当前位置:文档之家› 钒酸铋的制备实验

钒酸铋的制备实验

钒酸铋的制备实验
钒酸铋的制备实验

实验十钒酸铋黄色颜料的制备

一、实验目的

(1)学习比较准确地控制反应条件的方法。

(2)学习简易回流操作的应用。

(3)学习液相沉淀法合成粉体材料的原理。

二、实验原理

钒酸铋黄色颜料具有无毒、耐候性好、色泽明亮及对环境友好的优良性能, 是一种有着美好前景的新型颜料, 因而可用来代替含有铅、镉、铬等有毒元素的颜料,应用于汽车面漆、工业涂料、橡胶制品、塑料制品和印刷油墨的着色等各项性能要求很高的场合。

钒酸铋颜料的合成方法主要有固相煅烧法和水溶液中的沉淀法。固相煅烧法所需温度较高、反应时间较长、并且颗粒较大、分布不均匀;而液相沉淀法克服了固相煅烧法的缺点,反应物混合均匀,可以得到颗粒细小、组成均匀的BiVO4黄色颜料。该方法工艺简单,容易实现工业化生产,但是经化学沉淀法制备的BiVO4粉体容易形成十分有害的团聚体,从而影响颜料的颜色。因此,需控制沉淀的生成条件,如反应物初始浓度、溶液pH、反应温度和反应时间等因素。必要

时,可加入少量表面活性剂起分散作用。

主要试剂:1.0 mol/L Bi(NO3)3溶液、2 mol/L NaOH溶液、6 mol/L NaOH溶液、2mol/L HNO3、1%十二烷基苯磺酸钠(DBS)溶液、30%NH4SCN溶液、0.1 mol/L Pb(NO3)2溶液、偏钒酸铵固体、95%乙醇,均为AR级试剂。

三、实验步骤

1. NH4VO3溶液的配制

称取一定量的偏钒酸铵溶解在15mL 2 mol/L的NaOH溶液中,加水稀释后得到1.0 mol/L的NH4VO3溶液30mL。

2. 钒酸铋粉末的制备

取20mL Bi(NO3)3溶液于150 mL锥形瓶中,加入2 mL DBS溶液混合均匀。在磁力搅拌下,将20mL NH4VO3溶液滴加到Bi(NO3)3溶液中,水浴加热的同时用NaOH溶液调节其pH = 6(先快速加入5mL6 mol/L NaOH溶液,后改用2 mol/L NaOH溶液),控制水浴温度约90 ℃保持约1 h(为减少水分蒸发,可将坩埚放在锥形瓶口)。此过程中需维持溶液的pH基本恒定,并要检查溶液中是否有Bi3+【Bi3+检查方法:用小漏斗法取上层清液于试管中,加入2滴30%NH4SCN溶液后再滴加0.1 mol/L Pb(NO3)2溶液,观察是否有棕色或橙色沉淀生成】,若有,则要往锥形瓶

继续滴加NH4VO3溶液至Bi3+完全沉淀为止。

反应结束后进行抽滤,用大量蒸馏水洗涤沉淀至少三次,以洗去杂质离子,再用95%乙醇10 mL洗涤两次。最后放入烘箱中于105℃烘约20 min,得到松散的粉末状钒酸铋黄色颜料。冷却后称重,计算产率。

食醋加工工艺流程图及技术参数

【加工调查表附件1】 加工工艺流程图及技术参数 工艺流程图 蒸料选料 电加热锅 炉 洗粮污水 配料粉料 噪声 酒化制曲 醋化灭菌 淋醋加山梨酸 醋渣 灭菌灌装 电加热锅 炉 噪声、包装 垃圾 陈酿成品

xxx伏陈醋专业合作社生产的系列伏陈醋采用传统和现代相结合的酿醋方法,具体加工工艺规程和参数如下: 1、选料 选取优质小麦,剔除灰尘杂质,然后进行两次淘洗,保证原料的干净及产品的质量。 2、粉料 将处理干净的原料进行粉碎。标准:麦粒粉碎为4-5瓣,粗:细=3:7,粉料过程不可过细。 3、制曲 按比例选取一部分原料制曲,控制室温温度为26-34℃,品温22-45℃,湿度60-90%,注意各期二温和一温的保持,保证麦曲的品质。 4、蒸料 将剩余原料用蒸锅进行蒸制,入锅前应先进行润料1h,压气入锅,蒸制时间为1.5h。 5、配料 将制成的麦曲按比例加入到时蒸制好的原料中,进行均匀搅拌。 6、酒化 入池温度不低于20℃,时间为7天室温维持在16℃-20℃。注:入池温度,冬22℃,夏25℃。 7、醋化 时间19天,室温22-28℃,原料温度28-42℃,注意夜间控制,防止烧醅跑醋。每天搅一次,液面开始有层薄膜出现,说明醋酸菌大

量繁殖,闻之已有酸味,测定酸度,记录增酸数据。以后隔天测,并且早晚各搅拌一次。如此持续发酵49天,醋液逐渐澄清,进行质量检测,酸度达到3.5g/ml以上,表明醋酸发酵完毕,如不能达到煮醋标准应按醋液容量的1%加入NaCL直至醋酸继续氧化完成。 8、淋醋 将醋化后的原料加入100℃开水浸泡8h。注:浸泡时间应不低于8h。 9、灭菌 将总酸度达到3.5g/ml以上的半成品醋,用泵打入储醋罐内,进行质量化验。质量合格后,移入夹层锅内,加配料、盐、加热至95-100℃之间,进行灭菌使其沸腾1.5h,以杀灭细菌。 10、陈酿 加入麦麸制成的调料调色,形成色、香、味沉淀。 11、再次灭菌 再次处理,并加入调味中草药,后加入山梨酸钾。 12、灌装 注意包装各环节卫生,产品符合入库标准。 13、成品 出厂前检验,合格率100%方可销售。

11、肉桂酸的制备

有机化学实验报告 实验名称:肉桂酸的制备 学院:化学工程学院 专业:化学工程与工艺 班级: 姓名:学号: 指导教师: 日期:

1、了解肉桂酸制备的原理和方法; 2、掌握回流、抽滤等基本操作; 3、熟悉水蒸气蒸馏的原理和操作方法; 二、实验原理 1、肉桂酸又名β-苯丙烯酸,肉桂酸的合成方法有多种,实验室以苯甲醛和醋酐为原料,在无水碳酸钾的存在下,发生缩合反应,即得肉桂酸。 2、PerKin反应:芳醛与酸酐的缩合反应。催化剂一般为酸酐对应的羧酸钠盐或钾盐,用无水碳酸钾代替醋酸钾,可缩短反应时间,产率也有所提高。 三、主要试剂及物理性质 1、主要试剂:苯甲醛、乙酸酐、无水碳酸钾、氢氧化钠水溶液、盐酸(1:1)、活性炭、试剂水 2、试剂的物理性质 名称分子量性状熔点(℃)沸点(℃)溶解度 肉桂酸148白色单斜棱晶135-1363000.0418 苯甲醛106无色液体-26178.10.3 碳酸钾102白色结晶粉末-73.1138.6253(20℃) 乙酸酐102无色透明液体-73.1140.012(冷) 四、试剂用量规格 试剂用量 苯甲醛 5.0ml(0.05mol) 乙酸酐14.0ml(0.145mol) 碳酸钾7.00g 10%NaOH水溶液40ml 盐酸(1:1)25ml 水110ml 活性炭3小勺

主要仪器:150ml三颈烧瓶、量筒(10ml) 、量筒(100ml)、球形冷凝管、直形冷凝管、水蒸气发生器、玻璃棒、250ml锥形瓶、布氏漏斗、吸滤瓶、表面皿、电炉等 5-1 肉桂酸制备的回流装置 5-2 水蒸汽蒸馏法装置图 六、实验步骤及现象 时间步骤现象 1、取5ml苯甲醛,14ml乙 酸酐和7g碳酸钾放入 150ml三颈烧瓶。 无色透明液体。 14:00-14:06 14:07-14:502、将此混合物进行加热回 流45ml,并观察颜色。 起初冒白烟,出现大量泡沫。 泡沫完全消失(14:06),液体 变成乳黄色混浊状。 液体渐渐澄清,微沸,橙红色 慢慢加深,最后为红褐色溶液。 温度172℃。

钒酸铋光催化复合材料的制备及对大肠杆菌灭活性能研究

钒酸铋光催化复合材料的制备及对大肠杆菌灭活性能研究 近年来,相对于其他抗菌方法光催化抗菌具有的独特优势,使其受到了很多人的青睐。而钒酸铋(BiVO4)是一种性能较好的光催化剂,有良好的可见光响应活性和催化性能。 本文以钒酸铋(BiVO4)为主线,通过非金属硼(B)掺杂、贵金属(Ag)负载以及与g-C3N4复合等催化剂改性方法来设计合成复合材料,提高催化剂的催化活性。本论文针对以上复合催化剂的性能进行了系统的研究,主要内容如下:1.通过简单的水热法一步合成硼原子(B)掺杂钒酸铋(BiVO4)复合催化剂。 由于B本身具有缺电子特性,所以B的掺杂很好的降低了BiVO4的电子-空穴的复合几率。通过XRD、TEM、SEM等一系列表征手段对其晶相结构以及形貌进行了研究。 通过在LED白光下对大肠杆菌(E.coli)GB 8099的灭活评估了催化剂的光催化性能。理论计算进一步证明了B的掺杂可以抑制光生电子与空穴的复合,提高BiVO4的催化活性。 B的掺杂使BiVO4的抗菌活性由惰性转变为高活性,在60 min 致使1x106 CFU/mL大肠杆菌(E.coli)GB 8099完全灭活。2.通过水热法进一步调节pH值成功制备了不同晶相的钒酸铋(BiVO4)晶体。 然后通过光沉积法进一步成功制备了不同比例银负载的BiVO4复合催化剂。瞬态吸收光谱表征、表面光电压测试等结果表明 Ag/tz-BiVO4具有很好的光催化性能,银单质的负载会让

山梨酸

山梨酸 ——食品防腐剂 王天裕

简介 别名:花楸酸B二烯酸 ●化学结构:CH 3 CH=CHCH=CHCOOH ●分子式:C 6H 8 O 2 ●相对分子量或原子量:112.13 ●性状:白色针状或粉末状晶体 ●适应证:用于食品和药剂的防腐。

研发背景 山梨酸是一种不饱和脂肪酸,英文名为Sorbicacid,又名2,4-已二烯酸、2-丙烯基丙烯酸。与其他天然的脂肪酸一样,山梨酸在人体内参与新陈代谢过程,并被人体消化和吸收,产生二氧化碳和水。从安全性方面来讲,山梨酸是一种国际公认安全(GRAS)的防腐剂,安全性很高。联合国粮农组织、世界卫生组织、美国FDA都对其安全性给予了肯定。山梨酸的毒副作用比苯甲酸、山梨酸维生素C和食盐还要低,毒性仅有苯甲酸的1/4.食盐的一半。山梨酸对人体不会产生致癌和致畸作用。由于山梨酸在水中的溶解度不是很高,影响了它在食品中的应用。所以,食品添加剂生产企业通常将山梨酸制成溶解性能良好的山梨酸钾,以扩大山梨酸类产品的应用范围。山梨酸和山梨酸钾的防腐原理和防腐效果是一样的。我国已经将山梨酸和山梨酸钾列入GB2760《食品添加剂使用卫生标准》之中。作为一种安全高效的防腐剂,山梨酸钾代替苯甲酸钠是食品工业发展的趋势。“六五”期间,国家科委曾经组织山梨酸合成技术攻关项目,该项目于1986年年底在江苏南通醋酸化工厂通过鉴定。之后,南通醋酸化工公司采用国外先进工艺技术,并且自主创新产品,获得了国家专利,建成了化工部重点技改项目———年产万吨山梨酸技术改造项目,产品质量达到美国FCCIV质量标准。 山梨酸(钾)能有效地抑制霉菌,酵母菌和好氧性细菌的活性,还能防止肉毒杆菌、葡萄球菌、沙门氏菌等有害微生物的生长和繁殖,但对厌氧性芽孢菌与嗜酸乳杆菌等有益微生物几乎无效,其抑止发育的作用比杀菌作用更强,从而达到有效地延长食品的保存时间,并保持原有食品的风味。

最新实验十一肉桂酸的制备

实验十一肉桂酸的制 备

实验十一肉桂酸的制备 一、实验目的: 1.了解肉桂酸的制备原理和方法 2.掌握回流、热过滤及水蒸汽蒸馏等操作 二、实验原理: 芳香醛与含有α-氢的脂肪族酸酐在碱性催化剂的作用下加热,发生缩合反应,生成芳基取代的α,β不饱和酸。这种缩合反应称为Perkin 反应。本实验将芳醛与酸酐混合后在相应的无水羧酸盐存在下加热,可以制得α,β不饱和酸。 CHO(CH3CO)2CH3COOK CH CHCOOH CH3COOH + + 按照Kalnin所提出的方法,用碳酸钾代替Perkin反应中的醋酸钾,反应时间短,产率高。 三、实验药品: 苯甲醛3mL(3.15g,0.03mol),碳酸钾4.2g(0.03mol),乙酐8mL(8.64g, 0.084mol),饱和碳酸钠溶液,活性碳,浓盐酸。 四、实验仪器: 三口瓶,温度计,空气冷凝管,瓶塞,滴管,水蒸汽蒸馏装置,直形冷凝管,蒸馏头,接引管,锥形瓶,烧杯,玻璃棒,pH试纸,布氏漏斗,抽滤瓶。五、实验步骤: 在250mL三口瓶中放入3mL(3.15g,0.03mol)新蒸馏过的苯甲醛[1]、 8mL(8.64g,0.084mol)新蒸馏过的醋酐[2]以及研细的4.2g无水碳酸钾[3]。三口瓶,一口装温度计,一口装回流冷凝管,一口用塞子塞上,上加热[4]回流 30min。由于有二氧化碳放出,初期有泡沫产生。

反应结束后,待反应液稍冷向反应液中加入20mL冷水,振荡下慢慢加入饱和碳酸钠溶液[5](注意有大量的CO2气体产生,不要冲料),调节反应液呈弱碱性pH=9~10。用二口瓶作为水蒸汽发生器,如图安装水蒸汽蒸馏装置,进行水蒸汽蒸馏,蒸出未反应的苯甲醛,直至馏出液无油珠澄清为止。 待三口烧瓶内的剩余液稍冷,加入半匙活性碳,在石棉网上煮沸2~3分钟,趁热进行抽滤,滤液转移到烧杯中。将滤液用浓盐酸酸化(不易过快,否则晶型过细),使呈明显酸性(pH=3)[6],用冷水浴充分冷却,待结晶完全析出后进行抽滤,用少量冷水洗涤晶体,挤压除去水份。 产品在水中或30%乙醇中重结晶[7]。产品包在方形滤纸中,自然晾干,下次实验称重,计算产率。 肉桂酸为无色晶体,有顺反异构体,通常以反式异构体形式存在,熔点135~136℃,沸点300℃,d 1.245 。 附注 [1] 苯甲醛久置会氧化为苯甲酸,这不但影响反应的进行,而且苯甲酸混在产品中不易除干净,将影响产品的质量。故实验前要重新蒸馏,收集170~180℃馏分供使用。

肉桂酸的制备

肉桂酸的制备 课时数:5学时 教学目标: 了解肉桂酸制备的原理和方法,掌握回流、水蒸汽蒸馏等操作。 教学内容: 一、实验目的: ⑴掌握用珀金反应制备肉桂酸的原理和方法; ⑵掌握回流、水蒸气蒸馏等操作 二、实验试剂 【物理常数】 二、反应原理 肉桂酸又名β-苯丙烯酸,有顺式和反式两种异构体。通常以反式形式存在,为无色晶体,熔点133℃。肉桂酸是香料、化妆品、医药、塑料和感光树脂等的重要原料。肉桂酸的合成方法有多种,实验室里常用珀金(Pe-ruin)反应来合成肉桂酸。以苯甲醛和醋酐为原料,在无水醋酸钾(钠)的存在下,发生缩合反应,即得肉桂酸。 反应时,酸酐受醋酸钾(钠)的作用,生成酸酐负离子;负离子和醛发生亲核加成生成β-羧基酸酐;然后再发生失水和水解作用得到不饱和酸 PerKin反应:芳醛与酸酐的缩合反应。催化剂一般为酸酐对应的羧酸钠盐或钾盐,用无水碳酸钾代替醋酸钾,可缩短反应时间,产率也有所提高。 反应机理如下:乙酐在弱碱作用下打掉一个H,形成CH3COOCOCH2-,然后 用K2CO3代替CH3CO2K,碱性增强,因此产生碳负离子的能力增强,有利于碳负离子对醛的亲核加

成,所以反应时间短,产率高。 三、实验步骤 1.合成: ① 在100 mL干燥的圆底烧瓶中加入1.5mL (1.575 g,15 mmol) 新蒸馏 过的苯甲醛,4 mL (4.32 g,42 mmol) 新蒸馏过的醋酐以及研细的2.2 g无水 碳酸钾,2粒沸石,按装置图按好装置。 ② 加热回流(小火加热)40 min,火焰由小到大使溶液刚好回流。(也可 将烧瓶置于微波炉中,装上回流装置,在微波输出功率为450W下辐射8min)。 ③ 停止加热,待反应物冷却。 2.后处理: 待反应物冷却后,往瓶内加入20 mL热水,以溶解瓶内固体,同时改装成 水蒸气蒸馏装置(半微量装置)。开始水蒸气蒸馏,至无白色液体蒸出为止, 图1. 产物制备装置 将蒸馏瓶冷却至室温,加入10 %NaOH(约10 mL)以保证所有的肉桂酸成钠盐 而溶解。待白色晶体溶解后,滤去不溶物,滤液中加入0.2 g活性炭,煮沸5分钟左右,脱色后抽滤,滤 出活性炭,冷却至室温,倒入250 mL烧杯中,搅拌下加入浓HCl,酸化至刚果红试纸变兰色pH=2-3。冷 却抽滤得到白色晶体,粗产品置于250 mL烧杯中,用水—乙醇重结晶,先加60 mL水,等大部分固体溶 解后,稍冷,加入10 mL无水乙醇,加热至全部固体溶解后,冷却,白色晶体析出,抽滤,产品空气中晾 干后,称重。 四、实验装置: 1、回流装置 2、水汽蒸馏装置:(示范组装) 五、实验重点: 1、了解用珀金(PerKin)反应制备肉桂酸的原理和方法。 2、掌握回流操作:自下而上自左到右安装装置。冷凝水下进上出。需加沸石。控制回流蒸 气上升高度不超过2个球。 3、掌握水蒸汽蒸馏操作:水蒸气蒸馏是分离和提纯液态或固态有机物的一种方法。 水蒸气蒸馏应用范围: ⑴某些沸点高的有机物,在常压下蒸馏虽可与副产物分离,但易将其破坏。 ⑵混合物中含有大量树脂状杂质或不挥发性杂质,采用蒸馏。萃取等方法难于分离。 ⑶从较多固体反应物中分离出被吸附的液体。 被提取物应具备条件: ⑴不溶或难溶于水。 ⑵共沸腾下与水不发生化学反应。 ⑶在100℃左右时,必须具有一定蒸气压[至少666.5-1333Pa(5-10mmHg)]。 六、实验注意点: 1、装置注意点: ⑴回流装置要干燥:否则会使酸酐发生水解,使产率降低。

钒酸铋的制备实验

实验十钒酸铋黄色颜料的制备 一、实验目的 (1)学习比较准确地控制反应条件的方法。 (2)学习简易回流操作的应用。 (3)学习液相沉淀法合成粉体材料的原理。 二、实验原理 钒酸铋黄色颜料具有无毒、耐候性好、色泽明亮及对环境友好的优良性能, 是一种有着美好前景的新型颜料, 因而可用来代替含有铅、镉、铬等有毒元素的颜料,应用于汽车面漆、工业涂料、橡胶制品、塑料制品和印刷油墨的着色等各项性能要求很高的场合。 钒酸铋颜料的合成方法主要有固相煅烧法和水溶液中的沉淀法。固相煅烧法所需温度较高、反应时间较长、并且颗粒较大、分布不均匀;而液相沉淀法克服了固相煅烧法的缺点,反应物混合均匀,可以得到颗粒细小、组成均匀的BiVO4黄色颜料。该方法工艺简单,容易实现工业化生产,但是经化学沉淀法制备的BiVO4粉体容易形成十分有害的团聚体,从而影响颜料的颜色。因此,需控制沉淀的生成条件,如反应物初始浓度、溶液pH、反应温度和反应时间等因素。必要 时,可加入少量表面活性剂起分散作用。 主要试剂:1.0 mol/L Bi(NO3)3溶液、2 mol/L NaOH溶液、6 mol/L NaOH溶液、2mol/L HNO3、1%十二烷基苯磺酸钠(DBS)溶液、30%NH4SCN溶液、0.1 mol/L Pb(NO3)2溶液、偏钒酸铵固体、95%乙醇,均为AR级试剂。 三、实验步骤 1. NH4VO3溶液的配制 称取一定量的偏钒酸铵溶解在15mL 2 mol/L的NaOH溶液中,加水稀释后得到1.0 mol/L的NH4VO3溶液30mL。 2. 钒酸铋粉末的制备 取20mL Bi(NO3)3溶液于150 mL锥形瓶中,加入2 mL DBS溶液混合均匀。在磁力搅拌下,将20mL NH4VO3溶液滴加到Bi(NO3)3溶液中,水浴加热的同时用NaOH溶液调节其pH = 6(先快速加入5mL6 mol/L NaOH溶液,后改用2 mol/L NaOH溶液),控制水浴温度约90 ℃保持约1 h(为减少水分蒸发,可将坩埚放在锥形瓶口)。此过程中需维持溶液的pH基本恒定,并要检查溶液中是否有Bi3+【Bi3+检查方法:用小漏斗法取上层清液于试管中,加入2滴30%NH4SCN溶液后再滴加0.1 mol/L Pb(NO3)2溶液,观察是否有棕色或橙色沉淀生成】,若有,则要往锥形瓶 继续滴加NH4VO3溶液至Bi3+完全沉淀为止。 反应结束后进行抽滤,用大量蒸馏水洗涤沉淀至少三次,以洗去杂质离子,再用95%乙醇10 mL洗涤两次。最后放入烘箱中于105℃烘约20 min,得到松散的粉末状钒酸铋黄色颜料。冷却后称重,计算产率。

几种饮品的配方和生产技术

配方1:料值元/KG 按100KG料计算 鲜奶 15KG 白砂糖 3KG 蛋白糖LS-50 110G HDZ-2002果奶稳定剂 400G 柠檬酸 300G 水解动物蛋白 600G 山梨酸钾 35G 乳化鲜奶香精 20G 草莓香精 40G HDZ-1019奶味增香剂 100G 补水至 100KG 配方1:料值元/KG 按100KG料计算 乳清粉 2KG 白砂糖 3KG 蛋白糖LS-50 110G HDZ-2002果奶稳定剂 400G 柠檬酸 300G 奶油 400G 山梨酸钾 35G 天然牛奶香精 10G 纯鲜奶香精 10G 草莓香精 40G HDZ-1019奶味增香剂 100G 补水至 100KG 配方特点: 1.以上配方均比常规做法成本降低,且稳定性好,产品挂壁度较好,不浮油。 2.以上配方奶味略有不足须用HDZ-1019奶味增香剂补足。 工艺特点: 1.配方1无须均质,走胶体磨或过滤即可。 2.配方2因为加入奶油,最好走一次均质,均质压力12-15MP。 可可奶稳定剂的技术应用 配方:按100KG

鲜奶 30KG 白糖 6KG 咸化可可粉 400-600G HDZ-2015可可奶稳定剂 200-250G 香精色素适量 碳酸氢钠适量 补水至 100KG 工艺流程: 1.鲜奶杀菌,冷却至20-30度。 2.可可粉处理:将可可粉溶于热水中,并保温20-30分钟,冷却至75度均质,压力25-30MPA,过滤后迅速冷却至30度。 3.将稳定剂与糖混合好,溶解,冷却至30度。 4.鲜奶、可可浆、稳定剂混合好,调解PH=升温至70度均质、压力为25-30MPA。 5.均质后的料液经121度、15分钟或UHT杀菌后,在不断搅拌下,迅速冷却至25度以下,灌装、入库、出售。 奶茶的生产工艺 配方: 鲜奶 30KG 茶汁 20KG 白糖 3KG 蛋白糖LS—50 60G HDZ——2006甜奶稳定剂 350G 红茶香精 20G 补水至 100KG 工艺流程: 1称取鲜奶升温至90度保持5分钟灭菌后待配。 2称取茶叶(或茶粉)加入1:200的80度热水浸泡后,取浸泡液待用。 3称取白糖,蛋白糖、稳定剂溶于50——60度热水中,搅拌均匀后待用。 4将各种原料在40——50度时混配、调香后,升温至70度走均质,均质压力20——22MPa,然后继续升温至15度保持10分钟灭菌,可进行135度、4秒的高温瞬时灭菌后,罐装, 通用型发酵乳稳定剂的技术应用 产品特点:

肉桂酸的实验室制备

肉桂酸的实验室制备 一、实验目的 (一)学习肉桂酸的制备原理和方法。 (二)学习水蒸气蒸馏的原理及其应用,掌握水蒸气蒸馏的装置及操作方法。 二、实验原理 芳香醛和酸酐在碱性催化剂的作用下,可以发生类似羟醛缩合的反应,生成α,β-不饱和芳香醛,这个反应称为柏金反应。催化剂通常是相应酸酐对应的羧酸的钾或钠盐,也可以用无水碳酸钾或叔胺。 CHO (CH3CO)2O CH3COOH 三、主要试剂及物理性质 苯甲醛(新蒸馏过)、乙酸酐、无水碳酸钾、10%氢氧化钠水溶液、盐酸、活性炭

四、试剂用量规格 五、仪器装置 三口烧瓶、直形冷凝管、球形冷凝管、圆底烧瓶、75度弯管、接受器、锥形瓶、量筒、烧杯、布氏漏斗、吸滤瓶、表明皿、玻璃棒、电子天平、电热炉 图1 制备肉桂酸的反应装置图图2 水蒸气蒸馏装置

空 气 冷 凝 管 温 度 计 三口瓶 图1.反应装置 六、实验步骤及现象 (一)在250mL圆底烧瓶中,加入5mL新蒸馏过的苯甲醛、14mL乙酸酐和7.02g无水碳酸钾。在170~180℃的油浴中,将此混合物回流45min。由于逸出二氧化碳,最初有泡沫出现。(二)冷却反应混合物,加入40mL,浸泡几分钟。用玻璃棒轻轻压碎瓶中的固体,并用水蒸气蒸馏,从混合物中蒸除未反应的苯甲醛(可能会有焦油状混合物)。将反应装置连接好,打开T形管上的螺旋夹,把水蒸气发生器里的水加热到沸腾,当有水蒸气从T形管的支管冲出时,再旋紧螺旋夹,让水蒸气通入烧瓶中,这时可以看到烧瓶中的混合物翻腾不息,不久在冷凝管中就会出现有机物质和水的混合物。调节加热温度,使瓶内的混合物不致飞溅得太厉害,并控制馏出液的速度约为每秒种2~3滴。为了使水蒸气不致于在烧瓶内过多地冷凝,在进行水蒸气蒸馏时通常也可用小火将蒸馏烧瓶加热。当馏出液澄清透明,不再含有油滴时,一般即可停止蒸馏,这时应首先打开螺旋夹,然后移去热源,以免发生倒吸现象。 (三)再将烧瓶冷却,加入40mL10%氢氧化钠水溶液,使所有的肉桂酸形成钠盐而溶解。加90mL水,将混合物加热,活性炭脱色,趁热过滤,将滤液冷却至室温以下。配制20mL 浓盐酸和20mL水的混合物,在搅拌下,将此混合液加到肉桂酸盐溶液中至呈酸性。用冷水冷却,待结晶完全,过滤,干燥并称量。

肉桂酸的制备实验

肉桂酸的制备实验

————————————————————————————————作者: ————————————————————————————————日期: ?

肉桂酸的制备实验 一、实验原理 利用柏琴(Perkin)反应制备肉桂酸。一般认为脂肪酸钾盐或钠盐为催化剂,提供CH 3COO-负离子,从而使脂肪酸酐生成负碳离子,然后负碳离子和醛或羧酸衍生物(酐和酯)分子中的羰基发生亲核加成,形成中间体。 在珀金反应中,是碳酸钾夺取乙酐分子中的α-H,形成乙酸酐负碳离子。实验所用的仪器必须是干燥的。 主反应: 副反应: 在本实验中,由于乙酸酐易水解,无水碳酸钾易吸潮,反应器必须干燥。提高反应温度可以加快反应速度,但反应温度太高,易引起脱羧和聚合等副反应,所以反应温度控制在150~170℃左右。未反应的苯甲醛通过水蒸气蒸馏法分离。 机理: 【此机理中的碱为无水乙酸钾】 二、反应试剂、产物、副产物的物理常数

三、药品 四、实验流程图 五、实验装置图

(4)干燥装置 六、实验内容 在250ml三口烧瓶中放入3ml( 3.15g,0.03mol)新蒸馏过的苯甲醛、8ml(8.64g,0.084mol)新蒸馏过的乙酸酐,以及研细的4.2g无水碳酸钾。三口烧瓶的侧口插入一根200℃温度计,温度计要求插入液面以下,采用空气冷凝管缓缓回流加热45min。由于反应中二氧化碳逸出,可观察到反应初期有大量泡沫出现。 反应完毕,在搅拌下向反应液中分批加入20ml水,再慢慢加入碳酸钠中和反应液至pH等于8。然后进行水蒸汽蒸馏,蒸出未反应完的苯甲醛。待三口烧瓶中的剩余液体冷却后,加入活性炭煮沸10-15min,进行趁热过滤,将滤液冷却至室温,在搅拌下用浓盐酸酸化至刚果红试纸变蓝(或溶液pH=3)。冷却,待晶体析出后进行抽滤,用少量冷水洗涤沉淀。抽干,让粗产品在空气中晾干。产量:约3.0g(产率约65%)。 粗产品可用热水或3:1的水-乙醇重结晶。肉桂酸有顺反异构体,通常以反式存在。 纯肉桂酸为微有桂皮香气的无色针状晶体。熔点mp=133℃。 (一)制备阶段:

肉桂酸的制备完整版

肉桂酸的制备完整版 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

实验六:肉桂酸的制备 一:实验目的 1、掌握用Perkin反应制备肉桂酸的原理和方法; 2、巩固回流、简易水蒸气蒸馏等装置。 二:实验基本原理 芳香醛和酸酐在碱性催化剂的作用下,可以发生类似羟醛缩合的反应,生成α,β-不饱和芳香醛,这个反应称为Perkin反应。催化剂通常是相应酸酐的羧酸的钾或钠盐,也可以用碳酸钾或叔胺。 三:主要试剂及主副产物的物理常数 其他性质 苯甲醛:分子式C7H6O,相对蒸气密度(空气=1),饱和蒸气压 kPa (26℃)折射 率,闪点 64℃,引燃温度192℃。是最简单的,同时也是工业上最常为使用的芳醛。在 室温下其为无色液体,具有特殊的杏仁气味。 乙酸酐:分子式C4H6O3,无色透明液体,有强烈的乙酸气味,相对蒸气密度(空气=1),饱和蒸气压 kPa (36℃),闪点49℃,引燃温度316℃。相对密度。折光率。低

毒,半数致死量(大鼠,经口)1780mG/kG。有腐蚀性。勿接触皮肤或眼睛,以防引起损伤。有催泪性。易燃,其蒸气与空气可形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。与强氧化剂接触可发生化学反应。 肉桂酸:分子式C9H8O2,又名β-苯丙烯酸,有顺式和反式两种异构体。通常以反式形式存在,为白色单斜晶体,微有桂皮气味。肉桂酸是香料、化妆品、医药、塑料和感光树脂等的重要原料。 四:主要试剂规格及用量 五:实验装置图 主要仪器: 100mL圆底烧瓶,球形冷凝管,直形冷凝管,温度计,简易水蒸气蒸馏装置,抽滤装置,250mL烧杯,表面皿。 六:实验简单操作步骤及实验现象记录

乳酸菌饮料的生产工艺及关键控制点

乳酸菌饮料的生产工艺及关键控制点 1.生产工艺流程 A.发酵乳生产 鲜牛乳→验收→净化→标准化→杀菌→高压均质→冷却→接种发酵→纯酸奶 B.乳酵菌乳饮料生产 糖和稳定剂干粉混合→搅拌溶解→杀菌→加入山梨酸钾和甜味剂→加入酸奶→加入酸味剂→加入香精→高压均质→灌装→(杀菌)→成品 2.关键控制点 关键点①:发酵乳的制作:A.原料奶收购。刚收购鲜奶一般要求在5℃下低温保存,抑制微生物的繁殖,牛奶酸度控制在16-18,细菌总数≤200000个/ mL,芽孢总数≤10 0个/mL,耐热芽孢总数≤50个/ mL,嗜冷菌≤10 个/mL,体细胞数≤500000个/mL,密度(20℃/4℃)1.028~1.032 ,脂肪≥3.0g/100g;蛋白质≥3.0g/100g;乳糖≈4.5g~5.0g/ 100g,抗生素残留≤0.007IU/ml(0.004μg/ml)。B.原料奶热处理。对原料乳的热处理(9 0℃保持10分钟或95℃保持5分钟)主要有两个目的:杀死原料乳的致病菌和有害微生物;使原料乳中的蛋白质适度变性,增加蛋白质的持水能力,增加发酵乳的网状结构,同时还有利于发酵菌的利用。C.菌种选择.对乳酸菌饮料的发酵剂一般选择嗜热链球菌和保加利亚杆菌,通常它的比例为1:1或2:1,杆菌不能占优势,否则酸度太强.D.发酵控制.目前常用菌种最适当生长温度为42-43℃,因此在接种前后奶的温度应控制在42±1℃(在活性乳加入发酵乳的温度应低于20℃)接种温度过低会使菌种的活化时间延长,发酵缓慢而且污染杂菌的机会增加,对发酵不利,接种温度过高不但会抑制菌种的活力而且可能杀死发酵菌影响甚至终止发酵。菌种的接种量应该严格控制,接种量太大则发酵过快,不利发酵乳的风味完全形成和良好组织结构的构建,接种量太小,则发酵周期太长,污染杂菌的几率增加。一般直投式的接种量为10-20U/T,继代式菌种的接种量为2-3%。发酵过程温度和时间控制也是重要因素,在整个发酵过程中,发酵罐(发酵室)的温度都应恒定(42-43℃),温度波动太大会严重影响发酵的进程,使发酵乳的品质变差;发酵的时间也应该严格控制,时间太短,发酵风味不好,结构差;时

肉桂酸的制备实验.PPT

肉桂酸的制备
一、实验目的 实验目的 1、掌握由 Perkin 反应制备 α, β-不饱和酸的原理和方法。 2、进一步巩固回流、水蒸汽蒸馏、重结晶等基本操作。 二、实验原理 实验原理 肉桂酸是生产冠心病药物“心可安”的重要中间体。其酯类衍生物是配制香精和食品香料的重要原料。它在农用塑料和感光树脂等精 细化工产品的生产中也有着广泛的应用。
系统命名:3-苯基丙烯酸 属 α, β-不饱和酸 Perkin 反应:芳香醛和酸酐在碱性催化剂作用下,发生类似羟醛缩合的作用,生成 α, β-不饱和芳香酸的反应。 主反应:
碱催化剂一般为酸酐相应羧酸的钾盐或钠盐,本实验采用醋酸钾作为碱催化剂。
反应机理:
三、操作步骤

四、数据记录和处理 略 五、实验注意事项
.所用仪器必须是干燥的。因乙酐遇水能水解成乙酸,无水 CH3COOK,遇水失去催化作用,影响反应进行。无水碳酸钾也应烘干至恒重,

否则将会使乙酸酐水解而导致实验产率降低。 2.放久了的醋酐易潮解吸水成乙酸,故在实验前必须将乙酐重新蒸馏,否则会影响产率。
.久置后的苯甲醛易自动氧化成苯甲酸,这不但影响产率而且苯甲酸混在产物中不易除净,影响产物的纯度,故苯甲醛使用前必须蒸馏。 4.无水醋酸钾的吸水性很强,操作要快。它的干燥程度对反应能否进行和产量的提高都有明显的影响。 制反应呈微沸状态,如果反应液激烈沸腾易使乙酸酐蒸气冷凝管送出影响产率。 6.在反应温度下长时间加热,肉桂酸脱成苯乙烯,进而生成苯乙烯低聚物。 7.反应物必须趁热倒出,否则易凝成块状。 的质量。 实验中视具体情况,反应时间可以延长,并用 TLC 技术进行反应过程跟踪。 明确水蒸气蒸馏应用于分离和纯化时其分离对象的适用范围,保证水蒸气蒸馏顺利完成。 浓硫酸的滴加要缓慢,要分批滴加。 多。 六、思考题 1.苯甲醛和丙酸酐在无水的 丙酸钾存在下相互作用得到什么产物?写出反应式?
.缩合反应宜缓慢升温,以防苯甲醛氧化。反应开始后,由于逸出二氧化碳,有泡沫出现,随着反应的进行,会自动消失。加热回流,控
.中和时必须使溶液呈碱性,控制 pH=8较合适,不能用 NaOH 中和,否则会发生坎尼查罗反应。生成的苯甲酸难于分离出去,影响产物
铬酸氧化醇是一个放热反应,实验中必须严格控制反应温度以防反应过于剧烈。反应中控制好温度,温度过低反应困难,过高则副反应增
答: 2.反应中,如果使用与酸酐不同的羧酸盐,会得到两种不同的芳香丙烯酸,为什么? 答:酸性条件下,羧酸盐自身也能形成碳负离子,因而反应体系中存在两种不同的碳负离子。 主要试剂及产品的物理常数: 文献值) (文献值 主要试剂及产品的物理常数: 文献值) ( 名 称 分 子 量 10 6.1 2 性 状 无 色 液 体 无 乙 酸 酐 色 10 2.0 8 刺 激 液 体 肉 桂 酸 无 14 8.1 6 色 结 晶 1.2 48 133 -13 4 300 1.3 900 1.0 82 138 -73 -14 0 ∞ ∞ ∞ 1.5 450 1.0 44 178 -26 -17 9 折 光 率 比 重 熔 点 ℃ 沸 点 ℃ 水 溶解度:克/100ml 溶剂 醇 醚
苯 甲 醛

钒酸铋纳米材料不同温度下形貌与浓度的关系

摘要:选取水热法制备钒酸铋,以nh4vo3溶液和bi(no3)3?5h2o的硝酸溶液为反应物,分别在80℃、120 ℃、160 ℃、200 ℃的环境下进行反应,每次实验选取不同浓度的反应物,合成多种钒酸铋溶液。利用xrd、sem进行观察,研究不同温度下,浓度的对产物的结构形貌有何影响。 关键词:水热法;钒酸铋;浓度;形貌结构 随着经济的高速发展和人们生活水平的提高,人类面临着严峻的环境污染问题。众多的难降解有机污染物进入到我们生活的环境当中,威胁着人类和整个生物圈的生存。诸如全氟类化学物、药品和个人护理品等新生污染物具有环境激素的内分泌干扰特点,对人类健康的威胁,近来受到特别关注。而bivo4是一种较廉价、稳定和无毒的颜料,因其具有铁电、铁弹性和声旋光性等特殊性能被关注,自从 1998 年,kudo 首次报道了bivo4可见光下具有光解水的性能,从而激起了人们对其在光催化方向的研究兴趣。天然的 bivo4以正交晶系的钒铋酸矿存在,但实验室难制备,目前研究的主要有三种晶型:①单斜白钨矿、②四角锆石矿、③四角白钨矿结构。研究表明单斜白钨矿的结构光催化活性最强,其禁带宽度约为 2.4ev,能响应大部分太阳光中的可见光。近年来,它作为能被可见光响应的光催化剂而得到广泛研究。bivo4 有多种制备方法:固态反应法、共沉淀法、化学浴沉积法、有机金属分解法、水热法等。其中,水热法因其条件温和可控,引起了人们的关注。所谓水热法又称高压溶液法,是利用高温高压的水溶液使那些在大气条件下不溶或难溶于水的物质通过溶解或反应生成该物质的溶解产物,并达到一定的过饱和度而进行结晶和生长的方法。该方法制备的产物有热应力小、宏观缺陷少、均匀性和纯度高等优点,本次试验采用水热法。 1.实验部分 1.1试剂与仪器 试剂:偏钒酸铵[nh4vo3];硝酸铋[bi(no3)3?5h2o];无水乙醇;所用试剂均为分析纯,实验用水为二次蒸馏水。 设备:试管、烧杯、量筒等。 另需试剂:偏钒酸铵 nh4vo3、硝酸铋bi(no3)3?5h2o、硝酸等 1.2样品制备 称取1mmol的nh4vo3溶于30ml蒸馏水中,磁力搅拌1h得到溶液a,然后称取1mmol的 bi(no3)3?5h2o加入到上述溶液a中,再用磁力搅拌器进行搅拌,直至其混合均匀,得到较低浓度的试剂,将搅拌后的混合溶液移到微型反应釜中,分别在80℃、120 ℃、160 ℃、200 ℃的温度环境下反应12h,取出微型反应釜,待其自然冷去后,除杂获得沉淀,将收集好的沉淀用无水乙醇和二次蒸馏水反复洗涤,清洗后将其放入电热恒温鼓冈干燥箱中干燥1h,与上述操作相同,分别称取nh4vo3和bi(no3)3?5h2o各2.5mmol,重复以上操作,得到浓度较高的混合溶液样品。 2.样品结果论证 2.1低浓度样品形貌分析 图1为试剂浓度均为1mmol的试剂反应后在不同温度下得到的bivo4样品,80℃时,样品表面呈方块状,在120℃的情况下,样品形状趋近于团状,表面布满不规则的小晶粒,160℃的时,样品形状逐渐不规则,分散性较差,这是温度较高导致的,而后的200℃环境下的样品也印证了这一观点,此时的样品几乎无规则可言,样品聚集为一个整体。 2.2高浓度样品形貌分析 图2为试剂浓度均为2mmol的试剂反应后在不同温度下得到的bivo4样品,最初在80℃时,得到的样品呈球状,温度为120℃时得到的样品表面出现明显小颗粒,整体来看是麻球状,温度升高为160℃时,所得到的样品绝大多数为片晶,其中已经出现了少数的块晶,温

山梨酸的研究进展

山梨酸的研究进展 王天航 (北京联合大学生物化学工程学院,北京市100023) 摘要: 本文介绍了山梨酸的理化性能,生产方法,分离与检测方法,并阐述了其实际应用。 关键词:山梨酸;性质;生产;分离与检测;应用 1引言 山梨酸又名花椒酸是国际粮农组织和卫生组织推荐的高效安全的保鲜剂,是毒性最低的食品防腐剂,广泛应用于食品、饮料、烟草、农药、化妆品等行业,作为不饱和酸,也可用于树脂、香料和橡胶工业。 2理化性质 山梨酸( Sorbic Acid)化学式:化学名:2, 4-已二烯酸或2-丙烯基丙烯酸, 分子式:C6H8O2 ,俗名花楸酸或清凉茶酸。是一种分子结构特殊的不饱和有机酸类不饱和六碳酸, 呈无色针状结晶或白色结晶粉末, 无味、无臭, 沸点228℃, 熔点130~135℃, 闪点127℃,对光、热稳定,难溶于水,易溶于乙醇,乙醚,其饱和水溶液pH值为3.6。山梨酸是属于酸性防腐剂,防腐效果受pH影响,其抗菌力是由非解离分子的作用。因此,在食品中至少应保持10%-30%的非解离分子。pH 值愈低,防腐能力愈强,宜于在pH 值为5-6 以下范围内使用。对霉菌、酵母、好气性细菌和丝状菌等均具有抑制作用,其抑菌作用比杀菌作用强,但对厌气菌和嗜酸乳杆菌无效。山梨酸的防腐原理是它能与微生物酶系统中的巯基(-SH)结合,形成共价键,使其失去活力,破坏许多重要酶系,从而抑制微生物增殖和防腐作用。山梨酸的化学反应活性高, 易于进行加成、卤代、加氢、氧化、酯化、脱羧及共聚等多种反应。 3合成与生产方法 主要合成和生产方法有以下几种: 3.1巴豆醛和丙二酸法[1] 这是最早合成山梨酸的方法。该法采用毗吮做溶剂, 将丙二酸和巴豆醛混合加热4-5h, 缩合后再冷却、酸化、脱梭, 得到山梨酸。该法收率32%左右, 若用丙二酸钙代替丙二酸,可以提高收率。该工艺流程简单, 产品易分离, 但收率低,另外由于所用原料丙二酸的生产三废污染严重, 价格贵。 3.2巴豆醛和乙烯酮法 该法是在三氟化硼等催化剂的作用下, 巴豆醛和乙烯酮在0度下反应, 生成己烯酸内醋,再经硫 酸水解得到山梨酸。该法技术完善, 收率较高, 原料价廉易得, 是目前国内外研究最多、最普遍采用的生产方法, 美、日、德等国大都采用这条路线生产,只是催化剂和生产工艺上略有不同。缺点是原料乙烯酮有毒, 生产步骤多, 催化剂有腐蚀性。

氢化肉桂酸的制备--有机实验

一、实验目的 1、掌握一种Raney Ni催化剂的制备方法; 2、掌握催化加氢的相关操作; 3、练习减压蒸馏等操作。 二、实验原理 实验室或工业上最常用氢化催化剂是Raney镍,即镍铝合金用氢氧化钠溶液处理及洗涤后制得的海绵状的镍。反应方程式如下: NiAl2+6NaOH Ni+2NaAlO2+3H2 普遍接受的催化氢化反应机理认为是氢和有机分子中不饱和键首先被吸附在催化剂表面,被催化剂的活化中心活化后,分布完成加成反应,生成饱和的有机分子,最后从催化剂表面解吸附。由于两个氢原子是从不饱和键的同一侧加上去的,因此催化氢化是顺势加成的立体选择反应。利用高活性的Raney镍,在常温常压下,用氢气将肉桂醛还原成氢化肉桂酸反应几乎是定量进行的。方程如下: C6H5CH=CHCO2H+H2→C6H5CH2CH2CO2H 理论吸氢量可以按照气态方程pV=nRT计算: =n×0.082×(273+t)×1000 V=nRT P 三、实验步骤 1、 Raney Ni的制备 1) 称取5gNaOH于100mL烧杯中,在冰水浴冷却下加20mL蒸馏水溶解,使碱液温度控 制在10℃以下。 2) 将4g 铝镍合金粉(1:1)分6-10批次小心地加入到碱液中,反应放热释放出氢 气,需不断搅拌将温度控制在25℃以下。 3) 加毕后撤去冰水浴,溶液逐渐恢复室温;将烧杯置于65℃的恒温水浴上,搅拌至 无气泡逸出(约1h),停止加热搅拌。静置使镍粉沉积、冷却. 4) 将烧杯倾斜并轻轻敲击杯壁,使烧杯底部固体滑向一边,小心倾斜倒出大部分碱 注:实验报告的内容: 一、实验目的;二、实验原理;三、实验步骤;四、实验结果;五、讨论分析(完成指定的思考题和作业题);六、改进实验建议。

钒酸铋的制备论文

钒酸铋材料的制备及光催化性能的研究 摘要: 钒酸铋(BiV04)作为一种新型半导体材料,因其可直接被可见光激发,更有效地利用太阳能,实现有机污染物的矿化,而成为近期光催化材料研究领域的热点之一。本文主要对钒酸铋光催化材料的现状、性质、制备方法以及未来的发展做了详细的介绍,对半导体光催化剂的发展有重要作用。 前言:随着经济的发展和人日的膨胀,全球范围的水质污染加剧、水生态环境恶化、可用水资源日益减少,己经严重影响了人类的生活和健康。水资源的污染主要来自于人类活动与生产的污染物,包括工业污染源、农业污染源和生活污染源。水中污染物种类繁多,有机污染物含量高,毒性强危害大,浓度波动幅度大。为了解决环境问题,人类开发了物理吸附法、化学氧化法、微生物降解等方法。这些传统方法虽然起到了一定作用,但也存在着很多局限性而不能广泛应用,例如:效率低、二次污染、耗能高、应用范围小等负面问题。因此开发高效、适用范围广、低能耗、具有较强氧化能力的环保处理技术是迫切需要的。 半导体光催化技术就是在这样的背景下应运而生并逐步发展起来的一门新兴的环保技术。它利用半导体氧化物材料在太阳光照射下表面能受激活化的特性,可有效地氧化分解有机污染物、还原重金属离子、脱色、灭菌和消除异味团。与传统的净化环境处理方法相比,半导体光催化技术拥有反应条件温和、无二次污染、操作简单和降解效果显著等优势,更重要的是光催化技术可以直接利用太阳光,光催化剂可再生、一可回收利用,这在节约能源方面具有重要意义。因此,半导体光催化技术及光催化剂的研究发展在近些年来受到了广泛关注。 关键词:钒酸铋制备光催化 1钒酸铋 1.1物理化学性质 钒酸铋(BiV04)是具有层状结构的典型三元半导体氧化物,因其具有铁弹性、离子传导性、声光转换等独特性而受到关注。自Kudo(1)实验室首次报道了BiV04在可见光下具有分解水的性能,开始了B1V04种光催化性能的研究。据报道,B1V0、主要有四方错石结构(z-t)、单斜晶系白钨矿结构(m)、四方钨矿结构(s-t)这三种晶型,相比于BiV04(s-t)、BiV04(m)和BiV04(s-t)光催化材料在可见光条件下具有良好的光催化性能而倍受青睐。而这主要由它们价带结构的差异决定。 在单斜相BiV04结构中,4个氧原子围绕着1个钒原子形成VO4四面体,6个氧原子围绕1个铋原子形成Bio6八面体,VO4之间互不接触,而Bi0。之间以边相邻交替,整体形成层状结构VO4四面体和BiO6八面体都有一定程度的扭曲,而BiO6八面体的扭曲则大大增强了Bi 6s孤对电子对的影响,VO4八面体的扭曲导致正负电荷的中心不重合,产生了内部电场,这一效果能促进光生电子-空穴对的分离,而四方相BiV04正负电荷因完全对称反而其催化活性并不高,这也是单斜BiV04具有较高光催化性能的原因之一。另外,四方相结构BiV04借助于电子从0 2p轨道跃迁到V 3p轨道,只能吸收紫外光,而单斜相BiV04是通过电子从Bi 6s和0 2p的杂化轨道跃迁到V 3p轨道,能充分利用可见光。单斜晶系白钨矿结构BiV04禁带宽度窄约为2. 4 eV,非常接近于太阳光谱中心,其吸收域值可延长至520 nm 左右,是一种理想的可见光响应光催化材料而成为众多科研工作者研究的热点。 2.2光催化原理 根据固体能带理论,固体是一个大分子,由许多原子或分子在空间内以一定的方式排

盐酸溶液处理钒酸铋增强可见光催化活性及其机理

[Article] https://www.doczj.com/doc/6c12296585.html, 物理化学学报(Wuli Huaxue Xuebao ) Acta Phys.-Chim.Sin.2012,28(12),2917-2923 December Received:July 19,2012;Revised:September 3,2012;Published on Web:September 3,2012? Corresponding author.Email:long_mc@https://www.doczj.com/doc/6c12296585.html,;Tel:+86-21-54747354. The project was supported by the National Natural Science Foundation of China (20907031).国家自然科学基金(20907031)资助项目 ?Editorial office of Acta Physico-Chimica Sinica doi:10.3866/PKU.WHXB 201209032 盐酸溶液处理钒酸铋增强可见光催化活性及其机理 龙明策* 万 磊 曾 曾 刘伊依 陈渊源 (上海交通大学环境科学与工程学院,上海200240) 摘要: 采用盐酸水溶液处理BiVO 4的方法获得增强的光催化活性.在0.1mol ·L -1酸溶液中浸渍反应6h, BiVO 4的可见光催化降解苯酚的活性提高了3.5倍.采用X 射线衍射(XRD),扫描电镜(TEM)和漫反射光谱(DRS)等表征手段研究处理后样品的晶相组成和表面形貌,结合不同酸和氯化物处理的对照实验,结果表明,在H +和Cl -的协同作用下,BiVO 4表面部分溶出并以BiOCl 沉积,形成了表面具有凹陷沟壑的BiVO 4颗粒与片状结构BiOCl 的复合物.采用悬浮液光电压法测定BiOCl 平带电位,通过BiVO 4和BiOCl 的能带分析及其混合颗粒的光催化活性测试,确证二者间不存在颗粒间电子转移效应.增强的光催化活性主要归因于BiVO 4表面形成了有助于光生电荷迁移的凹凸不平结构.这种表面处理方法有望成为一种增强半导体化合物光催化活性的有效途径.关键词: 光催化;BiVO 4;BiOCl; 异质结;表面纳米结构;可见光活性;苯酚降解 中图分类号: O643 Enhanced Visible Light Activity of BiVO 4by Treating in HCl Aqueous Solution and Its Mechanism LONG Ming-Ce * WAN Lei ZENG Ceng LIU Yi-Yi CHEN Yuan-Yuan (School of Environmental Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,P .R.China )Abstract:Enhanced photocatalytic activity of BiVO 4has been achieved by immersing in HCl aqueous solution.After treated for 6h in 0.1mol ·L -1HCl solution,the visible light activity of BiVO 4for phenol degradation increased by 3.5times.X-ray diffraction (XRD),scanning electron microscopy (SEM),and diffuse reflectance spectroscopy (DRS)were carried out to analyze the crystal components and surface morphology of the treated https://www.doczj.com/doc/6c12296585.html,parison of samples treated in different acids and chlorides indicated that with the appropriate concentrations of H +and Cl -ions,BiVO 4partially dissolved,was deposited as BiOCl,and finally a composite of flaked BiOCl and micro-particles of BiVO 4with pits formed over the surface.The flatband potential of BiOCl was measured by a slurry method.According to the results of energy band analyses and photocatalytic activity tests of mixed BiVO 4and BiOCl particles,there is no interparticle electron transfer effect between them.Therefore,the mechanism of the enhanced photocatalytic performance of the treated BiVO 4can be attributed to the unevenness of the surface,which can facilitate photogenerated charge separation.This type of surface treatment method could be developed into an effective method for preparing photocatalysts with enhanced photocatalytic performance.Key Words:Photocatalysis; Bismuth vanadate; Bismuth oxychloride;Heterojunction;Surface nanostructure; Visible light activity;Phenol degradation 2917

相关主题
文本预览
相关文档 最新文档