电路,广义信道时理想的,即将复接器输出的PCM信号直接送给分接器。 2.PCM编译模块原理 本模块的原理方框图及电路图如图11-2及图11-3所示。

BS PCM基群时钟信号(位同步)测试点 SL0 PCM基群第0个时隙同步信号 SLA 信号A的抽样信号及时隙同步信号测试点 SLB 信号B的抽样信号及时隙同步信号测试点 SRB 信号B译码输出信号测试点 STA 输入到编码器A的信号测试点 STB 输入到编码器B的信号测试点 PCM_OUT PCM基群信号输出点 PCM_IN PCM基群信号输入点 PCM A OUT 信号A编码结果输出点 PCM B OUT 信号B编码结果输出点 PCM A IN 信号A编码结果输入点 PCM B IN 信号B编码结果输入点 本模块上有S2这个拔码开关,用来选择SLB信号为时隙同步信号SL1、SL3、SL5、SL6中的任一个。 图11-2各单元与图11-3中的元器件之间的对应关系如下: 晶振X1:4.096MHZ晶振 分频器1/2 U1:74LS193; U6:74HC4060 抽样信号产生器U5:74HC73; U2:74HC164 PCM编译器A U10:PCM编译码集成电路MC145503 PCM编译器B U11:PCM编译码集成电路MCL45503 帧同步信号产生器U3:8位数据产生器74HC151; U4:A:与门7408 复接器U9:或门74LS32

Pcm编译码实验报告

Pcm编译码实验报告 学院:信息学院 姓名:靳家凯 专业:电科 学号:20141060259

一、实验目的 1、掌握脉冲编码调制与解调的原理。 2、掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。 3、了解脉冲编码调制信号的频谱特性。 4、熟悉了解W681512。 二、实验器材 1、主控&信号源模块、3号、21号模块 2、双踪示波器 3、连接线 三、实验原理 1、实验原理框图 图1 21号模块w68 1 5 1 2芯片的PCM编译码实验

图2 3号模块的PCM编译码实验 图3 ~μ律编码转换实验 2、实验框图说明 图1中描述的是信号源经过芯片W6815 12经行PcM编码和译码处理。w681512的芯片工作主时钟为2o48KHz, 根据芯片功能可选择不同编码时钟进行编译码。在本实验的项目一中以编码时钟取64K为基础进行芯片的幅频特性测试实验。 图2中描述的是采用软件方式实现PcM编译码, 并展示中间变换的过程。PcM 编码过程是将音乐信号或正弦波信号, 经过抗混叠滤波(其作用是滤波 3.4kHz 以外的频率, 防止A/D转换时出现混叠的现象) 。抗混滤波后的信号经A/D转换,然后做PcM编码,之后由于G.711协议规定A律的奇数位取反, μ律的所有位都取反。因此, PcM编码后的数据需要经G.711协议的变换输出。PcM译码过

程是PcM编码逆向的过程,不再赘述。 A/μ律编码转换实验中,如实验框图3所示,当菜单选择为A律转μ律实验时,使用3 号模块做A律编码, A律编码经A转μ律转换之后, 再送至21号模块进行μ律译码。同理, 当菜单选择为μ律转A律实验时,则使用3号模块做μ律编码,经l,转A律变換后,再送入21号模块进行A律译码。 四、实验步骤 实验项目一测试w68l512的幅频特性 概述:该项目是通过改变输入信号频率,观测信号经w681512编译码后的输出幅频特性, 了解芯片w681512的相关性能。 1、关电,按图1所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【PCM编码】→【A 律编码观测实验】。调节w1主控&信号源使信号A_0UT输出峰峰值为3V左右。将模块21的开关Sl 拨至“A-Law”, 即完成A律PCM编译码。 3、此时实验系统初始状态为:设置音频输入信号为峰峰值3V,频率1KHz正弦波; PCM编码及译码时钟CLK为64KHz方波;编码及译码帧同步信号FS为8KHz。 4、实验操作及波形观测。 (1)调节模拟信号源输出波形为正弦波,输出频率为50Hz,用示波器观测A-out,设置A_out峰峰值为3V。 (2)将信号源频率从50Hz增加到4oooHz,用示波器接模块21的音频输出,观测信号的幅频特性。 实验项目二PCM编码规则验证 概述:该项目是通过改变输入信号幅度或编码时钟,对比观测A律PcM编译码和μ律PcM编译码输入输出波形, 从而了解PcM编码规则。 1、关电,按图2所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【PCM编码】→【A 律编码观测实验】。调节w1主控&信号源使信号A_0UT输出峰峰值为3v左右。

通信原理实验报告--PCM

大连理工大学实验报告 实验七PCM编译码器系统 一、实验目的和要求 见预习报告 二、实验内容 PCM编码器 1.输出时钟和帧同步时隙信号观测 2.抽样时钟信号与PCM编码数据测量 PCM译码器 1.PCM译码器输出模拟信号观测 三、实验仪器 1、J H5001通信原理综合实验系统一台 2、20MHz双踪示波器一台 3、函数信号发生器一台 四、实验结果 PCM编码器 1.输出时钟和帧同步时隙信号观测 CH1:TP504 CH2:TP503 分析和掌握PCM编码抽样时钟信号与输出时钟的对应关系 由图可以看出在抽样时钟信号的高电平部分,输出时钟有8个脉冲,即进行了PCM编码,且为8bit/s 2.抽样时钟信号与PCM编码数据测量 方法一:

CH1:TP502 CH2:TP504 分析和掌握PCM编码输出数据(TP504)与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。 由图可以看出,每个抽样区间都各不相同,看似随机,实际遵循一定的编码规律。PCM量化编码后是“0”,“1”的数字信号,可以根据一定的规律,如A率将其恢复成原来的电平,再经过抽样、滤波恢复原始的波形。 方法二:K502在右端:K502在左端: CH1:TP502 CH2:TP504 CH1:TP502 CH2:TP504 分析和掌握PCM编码输出数据与帧同步时隙信号、发送时钟信号的对应关系 由图可以看出,PCM编码输出数据与帧同步时隙信号、发送时钟信号同步 PCM译码器 PCM译码器输出模拟信号观测 (1)定性观测解码恢复出的模拟信号质量(2)频率固定1000Hz,测试信号电平1.27V CH1:TP506 CH2:TP501 CH1:TP506 CH2:TP501 分析:从图中可以看出,输入的是1004Hz的正弦信号,输出也是1004Hz的正弦信号,输出信号较输入信号有放大,通过坐标比较,输出信号与输入信号并不是完全同步的,有65us的延时。

通信原理PCM编译码实验

实验一PCM编译码实验 一、实验目的 1、掌握脉冲编码调制与解调的原理。 2、掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。 3、了解脉冲编码调制信号的频谱特性。 4、熟悉了解W681512. 二、实验器材 1、主控&信号源模块、3号、21号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、实验原理框图 图1—1 21号模块W681512芯片的PCM编译码实验

图1-2 3号模块的PCM编译码实验 图1-3 A/μ律编码转换实验 2、实验框图说明 图1—1中描述的是信号源经过芯片W681512经行PCM编码和译码处理。W681512的芯片工作主时钟为2048KHz,根据芯片功能可选择不同编码时钟进行编译码。在本实验的项目一中以编码时钟取64K为基础进行芯片的幅频特性测试实验。 图1—2中描述的是采用软件方式实现PCM编译码,并展示中间变换的过程。PCM编码过程是将音乐信号或正弦波信号,经过抗混叠滤波(其作用是滤波3。4kHz以外的频率,防止

A/D转换时出现混叠的现象)。抗混滤波后的信号经A/D转换,然后做PCM编码,之后由于G.711协议规定A律的奇数位取反,μ律的所有位都取反。因此,PCM编码后的数据需要经G.711协议的变换输出。PCM译码过程是PCM编码逆向的过程,不再赘述。 A/μ律编码转换实验中,如实验框图1-3所示,当菜单选择为A律转μ律实验时,使用3号模块做A律编码,A律编码经A转μ律转换之后,再送至21号模块进行μ律译码。同理,当菜单选择为μ律转A律实验时,则使用3号模块做μ律编码,经μ转A律变换后,再送入21号模块进行A律译码. 四、实验步骤 实验项目一测试W681512的幅频特性 概述:该项目是通过改变输入信号频率,观测信号经W681512编译码后的输出幅频特性,了解芯片W681512的相关性能。 1、关电,按表格所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【PCM编码】→【A律编码观测实验】。调节W1主控&信号源使信号A—OUT输出峰峰值为3V左右。将模块21的开关S1拨至“A-Law”,即完成A律PCM编译码.

PCM编译码的实验报告【精品】

篇一:实验十一:PCM编译码实验报告 实验报告 哈尔滨工程大学教务处制 实验十一 PCM编译码实验 一、实验目的 1. 掌握PCM编译码原理。 2. 掌握PCM基带信号的形成过程及分接过程。 3. 掌握语音信号PCM编译码系统的动态范围和频率特性的定义及测量方法。 二、实验仪器 1. 双踪示波器一台 2. 通信原理Ⅵ型实验箱一台 3. M3:PCM与ADPCM编译码模块和M6数字信号源模块 4. 麦克风和扬声器一套 三、实验步骤 1.实验连线 关闭系统电源,进行如下连接: 非集群方式 2. 熟悉PCM编译码模块,开关K1接通SL1,打开电源开关。 3.用示波器观察STA、STB,将其幅度调至2V。 4. 用示波器观察PCM编码输出信号。 当采用非集群方式时: 测量A通道时:将示波器CH1接SLA(示滤波器扫描周期不超过SLA的周期, 以便观察到一个完整的帧信号),CH2接PCM A OUT,观察编码后的数据与时隙同步信号的关系。 测量B通道时:将示波器CH1接SLB,(示滤波器扫描周期不超过SLB的周期,

以便观察到一个完整的帧信号),CH2接PCM B OUT,观察编码后的数据与时隙同步信号的关系。 当采用集群方式时:将示波器CH1接SL0,(示滤波器扫描周期不超过SL0的周期, 以便观察到一个完整的帧信号),CH2分别接SLA、PCM A OUT、SLB、PCM B OUT以及PCM_OUT,观察编码后的数据所处时隙位置与时隙同步信号的关系以及PCM信号的帧结构(注意:本实验的帧结构中有29个时隙是空时隙,SL0、SLA及SLB的脉冲宽度等于一个时隙宽度)。开关S2分别接通SL1、SL2、SL3、SL4,观察PCM基群帧结构的变化情况。 5. 用示波器观察PCM译码输出信号 示波器的CH1接STA,CH2接SRA,观察这两个信号波形是否相同(有相位差)。 示波器的CH1接STB,CH2接SRB,观察这两个信号波形是否相同(有相位差)。 6. 用示波器定性观察PCM编译码器的动态范围。 将低失真低频信号发生器输出的1KHZ正弦信号从STA-IN输入到MC 503编码器。示波器的CH1接STA(编码输入),CH2接SRA(译码输出)。将信号幅度分别调至大于5VP-P、等于5VP-P,观察过载和满载时的译码输出波形。再将信号幅度分别衰减10dB、20dB、30dB、40dB、45dB,观察译码输出波形。 篇二:pcm编译码实验报告 项目二 实验十一 PCM编译码实验 一、实验目的 1. 掌握PCM编码原理。 2. 掌握PCM基带信号的形成过程及分接过程。 3. 掌握语音信号PCM编译码系统的动态范围和频率特性的定义及测量方法。 二、实验仪器 1. 双踪示波器一台 2. 通信原理VI型实验箱一台 3. M3:PCM与ADPCM编译码模块和M6数字信号源模块

通信原理PCM编译码实验

实验一PCM编译码实验 一、实验目的 1、掌握脉冲编码调制与解调的原理。 2、掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。 3、了解脉冲编码调制信号的频谱特性。 4、熟悉了解W681512。 二、实验器材 1、主控&信号源模块、3号、21号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、实验原理框图 图1-1 21号模块W681512芯片的PCM编译码实验

图1-23号模块的PCM编译码实验 图1-3A/μ律编码转换实验 2、实验框图说明 图1-1中描述的是信号源经过芯片W681512经行PCM编码和译码处理。W681512的芯片工作主时钟为2048KHz,根据芯片功能可选择不同编码时钟进行编译码。在本实验的项目一中以编码时钟取64K为基础进行芯片的幅频特性测试实验。 图1-2中描述的是采用软件方式实现PCM编译码,并展示中间变换的过程。PCM编码过程是将音乐信号或正弦波信号,经过抗混叠滤波(其作用是滤波3.4kHz以外的频率,防止A/D 转换时出现混叠的现象)。抗混滤波后的信号经A/D转换,然后做PCM编码,之后由于G.711协议规定A律的奇数位取反,μ律的所有位都取反。因此,PCM编码后的数据需要经G.711协议的变换输出。PCM译码过程是PCM编码逆向的过程,不再赘述。 A/μ律编码转换实验中,如实验框图1-3所示,当菜单选择为A律转μ律实验时,使用3号模块做A律编码,A律编码经A转μ律转换之后,再送至21号模块进行μ律译码。同理,当菜单选择为μ律转A律实验时,则使用3号模块做μ律编码,经μ转A律变换后,再送入21号模块进行A律译码。 四、实验步骤 实验项目一测试W681512的幅频特性 概述:该项目是通过改变输入信号频率,观测信号经W681512编译码后的输出幅频特

通信原理实验报告PCMADPCM编译码实验

PCM/ADPCM编译码实验 一、实验原理和电路说明 PCM/ADPCM编译码模块将来自用户接口模块的模拟信号进行PCM/ADPCM编译码,该模块采用MC145540集成电路完成PCM/ADPCM编译码功能。该器件工作前通过显示控制模块将其配置成直接PCM或ADPCM模式,使其具有以下功能: 1、对来自接口模块发支路的模拟信号进行PCM编码输出。 2、将输入的PCM码字进行译码(即通话对方的PCM码字),并将译码之后的模拟信 号送入用户接口模块。 电路工作原理如下: PCM/ADPCM编译码模块中,由收、发两个支路组成,在发送支路上发送信号经U501A 运放后放大后,送入U502的2脚进行PCM/ADPCM编码。编码输出时钟为BCLK(256KHz),编码数据从语音编译码集成电路U502(MC145540)的20脚输出(DT_ADPCM1),FSX为编码抽样时钟(8KHz),晶振U503(20.48MHz)。编码之后的数据结果送入后续数据复接模块进行处理,或直接送到对方PCM/ADPCM译码单元。在接收支路中,收数据是来自解数据复接模块的信号(DT_ADPCM_MUX),或是直接来自对方PCM/ADPCM编码单元信号(DT_ADPCM2),在接收帧同步时钟FSX(8KHz)与接收输入时钟BCLK(256KHz)的共同作用下,将接收数据送入U502中进行PCM/ADPCM译码。译码之后的模拟信号经运放U501B放大缓冲输出,送到用户接口模块中。

二、实验内容及现象记录与分析 1.准备工作:加电后,将KB03置于左端PCM编码位置,此时MC145540工作在PCM 编码状态。将K501设置在右边。 2.PCM/ADPCM编码信号输出时钟和抽样时钟信号观测 ①输出时钟和抽样时钟即帧同步时隙信号观测:测量、分析和掌握PCM编 码抽样时钟信号与输出时钟的频率、占空比以及它们之间的对应关系等。 记录与分析: 输出时钟。由图中右侧测量数据可见,抽样信号频率为8kHz,输出时钟信

4.PCM编译码 - 通信原理实验报告

计算机与信息工程学院验证性实验报告 一、实验目的 1.掌握PCM 编译码原理。 2.掌握PCM 基带信号的形成过程及分接过程。 3.掌握语音信号PCM 编译码系统的动态范围和频率特性的定义及测量方法。 二、实验内容 1.用示波器观察两路音频信号的编码结果,观察PCM 基群信号。 2.改变音频信号的幅度,观察和测试译码器输出信号的信噪比变化情况。 3. 改变音频信号的频率,观察和测试译码器输出信号幅度变化情况。 三、基本原理 1.点到点PCM 多路电话通信原理 脉冲编码调制(PCM)技术与增量调制(ΔM)技术已经在数字通信系统中得到广泛应用。当信道噪声比较小时一般用PCM ,否则一般用ΔM 。目前速率在155MB 以下的准同步数字系列(PDH)中,国际上存在A 解和μ律两种PCM 编译码标准系列,在155MB 以上的同步数字系列(SDH)中,将这两个系列统一起来,在同一个等级上两个系列的码速率相同。而ΔM 在国际上无统一标准,但它在通信环境比较恶劣时显示了巨大的优越性。 点到点PCM 多路电话通信原理可用图9-1表示。对于基带通信系统,广义信道包括传输媒质、收滤波器、发滤波器等。对于频带系统,广义信道包括传输媒质、调制器、解调器、发滤波器、收滤波器等。 点到点PCM 多路电话通信原理框图

本实验模块可以传输两路话音信号。采用TP3057编译器,它包括了图9-1中的收、发低通滤波器及PCM编译码器。编码器输入信号可以是本实验模块内部产生的正弦信号,也可以是外部信号源的正弦信号或电话信号。本实验模块中不含电话机和混合电路,广义信道是理想的,即将复接器输出的PCM信号直接送给分接器。 2. PCM编译码模块原理 本模块的原理方框图图9-2所示,电原理图如图9-3所示(见附录),模块内部使用+5V和-5V电压,其中-5V电压由-12V电源经7905变换得到。 PCM编译码原理方框图 该模块上有以下测试点和输入点: ∙ BS PCM基群时钟信号(位同步信号)测试点 ∙ SL0 PCM基群第0个时隙同步信号 ∙ SLA 信号A的抽样信号及时隙同步信号测试点 ∙ SLB 信号B的抽样信号及时隙同步信号测试点 ∙ SRB 信号B译码输出信号测试点 ∙ STA 输入到编码器A的信号测试点 ∙ SRA 信号A译码输出信号测试点 ∙ STB 输入到编码器B的信号测试点 ∙ PCM PCM基群信号测试点

pcm编译码实验报告

pcm编译码实验报告 项目二 实验十一PCM编译码实验 一、实验目的 1. 掌握PCM编码原理。 2. 掌握PCM基带信号的形成过程及分接过程。 3. 掌握语音信号PCM编译码系统的动态范围和频率特性的定义及测量方法。二、实验仪器 1. 双踪示波器一台 2. 通信原理VI型实验箱一台 3. M3:PCM与ADPCM编译码模块和M6数字信号源模块 4. 麦克风和扬声器一套三、实验原理及基本内容 1.点到点PCM多路电话通信原理 脉冲编码调制技术与增量调制技术已经在数字通信系统中得到广泛应用。当信道噪声较小时一般用PCM,否则一般用△M。目前速率在155MB以下的准同步数字系列中,国际上存在A律和u律两种编译码标准系列,在155MB以上的同步数字系列中,将这两个系列统一起来,在同一个等级上两个系列的码速率相同,而△M在国际上无统一标准,但它在通信环境比较恶劣时显示了巨大的优越性。 点到点PCM多路电路通信原理可用11—1表示。对于基

带通信系统,广义信道包括传输媒质、收滤波器、发滤波器等。对于频带系统,广义信道包括传输媒质、调制器、解调器、发滤波器、收滤波器等。 本实验模块可以传输两路话音信号。采用MC145503编译器,它包括了图11—1中的收、发低通滤波器及PCM编译码器。编码器输入信号可以是本实验系统内部产生的正弦信号,也可以是外部信号源的正弦信号或电话信号。本实验模块中不含电话机和混合电路,广义信道时理想的,即将复接器输出的PCM信号直接送给分接器。编译模块原理本模块的原理方框图及电路图如图11-2及图11-3所示。 BS PCM基群时钟信号测试点 SL0 PCM基群第0个时隙同步信号 SLA 信号A的抽样信号及时隙同步信号测试点SLB 信号B的抽样信号及时隙同步信号测试点SRB 信号B译码输出信号测试点STA 输入到编码器A的信号测试点STB 输入到编码器B的信号测试点PCM_OUT PCM基群信号输出点PCM_IN PCM基群信号输入点PCM A OUT 信号A编码结果输出点PCM B OUT 信号B编码结果输出点PCM A IN 信号A编码结果输入点PCM B IN 信号B编码结果输入点本模块上有S2这个拔码开关,用来选择SLB信号为时

Pcm编译码实验报告

Pcm编译码实验报告

Pcm编译码实验报告 学院:信息学院 姓名:靳家凯

1、实验原理框图 图1 21号模块w68 1 5 1 2芯片的PCM编译码实验 图2 3号模块的PCM编译码实验

图3 ~µ律编码转换实验 2、实验框图说明 图1中描述的是信号源经过芯片W6815 12经行PcM编码和译码处理。 w681512的芯片工作主时钟为2o48KHz, 根据芯片功能可选择不同编码时钟进行编译码。在本实验的项目一中以编码时钟取64K为基础进行芯片的幅频特性测试实验。图2中描述的是采用软件方式实现PcM编译码, 并展示中间变换的过程。 PcM 编码过程是将音乐信号或正弦波信号, 经过抗混叠滤波 (其作用是滤波3.4kHz 以外的频率, 防止A/D转换时出现混叠的现象) 。抗混滤波后的信号经A/D转换,然后做PcM编码,之后由于G.711协议规定A律的奇数位取反, µ律的所有位都取反。因此, PcM编码后的数据需要经G.711协议的变换输出。 PcM译码过程是PcM编码逆向的过程,不再赘述。 A/µ律编码转换实验中,如实验框图3所示,当菜单选择为 A律转µ律实验时,使用3 号模块做 A律编码, A律编码经 A转µ律转换之后, 再送至21号模块进行µ律译码。同理, 当菜单选择为µ律转 A律实验时,则使用3号模块做µ律编码,经l,转A律变換后,再送入21号模块进行 A律译码。

四、实验步骤 实验项目一测试 w68l512的幅频特性 概述:该项目是通过改变输入信号频率,观测信号经 w681512编译码后的输出幅频特性, 了解芯片 w681512的相关性能。 1、关电,按图1所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【PCM编码】→【A 律编码观测实验】。调节 w1主控&信号源使信号 A_0UT输出峰峰值为3V左右。将模块21的开关 Sl 拨至“A-Law”, 即完成 A律PCM编译码。 3、此时实验系统初始状态为:设置音频输入信号为峰峰值3V,频率1KHz正弦波; PCM编码及译码时钟 CLK为64KHz方波;编码及译码帧同步信号 FS为8KHz。 4、实验操作及波形观测。 (1)调节模拟信号源输出波形为正弦波,输出频率为50Hz,用示波器观测A-out,设置A_out峰峰值为3V。 (2)将信号源频率从50Hz增加到4oooHz,用示波器接模块21的音频输出,观测信号的幅频特性。 实验项目二 PCM编码规则验证 概述:该项目是通过改变输入信号幅度或编码时钟,对比观测 A律 PcM编译码和µ律PcM编译码输入输出波形, 从而了解 PcM编码规则。 1、关电,按图2所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【PCM编码】→【A 律编码观测实验】。调节 w1主控&信号源使信号 A_0UT输出峰峰值为3v左右。 3、此时实验系统初始状态为:设置音频输入信号为峰峰值3V,频率1KHz正弦波, PcM编码及译码时钟 cLK为64KHz;编码及译码帧同步信号FS为8KHz。

通信原理 硬件实验四 PCM编译码实验

电子信息与自动化学院《通信原理》实验报告 学号: 姓名: 实验名称: 实验四:PCM 编译码实验 实验成绩: 一、实验目的 1. 理解PCM 编译码原理及PCM 编译码性能; 2. 熟悉PCM 编译码专用集成芯片的功能和使用方法及各种时钟间的关系; 3. 熟悉语音数字化技术的主要指标及测量方法。 二、实验仪器 1. RZ9681实验平台 2. 实验模块: • 主控模块 • 信源编码与时分复用模块-A3 3. 100M 双通道示波器 4. 信号连接线 5. PC 机(二次开发) 三、实验原理 3.1抽样信号的量化原理 模拟信号抽样后变成在时间离散的信号后,必须经过量化才成为数字信号。 模拟信号的量化分为均匀量化和非均匀量化两种。 把输入模拟信号的取值域按等距离分割的量化就称为均匀量化,每个量化区间的量化电平均取在各区间的中点,如下图所示。 q m q m q m q m q m q 图3.1.2.1 均匀量化过程示意图 均匀量化的主要缺点是无论抽样值大小如何,量化噪声的均方根值都固定不变。因此,当信号()m t 较小时,则信号量化噪声功率比也很小。这样,对于弱信号时的量化信噪比就难以达到给定的要求。通常把满足信噪比要求的输入信号取值范围定义为动态范围,那么,均

实验四:PCM 编译码实验实验报告 姓名: 学号: 匀量化时的信号动态范围将受到较大的限制。为了克服这个缺点,实际中往往采用非均匀量化的方法。 非均匀量化是根据信号的不同区间来确定量化间隔的。对于信号取值小的区间,其量化间隔v 也小;反之,量化间隔就大。非均匀量化与均匀量化相比,有两个突出的优点:首先,当输入量化器的信号具有非均匀分布的概率密度(实际中往往是这样)时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比;其次,非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例,因此量化噪声对大、小信号的影响大致相同,即改善了小信号时的信噪比。 非均匀量化的实际过程通常是将抽样值压缩后再进行均匀量化。现在广泛采用两种对数压缩,美国采用μ压缩律,我国和欧洲各国均采用A 压缩律。本实验中PCM 编码方式也是采用A 压缩律。A 律压扩特性是连续曲线,实际中往往都采用近似于A 律函数规律的13折线(A=87.6)的压扩特性。这样,它基本保持连续压扩特性曲线的优点,又便于用数字电路来实现,如下图所示。 图3.1.2.2 13折线特性 表2-1列出了13折线时的x 值与计算得的x 值的比较。 表 2-1 A 律和13折线比较 表中第二行的值是根据计算得到的,第三行的值是13折线分段时的值。可见,13折线各段落的分界点与6.87=A 曲线十分逼近,同时x 按2的幂次分割有利于数字化。 3.2 脉冲编码调制的基本原理 量化后的信号是取值离散的数字信号,下一步是将这个数字信号编码。通常把从模拟信号抽样、量化,编码变换成为二进制符号的基本过程,称为脉冲编码调制(Pulse Code Modulation ,PCM )。

相关主题
文本预览
相关文档 最新文档