当前位置:文档之家› ABEL硬件描述语言概述

ABEL硬件描述语言概述

ABEL硬件描述语言概述
ABEL硬件描述语言概述

电子技术课

程设计资料

ABEL硬件描述语言概述

ABEL语言简介

?ABEL语言是一种硬件描述语言(也称为ABELHDL),是开发PLD的一种高级程序设

计语言,由美国DATA I/O公司于1983~1988

年推出。

?ABEL语言支持逻辑方程、真值表和状态图三种逻辑描述方式。

?具有简单易学的特点。

ABEL语言设计源程序通过ispDesignExpert

软件编译、语法检查、逻辑化简、自动生成符合标准的JEDEC文件(“.JED”文件)。

两个问题:

1.什么是ABEL HDL 源文件

ABEL HDL 源文件。

2. ABEL HDL 设计的基本思想

语言来进行教学。

一部分使用高级语言,用来描述逻辑设计;

另一部分是语言处理程序,用于将逻辑描述转化为其下载文件

中含有编程及测试可编程逻辑器件所需的信息。

ABEL HDL 有如下一些特点:

①适用于各种型号的器件的通用语法;

②结构化的高级设计语言;

③灵活的逻辑描述形式——布尔关系式、真

值表、状态图;

④仿真与测试向量;

⑤省时的宏定义及指示字。

ABEL HDL 的处理程序提供了如下强大功能:

①语法检查;

②检验所选器件能否实现设计要求;

③逻辑简化;

④设计模拟;

⑤自动生成文件。

一、ABEL 语言元素

1. 字符和数

⑴标识符:

?标识符代表器件、器件管脚、节点、集合、输入信号、输出信号、宏、常量及变量等。

???标识符不能和关键字(即保留字)重名。

⑵字符串:

用单引号扩起来的一系列字符。

⑶注释:

以双引号开头的一行字符。

2. 运算符、表达式与方程

⑴运算符

?逻辑运算符:

运算符说明举例!逻辑非!A

& 逻辑与A&B

# 逻辑或A#B

$ 逻辑异或A$B

!$ 逻辑同或A!$B

?算术运算符:

运算符举例说明

A 取二进制补码

AB 减+ A+B 加

* A*B 乘

/ A/B 除

% A%B 取模

<< A<> A>>B A右移B位

?关系运算符:

运算符说明举例

== 等于A==B

!= 不等于A!=B

< 小于A

<= 小于等于A<=B

> 大于A>B

>= 大于等于A>=B

?赋值运算符:

运算符说明举例= 非时钟赋值A=B

:= 时钟赋值A:=B

优先级运算符说明

3 3 3 3 3 +

#

$

!$

异或

同或

4 4 4 4 4 4 ==

!=

<

<=

>

>=

等于

不等于

小于

小于等于

大于

大于等于

优先级运算符说明

1

1 ! 取补取反

2 2 2 2 2 2 &

<<

>>

/

*

%

左移

右移

取模

⑵表达式:标识符和运算符的组合

表达式中运算符的优先级:

⑶布尔方程(逻辑方程,简称方程):

[ WHEN 条件 THEN ] [ ! ] 标识符 = 表达式?[ ELSE 方程]?[ WHEN 条件 THEN ] [ ! ] 标识符 := 表达式?[ ELSE 方程]?例:

①X=A&B?

②Y:=C#D?

③!A=B$C?等同于A=!(B$C)?

④ WHEN A==B THEN Y=C? ELSE Y=D?

⑤A=B?

A=C?

等同于A=B#C?

[ WHEN 条件 THEN ] [ ! ] [ ENABLE ] 标识符 = 表达式?[ ELSE 方程]?

[ WHEN 条件 THEN ] [ ! ] [ ENABLE ] 标识符 := 表达式?[ ELSE 方程]?

关键字 ENABLE 用于三态输出缓冲器的使能。ENABLE 后的标识符必须是三态型的输

出,表达式的值仅用于使能三态缓冲器,而不赋值给信号。

例:

ENABLE Y=C#D?

如果(C#D)为真,则输出 Y 被使能(但Y 的输出信号不是 C#D)。

3. 其它元素

⑴. 集合:

集合是作为一个整体来进行运算的一组信

号和常量。

?集合的定义:

例:

① Address=[ A7,A6,A5,A4,A3,A2,A1,A0 ]?

② Address=[ A7..A0 ]?

③x=.x.? Address=[ A7,A6,A5,A4,x,x,x,x ]?

EQUATIONS

!IO=(Address>=^hE000)&(Address<=^hE7FF)

?集合的赋值和运算:

例:

①若已定义sign=[A,B,C]?

则可以这样赋值:sign=[1,1,0]?或者 sign=6;也可以这样运算:sign=[1,1,0]&[1,0,1]?或者

sign=6&5?

②[a,b]=^bxx11?等同于[a,b]=^b11?

③[a,b]=^b1?

④[a,b]=c&d?等同于[a,b]=^b01?

等同于a=c&d?b=c&d?

⑵. 特殊常量值:

常量值说明

H 逻辑高电平

L 逻辑低电平

.C. 时钟输入(电平按低—高—低变化).K. 时钟输入(电平按高—低—高变化).U. 时钟上升沿(电平按低—高变化).D. 时钟下降沿(电平按高—低变化).F. 浮动输入或输出信号

.P. 寄存器预装载

.X. 任意值

.Z. 高阻态

⑶. 块:

* * * 块是括在 { } 的文本段。

块用于宏定义和指示字中。块可以嵌套使用。

⑷. 变量及变量代换:

哑变量:在宏、模块和指示字中,可以被真实

变量替代的标识符。

真实变量:用于宏、模块和指示字中的变量,真

实变量可以替代哑变量。真实变量可

以是标识符、数字、字符串、运算符、

集合等。

例:

例:

在宏定义中有:

OR_EM MACRO (a,b,c){?a#?b#?c }?

a,b,c 是哑变量,在宏定义体中,哑变量前带有问号“?”。

在方程中有:

D=OR_EM(X,Y,A&B)?

调用OR_EM 宏,结果为:D=X#Y#(A&B)??

⑸. 常用的点后缀:点后缀含义

.AP 寄存器异步置位

.AR 寄存器异步复位

.CE 时钟导通触发器的时钟输入.CLK 边沿触发器的时钟输入

.D D触发器的激励输入

.FB 寄存器反馈信号

.J JK触发器的J激励输入

.K JK触发器的K激励输入

.LD 寄存器并行置数输入

.LE 锁存器的锁存使能输入

点后缀含义

.LH 锁存器的锁存使能(高电平)

.OE 输出使能

.PIN 引脚反馈

.Q 寄存器输出(书写源文件时可以省略).R SR触发器的R激励输入

.RE 寄存器复位信号(同步或异步)

.S SR触发器的S激励输入

.SP 寄存器同步置位

.SR 寄存器同步复位

.T T触发器的激励输入

1. 基本结构:

MODULE 模块名 [(哑变量名[,哑变量名]…)] [FLAG语句]…

[TITLE语句]…

定义段

[EQUATIONS]…

[TRUTH_TABLE]…

[STATE_DIAGRAM]…

[TEST_VECTORS]…

END [模块名] [?]

硬件描述语言HDL的现状与发展

硬件描述语言HDL的现状与发展 摘要:从数字系统设计的性质出发,结合目前迅速发展的芯片系统,比较、研究各种硬件描述语言;详细阐述各种语言的发展历史、体系结构和设计方法;探讨未来硬件描述语言的发展趋势,同时针对国内EDA基础薄弱的现状,在硬件描述语言方面作了一些有益的思考。 关键词:ASIC 硬件描述语言HDL Verilog HDL VHDL SystemC Superlog 芯片系统SoC 引言 硬件描述语言HDL是一种用形式化方法描述数字电路和系统的语言。利用这种语言,数字电路系统的设计可以从上层到下层(从抽象到具体)逐层描述自己的设计思想,用一系列分层次的模块来表示极其复杂的数字系统。然后,利用电子设计自动化(EDA)工具,逐层进行仿真验证,再把其中需要变为实际电路的模块组合,经过自动综合工具转换到门级电路网表。接下去,再用专用集成电路ASIC或现场可编程门阵列FPGA自动布局布线工具,把网表转换为要实现的具体电路布线结构。 目前,这种高层次(high-level-design)的方法已被广泛采用。据统计,目前在美国硅谷约有90%以上的ASIC和FPGA采用硬件描述语言进行设计。 硬件描述语言HDL的发展至今已有20多年的历史,并成功地应用于设计的各个阶段:建模、仿真、验证和综合等。到20世纪80年代,已出现了上百种硬件描述语言,对设计自动化曾起到了极大的促进和推动作用。但是,这些语言一般各自面向特定的设计领域和层次,而且众多的语言使用户无所适从。因此,急需一种面向设计的多领域、多层次并得到普遍认同的标准硬件描述语言。20世纪80年代后期,VHDL和Verilog HDL语言适应了这种趋势的要求,先后成为IEEE 标准。 现在,随着系统级FPGA以及系统芯片的出现,软硬件协调设计和系统设计变得越来越重要。传统意义上的硬件设计越来越倾向于与系统设计和软件设计结合。硬件描述语言为适应新的情况,迅速发展,出现了很多新的硬件描述语言,像Superlog、SystemC、Cynlib C++等等。究竟选择哪种语言进行设计,整个业界正在进行激烈的讨论。因此,完全有必要在这方面作一些比较研究,为EDA设计做一些有意义的工作,也为发展我们未来的芯片设计技术打好基础。 1 目前HDL发展状况 目前,硬件描述语言可谓是百花齐放,有VHDL、Superlog、Verilog、SystemC、Cynlib C++、C Level等等。虽然各种语言各有所长,但业界对到底使用哪一种语言进行设计,却莫衷一是,难有定论。 而比较一致的意见是,HDL和C/C++语言在设计流程中实现级和系统级都具有各自的用武之地。问题出现在系统级和实现级相连接的地方:什么时候将使用中的一种语言停下来,而开始使用另外一种语言?或者干脆就直接使用一种语言?现在看来得出结论仍为时过早。 在2001年举行的国际HDL会议上,与会者就使用何种设计语言展开了生动、激烈的辩论。最后,与会者投票表决:如果要启动一个芯片设计项目,他们愿意选择哪种方案?结果,仅有2

VHDL实验报告

《创新实验》实验报告 —基于VHDL的编程和硬件实现

一、实验目的 1.熟悉和掌握硬件描述语言VHDL的基本语法及编写; 2.掌握软件Xilinx ISE 10.1的使用; 3.熟悉SDZ-6电子技术实验箱的使用; 4.了解节拍脉冲发生器等基本电路的实现; 5.了解八位二进制计数器的功能与设计; 6.学习键盘和七段数码管显示的控制和设计。 二、实验内容 1.Xilinx ISE 10.1软件的使用; 2.节拍脉冲发生器等基本电路的实现; 3.八位二进制计数器的实现 4.键盘扫描及显示的实现 三、实验器材 1、PC机 2、SDZ-6电子技术实验箱 3、正负5V电源 4、I/O接口线 四、软件的使用 在安装Xilinx10.1软件时,需要一个ID号,其实这个ID号是可以重复使用的,几个同学在官网注册后就可以共享ID号了。 安装完成之后就可以使用这个软件编写相应的VHDL的程序。 1.新建工程 File—>New Project 弹出下面的对话框 输入工程名后单击Next。然后根据本实验的实验箱进行以下设置。

以后的步骤一般都是单击Next(有些资料上会介绍有些这些步骤的具体功能,但对于本实验不必用到),最后单击Finish,完成新建一个工程。在窗口的左边会出现刚刚新建的工程,如下: 2.新建一个VHDL的源文件。 在上图中,右击工程选择New Source ,弹出如下对话框。

在对画框的左边选择VHDL Module,输入文件的名字(改名字最好是你定义的实体的名字)。单击Next。出现下面的对话框。 该对话框主要是对外部端口的编辑。可以直接跳过,即单击Next,在源文件上编辑端口。然后在接下来的对话框中单击Finish。完成建立一个源文件。窗口右边就会出现刚才编辑的源文件。 3.编写和编译代码 将事先编好的代码复制到源文件里,然后保存文件。 选中左边的文件名,在窗体的左边出现如下编辑文档内容。

硬件描述语言及器件实验指导书

硬件描述语言及器件实验指导书 电子科学与技术专业组

第1章实验一用硬件描述语言的方法设计一个三输入与门电 路 一、实验目的 1、掌握MAX+plusII的使用方法。 2、掌握VHDL语言程序的基本结构。 2、掌握使用硬件描述语言设计数字电路的方法和步骤。 3、掌握用硬件描述语言设计三输入与门电路的方法。 二、实验器材 1.台式计算机1台。 2.可编程逻辑逻辑器件实验软件1套。 3.下载电缆一套。 4.示波器一台。 三、实验说明 1.台式计算机用于向可编程逻辑逻辑器件实验软件提供编程、仿真、下载的平台,供用户使用。 2.可编程逻辑逻辑器件实验软件向原理图的设计提供平台,并将调试好的原理图下载到可编程逻辑逻辑器件中。 3.下载电缆是可编程逻辑器件软件和可编程逻辑逻辑器件之间的接口电缆,为了便于区别,用不同颜色导线区分下载电缆的电源、地和信号,一般用红色导线接电源,用黑色导线接地。 4.示波器用于观察可编程逻辑器件执行程序时输出信号的变化。 四、实验内容与要求 用硬件描述语言的方法设计一个三输入与门电路,要求: (1)根据三输入与门的逻辑表达式,在构造体中直接使用并行赋值语句实现,并进行仿真;

(2)根据三输入与门的真值表,在构造体中使用进程语句实现,并进行仿真; 五、实验步骤(下面七个的实验的软件的使用具体步骤跟本次试验一样不再详述) 1.打开新建菜单选择“textedtiorfile”,这个文件是写程序编程用的。 2.程序写完后点“保存”,注意(1)保存的格式是.vhd,(2)保存的地址不能是桌面和硬盘的根目录,否则在后面的编程将出现错误。

3.在file→projectset→projecttocurrentfile,这步是将文件设置在工程里,能够正常编译和下载。

可编程逻辑器件与硬件描述语言

组合逻辑电路实验(一)实验报告 一.实验名称:3-8译码器设计 二.实验目的 1.掌握ISE 开发工具的使用,掌握FPGA 开发的基本步骤; 2.掌握组合逻辑电路设计的一般方法; 3.掌握程序下载方法,了解UCF 文件的格式; 4.初步了解开发板资源,掌握开发板使用方法。重点了解滑动开关和LED 显示灯的使用方法。 三.实验内容 1.用VHDL 实现3-8译码器模块 译码器电路如图2-1所示。其功能如表2-1所示。试用VHDL 实现该译码器,并在开发板上进行检验。 表2-1 译码器功能表 EN A B C Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 1 X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 3-8 译码器 A B C EN Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 图2-1 3-8译码器

0 1 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 2.将程序下载到FPGA并进行检验 (1)资源使用要求:用滑动开关SW3~SW1作为输入A,B,C;滑动开关SW0控制EN;8个LED灯表示8个输出。 (2)检验方法:当SW0处于ON(EN=1)位置时,所有LED灯灭;当SW0处于OFF(EN=0),反映当前输入的译码输出在LED灯上显示,即当输入为000(滑动开关SW3-SW1处于OFF状态),LED0亮,其它灯灭,等等。 四.实验步骤 1.启动ISE,新建工程文件,编写3-8译码器的VHDL模块; 2.新建UCF文件,输入位置约束; 3.完成综合、实现,生成下载文件; 4.连接开发板USB下载线,开启开发板电源; 5.下载到FPGA; 6.拨动开关,验证结果是否正确。 五.主要vhdl代码 architecture Behavioral of coder_38 is --3-8译码器行为级描述signal x:STD_LOGIC_VECTOR (2 downto 0); begin x <= A&B&C;

实验3 基于硬件描述语言的电路设计

实验3 基于硬件描述语言的电路设计 一、实验目的 1 、了解可编程数字系统设计的流程; 2 、掌握Quartus II 软件的使用方法; 3 、掌握采用硬件描述语言设计数字系统的方法和流程。 二、实验设备 1、计算机:Quartus II 软件 2、Altera DE0 三、实验内容 要求1:学习并掌握硬件描述语言(VHDL或Verilog HDL);熟悉门电路的逻辑功能,并用硬件描述语言实现门电路的设计。参考“参考内容1”中给出的与门源程序,编写一个异或门逻辑电路。 1)用QuartusII波形仿真验证; 2)下载到DE0开发板验证。 要求2:熟悉中规模器件译码器的逻辑功能,用硬件描述语言实现其设计。参考“参考内容2”中给出的将8421BCD码转换成0-9的七段码译码器源程序,编写一个将二进制码转换成0-F 的七段码译码器。 1)用QuartusII波形仿真验证; 2)下载到DE0开发板,利用开发板上的数码管验证。 要求3:熟悉时序电路计数器的逻辑功能,用硬件描述语言实现其设计。参考“参考内容3”中给出的四位二进制加减计数器的源程序,编写一个计数器。 1)用QuartusII波形仿真验证; 2)下载到DE0开发板验证。 要求4:熟悉分频电路的逻辑功能,并用硬件描述语言实现其设计。参考“参考内容4”中给出的50M分频器的源程序,编写一个能实现占空比50%的5M和50M分频器即两个输出,输出信号频率分别为10Hz和1Hz。 1)下载到DE0开发板验证。(提示:利用DE0板上已有的50M晶振作为输入信号,通过开发板上两个的LED灯观察输出信号)。电路框图如下: 四、实验结果 1、用硬件描述语言(VHDL 或Verilog HDL)实现一个异或门电路。 VHDL源程序: Library ieee; use ieee.std_logic_1164.all;

课程名称FPGA与硬件描述语言

课程名称:FPGA与硬件描述语言 课程编码:7002301 课程学分:2学分 课程学时:32学时 适应专业:电子信息工程、电子信息工程(理工科实验班) 《FPGA与硬件描述语言》 FPGA and Hardware Describing Language 教学大纲 一、课程性质与任务 性质:本课程的授课对象为电子信息工程专业二年级本科生,课程属性为专业基础必修课,该课程讲授FPGA基本原理及结构,先进的硬件描述语言(VHDL语言),FPGA设计与应用等知识。 任务:通过对(VHDL)硬件描述语言,FPGA设计等知识的学习,掌握硬件描述语言,FPGA设计的基本知识。培养学生动手能力以及解决实际问题的能力。理解VHDL语言,学会FPGA设计方法等。 二、课程教学基本内容及要求 第一章绪论VHDL的数据和表达式 (一)教学基本要求: 掌握:VHDL程序的特点,VHDL的数据,VHDL的表达式。 了解:FPGA基本原理及结构。 (二)教学基本内容: 绪论:FPGA基本原理及结构 第一章VHDL的数据和表达式 1.1 VHDL程序的特点 1.2 VHDL程序的基本结构 1.3 VHDL的数据 1.4 VHDL的表达式 第二章VHDL的顺序描述语句 (一)教学基本要求: 掌握:信号赋值语句和变量赋值语句,if语句,case语句,null语句。 理解:loop语句。 (二)教学基本内容:

第二章VHDL的顺序描述语句 2.1信号赋值语句和变量赋值语句 2.2 if语句 2.3 case语句 2.4 loop语句 2.5 null语句 第三章VHDL的并行描述语句 (一)教学基本要求: 掌握:进程语句,并发信号赋值语句,元件例化语句。 理解:条件信号赋值语句,选择信号赋值语句。 了解:生成语句。 (二)教学基本内容: 第三章VHDL的并行描述语句 3.1进程语句 3.2并发信号赋值语句 3.3条件信号赋值语句 3.4选择信号赋值语句 3.5元件例化语句 3.6生成语句 第四章VHDL的时钟信号描述方法 (一)教学基本要求: 掌握:时钟的VHDL描述方法,时序电路中复位信号的VHDL描述方法。(二)教学基本内容: 第四章VHDL的时钟信号描述方法 4.1时钟信号的VHDL描述方法 4.2时序电路中复位信号的VHDL描述方法 第五章VHDL的有限状态机的设计 (一)教学基本要求: 掌握:有限状态机的基本概念及应用。 理解:一个Moore型有限状态机的设计实例 (二)教学基本内容: 第五章VHDL的有限状态机的设计 5.1 有限状态机的基本概念 5.2一个Moore型有限状态机的设计实例

数字电子技术实验报告_基于Quartus II的硬件描述语言电路设计

数字电子技术基础 实验报告 题目:实验四基于Quartus II的硬件描述语言电路 设计 小组成员: 小组成员:

一、实验四基于Quartus II的硬件描述语言电路设 计 一、实验目的 1)学习并掌握硬件描述语言VHDL;熟悉门电路的逻辑功能,并用硬件描述语言 实现门电路的设计。 2)熟悉中规模器件译码器的逻辑功能,用硬件描述语言实现其设计。 3)熟悉时序电路计数器的逻辑功能,用硬件描述语言实现其设计。 4)熟悉分频电路的逻辑功能,并用硬件描述语言实现其设计。 二、实验要求 要求1:参考“参考内容1”中给出的与门源程序,编写一个异或门逻辑电路。1)用QuartusII波形仿真验证;2)下载到DE0开发板验证。 要求2:参考“参考内容2”中给出的将8421BCD码转换成0-9的七段码译码器源程序,编写一个将二进制码转换成0-E的七段码译码器。1)用QuartusII波形仿真验证;2)下载到DE0开发板,利用开发板上的数码管验证。 要求3:参考“参考内容3”中给出的四位二进制计数器的源程序,编写一个计数器实现0-E计数。用QuartusII波形仿真验证; 要求4:参考“参考内容4”中给出的50M分频器的源程序,编写一个能实现占空比50%的5M和50M分频器即两个输出,输出信号频率分别为10Hz和1Hz。下载到DE0开发板验证。(提示:利用DE0板上已有的50M晶振作为输入信号,通过开发板上两个的LED灯观察输出信号)。电路框图如下:

要求5:利用已经实现的VHDL模块文件,顶层文件采用原理图设计方法,实现0-E计数自动循环显示,频率1Hz和10Hz可以切换。(提示:如何将VHDL模块文件在顶层原理图文件中引用,参考参考内容5) 三、实验设备 (1)电脑一台; (2)数字电路实验箱; (3)数据线一根。 四、实验原理 1.VHDL具有功能强大的语言结构,可以用简洁明确的源代码来描述复杂的逻辑控制。它具有多层次的设计描述功能,层层细化,最后可直接生成电路级描述。VHDL支持同步电路、异步电路和随机电路的设计,这是其他硬件描述语言所不能比拟的。VHDL还支持各种设计方法,既支持自底向上的设计,又支持自顶向下的设计;既支持模块化设计,又支持层次化设计。 2.VHDL具有多层次的设计描述功能,既可以描述系统级电路,又可以描述门级电路。而描述既可以采用行为描述、寄存器传输描述或结构描述,也可以采用三者混合的混合级描述。另外,VHDL支持惯性延迟和传输延迟,还可以准确地建立硬件电路模型。VHDL支持预定义的和自定义的数据类型,给硬件描述带来较大的自由度,使设计人员能够方便地创建高层次的系统模型。 3.VHDL是一种标准化的硬件描述语言,同一个设计描述可以被不同的工具所支持,使得设计描述的移植成为可能。 4.VHDL采用基于库(Library)的设计方法,可以建立各种可再次利用的模块。这些模块可以预先设计或使用以前设计中的存档模块,将这些模块存放到库中,就可以在以后的设计中进行复用,可以使设计成果在设计人员之间进行交流和共享,减少硬件电路设计。

硬件描述语言与FPGA技术实验指导书(2012版)

《硬件描述语言与FPGA技术》 实验指导书 西北工业大学 2012/10/10

目录 实验一简单的组合逻辑设计 (3) 实验二简单分频时序逻辑电路的设计 (6) 实验三利用条件语句实现计数分频时序电路 (9) 实验四阻塞赋值与非阻塞赋值的区别 (12) 实验五用always块实现较复杂的组合逻辑电路 (16) 实验六在Verilog中使用函数 (20) 实验七在Verilog HDL中使用任务(task) (23) 实验八利用有限状态机进行时序逻辑的设计 (27) 实验九利用状态机实现比较复杂的接口设计 (32) 练习十利用SRAM设计一个FIFO (39)

实验一简单的组合逻辑设计 一、实验目的 1. 学习Quartus和ModSim两种EDA工具的使用方法; 2.掌握基本组合逻辑电路的实现方法; 3.初步了解两种基本组合逻辑电路的生成方法; 4.学习测试模块的编写; 5.通过综合和布局布线了解不同层次仿真的物理意义。 二、实验内容 本次实验采用Verilog HDL语言设计一个可综合的数据比较器,其功能是比较数据a与数据b的结果,如果两个数据相同,则输出结果1,否则给出结果0;并写出测试模型,使其进行比较全面的测试。 三、实验仪器、设备 预装了开发工具ModelSimSE、synplify的PC机。 四、实验原理 1.组合逻辑电路是指在任何时刻,输出状态只决定于同一时刻各输入状态的组合而与 电路以前状态无关,而与其他时间的状态无关。其逻辑函数如下: Li=f(A1,A2,A3……An) (i=1,2,3…m) 其中,A1~An为输入变量,Li为输出变量。 2.组合逻辑电路的特点归纳如下: ① 输入、输出之间没有返馈延迟通道; ② 电路中无记忆单元。 3.组合逻辑设计示例:可综合的数据比较器。它的功能是比较数据a与数据b,如果 两个数据相同,则给出结果1,否则给出结果0。描述组合逻辑时常使用assign 结构。注意equal=(a==b)?1:0,这是一种在组合逻辑实现分支判断时常使用的格 式。 模块源代码: //--------------- compare.v ----------------- module compare(equal,a,b);

ABEL硬件描述语言概述

电子技术课 程设计资料 ABEL硬件描述语言概述

ABEL语言简介 ?ABEL语言是一种硬件描述语言(也称为ABELHDL),是开发PLD的一种高级程序设 计语言,由美国DATA I/O公司于1983~1988 年推出。 ?ABEL语言支持逻辑方程、真值表和状态图三种逻辑描述方式。 ?具有简单易学的特点。 ABEL语言设计源程序通过ispDesignExpert 软件编译、语法检查、逻辑化简、自动生成符合标准的JEDEC文件(“.JED”文件)。

两个问题: 1.什么是ABEL HDL 源文件 ABEL HDL 源文件。 2. ABEL HDL 设计的基本思想 不 语言来进行教学。 一部分使用高级语言,用来描述逻辑设计; 另一部分是语言处理程序,用于将逻辑描述转化为其下载文件 中含有编程及测试可编程逻辑器件所需的信息。

ABEL HDL 有如下一些特点: ①适用于各种型号的器件的通用语法; ②结构化的高级设计语言; ③灵活的逻辑描述形式——布尔关系式、真 — 值表、状态图; ④仿真与测试向量; ⑤省时的宏定义及指示字。 ABEL HDL 的处理程序提供了如下强大功能: ①语法检查; ②检验所选器件能否实现设计要求; ③逻辑简化; ④设计模拟; ⑤自动生成文件。

一、ABEL 语言元素 1. 字符和数 ⑴标识符: ?标识符代表器件、器件管脚、节点、集合、输入信号、输出信号、宏、常量及变量等。 ???标识符不能和关键字(即保留字)重名。 ⑵字符串: 用单引号扩起来的一系列字符。 ⑶注释: 以双引号开头的一行字符。

2. 运算符、表达式与方程 ⑴运算符 ?逻辑运算符: 运算符说明举例!逻辑非!A & 逻辑与A&B # 逻辑或A#B $ 逻辑异或A$B !$ 逻辑同或A!$B

硬件描述语言范例

硬件描述语言语言设计实例 1、8-3编码器 module encode_verilog ( a ,b ); input [7:0] a ; //编码器输入 wire [7:0] a ; output [2:0] b ; //编码器输出 reg [2:0] b; always @ ( a ) begin case ( a ) //编码器某一输入端口为高电平输出相应的3位二进制数 8'b0000_0001 : b<=3'b000; //0 8'b0000_0010 : b<=3'b001; //1 8'b0000_0100 : b<=3'b010; //2 8'b0000_1000 : b<=3'b011; //3 8'b0001_0000 : b<=3'b100; //4 8'b0010_0000 : b<=3'b101; //5 8'b0100_0000 : b<=3'b110; //6 8'b1000_0000 : b<=3'b111; //7 default : b<= 3'b000; //其他情况编码器输出3’b000 endcase end endmodule 2、8-3优先编码器 module p_encode_verilog ( A ,I ,GS ,EO ,EI ); //编码器以低为有效 input [7:0] I ; //编码器输入 wire [7:0] I ; input EI ; //输入使能,EI=0时,编码器正常工作 wire EI ; output [2:0] A ; //编码器输出 reg [2:0] A ; output GS ; //优先编码器工作状态标志,编码器的八个输入端有信号输入时,GS=0 reg GS ; output EO ; //输出使能, reg EO ; always @ ( I or EI ) if ( EI ) //使用if、else if表明条件的优先级顺序 begin A <= 3'b111; GS <= 1; EO <= 1; end else if ( I[7] == 0 ) begin A <= 3'b000;

硬件描述语言HDL的现状与发展

摘要:从数字系统设计的性质出发,结合目前迅速发展的芯片系统,比较、研究各种硬件描述语言;详细阐述各种语言的发展历史、体系结构和设计方法;探讨未来硬件描述语言的发展趋势,同时针对国内eda基础薄弱的现状,在硬件描述语言方面作了一些有益的思考。关键词:asic 硬件描述语言hdl verilog hdl vhdl systemc superlog 芯片系统soc引言硬件描述语言hdl是一种用形式化方法描述数字电路和系统的语言。利用这种语言,数字电路系统的设计可以从上层到下层(从抽象到具体)逐层描述自己的设计思想,用一系列分层次的模块来表示极其复杂的数字系统。然后,利用电子设计自动化(eda)工具,逐层进行仿真验证,再把其中需要变为实际电路的模块组合,经过自动综合工具转换到门级电路网表。接下去,再用专用集成电路asic或现场可编程门阵列fpga自动布局布线工具,把网表转换为要实现的具体电路布线结构。目前,这种高层次(high-level-design)的方法已被广泛采用。据统计,目前在美国硅谷约有90%以上的asic和fpga采用硬件描述语言进行设计。硬件描述语言hdl的发展至今已有20多年的历史,并成功地应用于设计的各个阶段:建模、仿真、验证和综合等。到20世纪80年代,已出现了上百种硬件描述语言,对设计自动化曾起到了极大的促进和推动作用。但是,这些语言一般各自面向特定的设计领域和层次,而且众多的语言使用户无所适从。因此,急需一种面向设计的多领域、多层次并得到普遍认同的标准硬件描述语言。20世纪80年代后期,vhdl和verilog hdl语言适应了这种趋势的要求,先后成为ieee标准。现在,随着系统级fpga以及系统芯片的出现,软硬件协调设计和系统设计变得越来越重要。传统意义上的硬件设计越来越倾向于与系统设计和软件设计结合。硬件描述语言为适应新的情况,迅速发展,出现了很多新的硬件描述语言,像superlog、systemc、cynlib c++等等。究竟选择哪种语言进行设计,整个业界正在进行激烈的讨论。因此,完全有必要在这方面作一些比较研究,为eda设计做一些有意义的工作,也为发展我们未来的芯片设计技术打好基础。 1 目前hdl发展状况目前,硬件描述语言可谓是百花齐放,有vhdl、superlog、verilog、systemc、cynlib c++、c level等等。虽然各种语言各有所长,但业界对到底使用哪一种语言进行设计,却莫衷一是,难有定论。而比较一致的意见是,hdl和c/c++语言在设计流程中实现级和系统级都具有各自的用武之地。问题出现在系统级和实现级相连接的地方:什么时候将使用中的一种语言停下来,而开始使用另外一种语言?或者干脆就直接使用一种语言?现在看来得出结论仍为时过早。在2001年举行的国际hdl会议上,与会者就使用何种设计语言展开了生动、激烈的辩论。最后,与会者投票表决:如果要启动一个芯片设计项目,他们愿意选择哪种方案?结果,仅有2票或3票赞成使用systemc、cynlib和c level 设计;而superlog和verilog各自获得了约20票。至于以后会是什么情况,连会议主持人john cooley也明确表示:“5年后,谁也不知道这个星球会发生什么事情。”各方人士各持己见:为verilog辩护者认为,开发一种新的设计语言是一种浪费;为systemc辩护者认为,系统级芯片soc快速增长的复杂性需要新的设计方法;c语言的赞扬者认为,verilog 是硬件设计的汇编语言,而编程的标准很快就会是高级语言,cynlib c++是最佳的选择,它速度快、代码精简;superlog的捍卫者认为,superlog是verilog的扩展,可以在整个设计流程中仅提供一种语言和一个仿真器,与现有的方法兼容,是一种进化,而不是一场革命。当然,以上所有的讨论都没有提及模拟设计。如果想设计带有模拟电路的芯片,硬件描述语言必须有模拟扩展部分,像verilog hdl-a,既要求能够描述门级开关级,又要求具有描述物理特性的能力。 2 几种代表性的hdl语言2.1 vhdl 早在1980年,因为美国军事工业需要描述电子系统的方法,美国国防部开始进行vhdl的开发。1987年,由ieee(institute of electrical and electro- nics engineers)将vhdl制定为标准。参考手册为ieee vhdl 语言参考手册标准草案1076/b版,于1987年批准,称为ieee 1076-1987。应当注意,起初vhdl只是作为系统规范的一个标准,而不是为设计而制定的。第二个版本是在1993年制定

双口RAM应用实例

双端口RAM在高速数据采集中的应用 利用传统方法设计的高速数据采集系统由于集成度低、电路复杂,高速运行电路干扰大,电路可靠性低,难以满足高速数据采集工作的要求。应用FPGA可以把数据采集电路中的数据缓存、控制时序逻辑、地址译码、总线接口等电路全部集成进一片芯片中,高集成性增强了系统的稳定性,为高速数据采集提供了理想的解决方案。下面以一个高速数据采集系统为例介绍双端口RAM的应用。 该系统要求实现对频率为5MHz的信号进行采样,系统的计算处理需要对信号进行波形分析,信号采样时间为25μs。根据设计要求,为保证采样波形不失真,A/D采样频率用80MHz,采样精度为8位数据宽度。计算得出存储容量需要2K字节。其系统结构框图如图3所示,图4给出了具体电路连接图。

根据设计要求,双端口RAM的LPM_WIDTH参数设置为8,LPM_WIDTHAD 参数设置为11(211=2048),使用读写使能端及读写时钟。ADCLK、WRCLK和地址发生器的计数频率为80MHz。 A/D转换值对双端口RAM的写时序为顺序写方式,每完成一次A/D转换,存储一次数据,地址加1指向下一单元,因此写地址发生器(RAM_CONTROL)采用递增计数器实现,计数频率与ADCLK、WRCLK一致以保证数据写入时序的正确性。写操作时序由地址和时钟发生器、A/D转换时钟和双端口RAM的写时钟产生。停止采样时AD_STOP有效,写地址发生器停止计数,同时停止对RAM的写操作。将地址发生器的计数值接至DSP总线可以获取采样的首尾指针。地址发生器单元一般用(VHDL)语言编程实现,然后生成符号文件 RAM_CONTROL在上层文件调用。其部分VHDL语言程序如下: 对双端口RAM的读操作采用存储器映像方式,其读出端口接DSP的外扩RAM 总线,DSP可随机读取双端口RAM的任一单元数据,以方便波形分析。由于

范例-软件设计说明(详细部分).

软件设计说明

目录 1范围 (1) 1.1标识 (1) 1.2系统概述 (1) 1.3文档概述 (1) 2引用文档 (1) 3CSCI 级设计决策 (1) 4CSCI 体系结构设计 (2) 4.1CSCI部件 (2) 4.2执行方案 (3) 4.3接口设计 (3) 4.3.1接口标识和接口图 (3) 4.3.x (接口的项目唯一标识符) (4) 5CSCI 详细设计 (6) 5.X (软件单元的项目唯一标识符,或者一组软件单元的标志符) (6) 6需求可追踪性 (9) 7注解 (11) 附录A (11)

软件设计说明 1范围 1.1标识 要求:本节应包含这个文档所适用的系统和软件的完全标识,(若适用)应包括标识号、名称、缩略名、版本号及发布号。 1.2系统概述 要求: 1)本节主要描述本文档适用的系统和软件的用途; 2)概述系统开发、运行和维护的历史; 3)标识项目的投资方、需方、用户、开发方和保障机构; 4)标识当前和计划的运行现场; 5)列出其它有关文档。 1.3文档概述 本节应概述本文档的用途和内容,描述与它的使用有关的保密性或私密性考虑。 2引用文档 列出引用的所有文档,包括文档的编号、标题、修订版本和日期。 3CSCI 级设计决策 要求:本章应根据需要分节给出CSCI 级设计决策,即CSCI 行为设计的决策(忽略其内部实现,从用户角度出发描述系统将怎样运转以满足需求)和其它影响组成该CSCI 的软件单元的选择与设计的决策。如果在需求中所有这些决策是明确的,或者这些决策要推迟到CSCI 的软件单元的设计时指出,则本章应如实陈述。 针对关键性需求(例如对安全性、保密性、私密性等需求)作出的设计决策,应在专门的章节中加以叙述。 CSCI 级设计决策的例子如下: 1)关于CSCI 将接收的输入和将产生的输出的设计决策,包括与其它系统、HWCI、CSCI 和用户的接口(本文档的4.3.x 节指出本说明要考虑的主题); 2)有关响应每个输入或条件的CSCI 行为的设计决策,包括CSCI 要执行的动作、响应时间和其它性能特性,模型化的物理系统的说明,选定的方程式/算法/规则,以及对不允许的输入或条件进行的处理; 3)有关数据库/数据文件如何呈现给用户的设计决策(本文档的4.3.x 节标识了本说明

VHDL语言程序设计中INOUT端口的使用与实例分析

目录 1、双向电路的基本格式 (2) 2、控制条件 (3) 2.1、双向信号作一个信号的输入,作另一信号的输出 (3) 2.2、双向信号既做输出又做输出 (4) 3、实例说明-INOUT端口仿真暨三态门仿真 (6) 3.1、三态门的原理与仿真三态总线 (6) 3.3、VHDL 的三态门实现与仿真 (7) 参考文献 (12)

VHDL语言程序设计中INOUT端口的使用与实例分析 摘要:VHDL是由美国国防部为描述电子电路所开发的一种语言,其全称为(Very High Speed Integrated Circuit) Hardware Description Language。与另外一门硬件描述语言Verilog HDL相比,VHDL 更善于描述高层的一些设计,包括系统级(算法、数据通路、控制)和行为级(寄存器传输级),而且VHDL 具有设计重用、大型设计能力、可读性强、易于编译等优点逐渐受到硬件设计者的青睐。但是,VHDL是一门语法相当严格的语言,易学性差,特别是对于刚开始接触VHDL的设计者而言,经常会因某些小细节处理不当导致综合无法通过。VHDL共定义了5种类型的端口,分别是In, Out,Inout, Buffer及Linkage,实际设计时只会用到前四种。本文主要讨论讨论如何正确使用INOUT端口。 关键词:VHDL;INOUT端口;三态门原理 1、双向电路的基本格式 工程应用中,双向电路是设计者不得不面对的问题.在实际应用中,数据总线往往是双向的.如何正确处理数据总线是进行时序逻辑电路设计的基础.在程序设计过程中,关键技术在于:实体部分必须对端口属性进行申明,端口属性必须为inout类型,在构造体需要对输出信号进行有条件的高阻控制.在双向电路的处理问题上,常用的处理方式有两种,在介绍双向电路的处理方式之前,先看看双向电路的基本格式: ENTITY bidir_pin IS ( bidir : INOUT std_logic; oe, clk, from_core : IN std_logic; to_core : OUT std_logic; …… END bidir_pin; ARCHITECTURE behavior OF bidir_pin IS BEGIN

VHDL硬件描述语言实验报告

硬件描述语言实验附录 姓名:xxx 学号:xxx 指导教师:xxx 目录 硬件描述语言实验附录 (1) 实验1.三输入与门电路实验 (2) 实验2. 三—八译码器实验 (3) 实验3. D触发器实验 (4) 实验4. 分频器实验 (5) 实验5. 状态机实验 (8)

实验1.三输入与门电路实验 --三输入与门电路threeinput --姓名:王定 --学号:1306034248 --中北大学 LIBRARY IEEE; --调用库 USE IEEE.STD_LOGIC_1164.ALL;--库文件 -------------------------------------------------------------- ENTITY threeinput IS --定义实体名,其名称必须与VHDL文本文件名称相同PORT( A: IN STD_LOGIC; --输入端口,时钟输入 B: IN STD_LOGIC; --输入端口,个位写入使能 C: IN STD_LOGIC; --输入端口,十位写入使能 CO: OUT STD_LOGIC); --输出端口,溢出标志 END ENTITY threeinput; --结束端口定义 -------------------------------------------------------------- ARCHITECTURE RTL OF threeinput IS--定义结构体 BEGIN PROCESS(A,B,C) IS --开始,必须带上 BEGIN CO<=A AND B AND C ; END PROCESS; END ARCHITECTURE RTL; --结束结构体 表1. 三输入与门电路VHDL实验代码 图1. 三输入与门电路仿真波形图,A,B,C输入,CO输出

硬件描述语言实验报告

《硬件描述语言》实验报告 学院: 学号: 姓名: 专业: 实验时间: 实验地点: 指导教师: 年月

实验一简单组合逻辑设计 一、实验目的及要求: 1.掌握基本组合逻辑电路的实现方法。 2.初步了解两种基本组合逻辑电路的生成方法。 3.学习测试模块的编写。 4.通过综合和布局布线了解不同层次仿真的物理意义。 二、实验设备及要求 装有modesim和synplify的电脑一台 三、实验内容与步骤 1.实验内容: 本次实验采用Verilog HDL语言设计一个可综合的数据比较器,其功能是比较数据a与数据b的结果,如果两个数据相同,则输出结果1,否则给出结果0;并写出测试模型,使其进行比较全面的测试。 2.实验步骤: (1)建立工程文件,编写模块源码和测试模块,要求测试模块对源文件进行比较全面的测试; (2)编译源码和测试模块,用测试模块对源文件进行测试,并进行仿真;(3)观察综合后生成的文件和源文件的不同点和相同点。 (4)综合时采用不同的FPGA器件,观察综合后的结果有什么不同。 四、实验结果与数据处理: 1.RTL图及仿真后波形图:

2.综合后的电路图: 五、分析与讨论: 1.课本练习一的测试方法二中,第二个initial块有什么用?它与第一个initial块有什么关系? 答:测试方法二中的第二个initial用来暂停仿真以便观察仿真波形,它与第一个initial是并行关系 2.如果在第二个initial块中,没有写出#10000或者$stop,仿真会如何进行?答:如果没有写#10000,仿真会直接停止,没有$stop,仿真不会结束。

3.比较两种测试方法,哪一种更全面? 答:第二种测试方法更全面,测试了更多种的变换的情况。 实验二简单分频时序逻辑电路的设计 一、实验目的及要求: 1.掌握条件语句在简单时序模块设计中的使用; 2.掌握verilog语句在简单时序模块设计中的使用; 3.学习在Verilog模块中应用计数器; 4.学习测试模块的编写、综合和不同层次的仿真。 二、实验设备及要求 装有modesim和synplify的电脑一台 三、实验内容与步骤: 1.实验内容: (1)使用always块和@(posedge clk)或@(negedge clk)的结构来表述时序逻辑,设计1/2分频的可综合模型。得到如下波形图: (2)对模块进行RTL级仿真、综合后门级仿真,布局布线仿真; 2.实验步骤: (1)建立工程文件,编写模块源码和测试模块,要求测试模块能对源文件进行比较全面的测试。 (2)编译源码和测试模块,用测试模块对源文件进行测试,并综合仿真。得到波形图。 (3)观察综合后生成的文件和源文件的不同点和相同点。

硬件描述语言期末复习整理

硬件描述语言期末复习整理 1、EDA:Electronic Design Automation 现代电子设计技术的核心是EDA(Electronic Design Automation)技术。 EDA技术就是依靠功能强大的电子计算机,在EDA工具软件平台上完成电子系统的设计工作。 2、20世纪90年代以来,微电子工艺有了惊人的发展,工艺水平已经达到了深亚微米级(通常把0.8-0.35um称为亚微米,0.25um及其以下称为深亚微米) 3、用EDA技术设计电路可以分为不同的技术环节,每一个环节中必须有对应的软件包或专用的EDA工具独立处理。 4、EDA工具大致可以分为设计输入编辑器、仿真器、HDL综合器、适配器(或布局布线器)以及下载器等5个模块。 一般的设计输入编辑器都支持图形输入和HDL文本输入 图形输入通常包括原理图输入、状态图输入和波形图输入三种常用方法。 5、在EDA技术中仿真的地位非常重要,行为模型的表达、电子系统的建模、逻辑电路的验证以及门级系统的测试,每一步都离不开仿真器的模拟检测。 在EDA发展的初期,快速地进行电路逻辑仿真是当时的核心问题,即使在现在,各个环节的仿真仍然是整个EDA设计流程中最重要、最耗时的一个步骤。因此,仿真器的仿真速度、仿真的准确性和易用性成为衡量仿真器的重要指标。 6、硬件描述语言诞生的初衷是用于设计逻辑电路的建模和仿真 HDL综合器是将硬件描述语言转化为硬件电路的重要工具。 7、HDL综合器的输出文件一般是网表文件,是一种用于电路设计数据交换和交流的工业标准化格式的文件,或是直接用硬件描述语言HDL表达的标准格式的网表文件,或是对应FPGA/CPLD器件厂商的网表文件。 8、电路网表(逻辑图)由元件名N、模型M、输入端信号PI、输出端信号PO四部分组成,是唯一确定电路连接关系的数据结构。即:E=(N,M,PI,PO) 9、常用的编程语言 C、Pascal、Fortran、Basic或汇编语言-算法研究 硬件描述语言-设计和制造硬件逻辑专用电路 10、实时系统不能采用通用计算机系统,自行设计非常轻便小巧的高速专用硬件系统来完成该任务。 11、FPGA-用高密度的FPGA(从几万门、几十万门到几百万门)来构成完成算法所需的电路系统是一种较好的办法。 FPGA是一种通用的器件,它的基本结构决定了对某一种特殊应用,性能不如专用的ASIC 电路。 专用集成电路-利用现成的微处理机IP核或根据某一特殊应用设计的微处理机核(也可以没有微处理机核),并结合专门设计的高速ASIC运算电路,能设计出性能价格比最高的理想数字信号处理系统。 12、传统的设计方法:查用器件手册;选用合适的微处理器和电路芯片;设计面包板和线路板;调试;定型;设计复杂的系统(几十万门以上)极其困难。 13、美国和中国台湾地区逻辑电路设计和制造厂家大都以Verilog HDL为主。 1、可编程逻辑器件(PLD)是一种能将数字系统实现在硬件电路上的设备,即能在现场规

Verilog语言基础教程

Verilog HDL Verilog HDL是一种硬件描述语言,用于从算法级、门级到开关级的多种抽象 设计层次的数字系统建模。被建模的数字系统对象的复杂性可以介于简单的门和完整的电子数字系统之间。数字系统能够按层次描述,并可在相同描述中显式地进行时序建模。 Verilog HDL 语言具有下述描述能力:设计的行为特性、设计的数据流特性、设计的结构组成以及包含响应监控和设计验证方面的时延和波形产生机制。所有这些都使用同一种建模语言。此外,Verilog HDL语言提供了编程语言接口,通过该接口可以在模拟、验证期间从设计外部访问设计,包括模拟的具体控制和运行。 Verilog HDL语言不仅定义了语法,而且对每个语法结构都定义了清晰的模拟、仿真语义。因此,用这种语言编写的模型能够使用Verilog仿真器进行验证。语言从C编程语言中继承了多种操作符和结构。Verilog HDL提供了扩展的建模能力,其中许多扩展最初很难理解。但是,Verilog HDL语言的核心子集非常易于学习和使用,这对大多数建模应用来说已经足够。当然,完整的硬件描述语言足以对从最复杂的芯片到完整的电子系统进行描述。 =============================== 中文版Verilog HDL简明教程:第1章简介 Verilog HDL是一种硬件描述语言,用于从算法级、门级到开关级的多种抽象设计层次的数字系统建模。被建模的数字系统对象的复杂性可以介于简单的门和完整的电子数字系统之间。数字系统能够按层次描述,并可在相同描述中显式地进行时序建模。 Verilog HDL 语言具有下述描述能力:设计的行为特性、设计的数据流特性、设计的结构组成以及包含响应监控和设计验证方面的时延和波形产生机制。所有这些都使用同一种建模语言。此外,Verilog HDL语言提供了编程语言接口,通过该接口可以在模拟、验证期间从设计外部访问设计,包括模拟的具体控制和运行。 Verilog HDL语言不仅定义了语法,而且对每个语法结构都定义了清晰的模拟、仿真语义。因此,用这种语言编写的模型能够使用Verilog仿真器进行验证。语言从C编程语言中继承了多种操作符和结构。Verilog HDL提供了扩展的建模能力,其中许多扩展最初很难理解。但是,Verilog HDL语言的核心子集非常易于学习和使用,这对大多数建模应用来说已经足够。当然,完整的硬件描述语言足以对从最复杂的芯片到完整的电子系统进行描述。 历史 Verilog HDL语言最初是于1983年由Gateway Design Automation公司为其模

相关主题
文本预览