当前位置:文档之家› 设计你的第一个空冷器

设计你的第一个空冷器

设计你的第一个空冷器
设计你的第一个空冷器

设计你的第一个空冷器01界面熟悉

1.双击快捷图标,打开程序界面:

HTRI启动界面

2.创建一个“新的空冷器”

3.设置自己熟悉的一套单位制,比如MKH公制,也可以通过来自定义。

4.接下来就是将界面中的“红框”也就是缺少的参数按你将要设计的工况填写完整,包括如下几部分的数据,

4.1 “Process”工艺条件:包括热流体侧和空气侧;

4.2 “Geometry”机械结构:包括管子、管束、风机等;

5.当输入数据足够所有的红框消失,那么初步的输入就完成了,可以点击"绿灯"图标运行。

02 工艺参数输入

1.点击左边目录栏的“Process”标签,右边显示的就是供工艺参数输入的界面:

2.我们从上到下依次来看需要输入的参数:*为必要输入参数

2.1 Fluid name –流体名称,这里没有红框,不是必须输入的,就是自己定义下流体描述比如“Propylene”“Oil”“Wet Air”等,要注意的是程序对中文字符不支持,那么大家多写写英文就是了~

本帖隐藏的内容

2.2 Phase/Airside flow rate units –流体相态/空气侧的流量单位

*2.3 Flow rate –流量不必多解释,热侧为质量流量。

2.4 Altitude of unit(above sea level) –海拔高度

*2.5 Temperature –流体的温度,单位°C (SI,MKH), °F(US),这里要注意的是想输入0度,那么请填 0.001,不然0或0.0的输入都将被程序认为是没有输入(这个原则在HTRI程序的其他地方也适用)。

2.6 Weight fraction vapor –重量气相分率,那么全气相就是1,全液相就是0咯。

2.7 Pressure reference –压力参照点,就是接下来你输入的操作压力值指的是进口压力还是出口压力。

2.8 Pressure–操作压力。

2.9 Allowable pressure drop –允许压降,按照工艺条件来选择,一般热流体侧用kPa比较直观,而空气侧常常使用mmH2O。

2.10 Fouling resistance –污垢热阻,是一个大于0的数,单位为m2°C/W (SI), hr ft2°F/Btu (US),m2°C hr/kcal (MKH)。这里注意的是最好按照流体

的实际情况来取值,如果取值过大意味着在换热器操作初期或介质其实很干净的

情况下,换热器的余量会过大,反而影响了正常运行。

2.11 Fouling layer thickness –污垢层厚度,通常认为与污垢系数有如下的

关系图,不过通常设计时很少在此处输入数值。

*2.12 Exchanger duty –换热负荷,如果上面的参数输入满足了计算出换热负荷,这里就不必要再输入,如果在此输入了确定的负荷值,那么程序将以输入值

为准来计算换热流体的出口温度。

2.13 Duty/flow multiple –负荷/流量系数,这里其实提供了一个简化负荷变

化核算的工具,比如要核算110%负荷的运行工况,那么只需要在此填入“1.1”,

而不必要去修改输入的流量值。

3.当输入数据足够,所有的红框消失,那么初步的输入就完成了,可以点击“绿灯”图标运行。

03热流体物性参数输入

1.对于空冷器的流体物性输入界面,因为冷侧是空气,所以只需对热侧

的物性参数进行输入,如下图左侧目录。只有用Xace设计“省能器”时,冷侧介质不一定为空气,那么冷侧物性也需要输入。

2.下面我们按从上到下的次序来看看都需要定义那些参数。

本帖隐藏的内容

2.1 Fluid name –流体名称,在此可以填入热物流的英文描述,

比如“Hot Oil”。

2.2 Physical Property Input Option –物性输入方式的选项

@User-specifiedgrid (Recommended) –用户自定义的物性表(推荐)

就是填入在一定温度范围和一定压力范围内的包括,密度,粘度,导热系数和热容等必要物性的表,这种输入方式适用于从1模拟软

件导入物性,2软件的“物性生成器”自生成或3非理想物性但通过实验、文献等手段能获得物性的方式,这种输入方式也是使用得最广泛。

由上图也可看出,程序最多支持输入30个温度点,最多支持12组

压力点;而最少需要3个温度点,最少要一组操作压力点下的参数。

@Program calculated –由程序计算

输入物质组成,由程序通过特定的热力学方法计算出需要的物性,这种输入方法通常用于组成清晰,每种物质在程序物性库中都存在,并且用混合规则计算的物性准确。可以这么说,是适用于纯物质或理想

混合物。

程序自带的物性库包括“HTRI”、“VMG”,如果你有其他模拟软件

的授权,就有对应的接口,灰色的“Not Available”就会消失变得可用。通常由HTRI内嵌的VMG物性库就很够用啦~

@Combination –组合

是两种输入方法的组合,在输入组成的条件下,同时又通过物

性表来定义了一部分物性,这种方式用得较少。

2.3 Property Options/ Temperature interpolation –属性选

项之温度插值方法

@Program –程序默认,也即是“Quadratic”。

@Linear –线性,以直线连接温度点,中间点的物性就由斜率

计算出。

@Quadratic–二次式,计算三点温度的表达式,中间点的物性

就由此二次式计算出。

*这里需要注意的是,对于外推的物性,程序都是以对最外端两个温度点

线性的方式外推计算的。

2.4 Fluid compressibility –流体压缩因子

如果没有输入,那么程序按理想气体计算。

2.5 Numberof condensing components –可冷凝成分数量

定义1个或多个可冷凝成分,程序将修正冷凝相变的传热计式。

2.6 Pure component –纯物质

程序默认在计算冷凝时加入适当的阻力系数来体现多组分冷凝过程,如果在此定义为“Yes”纯组分,那么这个修正的阻力系数将不体现。

3.当输入数据足够,所有的红框消失,那么初步的输入就完成了,可以点击“绿灯”图标运行。

-> 微信公众号@HTRICN 关注接下来的【Xace】设计你的第一个空冷器_04空冷结构参数输入

04.0空冷结构参数输入

1.今天开始我们来看一下空冷器结构参数的输入,如左边目录,进入“Geometry”页面,空冷器的主要结构包括,管束、风机、构架。右边显示的是总输入界面,罗列了结构的主要参数。

2.1对于型式(Unit type),程序分了4种:

@Air-Cooled Heat Exchanger - 空气冷却器

管外介质是空气,并配有风机。

@Natural Draft Air-Cooler –自然对流式空气冷却器

管外介质是空气,无风机强制空气循环,可以理解为风机停开的工况。 @Economizer –省能器

管内外的介质无限制,只是不适用于在高翅片管或螺旋翅片管外的蒸发和冷凝工况。

@A-frame air cooler - A型空气冷却器

管外是空气,适用于管内单相或冷凝的工况,采用水平与垂直的组合算法来计算传热和压降,若是冷凝工况最多设2管程,第2程上升冷凝采用的是回流冷凝方法来计算传热系数和压降。

本帖隐藏的内容

2.2 对于空冷类型,程序分了4种:

@Horizontal–水平

@Vertical(top inlet) –垂直上进

@Vertical(bottom inlet) –垂直下进

@Inclined–倾斜

2.3 当类型为“Economizer”,省能器时,热物流就需要定义。

@Inside tube–管内走热流体

@Outsidetube –管外走热流体

2.4当类型为“A-frame air cooler - A型空气冷却器”,倾斜角选项会打开并需要定义,1-89度。

Apex angle –尖部角度,如图示意。

2.5 Numberof bays in parallel per unit –每个单元并联的跨数量2.6 Numberof bundles in parallel per bay –每跨里并联的管束数量

2.7 Numberof tubepasses per bundle –每个管束里的管程数

在管子与管束的结构定义里:

2.8 管子类型分为1Plain光管、2低翅片管、3高翅片管、4连续翅片管。

2.9 再输入OD管外径、Wall thickness管壁厚、No. of tuberows管排数、odd/even rows奇排管数/偶排管数

2.10 管间距输入

2.11 管子型式包括:

2.12 风机的参数包括:

@Number of fans/bay - 每跨的风机数,默认为2.

@Fan arrangement –风机的布置为1在下鼓风式,2在上引风式.

@Fan diameter –风机直径

@Fan ring –风机环

3.当输入数据足够,所有的红框消失,那么初步的输入就完成了,可以点击“绿灯”图标运行。

04.1构架单元参数输入

1.如左侧目录,我们点击“Unit”进入构架单元的参数输入,其上级目录为Geometry,在上一节中我们已经熟悉了许多关键参数的输入,这一级的页面是更进一步的输入。

2. 其他参数见上一节介绍。

2.1Flow type –流动形式

@Cocurrent –并流

@ Countercurrent –逆流

本帖隐藏的内容

2.2 No. of services –多台空冷串并联

2.3 Nozzle database / Schedule–管口数据库/对应管道等级表

包含了13种 ANSI、JIS、DIN、ISO标准数据库表文件,以及对应的管道等级表,选择适合你的。

2.4 Entry type/Exit type –热物流进出管口型式,如图中示意,程序认为出口型式与进口一致。

2.5 Tubeside nozzle inside diameter –管口的内径和外径,当然可以从各标准的列表中选择。

2.6 Number of nozzle per bundle –每个管束的管口数量。

3.当输入数据足够,所有的红框消失,那么初步的输入就完成了,可以点击“绿灯”图标运行。

04.2风机参数输入

1.如左侧目录,我们点击“Fans”进入风机的参数输

入。

空冷器样本

空冷式换热器 1.空冷器型号的说明 为方便用户,我公司空冷器型号均参照GB/T15386-97《空冷式换热器》编制。 1.1管束 1.1.1管束型号的表示方法: □□□□□□□/□□□□ 翅片管基管材料(见1.1.2) 法兰密封面形式(见表1) 管程数(用罗马数字表示) 翅片管形式(见表3) 翅化比(见表2) 管箱型式(见表1) 设计压力 管束换热面积 管排数 管束公称直径:长×宽m 管束型式(见表1) 1.1.2管束型式与代号见表 表1 管束型式与代号 翅片管基管材料:当选用碳钢时可缺省,当选用武汉市润之达石化设备有限公司S、Cl-腐蚀稀土合金材料09Cr2AlMoRE时标注D,12Cr2AlMoV时标注R,选用其的抗H 2 它材料也应标注。 标注示例: a.鼓风式水平管束:长9m、宽2m;6排管;基管换热面积140m2;设计压力4Mpa;可卸盖板式管箱;双金属轧制翅片管,翅化比23.4;Ⅵ管程;接管法兰密封面凹凸面;材料09Cr2AlMoRE,管束型号为:GP9×2-6-140-4.0K1-23.4/DR-VIMFMD。 b.引风式水平管束:长9m、宽3m;6排管;基管换热面积193m2;设计压力2.5Mpa;丝堵式管箱;L型翅片管,翅化比23.4;Ⅱ管程;接管法兰密封面环连接面;材料为碳钢的管束型号为:YP9×3-6-193-2.5S-23.4/L-ⅡRJ。

表2 翅化比及迎风面积比(参照JB/T4740-1997)

1.2构架 1.2.1构架型号表示方法: □□□□ 风箱型式(见表3) 风机直径×102mm/台数 构架公称尺寸长×宽m(对斜顶式构架为长×宽×斜边长) 开(闭)型 构架型式(见表3) 标注示例: a.鼓风式空冷器水平构架长9m、宽4m;风机直径3000mm,2台,方箱型风箱;闭式构架型号为:GJP9×4B-30/2F。 1.2.2型式与代号 表3 1.3风机 1.3.1风机型号表示方法: □□□□□□□ 电动机功率KW 风机传动方式(见表4) 叶片数(见表4) 叶片型式(见表4) 叶轮直径×102mm 风量调节方式(见表4) 通风方式(见表4) 标注示例: a.鼓风式,停机手动调角风机;直径2400mm、B型玻璃钢叶片;叶片数4个;悬挂式电动机轴朝上V带传动、电动机功率18.5KW的风机型号:G-TF24B4-Vs18.5 b.引风式,自动调角风机;直径3000mm、R型玻璃钢叶片;叶片数6个;悬挂式电动机轴朝上V带传动、电动机功率15KW的风机型号:Y-2FJ30R6-Vs15

空冷器配管设计导则

空冷器配管设计导则 AIR COOLERS PIPING ARRANGMENT NOTES: 1.在空气冷却器(AIR FAN COOLER)中,被冷却流体在管路中应往下流。塔 槽顶部与空气冷却之进口端间,管路不可有POCKET; 2.在空气冷却器之流体为二相流时,入口需为对称配管; 3.空气冷却器之进口NOZZLE多于6小时,须先分二股进入,以使入口分配 均匀,四个以下的NOZZLE可同时由一侧进入; 4.进口端管线和其相接设备间的管线,在挠性允许范围内,愈短愈好; 5.进口管线常为高温,热膨胀量较大,且空气冷却之NOZZLE极为脆弱,故 特别考虑管线之挠性、应力、支撑问题; 6.空气冷却器在配置时,须考虑马达,风扇之维护,吊装空间; 7.空气冷却器之操作平台,在CROSS WALKWAY和CENTER WALKWAY之 宽度为760MM。两翼侧端之宽度MIN.为1,200MM,当空器冷却器之长度超过15M时,须另做一个CROSS WALKWAY; 8.在进出口端之维护平台其宽度为760MM,并须有爬梯和CROSS WALKWAY 相连接; 9.爬梯起点在地面,当操作平台高于3M,或爬梯起点于平台上,平台与平台 之高度超过2.4M时,皆须加GAGE以确保安全; 10.当须装置THERMOWELL CONNECTION和PRESSURE GATE时,尽可能 接近NOZZLE; 11.在空气冷却器进口端须加装一对FL’G以利于拆卸维护空气冷却器时之吊 装; 12.气体在MAIN HEADER中将会产生CONDENSATE,而使管路堵塞,故必须 将MAIN HEADER置于较AIR COOLER之INLET NOZZLE为高之地方,切不可妨碍维护、吊装空间; 13.为了减少压力降,从MANIFOLD至AIR COOLER NOZZLE.之管路可配置 呈直线,并且越短越好,如此才可推动AIR COOLER, 利用AIR COOLER 之CAP来吸收膨胀量; 14.栏杆和AIR COOLER之空间须保持150-200之距离,以利于维护操作; 15.在DOUBLE PASS之AIR COOLER中,OUTLET和INLET在同一侧时,则 须再详细考虑膨胀量之大小和方向,而决定是否可为直线配管(NOZZLE到HEADER), 或作LOOP来降低NOZZLE之受力; 16.利用HEADER BOX间之GAP还无法达到完全吸收其膨胀量时,可同时使 用COOL SPRING之方法来补助; 17.利用HEADER BOX之GAP来吸收管线热膨胀量时,GAP之大小必须依API 661CODE之规定,且须详细核对场上制造图及计算膨胀量。

空冷器施工方案(水平式)

1、工程概述 宝氮集团10万吨/年甲醇制芳烃工程合成油装置共有空冷器两台(C40211、C40212),分布在402A管廊和402B1#钢平台上。C40211共6片,合计重量110.63t,其中单片管束重量为6.55t;C40212共2片,合计重量28.6t,其中单片管束重量为8.45t。C40211空冷器及构架安装于管廊框架顶部13m标高上,C40212空冷器及构架安装于1#钢平台顶部11m 标高上。为安全、高效、高质量的完成空冷器安装施工任务,特编制此施工方案。 2、编制依据 2.1重庆天瑞制造厂家所带随机资料及安装指导说明书 2.2石油化工设备安装工程质量检验评定标准 SH3514-2001 2.3中低压化工设备施工及验收规范 HGJ209-83 2.4空冷式换热器 GB/T15386-94 2.5钢结构工程施工及验收规范 GB50205-2001 3、管理组织机构

a.项目经理负责进度、质量、安全、技术全面工作,对整个项目工作负全责。 b.项目总工负责组织施工方案及施工作业指导书的编审,和重要施工方案的编制、交底;组织工地内部的工序交接,并负责组织二级质量验收工作。 c.技术部在项目经理的直接领导下,对项目的技术管理、质量管理、信息管理工作全面负责。负责组织向施工负责人进行书面施工技术交底。指导、检查技术人员的日常工作。复核特殊过程、关键工序的施工技术交底。检查、指导现场施工人员对施工技术交底的执行落实情况,及时纠正现场的违规操作编制施工过程中的重大施工方案,并按规定及时向上级技术管理部门报审。 d.质安部负责对工程质量进行监督检查,负责工地的二级质量验收工作,配合质检部门及监理公司进行三级验收工作。 e. 设材部负责所领取的材料符合设计要求,无质量保证书或合格证者不给予领用。施工工机具,无合格证的工器具及到期未经检验的计量器 具,不得进行发放。

空冷器的设计(英文)

I don't know who will be interested with my topic. Any way I’ll try my best to squeeze out my time to write more.
Today’s topic: Air-cooled Heat Exchanger Design
Highly recommended Technical Paper: “Effectively Design Air-cooled Heat Exchangers”, by R. Mukherjee, published on CHEMICAL ENGINEERING PROCESS / FEB 1997 Page 26 to 46. Abstract: This primer discusses the thermal design of ACHEs and the optimization of the thermal design, and offers guidance on selecting ACHEs for various applications. API 661—Petroleum, petrochemical and natural gas industries—Air –Cooled heat exchangers Applications:
? ? ? ? ? ? ? ? ? ? ?
Forced and induced draft air cooled heat exchangers Recirculation and shoe-box air cooled heat exchangers Hydrocarbon process and steam condensers Large engine radiators Turbine lube oil coolers Turbine intercoolers Natural gas and vapor coolers Combustion pre-heaters Flue gas re-heaters Lethal service Unique customizations
Recommend Vendor: Hudson Products Corporation GEA Rainey Corporation Jord International Korea Heat Exchanger Ind. Co., Ltd. FBM Hudson Italiana SpA Air Cooler Design Heat Transfer Basics Air cooled heat exchangers rely on thermodynamic properties of heat transfer. Specifically, heat transfer is energy released over time. Two standard formulas used to calculate heat transfer are as follows:
? ?
Duty=Fluid Mass Flow * Cp * Delta T The overall heat-transfer coefficient, U, is determined as follows:

空冷器计算过程

空冷器计算过程 空冷器 空冷器换热效果好,结构简单,节约水资源,没有水污染等问题,比水冷更经济,故选用空冷器。 1.计算依据 (1)进出空冷器的流量和组成: 组分 (2)设计温度40℃ (3)进空冷器温度420℃,出空冷器温度80℃ (4)进出口压力0.06MPa(表压) (5)换热量Q=2.37×106KJ/h 2.设计计算(参考资料《化工装置的工艺设计》) 查《化工装置的工艺设计》表9-31得轻有机物的传热系数为10英热单位/英尺2.h. 换算为国际单位制:K=10×0.86×4.18=204.25KJ/m2.h.℃ 假设空气温升15.3℃ 按逆流:△t1=420-55.3=364.7℃ △t2=80-40=40℃ △tm1=146.91℃ 取温差校正系数Φ=0.8 △tm=△tm1.Φ=146.91×0.8=117.53℃ 则所需普通光管的表面积: A0=Q/K.△tm(4—1) =2.37×106/(204.25×117.53 =98.73m2 由(T2-T1)/K=1.86查《化工装置的工艺设计》图9-120得: 最佳管排数为n=6 又由n=6查表9-33得 迎面风速FV=165米/分 表面积/迎风面积=A0/F2=7.60 则:F2=A0/7.60=98.73/7.60=12.99m2 由F1= Q/(t2-t1)FV17.3 (4—2) 式中Q—换热量,Kcal/h

(t2-t1)—空气温升 FV—迎面风速,米/分 代入数据F1=2.37×106/(15.3×165×17.3=12.98m2 取ξ=0.01 F2-F1=12.99-12.98=0.01≤ξ 即空气出口温度假设合理 以光管外表面为基准的空冷器的换热面积为98.73m2 参考鸿化厂选φ377×12的换热管 管长L=98.73×4/π×0.3532=1010米 管内流速u=143.07×22.4×4/π×0.3532=2762.5m/h=9.2m/s u=9.2m/s符合换热管内流速范围15—30米/秒,故换热管选择合理空冷器规格及型号:φ377×1010 F=98.73m2 评价,未作翅片面积核算。。。

HTRI空冷器教程

H T R I7教程 01界面熟悉 1.双击快捷图标,打开程序界面: HTRI启动界面 2.创建一个“新的空冷器” 3.设置自己熟悉的一套单位制,比如MKH公制,也可以通过来自定义。 4.接下来就是将界面中的“红框”也就是缺少的参数按你将要设计的工况填写完整, 包括如下几部分的数据, 4.1 “Process”工艺条件:包括热流体侧和空气侧; 4.2 “Geometry”机械结构:包括管子、管束、风机等; 5.当输入数据足够所有的红框消失,那么初步的输入就完成了,可以点击"绿灯"图标 运行。 02?工艺参数输入 1.点击左边目录栏的“Process”标签,右边显示的就是供工艺参数输入的界面:?? 2.我们从上到下依次来看需要输入的参数:*为必要输入参数 2.1 Fluid name –?流体名称,这里没有红框,不是必须输入的,就是自己定义下流 体描述比如“Propylene”“Oil”“Wet Air”等,要注意的是程序对中文字符不支 持,那么大家多写写英文就是了~ 本帖隐藏的内容 2.2 Phase/Airside flow rate units –?流体相态/空气侧的流量单位 *2.3 Flow rate –?流量不必多解释,热侧为质量流量。 2.4 Altitude of unit(above sea level) –?海拔高度 *2.5 Temperature –?流体的温度,单位°C (SI,MKH), °F(US),这里要注意的是 想输入0度,那么请填 0.001,不然0或0.0的输入都将被程序认为是没有输入(这 个原则在HTRI程序的其他地方也适用)。 2.6 Weight fraction vapor –?重量气相分率,那么全气相就是1,全液相就是0咯。 2.7 Pressure reference –?压力参照点,就是接下来你输入的操作压力值指的是进 口压力还是出口压力。 2.8 Pressure–?操作压力。 2.9 Allowable pressure drop –?允许压降,按照工艺条件来选择,一般热流体侧 用kPa比较直观,而空气侧常常使用mmH2O。 2.10 Fouling resistance –?污垢热阻,是一个大于0的数,单位为m2°C/W (SI), hr ft2°F/Btu (US),m2°C hr/kcal (MKH)。这里注意的是最好按照流体的实际情况

空冷冷凝器设计

空冷冷凝器设计 摘要:冷凝器是各工业部门中重要的换热设备之一。换热器作为热量传递中的过程设备,在化工、冶金、石油、动力、食品、国防等工业领域中应用极为广泛。换热器性能的好坏,直接影响着能源利用和转换的效率。近年来,节能工作开始被全球所重视,而换热器特别是高效换热器又是节能措施中关键的设备。因此,无论是从上述各工业的发展,还是从能源的有效利用,换热器的合理设计、制造、选型和运行都有非常重要的意义。 本设计是关于管翅式空冷器的设计。主要内容是进行了冷凝器的工艺计算,结构设计和强度校核。设计内容首先是传热计算,主要是根据设计条件计算换热面积。其次是结构设计以确定各部件的尺寸。最后还包括是强度计算与校核,主要包括管箱结构与校核和支架的校核。 关于设计管翅式冷凝器的各个环节,在后面设计书中做详细的说明。 关键词:冷凝器;传热;结构;强度;管翅式换热器;

Design of Air-cooled Condenser Abstract:Condense is one of the most important heat exchanging equipments in industrial field. As a heat transfer in the processing equipment, exchanger is widely applied in chemical industry, metallurgy, oil, power, food, defense industry. In recent years, the problem of energy-saving is beginning to be regarded all over the world. And heat exchanger, particularly efficient heat exchanger,It is the key to energy-saving equipment. Therefore, whether from the foregoing the development of industry, or from efficient energy use, the reasonable heat exchanger design, manufacturing, selection and running all have very important significance. The manual is about the Finned tube condenser,which included process calculation , the structural design and intensity . The first part of this manual is the heat transfer’s calculation. Mainly, it is according to the given design conditions to estimate the heat exchanger area. Next is the structure design to determine the size of the components. Finally also including the strength calculation and checking, mainly including the Tube Box’s structure and the support checking. About the design of the Finned tube condenser,The detailed content is in the back of the design instructions. Key words: Condenser ; Heat transfer; Structure; Strength Finned tube exchanger

HTRI空冷器教程

HTRI7 教程01界面熟悉 1.双击快捷图标,打开程序界面: HTRI启动界面

2.创建一个“新的空冷器” 3.设置自己熟悉的一套单位制,比如MKH公制,也可以通过来自定义。

4.接下来就是将界面中的“红框”也就是缺少的参数按你将要设计的工况填写完整,包括如下几部分的数据, 4.1 “Process”工艺条件:包括热流体侧和空气侧; 4.2 “Geometry”机械结构:包括管子、管束、风机等;

5.当输入数据足够所有的红框消失,那么初步的输入就完成了,可以点击"绿灯"图标运行。 02工艺参数输入 1.点击左边目录栏的“Process”标签,右边显示的就是供工艺参数输入的界面:

2.我们从上到下依次来看需要输入的参数:*为必要输入参数 2.1 Fluid name –流体名称,这里没有红框,不是必须输入的,就是自己定义下流体描述比如“Propylene”“Oil”“Wet Air”等,要注意的是程序对中文字符 不支持,那么大家多写写英文就是了~ 2.2 Phase/Airside flow rate units –流体相态/空气侧的流量单位

*2.3 Flow rate –流量不必多解释,热侧为质量流量。 2.4 Altitude of unit(above sea level) –海拔高度 *2.5 Temperature –流体的温度,单位°C (SI,MKH), °F(US),这里要注意的是想输入0度,那么请填 0.001,不然0或0.0的输入都将被程序认为是没有输入(这个原则在HTRI程序的其他地方也适用)。 2.6 Weight fraction vapor –重量气相分率,那么全气相就是1,全液相就是0咯。 2.7 Pressure reference –压力参照点,就是接下来你输入的操作压力值指的是进口压力还是出口压力。 2.8 Pressure–操作压力。 2.9 Allowable pressure drop –允许压降,按照工艺条件来选择,一般热流体侧用kPa比较直观,而空气侧常常使用mmH2O。

空冷器配管设计规定122

中国石化集团兰州设计院标准 SLDI 333C06-2001 空冷器配管设计规定 2001-01-08 发布 2001-01-15 实施 中国石化集团兰州设计院

目录 第一章总则 第二章空冷器的布置 第三章空冷器的管道布置

中国石化集团兰州设计院实施日期:2001-01-15 第一章 总则 第1.0.1条 本规定适用于石油化工装置内引风式空冷器(见图1.0.1-1,图1.0.1-2)和鼓风式空冷器(见图1.0.1-3)的管道布置。 第1.0.2条 空冷器的管道布置,除应执行本规定外,还应符合空冷器制造厂的安装技术要求。 图1.0.1-1 引风式空冷器管道布置 图1.0.1-2 引风式空冷器

图1.0.1-3 鼓风式空冷器 第二章空冷器的布置 第2.0.1条空冷器宜布置在装置的上风侧,见图2.0.1。 第2.0.2条两组空冷器应靠紧布置,不应留出间距,见图2.0.2。 第2.0.3条多组空冷器应靠近布置,若分开布置,间距应大于20米。见图2.0.3。 图2.0.3 多组空冷器的布置

第2.0.4条引风式空冷器与鼓风式空冷器布置在一起时,引风式空冷器应布置在鼓风式空冷器的常年最小频率风向的下风侧,见图2.0.4。 图2.0.4 引风式空冷器与鼓风式空冷器的相邻布置 第2.0.5条同类空冷器的管束应布置在同一高度。引风式空冷器与鼓风式空冷器布置在一起时,其管束高度不得一致,鼓风式空冷器的管束应布置得高些,见图2.0.5。 图2.0.5 引风式空冷器与鼓风式空冷器的联合布置 第2.0.6条空冷器与加热炉之间的距离不应小于15米。 第2.0.7条倾斜安装的斜顶式空冷器的通风面不应对着夏季的主导风向。 第2.0.8条安装在管廊上方的空冷器,其支腿的间距应和管廊柱的间距一致。 第2.0.9条输送操作温度高于340℃的液体物料泵或输送操作温度高于物料自燃点的泵不应安装在空冷器框架下方。 第2.0.10条输送的易燃物料泄漏时会形成蒸气团的泵不应安装在空冷器框架的下方。 第2.0.11条放热设备不宜放在空冷器框架的下方。 第2.0.12条顶部平台的设置应便于管束的检修以及百页窗角度的调节,见图1.0.1-3,图2.0.11。 第2.0.13条风机、电动机检修平台可按图1.0.1-3的方式设置,也可用管廊顶层作为该检修平台,见图2.0.12。如果按图1.0.1-3的方式设置检修平台时,管道应能在平台与管廊之间进、出管廊,见图1.0.1-1。 图2.0.12 鼓风式空冷器管道布置

设计你的第一个空冷器

设计你的第一个空冷器01界面熟悉 1.双击快捷图标,打开程序界面: HTRI启动界面

2.创建一个“新的空冷器” 3.设置自己熟悉的一套单位制,比如MKH公制,也可以通过来自定义。

4.接下来就是将界面中的“红框”也就是缺少的参数按你将要设计的工况填写完整,包括如下几部分的数据, 4.1 “Process”工艺条件:包括热流体侧和空气侧; 4.2 “Geometry”机械结构:包括管子、管束、风机等;

5.当输入数据足够所有的红框消失,那么初步的输入就完成了,可以点击"绿灯"图标运行。 02 工艺参数输入 1.点击左边目录栏的“Process”标签,右边显示的就是供工艺参数输入的界面:

2.我们从上到下依次来看需要输入的参数:*为必要输入参数 2.1 Fluid name –流体名称,这里没有红框,不是必须输入的,就是自己定义下流体描述比如“Propylene”“Oil”“Wet Air”等,要注意的是程序对中文字符不支持,那么大家多写写英文就是了~ 本帖隐藏的内容 2.2 Phase/Airside flow rate units –流体相态/空气侧的流量单位

*2.3 Flow rate –流量不必多解释,热侧为质量流量。 2.4 Altitude of unit(above sea level) –海拔高度 *2.5 Temperature –流体的温度,单位°C (SI,MKH), °F(US),这里要注意的是想输入0度,那么请填 0.001,不然0或0.0的输入都将被程序认为是没有输入(这个原则在HTRI程序的其他地方也适用)。 2.6 Weight fraction vapor –重量气相分率,那么全气相就是1,全液相就是0咯。 2.7 Pressure reference –压力参照点,就是接下来你输入的操作压力值指的是进口压力还是出口压力。 2.8 Pressure–操作压力。 2.9 Allowable pressure drop –允许压降,按照工艺条件来选择,一般热流体侧用kPa比较直观,而空气侧常常使用mmH2O。

空气冷却器设计

空气冷却器设计 2、应完成的项目:______________________________________________________________________ (1)了解换热器在各行业的用途; (2)换热器机械计算; (3)传热工艺计算; (4)画施工图,折合为3张以上0号图,其中总装图为0号图; (5)按规定和规范翻译参考文献5000汉字,并写毕业论文。 3、参考资料以及说明:__________________________________________________________________ (1)《GB151-99钢制管壳式换热器》国家技术监督局发布 (2)《GB151-98钢制管壳式换热器》国家技术监督局发布 (3)《AutoCAD2005压力容器设计》_____________ 栾春远编著,化学工业出版社 (4)《过程设备设计》郑津洋等著,化学工业出版社___________________________________ (5)《化工设备设计手册》上下卷朱有庭,曲文海,于浦义主编 (6)《机械设计手册》,化学工业出版社 (7)《化工原理》上下册,邹华生等主编,华南理工大学出版社

(8)压力容器安全技术监察规程.国家技术监督局 (9)换热器设计.上海科学技术出版社,1987 (10)流体力学与传热.华南理工大学出版社,2006 摘要 本文主要围绕空气冷却器,即卧式固定管板式换热器的设计展开说明,本说明共分五章。 第一章为绪论,主要介绍本设计课题的选题背景,选题意义以及调研情况,并对本设计的主要工作进行规划。 第二章为方案论证,对换热器的传热原理进行了简述。并对换热器进行了分类,并对各类换热器作了简短的描述,最后着重介绍了本次设计主题,固定管板式换热器。 第三章为设计论述,对固定管板式换热器的主要部件的设计作了详细的描述,其中包括:管程的设计,筒体的设计与强度校核,折流板的设计,管箱的设计与强度校核,封头的设计与强度校核,管板的设计与强度校核,是否安装膨胀节的判定,鞍式支座的选取与开孔补强的计算。 第四章为结果的汇总与分析,主要将第三章的计算内容进行了汇总并作了补充说明,然后对其他的标准附件进行了选择。 第五章为总结,总结了本次设计的不足,介绍了换热器在近期的发展与未来的趋势。 关键词:空气冷却器,固定管板式换热器,传热,管板,发展

空冷冷凝器计算说明书

课设题目:空冷冷凝器 一、设计条件: 某空调制冷机组采用空气冷却式冷凝器,要求制冷剂冷凝液过冷度5℃,压缩机在蒸发温度5℃,冷凝温度45℃时的排气温度为80℃,压缩机实际排气量为160kg/h;冷凝器空气进口温度为35℃。 二、其他参数 1、制冷剂采用R134A 2、采用肋片管式空冷冷凝器 3、传热管采用紫铜套铝片,参数自定,正三角形排列(错排) 三、完成内容 1.确定冷凝器热负荷,并进行冷凝器设计计算 2.提交计算程序以及计算说明书 3.相关工程图纸 一、计算冷凝器热负荷 由所给条件画出压焓图 1.根据tk=50℃和排气温度tdis=80℃,以及过冷度dt=5℃在 R134A压焓图上可以查出hdis=460kj/kg以及过冷液体要求hc=250kj/kg.所以冷凝器热负荷为qmr*(hdis-hc)/3600=9.333kw 2.取进出口空气温差为8℃,则定性温度为39℃,可求出空气流量 qv2=1.029 m3/s 4.单位管长肋片面积Af2=0.5294 肋间基管表面积 Ab2=0.03 肋管外总表面积 A2=Af2+Ab2=0.5594

二、冷凝器的初步规划及有关参数选择 管排方式采用错排,正三角形排列。管间距s1=25.4mm 排间距s2=22mm 紫铜管选用10*0.7,翅片厚度df=0,12mm,肋片间距sf=1.8mm,沿气流方向管排数n=2排。 三,设计计算流程图

四、计算程序 #include #include #define qmr 160 #define pi 3.14

void main() { double _tk=45, _tdis=80, _tc=5,_t2=35,_t3=43,tm; double _hdis=460,_hc=250,Pk; double _p2=1.128,_cp2=1.005,_v2=0.00001687,_r2=0.02751,qv2; double _d0=0.01,_df=0.00012,_df1=0.0007,_s1=0.0254,_s2=0.022,_sf=0.0018,_di=0.0086,_n= 2,_nb=18,db,Af2,Ab2,A2,A1,bt,bt1,ib,de; //3.结构设计 double _r14=19.9238,_Bm=74.8481,_r0=0.0001; tm=(_t2+_t3)/2; Pk=qmr*(_hdis-_hc)/3600; cout<<"冷凝器热负荷为:"<

空冷器使用说明及注意事项参考教学内容

空冷器使用说明及注意事项参考

空冷器管束操作时应注意的事项 1.管内介质、温度、压力均应符合设计条件,严禁超压,超温操作. 2.管内升压、升温时,应缓慢逐级递升,以免因冲击驟热而损坏设备. 3.空冷器正常操作时,应先开启风机,再向管束内通入介质.停止操作时,应先停止向管束内通入介质,后停风机. 4.易凝介质于冬季操作时,其程序与3条相反. 5.负压操作的空冷器开机时,应先开启抽气器,管内达到规定的真空度时再启动风机,然后通入管内介质,停机时,按相反程序操作.冬季操作时,开启抽气器达到规定真空度后,先通入管内介质,再启动风机,以免管内冻结无法运行. 6.停车时,应用低压蒸汽吹扫并排净凝液,以免冻结和腐蚀. 7.开车前应将浮动管箱两端的紧定螺钉卸掉,保证浮动管箱在运行过程中可自由移动,以补偿翅片管热胀冷说的变形量. 空冷风机系统的维护保养及使用注意事项 1、日常巡检 ●运行中有无异常性声音和振动. ●回转部件有无过热、松动. 2、定期维护保养 ●每三个月通过注油嘴加注锂基润滑油. ●定期调整三角带的松紧度,并检查三角带胶带的磨损程度,磨损严重的 应及时予以更换. ●全面检查各零、部件的紧固状态一年一次. ●风筒与叶轮的径向间隙检查一年一次.

●叶片角度及叶片沿风机轴向跳动应每年检查、调整一次. ●清除风机叶片表面油污,检查叶片损坏,半年一次. 3、使用注意事项 ●风机使用角度不得超过规定的调角范围以防电机过载. ●加注黄油不应超过油腔的2/3,以免轴承过热. ●每次检修和更换电机时,必须注意接线相应,应保证风机叶轮俯视顺时 针方向旋转. ●皮带传动机构的皮带应保持一定的张紧力。如过于松弛,则电机的动 力无法有效的传递至风机,风机效率下降,甚至造成皮带飞出的事故。 ●如皮带过紧,摩擦阻力增大,容易造成电机超负荷,长时间运行还 会造成电机,风机轴弯曲,轴承松动,致使振动,噪音增大,影响设备运行。 ●定期检查更换风机的皮带,确保风机使用正常。 兰州长征机械有限公司 2015年1月

空冷器的工艺设计

空冷器的工艺设计 【摘要】本文介绍了空冷器的典型工艺设计流程和方案,分析了在工艺设计过程中的主要设计参数选取,空冷器在化工生产中占着非常重要的比重,国内外对空冷器的工艺设计有着系统的研究。本论文以甘肃伏龙泉当地的气候条件作为数据来源,根据工艺要求、场地情况、环境温度变化资料和环保要求,确定具体的设计参数、总体方案、空冷器的型式,对空冷器的设计研究具有非常重要的参考价值和意义。 【关键词】空冷器工艺参数翅片管管程数管束风机总体方案 1工况条件 1.1空冷器的主要设计参数如下 1.2工艺气组分如下 1.3设计要求 环境设计温度35℃,海拔影响不计,管内压降20 KPa。 2工艺参数确定 2.1 空气设计温度确定 空气设计温度指设计空冷器时选用的当地空气入口干 球温度。

本次设计根据需方提供气象数据,确定空气入口温度为35℃。 2.2 管内介质设计温度确定 2.2.1入口温度确定 理论上热流入口温度愈高,采用空冷愈经济,但入口温度超过200℃时,应考虑用其他换热器进行热量回收。 2.2.2出口温度确定 出口温度的选取直接影响空冷器经济性的重要指标,直接决定空冷器型式的选择。 2.3 干式、湿式空冷器型式确定 一般条件下,对于干式空冷器接近温差一般应大于15℃,若热流体出口温度不能满足要求,则考虑采用湿式空冷器。需方给出管程进出温度为75℃/45℃,接近温度为30℃,本次设计使用干式空冷合理。 2.4 管排数确定 管排数对于空冷器经济性的影响较大,从经济上考虑,一般希望空气温升15-20℃, 增加管排数,空气温升增加,但压降也增加,合理选择管排数的意义重大。本次设计为天然气冷却,确定管排数为6。 2.5 迎面风速确定 迎面风速代表了空气经过翅片管的速度,过小会导致空

空冷器的设计

第四章空冷器的设计 4.1 空冷器的设计条件 4.1-1 设计条件 1. 空气设计温度 设计气温系指设计空冷器时所采用的空气入口温度。采用干式空冷器时,设计气温应按当地夏季平均每年不保证五天的日平均气温[1][2][3]。采用湿式空冷器时,将干式空冷器的设计气温作为干球温度,然后按相对湿度查出湿球温度,该温度即为湿式空冷器的设计气温。 我国各主要城市的气温列于附表4-1。从该表可见我国绝大多数地区夏季平均每年不保证五天的日平均气温低于35℃。当接近温度大于15-20℃时,采用干式空冷器比较合理。在干燥炎热的地区,为了降低空气入口温度可以采用湿式空冷器。 2. 介质条件 (1)适宜空冷器的介质条件 适于采用空冷器的介质有石油化工过程中的气体,液体,水和水蒸汽等。 3.热流的操作条件 (1)流量。根据工艺要求而定。 (2)操作压力。根据国家标准“空冷式换热器”的规定,最高的设计压 为35 Mpa,这个压力可以满足石油化行业空冷器的操作要求。 (3)入口温度 热流的入口温度越高其对数平均温差越大,因而所需要的传热面积就越小,这是比较经济的。但是,考虑能量回收的可能性,入口温度不宜高,一般控制在120~130℃以下,超过该温度的那部分热量应尽量采用换热方式回收。在个别情况下,如回收热量有困难或经济上不合算时,可适当介质入口温度。就空冷器本身而言,考虑到介质温度升高会导致热阻的增加,传热效率下降,绕片式翅片管的工作温度可用到165℃而锒片式翅片管可用到200℃ 如果热流入口温度较低(低于70~80℃),可考虑用湿式空冷器。 (4)出口温度与接近温度 对于干式空冷器出口温度一般以不低于55~65℃为宜[3],若不能满足工艺要求,可增设后湿空冷,或采用干-湿联合空冷。

空冷器操作法(终)

第1章空冷器的技术规范及使用说明 1.1.1排汽系统 排汽系统的功能是将汽轮机排汽导入空冷凝汽器.每台机组设1根主排汽管道。排汽管道上设置防爆膜防止系统超压,不设安全阀。排汽管道疏水直接引入排汽装置下的热井,管道上不设阀门。 1.1.2ACC系统 ACC的功能是通过蒸汽与空气的热交换来冷凝汽轮机排汽,以维持汽轮机的低背压,按换热的介质划分为蒸汽系统和空气系统。1.1.2.1蒸汽系统 整个ACC由2列换热管束组成,在低环境温度且低负荷的情况下,部分管束将被关闭,以减少换热面积。极端低温为-30℃、负荷60%,在管束的分配管入口上设电动蝶阀。每列受热面均采用压两级式冷凝布置,即先顺流(蒸汽流向与凝结水流向相同)后逆流(蒸汽流向与凝结水流向相反)。每列设4个换热单元,其中3个为流换热单元(全部为顺流换热管束),1个逆流换热单元(含有逆流换热管束)。 汽轮机的排汽进入换热管束后将热量传给空气,自身凝结成水,聚集在管束下联箱,在重力作用下通过管道引入汽轮机排汽装置。然后被凝结水泵抽出送出。在逆流换热器上部联箱设有抽气口,以便将不凝结气体抽出。 1.1. 2.2空气系统 空气系统主要指风机组包括轴流风机,变速箱,电动机,振动开关,变频器。每列设顺流风机3台,逆流风机1台,分别对应于顺流换热单元和逆流换热单元。风机转速通过变频器在20%~110%范围内调节,在低负荷和/低环境温度时,通过改变风机的转速和/或运转风机台数可以改变空气流量以减少换热量。风机可以110%超速运行,能够在一定程度上防止大风对ACC运行的影响。所有风机组的物理配置组成完全相同,以方便安装以及备件管理。逆流风机通过变频器的设定可以反转运行。 空气系统各设备的主要配置如下: 风机:FRP叶片,钢轮毂,刚性联轴器; 齿轮箱:加热器,润滑油泵,不设防反转装置。轴承寿命(DIN ISO

空冷器

一、空冷器基础知识 1.什么是空冷器? 答:空气冷却器是以环境空气作为冷却介质,横掠翅片管外,使管内高温工艺流体得到冷却或冷凝的设备,简称“空冷器”,也称“空气冷却式换热器”。空冷器也叫做翅片风机,常用它代替水冷式壳-管式换热器冷却介质,水资源短缺地区尤为突出。 2.空冷器主要由哪几部分设备或部件构成? 答: 空冷器主要由管束、风机、构架及百叶窗所组成。 3.空冷器如何分类? 答:以空冷器冷却方式分类,可分为:干式空冷器,湿式空冷器,干-湿联合空冷器,两侧喷淋联合空冷器;以空冷器管束布置型式分类,可分为:水平式空冷器,斜顶式空冷器,立式空冷器,圆环式空冷器;以空冷器通风方式分类,可分为:自然通风式空冷器、鼓风式空冷器、引风式空冷器。 4.空冷器翅片管有那些型式? 答:空冷器翅片管有L型翅片管,LL型翅片管,G型(镶嵌式)翅片管,KL 滚花型翅片管,DR型双金属轧制翅片管,TC型椭圆管套矩形片翅片管,T60型板翅片翅片管等结构形式。 5.空冷器管箱有哪些型式? 答:空冷器管箱有丝堵型管箱,可卸盖板管箱,集合管式管箱,可卸帽盖板管箱,全焊接圆帽管箱,整体锻造管箱等结构形式。 6.空冷器的风机有哪些基本型式? 答: 引风式风机的优点有:1.气流分布均匀,2.噪音较小,3.管束下部空间可以利用,缺点有:1.风机安装在管束的上部,受管束高温的影响,不利于维护风机。2.经管束后进入风机的空气温度较高,故引风式比鼓风式消耗功率约大10%。3.管束需从下部检修,操作不方便。 8.鼓风式风机有哪些优缺点? 答: 鼓风式风机的优点有:1.易于产生湍流,对传热有利。2.操作费用较低。 3.可以从上部检修管束,操作方便。缺点有:1.气流分布不均匀。2.管束上 部敞开容易受日光和雨水的影响。 二、设计 空冷器风机的叶片制造材料有哪些?有何特点?

空冷器的设备布置及管道布置设计

- 63 - 工 业 技 术 0 前言 作为当下较为常见的热交换设备,空冷器是将空气作为冷介质进行换热,高温介质一般从管内流通,通过换热元器件与空气形成对流热交换,与传统水冷却相比,空冷器具有节水、环保的特点,可大幅降低工业废气废水的排放,且设备运营维护成本较低,其中干式空冷器具有占地小、投资少、操作简单的优势,是当下石化行业中应用最为广泛的空冷形式。从空冷器平面布置、占地、空间限制等考虑,需要加强管道布置、平台布置方面的管理。一般状况下空冷器管束分为斜顶、水平两种形式,管程包括单管程、双管程等。本文从空冷器布置方法、管道走向等进行了分析,旨在为设计工作奠定一定的理论基础。 1 空冷设备布置分析 1.1 避免热风循环 空冷器是借助环境中空气进行冷却的设备,因此空气入口温度的影响极为突出,对整体换热效果具有不可低估的作用,必须加强热风循环现象的防治。从避免外界热风、高温设备影响的角度出发,空冷器一般需要布置在全年最小频率的下风向。 对于多台空冷器进行处理中,一般是采用成组布置的方法,不可在其间留有空隙。多组同类空冷设备如果无法进行 同时布置处理中,尽量将其维持在同一海拔高度,这是避免热风循环的常规举措。此外,需要引起重视的是引风式、鼓风式空冷设备运行机理不同,一般不建议混合布置,如果受场地要求等必须混合布置时,需要保证引风空冷设备的管束与鼓风设备的风扇维持在一个高度上。此外,需要将引风空冷器布置在鼓风空冷器的最小频率下风向上。 1.2 空冷器布置及梯子平台布置的分析  空冷器选型环节中,需考虑设备是布置在管廊之上,还是构架之上。为了保证布置合理,水平空冷器的本体方面,需要保证其构架柱脚跨度与下部支撑吻合,这对管道走向、进出口布置、平台设计等均具有积极的影响,可提高下部支撑结构受力合理性。此外,空冷器的布置中,需要对管道布置的特殊性进行分析,如塔顶和空冷器的管道连接中,需要考虑低布置的方法,避免“U”形结构的发生,还要缩减管道长度、拐弯等状况,同时竖向布置方面,需要加强塔顶、空冷器之间以及空冷器到冷换构架之间的优化。前期总体设计中,需要对管道进行全面规划,这是保证进出口管应力满足基本要求的方法。 空冷器构架方面,需要保证其四周平台宽度在800mm~1200mm,这是从设备维护、检修便利度出发进行的设计,管箱需要在进出口位置设置对应阀门,阀门处的平台宽度需要适当加宽。且空冷平台与管箱的间距需要不低于 空冷器的设备布置及管道布置设计 任 亮 (哈尔滨空调股份有限公司,黑龙江 哈尔滨 150078) 摘 要:空冷器具有节水、环保的优势,在水资源匮乏地带广泛的应用。为了达到良好的冷却效果,空冷设备一般采用成组的布置方法。本文结合行业标准、实际状况等进行了空冷器布置方法的分析,并结合空冷器管系特点,针对管道布置要素等进行了分析,从防偏流出发进行探讨,旨在提高构架、管道布置的合理性。关键词:空冷器;设备布置;管道布置;构架中图分类号:TQ051 文献标志码:A 方法、安装等方面,取得了丰富的经验和成果,为后续产品提供可靠的技术保障打下了良好的基础。 参考文献 [1] 马凤.高转速水轮机球阀双密封试验研究[J]. 哈尔滨:大电机技术,2000(6):52. 图3 合缝面联接螺栓结构图 图2 法兰面止口结构

相关主题
文本预览
相关文档 最新文档