当前位置:文档之家› PBO纤维表面改性

PBO纤维表面改性

PBO纤维表面改性
PBO纤维表面改性

PBO纤维和树脂基体间TIFSS提高,但过多的偶联剂会导致偶联剂交联层过

厚,反而会TIFSS 降低.而等离子对纤维表面的刻蚀作用首先作用在偶联剂上,使得偶联剂形成接枝交联层,该偶联剂层对纤维能起到一定的保护作用,因此PBO纤维的σ下降的不多。

分析可知,偶联剂与等离子结合起来改性的工艺条件是:A一187偶联剂的含量为2%,氩气低温等离子处理的时间为2 min ,压力为5Opa,功率为30W。

在所选择的偶联剂中,A一187型偶联剂对提高PBO纤维与环氧树脂间Γ

IFSS 效果最好,偶联剂的最佳的含量2%.(2)当A- 187含量为2%,氩气低温等离

子处理条件为2min,30W,50Pa时,改性后的PBO纤维的Γ

IFSS

胂高达lO.44MPa,

相对于仅用偶联剂A-187改性的Γ

IFSS 提高了52%,相对于原丝的Γ

IFSS

提高了

78%。PBO纤维的浸润性也得到了很大的改善。(3)氩气低温等离子结合偶联剂

改性后的PBO纤维随着时问的推移,Γ

的下降不明显;接触角增大的幅度也

IFSS

不明显,其变化趋向于平稳,还略有下降趋势。氩气低温等离子体结合偶联剂改性的PBO纤维的衰减效应不明显。

接枝液常选用具有极性基团的烯类单体,其与树脂基体具有较好的相容性,能够与等离子体在纤维表面产生的活性中心发生反应。单体在纤维表面接枝后,可增强纤维表面和树脂基体间的相互作用,从而增强了复合材料的界面性能。

纤维是一种高性能纤维,但是由于它表面过于光滑,纤维表面活性又低,没有活性基团,因此与树脂基体的界面粘接性能差,一般比纤维低。所以需要对纤维表面进行处理,使纤维表面粗糙,提高表面自由能,增加纤维表面极性官能团数量,从而提高纤维与树脂基体的界面粘接强度。据资料报道,美国道化学公司采用活性等离子体处理方法在实验室对纤维进行表面处理,其中氧等离子处理使界面剪切强度邓提高了欧洲专利〕报道,采用气体三氧化硫对纤维进行磺化改性,通过在纤维表面引人磺酸基团,增加纤维表面极性,可以有效改善纤维表面的润湿性能,使得纤维与环氧树脂间界面剪切强度提高西安交通大学通过使用不同的硅烷类偶联剂对纤维进行涂覆,改性后的纤维与树脂基体间的界面剪切强度可以提高左右石佩玉等人也通过电子束辐射改性纤维,结果表明纤维和橡胶基体间的界面剪切强度可提高。本文研究了对纤维表面进行电晕放电处理后,纤维环氧复合材料缠绕成型环层间剪切强度的变化情况。

硫酸处理过的PBO纤维虽然强度没有盐酸处理过的纤维强度下降的多,但强度离散性是这几种介质处理后最大的,从图3一26看出在硫酸中纤维的破坏形式不同于在盐酸中,它是以原纤从纤维主体上剥离开始的。这可能是因为PBO 聚合物可以溶于质子酸的缘故,PBO分子链本身相互作用力很弱,而原纤间微弱

的作用力,使其在质子酸中首先发生溶胀,从主体上剥离。破坏较为严重的纤维已有明显的溶解现象发生(图3一27),并伴有纤维的扭曲(图3一28)。

硫酸使PBO纤维原纤化,原纤间作用力较弱的则发生从纤维主体上剥离的现象,而在纤维主体上则是原纤间相互作用力的减弱,但并未有像在盐酸中那样使原纤断裂或引起分子链断裂的现象,原纤间作用力的降低,使得它们之间不能很好的均匀分担载荷,故使其强度的分散性增大。图3一27硫酸处理PBO纤维的表面溶解图3一28硫酸处理PBO纤维溶解及扭曲氢氧化钠处理的PBO纤维在强度与强度分散性方面都没有什么变化,从电镜照片也可看出,纤维表面沉积有氢氧化钠(图3一29),使其显得比其它纤维表面有更多的杂质,而纤维本身并没有受到损伤(图3一30)。图3一29氢氧化钠处理PBO纤维(1500倍)图3一30氢氧化钠处理PBO纤维(5000倍)而用丙酮、无水乙醇,煤油处理的纤维,表面并没有变化,下面分别列出以上三种介质1500倍与5000倍的电镜照片以便与图3一21和图3一22中未作处理的。

氢氧化钠处理的PBO纤维在强度与强度分散性方面都没有什么变化,从电镜照片也可看出,纤维表面沉积有氢氧化钠(图3一29),使其显得比其它纤维表面有更多的杂质,而纤维本身并没有受到损伤(图3一30)。而用丙酮、无水乙醇,煤油处理的纤维,表面提高界面性能对于提高复合材料的性能是很关键的,而PBO纤维表面惰性

很强,因此,第二组实验考虑采用表面涂附的改性法,在涂树脂前,先在纤维上涂一层改性剂一列克拉胶,它是一种多异氰酸酯。有人用它对Kevlar纤维进行表面处理取得了很好的效果,一是因为Kevlar纤维中酞胺键的H可与列克拉胶中的一NCO反应,二是在有微量水时,它可形成交联结构,其中可形成酸胺

基团,可提高与Kevlar纤维的相容性。在本实验中,就是期望在PBO纤维表面涂附的列克拉胶产生轻微的交联,提供产生氢键的可能性,来增加二者间的相容性,使其有更好的粘接界面。

1.经Kolmogorov检验,pBO纤维的单丝强度符合Weibull分布,用Weibull 分布可以很好的描述该纤维的强度分布状况和纤维强度的分散性。在强度统计模型基础上,所求得的统计平均强度为5.7一5.8GPa。仅在纤维长度为Icm时,它的统计强度较高可达6.49GPa,这是临界长度效应造成的,临界长度在3一4cm 范围内。PBO纤维强度在临界长度后对长度变化不敏感,并且随着纤维长度的增加,纤维强度的分散性减小。用长度/参数法预报的纤维强度较为符合实际情况。

2.在化学介质对PBO纤维统计强度影响的实验中发现,酸性介质对纤维的强度影响较大。在室温下处理100小时,浓度为37%的浓盐酸使PBO统计强度下降为2.89GPa,10%硫酸使其强度下降了22.5%,而丙酮、煤油、无水乙醇、10%NaOH 溶液中浸泡100小时,PBO纤维强度保持率分别为100%,96.57%,98.75%和100%,基本没有变化。用扫描电镜观察,丙酮、煤油、无水乙醇、10%NaOH溶液处理的纤维表面没有损伤和变化,而盐酸和硫酸对纤维产生的破坏形式明显不同,盐酸使纤维产生开裂,硫酸减弱纤维中原纤间的作用力,使纤维原纤化,并带有溶解和扭结现象。

3.在分别采用冷纤维涂胶法、溶液法和纤维预热法制备的纤维束拉伸试件中,它们的平均拉伸强度分别为3776.08,4340.13,503

4.77。工艺一得到的强度与用模型得到的预测值较为吻合,可认为从强度模型得出的预报值可作为拉伸强度的下限。工艺对于提高纤维束的拉伸强度有明显影响,采用工艺三对纤维束预热的方法,有效增加树脂基体对纤维浸润性,制得的拉伸试样平均强度为

SGPa,最高出现了5.33GPa。Zoem纤维束与loem纤维束相比,强度几乎没有变化,说明纤维束强度随长度的变化与单纤维相似。

4.环氧/PBO纤维单向增强复合材料的预报值高于采用一般方法制造的环氧/PBO单向复合材料,这是因为模型是建立在纤维均匀分散在树脂基体中,且对界面情况考虑的不够完善。采用手糊/真空袋辅助成型的方法并不能使树脂很好浸润纤维,纤维在固化后树脂基体中分散的很不均匀。而采用表面涂附改性的方法也未能取得预计的效果。预浸料/热压成型方法很好的解决了纤维在树脂中均匀分散的问题,这使得强度的预报值与实验值较为接近。从拉伸断口的电镜照片分析,属于界面和基体的剪切破坏,有很多纤维从树脂剥离和拔出现象,且纤维从树脂剥离或拔出表面都很光滑,表明PBO纤维和树脂的粘接性很差。

5.用动态力学(DMA)的方法考察了环氧/PBO单项复合材料中储能模量、力学内耗和玻璃化温度,从特征谱图知,采用相同树脂基体的PBO纤维复合材料在玻璃化温度、储能模量方面都低于T300复合材料,而表面涂附改性的PBO复合材料其在力学内耗峰值、玻璃化温度方面的微小变化,远没有达到预计效果。这些比较从另一方面说明PBO纤维并没有发挥应有的性能,纤维与树脂基体的界面是严重影响复合材料性能的关键因素,因此,有必要对PBO纤维表面性质的改进做更深入的研究。

硅烷偶联剂可以提高纤维单丝拔出强度,初步分析其作用机理如下:

a.PBO纤维分子一端带有羧基;而偶联剂分子RSiX

中的X基经水解后能生

3

成羟基(-OH),该羟基可与纤维分子中的羧基发生缩水反应,偶联剂另一端 R 基与环氧树脂中的环氧基一起参与固化反应。这样通过偶联剂就把纤维与树脂通过化学键连接起来,从而提高了单丝拔出强度。

b.从表面能与浸润的观点看,经偶联剂处理后,纤维表面自由能和浸润活化能下降,特别是浸润活化能下降尤为显著。纤维表面极性较强的基团与偶联剂中的羟基缩合形成了极性较低的醚键,纤维表面为偶联剂中的R基覆盖,从而使得纤维表面的极性下降,而极性的下降又必然导致纤维表面能的降低。这样一种结果使得纤维与树脂能够较为容易地结合起来,于是也就可以减少界面区的缺陷,利于材料性能的发挥。

复合材料的界面粘接强度与界面的粘接作用力密切相关,纤维与树脂基体的相互作用力可以分为三类:第一类为静力,如“抛锚”作用和摩擦作用所产生的力。所谓“抛锚”作用是由于未固化的树脂流进粘接纤维粗糙的表面中并发生固化,其作用与轮船的抛锚作用相类似,使树脂基体嵌入粘接纤维的表面,因此也称为抛锚作用或机械嵌合作用,此作用力的大小与纤维表面的粗糙程度有关;第二类为界面分子间作用力,即当胶粘剂与被粘接纤维表面相互接近达到3一5A 的范围时,由London色散、偶极与氢键等作用而产生的力;第三类为化学键力,即当胶粘剂分子与被粘接纤维表面的分子相互接近达到1一3埃米时,发生化学反应而在纤维表面形成化学键合作用。对于一个粘接体系这三类作用力可能同时存在,但各种作用力对界面粘接性能贡献的大小存在差别,很多学者就此进行大量的研究工作,提出了许多解析复合材料的界面粘接作用的理论,目前具有代表性的界面理论有以下几种:

(l)化学键理论:

化学键理论是目前应用最广泛的一种理论之一,该理论认为界面处树脂基体中的官能团能与增强纤维表面的官能团发生化学反应,形成共价键结合的界面区,如能满足这一条件即可获得较强的界面粘接。这一理论得到各种纤维表面处

理技术的证实(如:等离子体处理、偶联剂处理、阳极氧化处理等),因为各种纤维表面处理方法均使得纤维表面产生较多的活性基团,显著地改善增强材料与基体间的界面粘接性能,这一系列的实验结果证明了化学键理论的正确性。尤其重要的是,界面有了化学键合相互作用,使复合材料的的耐湿热性能和耐介质侵蚀的能力有了显著提高。此外,界面化学键的形成对复合材料抵抗应力的破坏,防止裂缝扩展的能力也有积极作用。

(2)机械作用理论:

机械作用理论最早由McBain于上世纪30年代首先提出,该理论认为被粘纤维表面的不规则性,存在高低不平的峰谷或疏松孔隙结构,有利于树脂的填充,固化后树脂和被粘纤维表面发生咬合而得到固定哪l。根据该理论,纤维表面粗糙度越高,树脂与被粘纤维表面微穴嵌定的部位越多,复合材料的界面粘接强度也越高。机械粘合理论曾经起过积极作用,但是随着其他粘合理论的建立和发展,几乎一度被冷落。近20年来,随着扫描电子显微镜、原子力显微镜等先进分析技术的发展,证明机械嵌定作用是确实存在的。

(3)浸润一吸附理论:

浸润一吸附理论的实质是以表面自由能为基础的吸附理论,它认为粘接性能的好坏取决于纤维的浸润性能,纤维的浸润性能好,则被粘接纤维和树脂分子之间紧密接触而发生吸附,则在界面粘接处形成较强分子间作用力,同时排除了纤维表面所吸附的气体,减少了粘接界面的空隙率,从而提高了界面的粘接强度,因此人们常把纤维的浸润性作为预测和分析复合材料粘接效果的一个重要指标。纤维与树脂基体之间是否能完全浸润以及浸润的效果如何,这一系列过程取决于浸润热力学及动力学过程。液体在固体表面的润湿的过程涉及气、液、固三个相

界面的变化,当液滴在固体表面达到平衡后,将在固体的表面形成“气一液”、“气一固”、“液一固”的三相平衡状态。

图 1.3液滴在固体表面平衡态

γγγγ

Fig.1.3Equilibriumstateofaliquidonsolidsuri恤Ce

该平衡方程可用杨氏方程进行描述:

γsv-γsl=γlv COSθ

γsv为固体表面在液体饱和蒸汽压下的表面张力,γlv为液体在它自身饱和

为固一液间的界面张力,θ为液一固一气达平衡三相蒸汽压下的表面张力,γ

sl

时的接触角。纤维的浸润性能的好坏可以用纤维与溶液之间的热力学粘接功表示:

(1+cosθ)

Wa=γ

l

由上述公式可知纤维的浸润性能与接触角密切相关,当纤维与溶液之间的接触角比较小时,树脂容易在纤维表面发生润湿,因而降低复合材料的界面缺陷,

提高其力学性能。

(4)扩散理论

扩散理论1381认为界面处分子(或链段)的热运动,在纤维与树脂基体间形成扩散效应,导致界面处原有的平衡状态的破坏和界面过度区域的形成,并且使得纤维与树脂基体通过扩散的分子或者链段的内聚力连接起来,形成所谓的扩散链结构,分子的扩散程度由参与扩散的分子结构、组分以及分子的热运动等因素共同决定。

(5)弱界面层理论

弱界面层理论认为由于基体、增强物、处理剂及环境因素(空气、水、油污或其它低分子物)彼此间共同作用的结果。它们中的各种低分子物通过吸附、扩散、迁移、聚集甚至键合等途径,在部分或全部粘合界面形成低分子物富集区,即弱界面层,弱界面层的存在有利于消除界面区域的应力,减少应力集中。

(6)电子(静电)理论

当复合材料中的两相物质对电子的亲和力相差较大时(如金属与聚合物),在界面区容易产生接触电势并形成双电层,静电吸附力是界面粘合力产生的直接因素之一,如:氢键就可以看成是一种静电作用。

界面的形成和作用机理非常复杂,任何界面的物理及化学因素的改变都会影响界面的形成、界面的结构及其稳定性,到目前为止,还没有哪一种理论能够解释所有界面现象,这方面的研究仍在进行中。

X射线光电子能谱(XPS)是利用软X射线激发样品电子能量谱,主要用于分析样品

表面元素及其价态。它是表面分析中最有效、应用最广的分析技术之一。

XPS(X一ray photoeleetronspeetroseopy)也称为ESCA(Eleetronspeetroseopyforehemiealanalysis)。它是利用具有特征波长的软X射线辐照固体样品,然后按动能收集从样品中发射的光子,给出光电子能谱。软X射线路径途中,通过光电效应,使固体原子发射出光电子。这些光电子在穿越固体向真空发射过程中,要经历一系列弹性和非弹性碰撞,所以只有表面下一个很短距离(约20A)的光电子才能逃逸出来。这一本质就决定了XPS是一种表面灵敏的分析技术。由于入射的软X射线电离出的内层电子的能量是高度特征的,所以xPs分析技术可以用于除H、He以外的元素分析[vl】,同时也可提供元素定量和化学态信息,与俄歇电子能谱(AES)相比更便于分析元素的化学态;另外XPS实验易于制样,可以分析导体、半导体、绝缘体样品,对样品破坏性小等优点。目前,XPS应用于材料的研究主要有以下三个方面:(l)材料的表面改性;(2)固一固界面体系;(3)材料与环境的相互作用。

原子力显微镜(AFM,atomieforeemieroseope)是通过样品表面力与距离的关系而获得样品表面结构形态信息的一种显微镜。它使用一个尖端附有探针的极灵敏的弹簧悬臂作为接收力变化的敏感元件,弹簧悬臂称为微悬臂。当微悬臂接近样品表面时,探针和样品表面原子间将产生相互作用:当微悬臂距离样品较远时(0.2一10nm),起作用的主要是范德瓦斯力(VDM);距离样品很近时,起作用的主要是排斥力。当AFM工作时,探针距离样品很近时,探针尖端的原子同样品表面的原子产生相互作用,该相互作用使微悬臂发生形变或使其运动发生变化,这一变化可用电学或光学方法探测出来,变化的大小反映相互作用的大小。在探针下扫描样品,利用反馈系统的作用,在扫描过程中保持作用力恒定,测得探针对应于扫描各点位置的变化;或保持探针、样品间距不变,测得扫描各点探针、样品

间相互作用力的变化,即可得到样品表面形貌。

PBO纤维直径一般为10~15/μm,是由微纤结构组成。TooruKitagawa等人通过x射线衍射和透射电镜、WAXS等对PBO纤维的结构进行表征,推断出PBO 纤维的结晶结构模型:纤维呈皮芯结构,在约小于0.2 μm光滑的皮层下是由微纤构成芯层,微纤是由沿着纤维方向以高度取向的 PBO分子组成的,微纤的直径在10~50nm,微纤之间是毛细管状的微孔,微孔通过裂缝或微纤的开口连接起来。通常纤维的次级结构又含有微纤、小微纤和分子链三个层次。

2.4 PBO纤维的表面处理

1将纤维放在丙酮中浸泡24小时,再用大量的蒸馏水清洗,于80℃真空烘箱中干燥12h备用。

2将洗涤后的纤维放在处理时专用的玻璃上,置入处理室进行等离子体处理。

a.处理仪为中科院光电所生产的PCT一2型等离子体发生器。通过外部电容耦合电极辉光放电产生等离子体。

b.处理过程:调节自动计时器至所需量值,然后把经过丙酮清洗两遍的PBO 纤维,绕在玻璃支架上。

c.处理气体有氮气和氮氧混合气体。

d.处理功率有四档,范围大约是30W到200W。

e.处理时间从15s到90s。

备注:对未标定处理参数的实验,本文一律采用气体为氮气,功率为70W,时间为30秒,此外“等离子体处理均指氮气等离子体处理。

碳纤维表面改性

碳纤维表面处理研究现状

碳纤维表面处理研究现状 摘要:综述了碳纤维的应用领域,当前国内外的碳纤维的生产状况,分析了各种碳纤维表面处理的研究现状以及各方法的优缺点。分析结果表明:国外对我国碳纤维生 产进行了技术封锁,我国工业化碳纤维生产与日本等国有较大差距。电化学氧化法对碳纤维表面处理效果较好,处理后碳纤维表面活性基团数量明显增多,生产条件易于控制,该方法很好应用于工业生产。 关键词:碳纤维;表面处理;电化学氧化法; 引言 随着国防科技要求的不断提高,航天航空、军事武器等高科技设备对材料的性能要求的提高,碳纤维复合材料以其耐高温,耐摩擦、导电、导热、耐腐蚀、高比强度等特点被广泛的应用于这些领域。国外碳纤维材料生产研发较早,现今以日本,美国等国家的生产技术领先于世界。 碳纤维按其加工的先驱体不同可以分为:粘胶基碳纤维、沥青基碳纤维、聚丙烯腈基(PAN)碳纤维。碳纤维作为一种增强相与金属、陶瓷、树脂等结合使复合材料的性能得到很大提高。碳纤维表面的活性基团较少,表面光滑,为更好的与基体材料结合,需要在材料复合前对纤维进行一定表面处理。碳纤维表面处理按当前的研究现 状可以分为氧化法和非氧化法。在此对纤维的生产状况做出一些介绍以及纤维表面处理的各种方法做比较。 1碳纤维应用领域及国内外生产状况 碳纤维复合材料具有卓越的物化性能,被广泛应用于航天航空、国防军事、体育用品、风能发电、石油开采以及医疗器械⑴。 碳纤维被用于制造飞机、航天器、卫星等,因碳纤维的轻质、高强度等特点,飞行器的噪音小,飞行所需的燃料消耗降低。据有关报道,飞行器每降低1kg的质量,运载飞行器的火箭可以减轻500kg。航天航空领域碳纤维的使用量从2008年的8200t, 到2010年的1万t,预计今年将达到1.3万t。在飞机的制造中,纤维复合材料应用比例都

聚合物表面改性方法

聚合物表面改性方法 摘要:本文综述了聚合物表面改性的多种方法,主要包括有溶液处理法、等离子体处理法、表面接枝法、辐照处理法和新兴的原子力显微探针震荡法,并结合具体聚合物材料有重点的详细介绍了改性方法及其改性机理。 关键词:聚合物;表面改性;应用 聚合物在日常生活及化工领域都有非常广泛的应用,但是由于这些聚合物表面的亲水性和耐磨损性较差,限制了聚合物材料的进一步应用。为了改善这些表面性质,需要对聚合物的表面进行改性。聚合物表面改性是指在不影响材料本体性能的前提下,在材料表面纳米量级范围内进行一定的操作,赋予材料表面某些全新的性质,如亲水性、抗刮伤性等。 聚合物的表面改性方法很多,本文综述了溶液处理方法、等离子体处理法、表面接枝法、辐照处理方法和新兴的原子力显微探针震荡法。下面将结合具体聚合物材料详细介绍各种改性方法。 1溶液处理方法 1.1含氟聚合物 PTFE或Teflon具有优良的耐热性、化学稳定性、电性能以及抗水气的穿透性,所以在化学和电子工业上广泛地应用,但由于难粘结,所以应用上受到局限。为了提高粘结性能,需对表面进行改性,化学改性的方法通常用钠萘四氢呋哺液溶处理它。此处理液的配制是由1mol 的金属钠(23g)一次加到1mol萘(128g)的四氢呋喃(1L工业纯)中去,在装有搅拌及干燥管的三口瓶中反应2h,直至溶液完全变为暗棕色即成[1]。 将氟聚合物在处理液中浸泡几分钟,取出用丙酮洗涤,除去过量的有机物。然后用蒸馏水洗。除去表面上微量的金属。氟聚合物在处理液中浸泡时,要求体系要密封,否则空气中氧和水能与处理液中络合物反应而大大降低处理液的使用寿命。正常情况处理液贮存有效期为2个月。处理后的Teflon与环氧粘结剂粘结,拉剪强度可达1100~2000PSi。处理过的表面为黑色,处理层厚低于4×10-5mm 时,电子衍射实验表明处理过的材料本体结构没有变化,材料的体电阻、面电阻和介电损耗也没有变化,此方法有三个缺点:一、处理件表面发黑,影响有色导线的着色;二、处理件面电阻在高湿条件下略有下降,三、处理过的黑色表面在阳光下长时间照射,粘结性能降低,因此目前都采用低温等离子体技术来处理。 1.2聚烷烯烃 聚乙烯和聚丙烯是这类材料中的大品种,它们表面能低。如聚乙烯表面能只有31×10-7J/cm2。为了提高它们表面活性,有利于粘接,通常需对它们的表面进行改性,其中化学改性方法有用铬酸氧化液处理,此处理液的配方[2]重铬酸钠(或钾)5份,蒸馏水8份,浓硫酸100份,将聚乙烯或聚丙烯室温条件下在处理液中浸泡1~1.5h,66~71℃条件下浸泡1~5min,80~85℃处理几秒钟,此外还有过硫酸铵的氧化处理液[3]。其配方为硫酸铵60~120g,硫酸银(促进剂)0.6g,蒸馏水1000ml,将聚乙烯室温条件下处理20min,70℃处理5min,当用来处理聚丙烯时,处理温度和时间都需增加一些,70℃lh,90℃10min,其中促进剂硫酸银效果不明显,可以去掉,但此处理液有效期短,通常只有lh。这两种处理方法,效果都不错。 1.3聚醚型聚氨酯 Wrobleski D. A.等[4]对聚醚型聚氨酯Tecoflex以化学浸渍和接枝聚合进行表面改性。且用Wilhelmy平衡技术测定接触角,结果表明,经聚乙烯基吡咯烷酮(PVP)和PEG化学浸渍修饰表面,以及用VPHEMA对2-丙烯酰胺基-2-甲基-1-丙磺酸及其钠盐(AMPS和NaAMPS)光引发表面接枝。其表面能增大,表面更加亲水。化学浸溃使前进和后退接触角降低20和30~40

碳纤维表面改性开题报告

南昌航空大学科技学院 毕业设计(论文)开题报告 题目碳纤维表面改性研究进展 专业名称高分子材料与工程 班级学号088102121 学生姓名刘强 指导教师万里鹰 填表日期2012 年 3 月16 日

碳纤维的表面改性研究进展 一.选题的依据及意义: 1.碳纤维简介 碳纤维是纤维状的碳素材料,含碳量在90%以上。它是利用各种有机纤维在惰性气体中、高温状态下碳化而制得。碳纤维具有十分优异的力学性能,是目前已大量生产的高性能纤维中具有最高的比强度和最高的比模量的纤维,特别是在2000℃以上的高温惰性环境中,碳材料是唯一强度不下降的物质,是其他主要结构材料(金属及其合金)所无法比拟的。除了优异的力学性能外,碳纤维还兼具其他多种优良性能,如低密度、耐高温、耐腐蚀、耐摩擦、抗疲劳、震动衰减性高、电及热传导性高、热膨胀系数低、光穿透性高,非磁体但有电磁屏蔽性等。但未经表面处理的碳纤维表面惰性大,缺乏具有化学活性的官能团,与基体的黏结性差,界面中存在较多的缺陷,限制了碳纤维高性能的发挥。因此,国内外对碳纤维的表面改性研究非常活跃。碳纤维的表面改性主要通过提高碳纤维表面活性,强化碳纤维与基体树脂之间界面性能,达到提高复合材料层间剪切强度的目的。 作为高性能纤维的一种,碳纤维既有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,是先进复合材料最重要的增强材料,已在军事及民用工业的各个领域取得广泛应用,从航天、航空、汽车、电子、机械、化工、轻纺等民用工业到运动器材和休闲用品等。因此,碳纤维被认为是高科技领域中新型工业材料的典型代表,为世人所瞩目。碳纤维产业在发达国家支柱产业升级乃至国民经济整体素质提高方面,发挥着非常重要的作用,对我国产业结构的调整和传统材料的更新换代也有重要意义,对国防军工和国民经济有举足轻重的影响。 2 碳纤维表面结构与性能 碳纤维一般是用分解温度低于熔融点温度的纤维状聚合物通过千度以上固相热解而制成的,在热裂解过程中排出其它元素,形成石墨晶格结构。通过在氧气等离子气体中用腐蚀方法研究碳纤维的结构发现,石墨微晶在整个纤维中的分布是不均匀的,碳纤维由外皮层和芯层两部分组成,外皮层和芯层之间是连续的过渡层。延直径测量,皮层约占14%,芯层约占39%。皮层的微晶尺寸较大,排列较整齐有序。由皮层到芯层,微晶尺寸减小,排列逐渐变得紊乱,结构的不均匀性越来越显著,称之为过渡区。碳纤维表面的粗糙度、微晶大小、官能团的种类和数量对碳纤维与基体的结合性能有很大的影响。增加表面粗糙度有利于碳纤维与基体树脂的机械嵌合,增强锚锭效应;石墨微晶越大,处于碳纤维表面棱角和边缘位置的不饱和碳原子数目越少,表面活性越低,相反,微晶越小,活性碳原子的数目就越多,越有利于纤维与树脂的粘合;碳纤维表面的官能团如- OH、-NH2等能与基体

橡胶与各指标的关系

浅谈橡胶的各种物性与密度的关系 前言: 在橡胶制品过程中,一般必须测试的物性实验不外乎有: 拉伸强度 2、撕裂强度 3、定伸应力与硬度 4、耐磨性 5、疲劳与疲劳破坏 6、弹性 7、扯断伸长率。 各种橡胶制品都有它特定的使用性能和工艺配方要求。为了满足它的物性要求需选择最适合的聚合物和配合剂进行合理的配方设计。首先要了解配方设计与硫化橡胶物理性能的关系。硫化橡胶的物理性能与配方的设计有密切关系,配方中所选用的材料品种、用量不同都会产生性能上的差异。 1、拉伸强度:是制品能够抵抗拉伸破坏的根限能力。 它是橡胶制品一个重要指标之一。许多橡胶制品的寿命都直接与拉伸强度有关。如输送带的盖胶、橡胶减震器的持久性都是随着拉伸强度的增加而提高的。 A:拉伸强度与橡胶的结构有关: 分了量较小时,分子间相互作用的次价健就较小。所以在外力大于分子间作用时、就会产生分子间的滑动而使材料破坏。反之分子量大、分子间的作用力增大,胶料的内聚力提高,拉伸时链段不易滑动,那么材料的破坏程度就小。凡影响分子间作用力的其它因素均对拉伸强度有影响。如NR/CR/CSM这些橡胶主链上有结晶性取代基,分子间的价力大大提高,拉伸强度也随着提高。也就是这些橡胶自补强性能好的主要原因之一。一般橡胶随着结晶度提高,拉伸强度增大。 B:拉伸强度还跟温度有关: 高温下拉伸强度远远低于室温下的拉伸强度。 C:拉伸强度跟交联密度有关: 随着交联密度的增加,拉伸强度增加,出现最大值后继续增加交联密度,拉伸强度会大幅下降。硫化橡胶的拉伸强度随着交联键能增加而减小。能产生拉伸结晶的天然橡胶,弱键早期断裂,有利于主健的取向结晶,因此会出现较高的拉伸强度。通过硫化体系,采用硫黄硫化,选择并用促进剂,DM/M/D也可以提高拉伸强度,(碳黑补强除外,因为碳黑生热作用)。 D:拉伸强度与填充剂的关系: 补强剂是影响拉伸强度的重要因素之一,填料的料径越小,比表面积越大、表面活性越大补强性能越好。结晶橡胶的硫化胶,出现单调下降因为是自补强性非结晶橡胶如丁苯随着用量增加补强性能增加、过度使用会有下降趣向。低不和橡胶随着用量的增加达到最在值可保持不变。 E:拉伸强度与软化剂的关系:

氟碳橡胶改性涂层材料赋予橡胶表面的耐磨防粘等-中国聚合物网

氟碳橡胶改性涂层材料赋予橡胶表面的耐磨、防粘等特性V1.0 在航空航天工业、汽车工业、机械制造、石油开采、炼油及其他工业生产中,需要大量在燃油、润滑油、液压油等油类中使用的橡胶制品,然而按标准工艺生产的橡胶制品均存在耐磨性、耐油等方面的不足,人们通过采用各种化学粘结、等离子喷涂、离子注入等方法,对橡胶进行处理,皆因过程复杂、设备昂贵、性能不理想, 而得不到广泛应用;即使是二氟化氙(XeF2)表面氟化的表面处理也因需要特殊设备而无法进入寻常生产厂而同样得不到广泛的应用。 因此操作简单,处理效果好的表面处理是工业界急需要找寻的工艺方法。氟碳表面改性涂层材料赋予普通橡胶的表面耐磨、防粘、耐腐等特性来解决这类问题。 一、普通橡胶普遍存在的问题: 1、耐油问题:橡胶制品在使用过程如果和油类介质长期接触,油类能渗透到橡胶内部使其产生溶胀,致使橡胶的强度和其他力学性能降低。油类能使橡胶发生溶胀,是因为油类渗入橡胶后,产生了分子相互扩散,使硫化胶的网状结构发生变化。橡胶的耐油性,取决于橡胶和油类的极性,橡胶分子中含有极性基团,如氰基、酯基、羟基、氯原子等,会使橡胶表现出极性。极性大的橡胶和非极性的石油系油类接触时,两者的极性相差较大,此时橡胶不易溶胀。如丁腈橡胶、氢化丁腈橡胶、丙烯酸酯橡胶、氯醇橡胶、氯磺化聚乙烯橡胶、氟橡胶、氟硅胶等对非极性的油类有良好的耐油性。近年来,世界各国都在大力开发综合性能优良的耐油橡胶,主要是利用合成阶段的改性、多元共聚,加工阶段的不同橡胶共混、橡塑并用、添加有用的填充剂等方法来改善耐油橡胶的综合性能,已取得了很大的成效。 2、耐磨性问题橡胶的主要用途之一是用作活动密封件。由于旋转轴的转速较高,密封制品要承受很大的摩擦扭矩,尤其是在润滑效果不良的情况下,密封区域的生热较大,会导致胶料发粘或与金属粘合性能提高,使密封件破坏,进而导致密封失效。降低摩擦区域温度比较有效的方法之一是在橡胶中加入润滑填料,以降低胶料的摩擦因数。如二硫化钼及石墨加入橡胶生产配方中。另外,使用聚四氟乙烯(PTFE),聚四氟乙烯具有优良的耐介质和耐大气老化性能,使用范围广,有良好的自润滑性能,摩擦因数很小,将其包覆在橡胶表面可大大减小橡胶制品的表面摩擦因数,提高耐磨性能和耐介质性能。但是,聚四氟乙烯的表面能较低,很难与其它材料复合,目前研究的聚四氟乙烯包覆方法有如下几种:辐照接枝法、等离子体活化法、化学腐蚀法、静电喷涂法、媒介法。而经氟碳橡胶表面改性性处理的过的橡胶能达到比聚四氟乙烯更小的表面能。 二、一般橡胶表面化学改性的方法及应用局限性:表面改性可在不影响橡胶胶基材性能的性况下减小其表面的微观结构、致密封性、耐磨性。表面改性的方法分为表面化学改性和物理包覆。表面化学改性方法有氟化、溴化、碘化和磺化,其中氟化的方法有:XeF2氟化,等离子体活化氟化及离子注入法。用二氟化氙晶体对橡胶制品进行表面氟化已实现了工业化应用;物理包覆方法主要有聚对亚苯基二甲基薄膜包覆、润滑膜表面涂覆、聚四氟乙烯包覆和其它氟化物包覆。 1、各种表面化学改性性方法只是对橡胶表面进行改进,处理后表面改性层易磨损,使用时间有限; 2、各种改性方法只能做为表面处理剂,不能作为配方综合的提高橡胶综

PBO纤维表面改性

PBO纤维和树脂基体间TIFSS提高,但过多的偶联剂会导致偶联剂交联层过 厚,反而会TIFSS 降低.而等离子对纤维表面的刻蚀作用首先作用在偶联剂上,使得偶联剂形成接枝交联层,该偶联剂层对纤维能起到一定的保护作用,因此PBO纤维的σ下降的不多。 分析可知,偶联剂与等离子结合起来改性的工艺条件是:A一187偶联剂的含量为2%,氩气低温等离子处理的时间为2 min ,压力为5Opa,功率为30W。 在所选择的偶联剂中,A一187型偶联剂对提高PBO纤维与环氧树脂间Γ IFSS 效果最好,偶联剂的最佳的含量2%.(2)当A- 187含量为2%,氩气低温等离 子处理条件为2min,30W,50Pa时,改性后的PBO纤维的Γ IFSS 胂高达lO.44MPa, 相对于仅用偶联剂A-187改性的Γ IFSS 提高了52%,相对于原丝的Γ IFSS 提高了 78%。PBO纤维的浸润性也得到了很大的改善。(3)氩气低温等离子结合偶联剂

改性后的PBO纤维随着时问的推移,Γ 的下降不明显;接触角增大的幅度也 IFSS 不明显,其变化趋向于平稳,还略有下降趋势。氩气低温等离子体结合偶联剂改性的PBO纤维的衰减效应不明显。 接枝液常选用具有极性基团的烯类单体,其与树脂基体具有较好的相容性,能够与等离子体在纤维表面产生的活性中心发生反应。单体在纤维表面接枝后,可增强纤维表面和树脂基体间的相互作用,从而增强了复合材料的界面性能。 纤维是一种高性能纤维,但是由于它表面过于光滑,纤维表面活性又低,没有活性基团,因此与树脂基体的界面粘接性能差,一般比纤维低。所以需要对纤维表面进行处理,使纤维表面粗糙,提高表面自由能,增加纤维表面极性官能团数量,从而提高纤维与树脂基体的界面粘接强度。据资料报道,美国道化学公司采用活性等离子体处理方法在实验室对纤维进行表面处理,其中氧等离子处理使界面剪切强度邓提高了欧洲专利〕报道,采用气体三氧化硫对纤维进行磺化改性,通过在纤维表面引人磺酸基团,增加纤维表面极性,可以有效改善纤维表面的润湿性能,使得纤维与环氧树脂间界面剪切强度提高西安交通大学通过使用不同的硅烷类偶联剂对纤维进行涂覆,改性后的纤维与树脂基体间的界面剪切强度可以提高左右石佩玉等人也通过电子束辐射改性纤维,结果表明纤维和橡胶基体间的界面剪切强度可提高。本文研究了对纤维表面进行电晕放电处理后,纤维环氧复合材料缠绕成型环层间剪切强度的变化情况。 硫酸处理过的PBO纤维虽然强度没有盐酸处理过的纤维强度下降的多,但强度离散性是这几种介质处理后最大的,从图3一26看出在硫酸中纤维的破坏形式不同于在盐酸中,它是以原纤从纤维主体上剥离开始的。这可能是因为PBO 聚合物可以溶于质子酸的缘故,PBO分子链本身相互作用力很弱,而原纤间微弱

碳纤维表面改性研究进展(1).pdf

2015年3月化学研究111第26卷第2期 CHEM ICAL RESEARCH http ://hxya cbpt. cnki. net. 碳纤维表面改性研究进展 刘保英1,2,王孝军3,杨杰1,3倡,丁涛2倡(1.四川大学高分子科学与工程学院,四川成都610065;2.河南大学化学化工学院,河南开封4750 04;3.四川大学分析测试中心,四川成都610064) 摘要:碳纤维因其优异的综合性能常被用作树脂基体的增强材料.然而由于碳纤维与树脂基体之间的界面结合性能较差,其增强的复合材料的力学性能往往与理论值相差甚远,因此必须对碳纤维进行表面改性,以提高其与聚合物基体的界面粘结性能.本文作者综述了国内外关于碳纤维表面改性技术的研究进展,概述了涂层法、氧化法、高能辐射法等改性方法对碳纤维增强复合材料界面强度的改性效果. 关键词:碳纤维;表面改性;研究进展 中图分类号:O64文献标志码:A文章编号:1008-1011(2015)02-0111-10Research progress of surface modification of carbon fiber LIU Baoying1,2 , WANG Xiaojun3 , YANG Jie1,3倡 , DING Tao2倡 ( 1 . Colle ge o f Poly mer Science & Engineering , Sichuan Universit y , Cheng du 610065 , Sichuan , China ; 2 . Colle ge o f Che m istr y and Che m ical Engineering , H enan University , K ai f eng 475004 , H enan , China ; 3 . A naly tical & Testing Center , Sichuan University , Cheng du 610064 , Sichuan , China) Abstract : Carbon fiber (CF) has been widely used as a reinforcement of polymer composite due to its excellent comprehensive performance .However ,the strength of CF reinforced resin ma‐ trix composite is always much lower than the theoretically predicted value due to smooth sur ‐face and chemical inertness of carbon fiber w hich lead to a poor interface between CF and res ‐ ins .Thus ,the research on surface modification of carbon fiber is very important in the compos ‐ ites applications .This article presents an overview of some surface modification methods of CF ,such as coating method ,oxidation process and high‐energy radiation treatment ,and intro‐ duces the modified effect of each method on the interfacial strength of carbon fiber reinforced polymer composite . Keywords :carbon fiber ;surface modification ;research progress 碳纤维(CF)以其高比强度、高比模量、小的线膨胀系数、低密度、耐高温、抗腐蚀、优异的热及电传导性等特点,被称为新材料之王,常用作高性能树脂基复合材料的增强材料,广泛应用于飞机制造、国防军工、汽车、医疗器械、体育器材等方面[1-2].工业化 收稿日期:2014-09-15. 基金项目:河南省教育厅科学技术研究重点项目(14A430042).作者简介:刘保英(1986-),女,讲师,研究方向为聚合物基复合材料改性研究倡通讯联系人 E mail ppsf scu edu cn .,‐ :@..,dingtao @ henu edu. cn..生产的碳纤维按前驱体原料的不同可以分为:聚丙烯腈基(PAN‐based)、黏胶基、沥青基碳纤维和气相生长碳纤维[2-6].与另外3种碳纤维相比,PAN基 碳纤维生产工艺简单,产品力学性能优异,产量约占全球碳纤维总产量的90%以上[5].自1962年问世以来,PAN基碳纤维取得了长足的发展,成为碳纤维工业生产的主流[7]. 由于碳纤维原丝表面由大量惰性石墨微晶堆砌而成,所以原丝表面呈非极性[8-9],表面能小,与树脂基体的浸润性差,界面结合性能差.此外,高性能 DOI :1014002/.j hxya.2015.02.001.|化学研究,2015,26(2):111-120

电化学处理对碳纤维表面改性的研究

电化学处理对碳纤维表面改性的研究 摘要:简要介绍了碳纤维表面电化学处理的作用和工艺,分析了电化学处理效 果的影响因素,及其对纤维力学性能和层间剪切强度的影响。 关键词:电化学处理;电解;层剪;刻蚀 引言 碳纤维表面经过电化学处理,可以提升其与树脂基体的结合牢固性,但同时会牺牲一定 的力学性能。 1 电化学处理的作用 纤维经过高温炭化工序后,表面缺少活性基团,导致其与树脂的结合效果差,表现为层 间剪切强度(以下简称“层剪”)低。当纤维-树脂复合材料受力时,由于纤维与树脂结合力弱,外力并不能很好地从树脂传递到纤维上,使得整体承载能力降低。经电化学处理后,纤维表 面发生氧化反应,生成羰基、羧基等不饱和含氧官能团,增强了纤维与树脂之间的化学键合力,使两者结合得更牢固。另外,电化学处理对纤维表面有刻蚀作用,增加了粗糙度,从物 理方面增强了纤维与树脂的结合性。 2 电化学处理的原理 电化学处理过程实际上是一个将电能转化为化学能的过程,利用碳纤维的导电性,将其 作为阳极,发生氧化反应,在纤维与阴极之间充满电解液,然后通入直流电构成完整回路。 在电压作用下,水或OH-在纤维表面放电(酸性和中性电解液主要是水,碱性电解液主要是OH-),产生活性氧对纤维表面进行氧化,最终生成所需的含氧官能团。 3 影响电化学处理的因素 影响电化学处理效果的因素有很多,如电解质的种类、浓度、温度,处理时间和电流密 度等。其中处理时间可通过走丝速度来调节,各纤维生产商工艺定型后走丝速度一般就已固定,不再做调整,因此处理时间在此不再讨论。 3.1 电解质种类 不同种类电解质对纤维表面的电化学处理效果有较大差异,即使浓度相同,电导率不同,则电流密度不同;另外,酸/碱度不同,则氧化效果不同,一般酸性电解质的氧化效果强于碱性电解质。 3.2 电解液温度 电解液温度会影响电化学反应的难易程度和反应速度,且温度越高,反应越容易发生, 反应速度越快。经研究发现,温度的升高会使水的析氧、析氢反应更早、更快地发生,单位 时间产生出更多的活性氧,使得纤维表面的氧化反应更为剧烈。 3.3 电解液浓度 电解液浓度会影响电化学反应的速度,且浓度越大,反应速度越快,但不会影响其发生 的难易程度。经研究发现,浓度越高,电解液的析氧、析氢反应越剧烈,单位时间产生的活 性氧越多,表现为氧化反应的速度快。 3.4 电解液电流密度 3.4.1 电流密度对纤维表面含氧官能团的影响 经研究发现,未经电化学处理的纤维表面O的存在形式主要是C-O;而经过电化学处理 的纤维表面碳环被打开,C-C先被氧化成C-O,再被氧化成C=O和-O-C=O,生成羰基、羧基 等含氧官能团,即C-O的数量先增加后减少,C=O的数量持续在增加。我们可用C-O和C=O 的比例来判断纤维表面的氧化程度,也可用来评估电解质的氧化能力。 需要注意的是,随着电流密度增加,酸性电解液单位时间在纤维表面生成的C=O和-O- C=O等不饱和官能团多于碱性电解液,即酸性电解质的氧化效果强于碱性电解质。纤维厂商 往往根据自身产品特点选用合适的电解质,如石墨纤维因表面质地紧密,需采用NH4H2P04 等酸性电解质提供更强的氧化效果,而普通碳纤维则采用NH4HC03等弱碱性电解质即可。 3.4.2 电流密度对纤维表面刻蚀的影响 若采用碱性电解液,氧在较低的电流密度作用下即可析出,OH-在纤维表面产生大量的活

【CN110042665A】一种表面改性超高分子量聚乙烯纤维及其制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910158668.1 (22)申请日 2019.03.01 (71)申请人 中国科学院宁波材料技术与工程研 究所 地址 315201 浙江省宁波市镇海区中官西 路1219号 申请人 中国科学院大学 (72)发明人 陈鹏 刘向哲 王魁  (74)专利代理机构 杭州君度专利代理事务所 (特殊普通合伙) 33240 代理人 朱亚冠 (51)Int.Cl. D06M 15/61(2006.01) D06M 13/513(2006.01) C08G 73/06(2006.01) D06L 1/02(2006.01)D06M 101/20(2006.01) (54)发明名称一种表面改性超高分子量聚乙烯纤维及其制备方法(57)摘要本发明公开一种表面改性超高分子量聚乙烯纤维及其制备方法。所述改性UHMWPE纤维的组成从外到内依次为:PDA涂层、UHMWPE纤维内层。其中,活化PDA涂层由4~8层活化PDA粒子组成,具有稳定疏松多孔结构。活化PDA涂层与UHMWPE 纤维存在强烈的非共价键作用;活化PDA涂层中,同层或非同层PDA粒子间通过与硅烷偶联剂发生化学反应生成的共价键连接在一起,形成稳定的活化PDA涂层结构。本发明利用投入的硅烷偶联剂与多巴胺的摩尔比,控制PDA的粒径,制备出疏松多孔PDA涂层;利用搅拌速率获得厚度适中的PDA层,利用合理投料方法获得稳定的活化PDA层 结构。权利要求书2页 说明书10页 附图1页CN 110042665 A 2019.07.23 C N 110042665 A

超高分子量聚乙烯纤维表面改性技术研究现状

为了解决UHMWPE纤维与基体结合粘结性差的问题,长期以来各国的学者作了许多相关的研究,也取得了一定的进展。一些常用的方法主要有等离子处理,电晕放电处理,辐照处理以及氧化法处理等等。 1 等离子处理 等离子体处理由于仅作用在材料表面有限深度内(几个分子),对纤维的力学性能不会有太大的影响,因而受到了人们的关注。等离子体处理UHMWPE纤维表面的方法分为低温等离子体处理和等离子体引发接枝表面处理两种方法。 韩国的Sung In Moon,Jyongsik Jang 研究了氧气等离子处理后UHMWPE与乙烯基酯树脂的粘结性能的变化,他们发现处理后的纤维与未处理的纤维比较,横向拉伸强度提高,这表明复合体的界面粘结性能得到了改善,且通过SEM观察发现纤维表面产生很多微陷,这有利于纤维与树脂之间的机械互锁作用,同时他们用有限元分析的方法研究了UHMWPE与基体之间力

的传递。 Hengjun Liu等人采用氩气对UHMWPE 纤维进行等离子处理,研究结果显示处理后的纤维耐磨性和硬度都得到了提高,同时其表面的润湿性也得到了提高。之后的研究中他们又将UHMWPE在氧气等离子体在微波电子回旋共振系统中进行处理研究纤维性能的改变,他们发现纤维的硬度和耐磨性都得到了提高的同时纤维的表面产生了许多含氧的活性基团,增加了纤维与基体的润湿性和粘结性。 Zhang YC等人针对超高分子量聚乙烯纤维表面能低与基体结合性能差的缺点,采用了在常压下对纤维进行等离子处理改性的方法,实验中采用的纤维是表面包裹有纳米二氧化硅的UHMWPE纤维,等离子处理所用的载气为氩气和氧气的混合气体(100:1),处理后纤维的表面能明显提高与基体的润湿角减小,通过红外光谱分析后发现在纤维表面产生了很多的含氧活性基团,大大提高了其与树脂的结合性能。

表面改性方法

镁合金表面熔覆改性技术 Surface Overlaying Modification Technology of Magnesium Alloys 摘要评述了镁合金表面熔覆改性技术的国内外发展概况,着重介绍了热喷涂、激光熔覆及热喷涂+激光重熔复合熔覆3种处理工艺和熔覆涂层材料,提出采用热喷涂+激光熔覆合法熔覆工艺、镁合金表面熔覆非晶合金以及熔覆高熔点涂层是提高镁合金表面性能的有效方法,具有良好的应用前景。 关键字:镁合金表面改性研究进展 Abstract:Recent developments of the application of surfacing overlaying modification technology of magnesium alloys are reviewed. The main treatment processes including thermal spraying, laser cladding and a two-step composite method, thermal spraying firstly then laser cladding, are introduced emphatically. Moreover, coating materials for surface modification of magnesium alloy are also summarized. It's pointed out that the composite technology of thermal spraying firstly then laser cladding, overlaying amorphous alloys coating and high melting point materials coating are effective methods of enhancing surface performance of magnesium alloys, which have good application prospects and are worth further studying. Key words magnesium alloys, surface modification, research progresses 1 序言 镁合金因密度低.比强度、比刚度高.电磁屏蔽性好.减震性好.以及优良的切削加工性能.在航空、汽车和电子通讯等行业中得到广泛的应用。但是镁的化学稳定性低.电极电位很负(-2.34V)耐蚀性差.月_镁合金的耐磨性、硬度及耐高温性能也较差.在某种程度上制约了镁合金材料的广泛应用。因此.如何提高镁合金的耐磨、耐腐蚀及耐热等综合性能已成为当今镁合金材料研究、发展的重要课题。有效的途径之一是对镁合金表而进行表而改性处理.在基体材料的表而形成相应的保护层。 日前,镁合金表而处理上要有化学转化、阳极氧化、表而渗层、表而电镀等方法这些方法都存在一些局限性.要么对环境有较人污染.要么所制得的涂层厚度、致密性有限而不能够有效保护。然而采用表而熔覆改性处理.如热喷涂、激光熔覆等方法.就可以克服以上不足.既环保又满足使用性能。本文综述了近年来国内外镁合金表而熔覆改性处理技术和熔覆涂层材料的发展概况。 2 镁合金表面熔覆工艺 2.1 热喷涂工艺 热喷涂技术几乎适用各种材料对零件表而的喷涂.对零件的尺寸大小及形

芳纶纤维表面改性研究

芳纶纤维表面改性研究进展 摘要:分析了芳纶纤维目前存在的问题,综述了芳纶的各种改性技术进展,包括表面涂层、化学改性、物理改性等,并展望了芳纶纤维改性技术的发展前景。关键词:芳纶纤维;表面改性;表面涂层;化学改性;物理改性Progress in surface modification of Aramid fibers Abstract:The present problems of aramid fibers were analyzed,and the progress in the modification of aramid fibers was reviewed。The methods of modification include coating,chemical-modification,physical-modification,and so on。 The trends of development in the modification of aramid fibers were pointed out。 Key words:Aramid fibers;surface modification;coating;chemical-modification;physical-modification 芳纶是目前世界上发展最快的一种高性能化学纤维,它是由美国杜邦公司最先开始研制的。其聚合物大分子的主链由芳香环和酰胺键构成,且其中至少85%的酰胺键直接键合在芳香环上,每个重复单元的酰胺基中的氮原子和羰基均直接与芳香环中的碳原子相连,并且置换其中一个氢原子的聚合物称为芳香聚酰胺树脂,由它纺成的纤维总称为芳香聚酰胺纤维,我国定名为芳纶[1]。自20世纪70 年代初,芳纶在美国核潜艇“三叉戟”C4潜地导弹的固体发动机壳体上应用以来,芳纶现在已经被广泛应用在很多行业。据统计,用于防弹衣、头盔等约占7%~8%;航空航天材料和体育材料约占40%;轮胎和胶带骨架等约占20%;高强绳索等约占13%[2]。从间位芳香族聚酰胺的结晶结构分析测试可知,从酰胺平面测量得亚苯基环的两面角成30°,这就使得它的结构相当稳定,并且亚苯基-酰胺之间和C-N键旋转的高能垒阻碍了间位芳香族聚酰胺分子链,成为完全伸直链的构象。它晶体里的氢键作用强烈,使其化学结构稳定,这就赋予间位芳香族聚酰胺纤维优越的耐热性、阻燃性和耐化学腐蚀性。对位芳香族聚酰胺的结晶结构为假斜方晶系,大分子链在结晶区域是完全伸长的。 NH-O 的角度是160°,这

橡胶表面改性的方法探讨

橡胶表面改性的方法探讨 摘要:文中对橡胶表面改性的方法进行了阐述,其中包括物理技术改性和化学技术改性。 关键词:橡胶表面改性物理技术改性化学技术改性 在较多情况下,橡胶材料在日常生活、工作中的应用是通过表面和表面的性能来完成的。橡胶表面改性是在橡胶基材性质不受影响的前提下,为了使其可以使用一些特定的用途或特殊性能,而对橡胶的表平面性质进行改变。硅橡胶是一种表面疏水性物质,然而可以借助器表面改性而促进表面亲水性能的提高,从而充当生物材料,使其应用范围得到扩展;以不影响材料强度作为前提条件,通过表面改性可以使旋转轴密封圈的表面摩擦减小。按照改性目的可以将橡胶材料表面改性分成改变表面亲水性能、该表表面摩擦性能以及改变表面粘合性能等;根据其表面大分子的变化可分成化学改性和物理改性。文中根据橡胶材料的改性方法对其表面改性进行分析探讨。 一、化学技术改性 橡胶表面化学技术改性是指材料表面通过化学反应剂而生成化学反应,然后使材料表面发生化学结构的改变,促进材料某种性能的提高。这种化学技术改性属于橡胶表面的化学改性,所涉及到的化学反应假破位复杂,如取代反应、置换反应以及环化反应等。 1.表面卤化 橡胶表面卤化包括了表面氟化、表面氯化、表面溴化、表面碘化。其中表面氟化是橡胶材料表面通过氟气或二氟化氙接触形成化学反应,当前多以二氟化氙完成表面氟化。橡胶表面氟化的机理是在化学反应时间延长的情况下,氟原子取代了橡胶表面的氢原子。经过试验研究,表面氟化后增大了橡胶表面的平整性、耐腐蚀性、耐磨性与耐油性,同时也增大了橡胶的硬度,降低了其强伸性能。表面氯化则是通过含有有机溶剂的氯化剂对橡胶表面进行处理,进而促进橡胶表面能够和其他有机材料间的粘合力得到增强,最常用的表面氯化剂为三氯氰酸。表面溴化则将橡胶材料浸泡在溴化物配制的酸性水溶液中,从而促使橡胶材料的表面结构形态发生改变。研究表明:对任何硫化体系硫化胶进行表面溴化处理,均可得到相同的作用;同时不会对硫化胶的强伸性能和硬度不会产生影响,但是对橡胶的耐磨性和耐介质性有着明显的改善作用。表面碘化能够使橡胶接触工作面的面积减小,进而使摩擦因数减小。 2.表面磺化 橡胶表面改性方法中的表面磺化通常是在硫酸或者亚硫酸溶液中将橡胶材料浸渍的过程。该改性方法的效果是打开橡胶表面的C-C键,然后在中一个[C]

芳纶纤维表面改性研究

摘要 论文介绍了芳纶纤维的种类、性能以及目前国内外芳纶表面改性的常用方法及研究进展。芳纶纤维高模量、高强度、低密度、耐氧化、耐腐蚀的性能使其在橡胶工业、信息技术产业、纺织业领域有着广泛的应用前景。由于表面的惰性限制了芳纶纤维的应用,因而其表面处理尤为重要,硝化/还原、氯磺化等化学改性和等离子体、电子束等物理改性均可改善芳纶纤维表面的物理和化学状态,提高其与基体间的粘合性能。 关键词:芳纶/环氧复合材料;等离子体:表面;浸润性

芳纶纤维表面改性研究 专业:纺织工程姓名:李鑫陵学号:0820301018 全芳香族聚酰胺泛指至少85%的酰胺键和两个芳环相连的长链合成聚酰胺,由此类聚合物制得的纤维称为芳香族聚酰胺纤维(Aramid fiber)。在我国此类纤维被称作芳纶。间位芳香族聚酰胺(PMIA)纤维称为芳纶1313;对位芳香族聚酰胺(PPTA)纤维称为芳纶1414。其中“1313、1414”代表酰胺基团与苯环相连接的位置。国外有关芳纶1313的商品主要有:美国杜邦的Nomex@、日本帝人的Conex@等;有关芳纶1414的商品主要有:美国杜邦的kevlar@、荷兰的Twaron@、日本帝人的Technora@等。 芳纶纤维是由美国杜邦公司最先研制的一种由刚性分子链形成的高结晶度、高取向度材料,具有相对密度小、耐疲劳、耐剪切等一系列优异性能,在橡胶工业等领域广泛用于芳纶纤维增强复合材料。复合材料的性能与基体相、增强相及两相界面结合状况均有关,良好的界面结合可使复合材料更好地发挥力学性能。芳纶具有刚性分子结构,分子对称性高,横向分子间作用力弱,分子间氢键弱,横向强度低使得在压缩及剪切力作用下容易产生断裂;由于具有较高的结晶度,使得纤维表面光滑、无反应活性,导致其与大多数基体之间的界面粘附性很差,因此,要改善芳纶纤维与复合材料的界面结合情况,充分发挥芳纶优异的力学性能,就要对芳纶表面进行改性处理。 1 芳纶纤维的表面改性方法 芳纶的表面改性可以通过等离子体、超声波等物理技术或硝化/还原、氯磺化等化学方法,在纤维表面引入羟基、羰基等极性或活性基团,与基体间形成反应性共价键结合,从而提高纤维与基体间的粘合强度。 1.1 共缩聚改性 通过在芳纶分子链中引入具有不同结构的第三单体,在基本保持原有优良性能的前提下,改善芳纶纤维的溶解性、耐疲劳性等性能。 Bernhard等采用取代对苯二胺和二氯对苯二酰共缩聚反应,制备不同的刚性棒状芳香族聚酰胺,其主要晶体结构与对位芳纶类似,不同的是,在热处理中不会发生结构变化,苯环取代的空间位阻和电子效应导致纤维固态结构不同。

聚丙烯纤维表面改性研究

聚丙烯纤维表面改性研究 聚丙烯纤维的表面改性提高了玻化微珠复合保温材料力学强度和软化系数,但纤维表面处理方式的增强效果明显不同,下面是推荐的一篇探究聚丙烯纤维表面改性的论文范文,供大家阅读参考。 以玻化微珠为轻质骨料,水泥、石膏和粉煤灰等胶凝材料为主要原料,经模压成型制备的玻化微珠无机保温材料,其密度与力学强度要求往往不能兼顾.在此体系中引入增强纤维,可以使保温材料在较小密度下具有较高强度,且适宜掺量的增强纤维不会对保温材料的密度和导热系数有较大影响. 聚丙烯纤维是一种柔性纤维,在水泥砂浆和混凝土制品中有着出色的阻裂效果[1-2],但聚丙烯纤维表面能低,表面不含任何活性基团,往往影响其应用效果.对聚丙烯纤维表面进行适当改性,可增强其与水泥等无机胶凝材料的界面结合力,提高复合材料的力学强度. 1试验 1.1原材料 玻化微珠:山东创智新材料科技有限公司产Ⅱ类玻化微珠,其主要性能指标见表1;聚丙烯纤维(PP):四川华神化学建材有限责任 公司产,其基本性能指标见表2;水泥:中联水泥厂产42.5R快硬硫 铝酸盐水泥;粉煤灰:华电国际邹县发电厂Ⅰ级粉煤灰,符合GB/T 1596-xx《用于水泥和混凝土中的粉煤灰》的各项要求;醋酸乙烯-乙烯共聚乳液(简称VAE乳液):南京丹沛化工有限公司产,固含量(文中涉及的固含量、浓度和掺量等除特别注明外均为质量分数)55.5%;

聚乙烯醇缩甲醛胶,固含量3.38%;建筑石膏粉:0.2mm方孔筛筛余量8.7%,初凝时间5min,终凝时间26min;氢氧化钠:分析纯化学试剂,NaOH含量≥96%. 1.2聚丙烯纤维表面改性处理 碱处理:取适量聚丙烯纤维放入浓度为5%的NaOH溶液中浸泡 8h后取出,用蒸馏水洗净表面,晾干备用. 包覆改性处理:将碱处理后的聚丙烯纤维放入VAE乳液稀释液(m(VAE乳液)∶m(水)=1∶1)中搅拌浸泡20min,取出纤维并压挤出多 余液体,物理分散、烘干后待用. 1.3试验方法 按m(玻化微珠)∶m(聚乙烯醇缩甲醛胶)∶m(水泥)∶m(粉煤灰)∶m(石膏)=1.00∶1.00∶0.80∶0.20∶0.08,准确称量各物料. 聚丙烯纤维掺量与相应的试样编号见表3,其中P组为掺加未改性聚丙烯纤维的复合保温材料试样、A组为掺加碱处理聚丙烯纤维的试样、C组为掺加VAE乳液包覆改性聚丙烯纤维的试样. 先将玻化微珠、聚丙烯纤维、水泥、粉煤灰和石膏混合均匀, 聚乙烯醇缩甲醛胶通过喷射枪以雾化状态均匀喷射到混合料中,再将混合料倒入500mm×300mm×80mm的模具中整平,并在0.47MPa压力 下模压成型,1h后脱模,得到500mm×300mm×50mm的保温板材. 在20℃,相对湿度95%的条件下养护3d后,将保温板材放入60℃电热鼓风干燥箱中烘干备用.

芳纶纤维表面改性及其增强树脂基复合材料制备的研究进展

工 程 塑 料 应 用 ENGINEERING PLASTICS APPLICATION 第46卷,第8期2018年8月 V ol.46,No.8Aug. 2018 149 doi:10.3969/j.issn.1001-3539.2018.08.027 芳纶纤维表面改性及其增强树脂基 复合材料制备的研究进展 张雄斌,贺辛亥,程稼稷 (西安工程大学材料工程学院,西安 710048) 摘要:综述了近年来芳纶纤维的表面改性方法,包括表面活化法、共聚改性法、络合改性法等化学改性方法及涂层法、高能射线法、等离子体改性法等物理改性方法,指出了各种改性方法存在的不足;介绍了芳纶纤维增强树脂基复合材料的制备方法,包括拉挤成型、模压成型、树脂传递模塑(RTM)成型、湿法缠绕成型等,对比分析了各种制备方法的优缺点;对其未来的研究方向和发展趋势进行了展望。 关键词:芳纶纤维;表面改性;树脂基复合材料;制备方法;发展趋势 中图分类号:TB332 文献标识码:A 文章编号:1001-3539(2018)08-0149-05 Research Progress on Surface Modification of Aramid Fibers and Preparation of Their Reinforced Resin Matrix Composites Zhang Xiongbin , He Xinhai , Cheng Jiaji (School of Materials Science & Engineering , Xi ’an Polytechnic University , Xi ’an 710048, China) Abstract :The modification methods of aramid fibers were reviewed. These modification methods include chemical modifica-tion methods and physical modification methods. Chemical modification methods include surface activation method ,copolymeriza-tion modification ,complexing modification ,etc. Physical modification methods include coating method ,high energy ray method ,plasma modification and so on. The shortcomings of various modification methods were pointed out. The preparing techniques of ar-amid fibers reinforced resin matrix composites were introduced. These preparation methods include pultrusion ,mold forming ,resin transfer molding (RTM) and wet winding ,etc. The advantages and disadvantages of various preparation methods were compared and analyzed. Their future research direction and development trend were proposed. Keywords :aramid fiber ;surface modification ;resin matrix composite ;preparation method ;development trend 芳纶纤维是一种高性能纤维,具有相对密度小、高模量、耐剪切等优异性能,被广泛应用于航空航天、军事、机械等领域[1–2],但因芳纶纤维内部具有的高结晶度、高取向度等特殊结构,需对芳纶纤维进行表面改性,以增加纤维表面的粗糙度和引入有化学反应活性的官能团,提升与基体之间的反应活性,增强与基体之间的粘结性能[3]。为改善界面结合性能,对芳纶纤维进行表面改性,同时借助优异的制备方法获取高性能芳纶纤维增强树脂基复合材料一直是该领域研究的热点[4]。笔者综述了芳纶纤维表面改性及其树脂基复合材料的制备方法,展望了芳纶纤维增强树脂基复合材料未 来研究的重点方向和发展趋势。1 芳纶纤维表面改性 芳纶纤维因其光滑的表面,惰性的化学结构导致其与基体材料之间的粘结性能较差,制约了其广泛应用[5]。根据芳纶纤维表面改性方法的不同,主要分为化学改性和物理改性两种。1.1 化学改性 化学改性是指借助化学反应在纤维的表面引入一定量的活性反应基团,从而提升纤维与基体之间的粘附作用[6]。根据改性机理的不同,对芳纶纤维表面进行化学改性的方法 基金项目:中国纺织工业联合会指导性项目(2015116,2016052),陕西省工业科技攻关项目(2016GY-014)通讯作者:贺辛亥,博士,教授,主要从事复合材料设计及成型研究 E-mail :he_xinhai@https://www.doczj.com/doc/6c1484421.html, 收稿日期:2018-06-10 引用格式:张雄斌,贺辛亥,程稼稷.芳纶纤维表面改性及其增强树脂基复合材料制备的研究进展[J].工程塑料应用,2018,46(8):149–153. Zhang Xiongbin ,He Xinhai ,Cheng Jiaji. Research progress on surface modification of aramid fibers and preparation of their reinforced resin matrix composites[J]. Engineering Plastics Application ,2018, 46(8):149–153.

相关主题
文本预览
相关文档 最新文档