当前位置:文档之家› 简支梁的应力分析报告

简支梁的应力分析报告

简支梁的应力分析报告
简支梁的应力分析报告

课程设计任务书

简支粱结构的力计算

问题阐述

图示简支梁为18号工字钢,跨度L=6m,截面高度H=0.5m,截面面积A=0.008m2,惯性矩I=0.0002108m4,弹性模量E=2.06e11N/mm2,集中载荷P=100KN。对该梁进行分析,画出弯矩图和剪力图。

图1 简支梁

交互式的求解过程

1.进入ANSYS

在D盘建立一名为1001011317的文件夹,工作文件名为jianzhiliang。然后运行

开始——>程序——>ANSYS11.0.0——> Ansys Product Launcher

→file Management →select Working Directory: D:\1001011317,input job name:jianzhiliang→Run

2. 建立几何模型

2.1创建关键点

(1)选择菜单路径:Main Menu:Preprocessor→Modeling→Create→Node→In Active CS。

(2)在创建节点窗口,在NODE后的编辑框输入节点号1,并在X,Y,Z后的编辑框输入0,0,0作为节点1的坐标值,按下该窗口的Apply按钮。

(3)输入节点号2,并在X,Y,Z后的编辑框输入3,0,0作为节点2的坐标值,单击该窗口的Apply按钮。

(4)输入节点号3,并在X,Y,Z后的编辑框输入6,0,0作为节点3的坐标值,单击该窗口的Apply按钮。

2.2创建直线

(1)选择菜单路径:Main Menu:Preprocessor→Modeling→Create→Node→Lines→Lines →Straight Line。

(2)单击以后将弹出一个拾取菜单,此时拾取节点1和节点2,然后点击Apply按键,再拾取节点2和节点3,最后点击Ok按钮,完成直线的创建。

(3)在完成模型创建后,单击工具栏窗口中的SA VE_DB保存数据文件。

3.设定分析模块

选择菜单路径:Main Menu:Preferences,弹出一个对话框,选中Structural,然后单击OK按钮完成分析模块的选择。

4.选择单元类型并定义单元的实常数

4.1选择单元类型。

(1)选择Main Menu:Preprocessor→Element Type→Add/Edit/Delete。

(2)按下Element Type窗口的Add按钮。

(3)在单元类型库中,选择左侧列表中的BEAM单元家族,及右侧列表中2D elastic 3类型,按下OK按钮完成选择。

(4)按下Close按钮关闭Element Type窗口。

4.2定义单元的实常数。

(1)选择Main Menu:Preprocessor→Real Constants,将弹出实常数列表对话框。

(2)单击对话框中的Add...按钮,然后选择BEAM3。

(3)单击对话框中的OK按钮,弹出定义BEAM3单元实常数的对话框。

(4)在AREA框中输入0.008,在IZZ中框中输入0.0002108,在HEIGHT框中输入0.5,然单击OK按钮,完成实常数的定义。

5.定义材料属性

(1)选择Main Menu:Preprocessor→Material Props→Material Models。

(2)在材料定义窗口选择:Structural→Linear→Elastic→Isotropic。

(3)在EX后的文本框输入数值2.06e11作为弹性模量。

(4)按下OK按钮完成定义。

(5)单击工具栏窗口中的SA VE_DB保存数据文件。

6.给几何模型赋属性

(1)选择Main Menu:Preprocessor→Modeling→Create→Elements→Elem Attributes,弹出对话框。

(2)由于本题只有一种单元类型,一种实常数和一种材料属性,所以采用默认选项即可,单击OK按钮完成给几何模型赋属性。

7.划分网格

选择Main Menu:Preprocessor→MeshTool,弹出对话框,单击Mesh按钮,弹出对话框,

单击Pick All按钮完成网格划分。

8.施加载荷和约束

8.1施加载荷

(1)选择Main Menu:Solution→Define Loads→Apply→Structural→Force/Moment→On nodes。

(2)用鼠标在图形窗口选择节点2。

(3)按下OK键,弹出对话框,在Lab框中选择FY,在V ALUE框中输入-100000。单击OK完成施加载荷工作。

8.2施加约束

(1)选择Main Menu:Solution→Define Loads→Apply→Structural→Displacement→On nodes。

(2)用鼠标在图形窗口选择节点1。

(3)按下选择窗口的Apply按钮。

(4)选择自由度UX和UY,并在V ALUE后为其输入数值0。

(5)按下Apply按钮。

(6)用鼠标在图形窗口选择节点3。

(7)按下选择窗口的Apply按钮。

(8)选择自由度UY,并在V ALUE后为其输入数值0。

(9)按下OK按钮。

图2 施加载荷和约束

9. 求解

(1)选择Main Menu:Solution→Solve→Current Ls。

(2)按下OK按钮关闭Solve Current Load Step窗口。

(3)按下Close按钮关闭求解结束后出现的Information窗口。

(4)浏览/STA TUS Command窗口的信息后,将其关闭。

10. 后处理

10.1绘制梁的Y方向变形图

(1)Main Menu:General Postproc→Plot Results→Contour Plot Nodal Solu...

(2)选择DOF Solution下的Y-Component of displacement→在Undisplaced shape key 后选择Deformed shape with undeformed edge →OK

图3 简支梁受力变形

10.2建立单元结果表

10.2.1创建单元表,计算节点弯矩。

(1)Main Menu:General Postproc→Element Table→Define Table。

(2)按下Element Table Data窗口的Add按钮。

(3)在Lab后的文本框输入IMOMENT。

(4)在左侧列表中选择By sequence num项。

(5)右侧列表中选择SMICS,项。

(6)在右侧列表下的文本框SMICS后面,输入6。

(7)按下Apply按钮。

(8)在Lab后的文本框输入JMOMENT。

(9).重复上面的步骤4和5。

(10)右侧列表下的文本框SMICS后面,输入12。

(11)按下OK按钮→Close。

10.2.2创建单元表,计算节点剪力

(1)选择Main Menu:General Postproc→Element Table→Define Table。

(2)按下Element Table Data窗口的Add按钮。

(3)在Lab后的文本框输入ISHEAR。

(4)在左侧列表中选择By sequence num项。

(5)右侧列表中选择SMICS,项。

(6)右侧列表下的文本框SMICS后面,输入2。

(7)按下Apply按钮。

(8)在Lab后的文本框输入JSHEAR。

(9)重复上面的步骤4和5。

(10)右侧列表下的文本框SMICS后面,输入8。

(11)按下OK按钮→Close。

10.3结果显示

10.3.1列出各节点弯矩和剪力

(1)Main Menu:General Postproc→List Results→Eleme Table Data。

(2)在List Element Table Data窗口选择IMOMENT,JMOMENT,ISHEAR和JSHEAR。

(3)按下OK按钮并在浏览资料窗口的信息后,将其关闭。

10.3.2画剪力图

(1)Main Menu:General Postproc→Plot Results→Contour Plot →Line Elem Res

(2)在第一个下拉列表中选择ISHEAR,在第二个下拉列表中选择JSHEAR。

(3)按下OK按钮

桩身应力测试分析报告

精心整理第一章工程概况

根据**院提供的岩土工程勘察报告,该场地工程地质条件如下:

三、检测桩位示意图 四、钢筋应力计在桩身埋设位置示意图 钢筋应力计在各试桩中位置示意图

二、测试设备及钢筋测力计的埋设 1、每桩钢筋应力计设置在各土层交界面处,每一个截面设2只钢筋测力计(基本呈180°对称布置),各钢筋应力计埋设截面的平、剖面图如前图; 2、JTM-V1000振弦式钢筋应力计采用焊接法固定在钢筋笼主筋上,并与桩身纵轴线平行;

3、连接在应力计的电缆线用柔性材料保护,绑扎在钢筋笼内侧并 引至地面; 4、所有应力计均用明显标记编号; 5、仪器设备:检测仪器设备采用JTM-V1000振弦式钢筋应力计、JTM-V10B 型频率读数仪、集线箱等组成。 三、测试原理 1位2ε c1j = εεs1j 3E cj 、E sj —砼弹性模量、钢筋弹性模量[E s 取2.0×108(kPa)] A cj 、A sj —同一截面处砼面积、钢筋总面积。 εcj 、εsj —同一截面处砼与钢筋的应变 4、钢筋应力计受力的计算公式: ) 2()(' 2 02 ----------------??=-?=Si Sij S i ij Sij A E F F k P ε

式中: P Sij —第i 量测截面处在j 级荷载下应力计所受轴向力(kN ) F ij —第i 量测截面处在j 级荷载下应力计的实测频率值(Hz) F i0—i 截面处钢筋应力计的初始频率值(Hz ) K A si ’—56f ij P ij —i A i 12、弦式钢筋应力计宜放在两种不同性质土层的界面处,以测量桩在不同土层中的分层摩阻力。在地面处(或以上)应设置一个测量断面作为钢筋应力计传感器标定断面。钢筋应力计埋设断面距桩顶和桩底的距离不宜小于1倍桩径。在同一断面处对称设置2个钢筋应力计。钢筋计应按主筋直径大小选择。仪器的可测频率范围应大于桩在最大加载时的频率的1.2倍; 3、使用前应对钢筋计逐个标定,得出压力(拉力)与频率之间的关系。带有接长 ) 3()(' -------------------------?= Si S Sij Sij A E P ε

流体静力学实验报告

一、实验目的 1.掌握用液式测压计测量流体静压强的技能。 2.验证不可压缩流体静力学基本方程,加深对位置水头、压力水头和测压管水头的理解。 3.观察真空度(负压)的产生过程,进一步加深对真空度的理解。 4.测定油的相对密度。 5.通过对诸多流体静力学现象的实验分析,进一步提高解决静力学实际问题的能力。 二、实验装置 本实验的装置如图1-1所示。 图1-1 流体静力学实验装置图 1. 测压管 ; 2. 带标尺的测压管 ; 3. 连通管 ; 4. 通气阀 ; 5. 加压打气球 ; 6. 真空测压管 ; 7. 截止阀 ; 8. U 型测压管 ; 9. 油柱 ; 10. 水柱 ;11. 减压放水阀 说明: (1)所有测压管液面标高均以标尺(测压管2)零读数为基准。 (2)仪器铭牌所注B ?,C ?,D ?系测点B ,C ,D 的标高。若同时取标尺零点作为静力学基本方程的基准,则B ?,C ?,D ?亦成为C z ,C z ,D z 。 (3) 本仪器中所有阀门旋柄均以顺管轴线为开。

三、实验原理 1.在重力作用下不可压缩流体静力学基本方程。 形式一: p z γ +=const (1-1-1a ) 形式二: P=P 。+γ (1-1-1b ) 式中 z---测点在基准面以上的位置高度; P —测点的静水压强(用相对压强表示,一下同); P 。--水箱中液面的表面压强; γ--液体的重度; h —测点的液体深度; 2.油密度测量原理。 当u 形管中水面与油水界面齐平(见图1-1-2),取油水界面为等压面时,有: P01=w γ=0γH (1-1-2) 另当U 形管中水面与油面平齐(见图1-1-3),取油水界面为等压面时,有: P02+W γH=0γH 即 P02=-w γh2=0γH-W γH (1-1-3) 图1-2 图1-3 四、实验要求 1.记录有关常数 实验装置编号No. 12 各测点的标尺读数为: B ?= 2.1 -210m ?; C ?= -2.9 -210m ?; D ?= -5.9 -210m ?; 基准面选在 测压管的0刻度线处 ; C z = -2.3 -210m ?; D z = -5.9 -210m ?; 2.分别求出各次测量时,A 、B 、C 、D 点的压强,并选择一基准验证同一

压力管道应力分析的内容及特点

压力管道应力分析的内容及特点 摘要:压力管道应力分析是管道设计中最关键的工作之一。管道设计应根据工 业金属管道设计规范进行,进行管道设计应该从管道应力、管道材料和配管方面 着手。因为压力管道上存在复杂性的各种载荷,进行压力管道的应力分析的难度 较大,导致阻碍管道设计工作,而且管道在运行和生产过程中的安全和质量关键 是因为应力而存在的,因此找到管道应力分析的方法具有重要意义。论述压力管 道的应力特点和分布,能够提供给工程施工、管道选择和管道设计可靠的信息数 据作参考,进而确保土建结构与管道连接的设备和管道自身的安全,保证了整个 生产作业的安全,使压力管道提高使用价值。 关键词:应力;特点;压力;内容;管道 前言:压力管道具有十分广泛的应用范围,而且在各个场所中的应用作用十 分关键,压力管道关键作用是运输物质,在重要的大型建设工程中应用,如冶金 工程、电力工程、天然气体、石油化工等,为满足一些需要进行供给或运输。因 为外界环境因素与整个管道系统均会很大程度的影响到压力管道应力,而且会受 影响于流体的流动,这使应力分析增加了复杂度,应力分析压力管道应该结合实 际的管道状况,尽量将接近实际、正确的分析结果准确模拟出来。 1应力分析压力管道的涵义 在市政建设行业、化工行业、石油石化等产业普遍应用到管道,这些行业存 在较高要求的工程安全指数与投资额,对压力管道进行应力分析应该对概念充分 了解。应力指的是管道构件应用在建设需要中承受的单位面积内力,其在荷载外 力下形成的值较大,若是超出能够承受的材料极限强度,将造成管材失稳、破裂、变形等状况,关键在于因为外部热荷载与机械荷载导致的。应力分析管道的状况下,能够确保良好的使用工艺装置而且保持其柔软性,精准的计算与分析热荷载 与机械荷载后,获取设计管道的配件参数,计算变形与应力、应力与荷载,提供 给管道配置合理的数据凭据,能够使管道产生的震动干扰减少,进而错开震源的 震动频率,使管道的可靠性与安全性得到确保。 2应力分析压力管道的内容 清楚了解分析的种类是应力分析压力管道的重要前提基础,按照不同种类应 力的特点,应用针对性措施是压力管道减小应力,按照压力管道承受应力的作用 方向、范围、强度大小,能够将压力管道上承受的应力分类成一、二次应力与峰 值应力。应力分析压力管道的关键内容是管道材料的承受力、应力的影响因素、 应力种类、管道应力分布、工作流程、分配的分析任务等。最重要的是应力种类,关于管道的设计工作技术方面的最基本要求是对应力的种类掌握了解并且快速分析。 2.1压力管道一次应力分析内容 导致压力管道形成一次应力是因为受到一定的外载荷,致使压力管道上存在 外载荷的关键原因为受影响于外界力,如风压、介质压力、重力等,通过受到的 平衡受力得知外界力与一次应力具有相同的大小,一次应力伴随改变的外界力改变,所以所以具备无自限性特点的一次应力所以出于无线增大的外力影响下,压 力管道将无限制增长受到的应力,进而产生压力管道变形或裂缝的现象,然而压 力管道受到的应力方向相反于外界力方向。因为压力管道受到的不确定方向的外 界力,导致存在不同分布范围的应力,能够按照压力管道受到作用范围的一次应

基于元ANS的压力容器应力分析报告

压力容器分析报告

目录 1 设计分析依据 0 1.1 设计参数 0 1.2 计算及评定条件 0 1.3 材料性能参数 0 2 结构有限元分析 (1) 2.1 理论基础 (1) 2.2 有限元模型 (1) 2.3 划分网格 (1) 2.4 边界条件 (2) 3 应力分析及评定 (2) 3.1 应力分析 (2) 3.2 应力强度校核 (2) 4 分析结论 (3) 4.1 上封头接头外侧 (4) 4.2 上封头接头内侧 (5) 4.3 上封头壁厚 (7) 4.4 筒体上 (9) 4.5 筒体左 (10) 4.6 下封头接着外侧 (12) 4.7 下封头壁厚 (14)

1 设计分析依据 (1)压力容器安全技术监察规程 (2)JB4732-1995 《钢制压力容器-分析设计标准》-2005确认版 1.1 设计参数 表1 设备基本设计参数 1.2 计算及评定条件 (1)静强度计算条件 表2 设备载荷参数 载荷进行计算,故采用设计载荷进行强度分析结果是偏安全的。 1.3 材料性能参数 材料性能参数见表3,其中弹性模型取自JB4732-95表G-5,泊松比根据JB4732-95的公式(5-1)计算得到,设计应力强度分别根据JB4732-95的表6-2、表6-4、表6-6确定。 表3 材料性能参数性能

2 结构有限元分析 2.1 理论基础 传统的压力容器标准与规范,一般属于“常规设计”,以弹性失效准则为理论基础,由材料力学方法或经验得到较为简单的适合于工程应用的计算公式,求出容器在载荷作用下的最大主应力,将其限制在许用值以内,即可确认容器的壁厚。对容器局部区域的应力、高应力区的应力不做精细计算,以具体的结构形式限制,在计算公式中引入适当的系数或降低许用应力等方法予以控制,这是一种以弹性失效准则为基础,按最大主应力理论,以长期实践经验为依据而建立的一类标准。 塑性理论指出,由于弹性应力分析求得的各类名义应力对结构破坏的危险性是不同的,随着工艺条件的苛刻和容器的大型化,常规设计标准已经不能满足要求,尤其是在应力集中区域。若不考虑应力集中而只按照简化公式进行设计,不是为安全而过分浪费材料就是安全系数不够。基于各方面的考虑,产生了“分析设计”这种理念。采用以极限载荷、安定载荷和疲劳寿命为界限的“塑性失效”与“弹性失效”相结合的“弹塑性失效”准则,要求对容器所需部位的应力做详细的分析,根据产生应力的原因及应力是否有自限性,分为三类共五种,即一次总体薄膜应力( Pm) 、一次局部薄膜应力( Pc) 、一次弯曲应力( Pb) 、二次应力( Q) 和峰值应力( F) 。 对于压力容器的应力分析,重要的是得到应力沿壁厚的分布规律及大小,可采用沿壁厚方向的“校核线”来代替校核截面。而基于弹性力学理论的有限元分析方法,是一种对结构进行离散化后再求解的方法,为了获得所选“校核线”上的应力分布规律及大小,就必须对节点上的应力值进行后处理,即应力分类,根据对所选“校核线”上的应力进行分类,得出各类应力的值,若满足强度要求,则所设计容器是安全的。 按照JB4732-1995进行分析,整个计算采用ANSYS13.0软件,建立有限元模型,对设备进行强度应力分析。 2.2 有限元模型 由于主要关心容器开孔处的应力分布规律及大小,为减少计算量,只取开孔处作为分析对象,且取其中较为关心的大孔进行分析校核。分析设计所用的几何模型如图1所示。在上下封头和筒体之间存在不连续的壁厚,由于差距和影响量较小,此处统一采用上下封头的设计厚度。 图1 压力容器模型 2.3 划分网格 在结构的应力分析中,采用ANSYS13.0中的solid187单元进行六面体划分,如图2所示。图3~图5

管道应力分析报告概述

管道应力分析概述 CAESARII软件介绍 CAESARII管道应力分析软件是由美国COADE公司研发的压力管道应力分析专业软件。它既可以分析计算静态分析,也可进行动态分析。CAESARII向用户提供完备的国际上的通用管道设计规范,使用方便快捷。交互式数据输入图形输出,使用户可直观查看模型(单线、线框,实体图)强大的3D计算结果图形分析功能,丰富的约束类型,对边界条件提供最广泛的支撑类型选择、膨胀节库和法兰库,并且允许用户扩展自己的库。钢结构建模,并提供多种钢结构数据库.结构模型可以同管道模型合并,统一分析膨胀节可通过标准库选取自动建模、冷紧单元/弯头,三通应力强度因子(SIF)的计算、交互式的列表编辑输入格式用户控制和选择的程序运行方式,用户可定义各种工况。 一、管道应力分析的原则 管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。 二、管道应力分析的主要内容 管道应力分析分为静力分析和动力分析。 静力分析包括: 1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏; 2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算——防止疲劳破坏; 3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行; 4)管道支吊架的受力计算——为支吊架设计提供依据; 5)管道上法兰的受力计算——防止法兰汇漏。 动力分析包括:

l)管道自振频率分析——防止管道系统共振; 2)管道强迫振动响应分析——控制管道振动及应力; 3)往复压缩机(泵)气(液)柱频率分析——防止气柱共振; 4)往复压缩机(泵)压力脉动分析——控制压力脉动值。 三、管道上可能承受的荷载 (1)重力荷载:包括管道自重、保温重、介质重和积雪重等; (2)压力荷载:压力载荷包括内压力和外压力; (3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4)风荷载; (5)地震荷载; (6)瞬变流冲击荷载:如安全阀启跳或阀门的快速启闭时的压力冲击: (7)两相流脉动荷载; (8)压力脉动荷载:如往复压缩机往复运动所产生的压力脉动; (9)机械振动荷载:如回转设备的振动。 四、管道应力分析的目的 1)为了使管道和管件内的应力不超过许用应力值; 2)为了使与管系相连的设备的管口荷载在制造商或国际规范(如 NEMA SM-23、API-610、API-6 17等)规定的许用范围内; 3)为了使与管系相连的设备管口的局部应力在 ASME Vlll的允许范围内; 4)为了计算管系中支架和约束的设计荷载;

静力学分析报告

静力学分析报告 一、制作人员: 二、模型名称:桁架 三、创意来源: 四、模型视图: 五、模型简化

因为桁架本身由硬杆组成,所以简化结构 如下图所示,并求各点的受力情况。 假设桁架受到集中力G的影响 1以节点A为探究对象 m A F=0 F B Y?4?F?3=0 F B Y=0.75F F Y=0 F A Y+F B Y=0 F A Y=0.25F 2以节点B为探究对象 F12F13 B F B Y F Y=0 F13cos45°+F B Y=0 F13=?32 4 F F X=0 ?F13cos45°?F12=0 F12=?3 4 F

3以节点G为探究对象 F F10 G F11F13′ F Y=0 ?F13′cos45°?F?F11=0 F11=?0.25F F X=0 F13′cos45°?F10=0 F8=?0.75F 4以节点H为探究对象 F9F11′ F8 H F12′ F Y=0 F9cos45°+F11′=0 F9= 2 4 F F X=0 ?F9cos45°?F8+F12′=0 F8=0.5F 5以节点I为探究对象 F7 F6I F8′ F Y=0 F7=0

F X=0 ?F6+F8′=0 F6=0.5F 6以节点E为探究对象 F4E F10′ F5F7′F9′ F Y=0 F9′cos45°?F5cos45°=0 F5=2 F F X=0 ?F5cos45°+F9′cos45°?F4+F10′=0 F4=?0.25F 7以节点D为探究对象 F3F5′ F2 D F6′ F Y=0 F3+F5′cos45°=0 F3=1 4 F F X=0 F5′cos45°?F2+F6′=0 F4=0.25F 8以节点C为探究对象 C F4′

压力管道应力分析的内容及特点 马佳

压力管道应力分析的内容及特点马佳 发表时间:2019-10-10T10:51:38.057Z 来源:《建筑学研究前沿》2019年13期作者:马佳 [导读] 压力管道应力分析是管道设计中最关键的工作之一。管道设计应根据工业金属管道设计规范进行,进行管道设计应该从管道应力、管道材料和配管方面着手。 新疆天麒工程项目管理咨询有限责任公司 834000 摘要:压力管道应力分析是管道设计中最关键的工作之一。管道设计应根据工业金属管道设计规范进行,进行管道设计应该从管道应力、管道材料和配管方面着手。因为压力管道上存在复杂性的各种载荷,进行压力管道的应力分析的难度较大,导致阻碍管道设计工作,而且管道在运行和生产过程中的安全和质量关键是因为应力而存在的,因此找到管道应力分析的方法具有重要意义。论述压力管道的应力特点和分布,能够提供给工程施工、管道选择和管道设计可靠的信息数据作参考,进而确保土建结构与管道连接的设备和管道自身的安全,保证了整个生产作业的安全,使压力管道提高使用价值。 关键词:应力;特点;压力;内容;管道 前言:压力管道具有十分广泛的应用范围,而且在各个场所中的应用作用十分关键,压力管道关键作用是运输物质,在重要的大型建设工程中应用,如冶金工程、电力工程、天然气体、石油化工等,为满足一些需要进行供给或运输。因为外界环境因素与整个管道系统均会很大程度的影响到压力管道应力,而且会受影响于流体的流动,这使应力分析增加了复杂度,应力分析压力管道应该结合实际的管道状况,尽量将接近实际、正确的分析结果准确模拟出来。 1应力分析压力管道的涵义 在市政建设行业、化工行业、石油石化等产业普遍应用到管道,这些行业存在较高要求的工程安全指数与投资额,对压力管道进行应力分析应该对概念充分了解。应力指的是管道构件应用在建设需要中承受的单位面积内力,其在荷载外力下形成的值较大,若是超出能够承受的材料极限强度,将造成管材失稳、破裂、变形等状况,关键在于因为外部热荷载与机械荷载导致的。应力分析管道的状况下,能够确保良好的使用工艺装置而且保持其柔软性,精准的计算与分析热荷载与机械荷载后,获取设计管道的配件参数,计算变形与应力、应力与荷载,提供给管道配置合理的数据凭据,能够使管道产生的震动干扰减少,进而错开震源的震动频率,使管道的可靠性与安全性得到确保。 2应力分析压力管道的内容 清楚了解分析的种类是应力分析压力管道的重要前提基础,按照不同种类应力的特点,应用针对性措施是压力管道减小应力,按照压力管道承受应力的作用方向、范围、强度大小,能够将压力管道上承受的应力分类成一、二次应力与峰值应力。应力分析压力管道的关键内容是管道材料的承受力、应力的影响因素、应力种类、管道应力分布、工作流程、分配的分析任务等。最重要的是应力种类,关于管道的设计工作技术方面的最基本要求是对应力的种类掌握了解并且快速分析。 2.1压力管道一次应力分析内容 导致压力管道形成一次应力是因为受到一定的外载荷,致使压力管道上存在外载荷的关键原因为受影响于外界力,如风压、介质压力、重力等,通过受到的平衡受力得知外界力与一次应力具有相同的大小,一次应力伴随改变的外界力改变,所以所以具备无自限性特点的一次应力所以出于无线增大的外力影响下,压力管道将无限制增长受到的应力,进而产生压力管道变形或裂缝的现象,然而压力管道受到的应力方向相反于外界力方向。因为压力管道受到的不确定方向的外界力,导致存在不同分布范围的应力,能够按照压力管道受到作用范围的一次应力,分成局部薄膜弯曲一次应力、一次应力与总体薄膜一次应力导致压力管道变形与破裂的关键原因在于被一次应力所影响,压力管道承受的一次应力大小若是比压力管道材料具备的塑性变形值大的状况下便会产生这种现象,进而致使运输流体在压力管道中对正常运行工程项目产生影响与损失。所以想要防止产生一次应力超出管材具备的塑性变形值,应该压力管道承受的外界力严格控制,而且在对压力管道选取管材时保证相较于外界力管材具备的塑性变形值更大。 2.2压力管道二次应力分析内容 像气体一样,被温度所影响,流体的体积大小将受到影响,因为对于液体来讲,压力管道具备的变形性特别小,在低温或高温的状况下,压力管道会出现热胀冷缩的状况,而且因为温度等原因导致连接于压力管道的设备出现初始位移,因为管道在这些状况下形成的变形致使被约束于外界条件,如土建结构、设备管口等,使应力形成,二次应力是因为附加位移与热胀冷缩等形成的。二次应力最基本的不同在于,二次应力没有一次应力存在的无自限性,而且二次应力不会由于改变外界力的大小而受到改变,若是外界力导致产生局部屈服的状况下,管道出现变形直到外界力和一次应力处于平衡状态,也不会影响到二次应力。在压力管道存在很大的塑性变形值的基础上,压力管道受到初次荷载的状况下,导致破坏压力管道的原因不是二次应力,压力管道受到多次变化的荷载的状况下,导致压力管道不断降低塑性变形值,使管道产生疲劳破坏的状况,压力管道会受到二次压力重要的破坏,关于管道受到二次应力而遭到破坏的状况,并非是受到一次应力限定的破坏时间,是因为循环次数与交变的应力导致的。 2.3压力管道峰值应力分析内容 在局部范畴中压力管道遭受的应力便是峰值应力,并非是压力管道承受的最大应力值,因为压力管道具有十分复杂的形状,会产生形状突变如急转等状况,受影响于突然产生变化的荷载致使峰值应力受力于压力管道,导致产生峰值的原因紧密关系着压力管道中构成设备仪器的形式,峰值压力不会导致压力管道产生破裂与变形的现象,然而在压力管道产生疲劳受力的状况下,若是受到峰值应力将导致压力管道破裂的状况形成。 3应力分析压力管道的特点探讨 伴随我国目前不断发展的科学技术和应力分析压力管道方面不断提高的技术水平,应力分析压力管道的状况下越发能够有效、清楚的将相关应力处理,然而在处理压力管道应力管道应力方面相比于西方发达国家还有明显的差异存在,导致产生差异的关键原因在于规范的校核原则不足。应力分析压力管道的过程中,设计人员通常情况下对局部薄膜应力和一次弯曲应力分析忽视,无法对产生一次应力的原因与受力全面的了解,进而致使对压力管道分析的数据有一定程度的差错产生,使工作人员编制的后期数据报告存在错误,从而使正常运行

有限元分析报告样本

《有限元分析》报告基本要求: 1. 以个人为单位完成有限元分析计算,并将计算结果上交;(不允许出现相同的分析模型,如相 同两人均为不及格) 2. 以个人为单位撰写计算分析报告; 3. 按下列模板格式完成分析报告; 4. 计算结果要求提交电子版,报告要求提交电子版和纸质版。(以上文字在报告中可删除) 《有限元分析》报告 一、问题描述 (要求:应结合图对问题进行详细描述,同时应清楚阐述所研究问题的受力状况和约束情况。图应清楚、明晰,且有必要的尺寸数据。) 一个平面刚架右端固定,在左端施加一个y 方向的-3000N 的力P1,中间施加一个Y 方向的-1000N 的力P2,试以静力来分析,求解各接点的位移。已知组成刚架的各梁除梁长外,其余的几何特性相同。 横截面积:A=0.0072 m2 横截高度:H=0.42m 惯性矩:I=0.0021028m4x 弹性模量: E=2.06x10n/ m2/ 泊松比:u=0.3 二、数学模型 (要求:针对问题描述给出相应的数学模型,应包含示意图,示意图中应有必要的尺寸数据;如进行了简化等处理,此处还应给出文字说明。) (此图仅为例题)

三、有限元建模(具体步骤以自己实际分析过程为主,需截图操作过程) 用ANSYS 分析平面刚架 1.设定分析模块 选择菜单路径:MainMenu—preference 弹出“PRreferences for GUI Filtering”对话框,如图示,在对话框中选取:Structural”,单击[OK]按钮,完成选择。 2.选择单元类型并定义单元的实常数 (1)新建单元类型并定 (2)定义单元的实常数在”Real Constants for BEAM3”对话框的AREA中输入“0。0072”在IZZ 中输入“0。0002108”,在HEIGHT中输入“0.42”。其他的3个常数不定义。单击[OK]按 钮,完成选择 3.定义材料属性 在”Define Material Model Behavier”对话框的”Material Models Available”中,依次双击“Structural→Linear→Elastic→Isotropic”如图

球罐应力分析报告模板

XXX球罐应力分析报告 设备名称:XXX球罐 设备位号:XXX 应力分析报告

目录 1基本设计参数 (4) 2计算数据 (6) 2.1 计算条件 (6) 2.2材料性能数据 (7) 3主要受压元件计算 (8) 4整体结构分析计算 (9) 4.1 力学模型和有限元模型 (9) 4.2 载荷工况分析 (11) 4.3 载荷边界条件 (12) 4.4 位移边界条件 (15) 4.5 应力强度分布云图及路径选取 (15) 4.6 应力线性化及强度评定 (20) 4.7 整体结构强度评定汇总 (33) 5局部结构分析计算 (34) 5.1 人孔与接管N1/N4局部结构分析 (34) 5.1.1 力学模型和有限元模型 (34) 5.1.2载荷边界条件 (36) 5.1.3位移边界条件 (38) 5.1.4应力分布云图及路径选取 (39) 5.1.5 应力线性化及强度评定 (40) 5.1.6 人孔与接管N1/N4应力线性化及强度评定 (48) 5.2 人孔与接管V1/K3/K4局部结构分析 (48) 5.2.1 力学模型和有限元模型 (48) 5.2.2载荷边界条件 (51) 5.2.3位移边界条件 (53) 5.2.4应力分布云图及路径选取 (54) 5.2.5 应力线性化及强度评定 (55)

5.2.6 人孔与接管V1/K3/K4应力线性化及强度评定 (63) 5.3 人孔与接管K1/K2局部结构分析 (63) 5.3.1 力学模型和有限元模型 (63) 5.3.2载荷边界条件 (66) 5.3.3位移边界条件 (68) 5.3.4应力分布云图及路径选取 (69) 5.3.5 应力线性化及强度评定 (70) 5.3.6 人孔与接管K1/K2应力线性化及强度评定 (78) 5.4 人孔与接管N2局部结构分析 (78) 5.4.1 力学模型和有限元模型 (78) 5.4.2载荷边界条件 (81) 5.4.3位移边界条件 (83) 5.4.4应力分布云图及路径选取 (84) 5.4.5 应力线性化及强度评定 (85) 5.4.6 人孔与接管N2应力线性化及强度评定 (93) 5.5 人孔与接管N5局部结构分析 (93) 5.5.1 力学模型和有限元模型 (93) 5.5.2载荷边界条件 (96) 5.5.3位移边界条件 (99) 5.5.4应力分布云图及路径选取 (100) 5.5.5 应力线性化及强度评定 (101) 5.5.6 人孔与接管N5应力线性化及强度评定 (109) 6结论 (109) 附录 (109) 球罐SW6计算文件

生活中的材料力学实例分析

生活中的材料力学实例分析 一意义 材料力学主要研究杆件的应力、变形以及材料的宏观力学性能的学科。材料力学是固体力学的一个基础分支。它是研究结构构件和机械零件承载能力的基础学科。其基本任务是:将工程结构和机械中的简单构件简化为一维杆件,计算杆中的应力、变形并研究杆的稳定性,以保证结构能承受预定的载荷;选择适当的材料、截面形状和尺寸,以便设计出既安全又经济的结构构件和机械零件。 二对象 材料力学的研究通常包括两大部分:一部分是材料的力学性能(或称机械性能)的研究,材料的力学性能参量不仅可用于材料力学的计算,而且也是固体力学其他分支的计算中必不可少的依据;另一部分是对杆件进行力学分析。杆件按受力和变形可分为拉杆、压杆受弯曲(有时还应考虑剪切)的粱和受扭转的轴等几大类。杆中的内力有轴力、剪力、弯矩和扭矩。杆的变形可分为伸长、缩短、挠曲和扭转。在处理具体的杆件问题时,根据材料性质和变形情况的不同,可将问题分为线弹性问题、几何非线性问题、物理非线性问题三类。 材料力学不仅在复杂机械工程中有重要的作用,在生活中也很常见。比如随处可见的桥梁,桥是一种用来跨越障碍的大型构造物。确切的说是用来将交通路线 (如道路、铁路、水道等)或者

其他设施 (如管道、电缆等)跨越天然障碍 (如

河流、海峡、峡谷等)或人工障碍 (高速公路、铁路线)的构造物。桥的目的是允许人、车辆、火车或船舶穿过障碍。桥可以打横搭着谷河或者海峡两边,又或者起在地上升高,槛过下面的河或者路,让下面交通畅通无阻。 三分析

如果在安全的前提下,将原来的四个桥墩和三个拱形拉索变为三个桥墩和两个拱形拉索。不仅可以节约大量的材料,降低成本,而且有美观。 四总结 因此,材料力学是一门很有用的学科,能够处理各种各样复杂的问题。只要注意观察,生活中处处有材料力学的踪影。利用材料力学的知识对我们身边的事物进行分析并加以改进,对我们的生活和社会的发展能起到积极的促进作用。 (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

材料力学性能静拉伸试验报告

静拉伸试验 一、实验目的 1、测45#钢的屈服强度s σ、抗拉强度m R 、断后伸长率δ和断面收缩率ψ。 2、测定铝合金的屈服强度s σ、抗拉强度m R 、断后伸长率δ和断面收缩率ψ。 3、观察并分析两种材料在拉伸过程中的各种现象。 二、使用设备 微机控制电子万能试验机、0.02mm 游标卡尺、试验分化器 三、试样 本试样采用经过机加工直径为10mm 左右的圆形截面比例试样,试样成分分别为铝合金和45#,各有数支。 四、实验原理 按照我国目前执行的国家 GB/T 228—2002标准—《金属材料 室温拉伸试验方法》的规定,在室温1035℃℃的范围内进行试验。将试样安装在试验机的夹头当中,然后开动试验机,使试样受到缓慢增加的拉力(一般应变速率应≤0.1m/s ),直到拉断为止,并且利用试验机的自动绘图装置绘出材料的拉伸图。 试验机自动绘图装置绘出的拉伸变形L ?主要是整个试样,而不仅仅是标距部分的伸长,还包括机器的弹性变形和试样在夹头中的滑动等因素,由于试样开始受力时,头部在头内的滑动较大,故绘出的拉伸图最初一段是曲线。 塑性材料与脆性材料的区别: (1)塑性材料: 脆性材料是指断后伸长率5%δ≥的材料,其从开始承受拉力直至试样被拉断,变形都比较大。塑性材料在发生断裂时,会发生明显的塑性变形,也会出现屈服和颈缩等现象; (2)脆性材料: 脆性材料是指断后伸长率5%δ<的材料,其从开始承受拉力直至试样被拉断,变形都很小。并且,大多数脆性材料在拉伸时的应力—应变曲线上都没有明显的直线段,几乎没有塑性变形,在断裂前不会出现明显的征兆,不会出现屈服和颈缩等现象,只有断裂时的应力值—强度极限。 脆性材料在承受拉力、变形记小时,就可以达到m F 而突然发生断裂,其抗拉强度也远远 小于45钢的抗拉强度。同样,由公式0m m R F S =即可得到其抗拉强度,而根据公式,10 l l l δ-=。 五、实验步骤 1、试样准备 用笔在试样间距0L (10cm )处标记一下。用游标尺测量出中间横截面的平均直径,并且测出试样在拉伸前的一个总长度L 。 2、试验机准备:

ANSYS基础教程——应力分析报告

ANSYS基础教程——应力分析 关键字:ANSYS 应力分析 ANSYS教程 信息化调查找茬投稿收藏评论好文推荐打印社区分享 应力分析是用来描述包括应力和应变在的结果量分析的通用术语,也就是结构分析,应力分析包括如下几个类型:静态分析瞬态动力分析、模态分析谱分析、谐响应分析显示动力学,本文主要是以线性静态分析为例来描述分析,主要容有:分析步骤、几何建模、网格划分。 应力分析概述 ·应力分析是用来描述包括应力和应变在的结果量分析的通用术语,也就是结构分析。 ANSYS 的应力分析包括如下几个类型: ●静态分析 ●瞬态动力分析 ●模态分析 ●谱分析 ●谐响应分析 ●显示动力学 本文以一个线性静态分析为例来描述分析步骤,只要掌握了这个分析步骤,很快就会作其他分析。 A. 分析步骤 每个分析包含三个主要步骤:

·前处理 –创建或输入几何模型 –对几何模型划分网格 ·求解 –施加载荷 –求解 ·后处理 –结果评价 –检查结果的正确性 ·注意!ANSYS 的主菜单也是按照前处理、求解、后处理来组织的;

·前处理器(在ANSYS中称为PREP7)提供了对程序的主要输入; ·前处理的主要功能是生成有限元模型,主要包括节点、单元和材料属性等的定义。也可以使用前处理器PREP7 施加载荷。 ·通常先定义分析对象的几何模型。 ·典型方法是用实体模型模拟几何模型。 –以CAD-类型的数学描述定义结构的几何模型。 –可能是实体或表面,这取决于分析对象的模型。 B. 几何模型 ·典型的实体模型是由体、面、线和关键点组成的。 –体由面围成,用来描述实体物体。 –面由线围成,用来描述物体的表面或者块、壳等。 –线由关键点组成,用来描述物体的边。 –关键点是三维空间的位置,用来描述物体的顶点。

压力管道应力分析的内容及特点

龙源期刊网 https://www.doczj.com/doc/6a15525069.html, 压力管道应力分析的内容及特点 作者:裴宝玲 来源:《中国科技纵横》2015年第19期 【摘要】伴随时代的不断进步,科学技术不停发展,我国社会的工业工程发展迅速。将 科技化的生产力逐渐融合到现代工业生产过程中的同时,压力管道的使用也越来越多样化。压力管道是一个复杂的连通系统,能够承受来自外界和内部的共同压力,为工业执行工作操作起到重要的支撑作用。为了更好的运用压力管道的应力作用,必须要进行对应力操作的分析,了解和掌握压力管道的应力工作内容以及特点,才能更好的完成工业技术的升级,保证良好的工作效率,提升社会生产力。进而,促进我国社会的经济建设和发展。 【关键词】压力管道应力分析内容特点 随着科技的不断发展,在工业生产中越来越多的应用到压力管道。压力管道作为工业承载和运输作业的重要途径,能够有效的监管和保护工业工作的正常实施。压力管道在经历外界的空气压力、温度、湿度等方面的环境刺激,还需要接受来自内部的流通物质压力,接受双重压力的控制后还能够充分的保证工业操作的安全性,就是压力管道的应力作用。本文针对压力管道的应力工作内容进行分析,寻找和归纳压力管道的应力操作特点,为更好的实施工业职能操作奠定良好的技术基础。 1压力管道的工作原理以及应力作用的概念 1.1压力管道的工作原理 压力管道的工作原理非常复杂,需要经受内外压力的同时进行正常的输送工作。压力管道的输送功能不限制于材料的性质,能够通过合理的流量控制,进行材料的融合,进一步进行分离工作,实施合理的排出运送,保证材料的整体流量控制。压力管道的工作原理是繁琐复杂的,经过非常严格的步骤控制,有输送管道进行流通,再由阀门进行控制,每个节点都要保证没有老化的胶垫和螺栓进行防渗漏的封闭保护。在流通的过程中,要保证管道的每个环节都紧密有效的相互作用,才能控制管道内和管道外的压力不会造成管道的破裂情况出现[1]。 压力管道是一条系统生产线,因此它具有自己独特的特点。首先,因为管道的连接性,注定了它的功能是具有相互作用力的,无论哪个节点出现问题,都会导致压力管道工作的全面瘫痪或者是出现问题。压力管道存在工作中的风险,因为它的独特结构,决定了它的工作特性。管道都是长链接的状态,而且没有过多空间利用。在压力管道工作运行中,需要承受外界的自然情况侵袭,可能会出现雨水的拍打,暴风的席卷,超高的温度等等,这些情况对压力管道都会造成一定的压力,影响实际的压力管道工作效果,也可能造成管道的损坏。各种情况的干扰就更需要管道保证坚实的工作性能,需要有各种各样的辅助材料支持,保证在细节上做到精

应力分析及疲劳分析报告

预处理塔应力分析及疲劳分析报告 编制: 校对: 审核: 全国压力容器标准化技术委员会 一九九八年九月

一、载荷分析 1.用户数据 根据XX设计院所提供的设计图,计算基础数据如下: 预处理塔容器的结构参数见附图1: 2.计算条件 (1) 强度计算条件: 材料在计算温度下的常数: 材料在常温(20℃)下的常数: 注[1]:设计应力强度及弹性模量按JB4732-95

(2) 疲劳计算条件: 载荷与时间的关系示意如下: 时间

二、结构分析 根据预处理塔的结构特点,应进行上封头、下封头及筒体开 孔三部分的应力分析,分别建立力学模型如下: 1.上封头部分: (1)力学模型 根据上封头的结构特点和载荷特性,采用了轴对称的力学模型。 图1:预处理塔上封头力学模型 (2)边界条件 预处理塔上封头边界条件的位置和方向如图1所示。 位移边界条件:

与筒体相连且在Y=0处: Y=0 力边界条件: 壳体内压P=0.85MPa。 中心接管处的边界等效压力P=8.877MPa。 (3) 单元选择 采用ANSYS 5.4有限元分析软件提供的轴对称8节点等参元(82)进行网格划分(如图1)。 2. 下封头部分: (1)力学模型 根据下封头的结构特点和载荷特性,采用了轴对称的力学模型。

图2:预处理塔下封头力学模型 (2)边界条件 预处理塔下封头边界条件的位置和方向如图2所示。 位移边界条件: 裙座根部:?Y=0 力边界条件: 壳体内压P=0.85MPa。 中心接管处的边界等效压力P=8.93MPa, 托架处(壳内物料重)的边界等效压力P=1.54MPa, 筒体直边端处的边界等效压力P=2.72MPa, (3) 单元选择 采用ANSYS 5.4有限元分析软件提供的轴对称8节点等参元(82)进行网格划分(如图2)。 3.筒体开孔部分: (1)力学模型 根据筒体的结构特性和载荷特性,力学模型关于XOZ平面近似对称(无开孔部分为应力均匀区),关于YOZ平面对称,只需计算结构的四分之一。 (2) 边界条件 柱壳开孔边界条件的位置和方向如图3所示。 位移边界条件:轴对称约束;Z=0时,?Z=0 力边界条件:壳体内压P=0.85MPa;筒体端的边界等效应力为:52.91MPa, 筒体端的边界等效应力为:3.94 (3) 单元选择

管道应力分析主要内容及要点

管道应力分析的原则 管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。 ASME B31《压力管道规范》由几个单独出版的卷所组成,每卷均为美国国家标准。它们是子ASME B31 压力管道规范委员会领导下的编制的。 每一卷的规则表明了管道装置的类型,这些类型是在其发展过程中经考虑而确定下来的,如下所列: B31.1 压力管道:主要为发电站、工业设备和公共机构的电厂、地热系统以及集中和分区的供热和供冷系统中的管道。 B31.3 工艺管道:主要为炼油、化工、制药、纺织、造纸、半导体和制冷工厂,以及相关的工艺流程装置和终端设备中的管道。 B31.4 液态烃和其他液体的输送管线系统:工厂与终端设备剑以及终端设备、泵站、调节站和计量站内输送主要为液体产品的管道。 B31.5 冷冻管道:冷冻和二次冷却器的管道 B31.8 气体输送和配气管道系统:生产厂与终端设备(包括压气机、调节站和计量器)间输送主要为气体产品的管道以及集汽管道。 B31.9 房屋建筑用户管道:主要为工业设备、公共结构、商业和市政建筑以及多单元住宅内的管道,但不包括B31.1 所覆盖的只寸、压力和温度范围。 B31.11 稀浆输送管道系统:工厂与终端设备间以及终端设备、泵站和调节站内输送含水稀浆的管道。 管道应力分析的主要内容 一、管道应力分析分为静力分析析 1.静力分析包括: 1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏; 2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算一一防止疲劳破坏; 3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行; 4)管道支吊架的受力计算——为支吊架设计提供依据: 5)管道上法兰的受力计算一防止法兰汇漏。 2.动力分析包括: 1)管道自振频率分析一一防止管道系统共振: 2)管道强迫振动响应分析——控制管道振动及应力; 3)往复压缩机(泵)气(液)柱频率分析一一防止气柱共振; 4)往复压缩机(泵)压力脉动分析——控制压力脉动值。 二、管道上可能承受的荷载 (1)重力荷载:包括管道自重、保温重、介质重和积雪重等 (2)压力荷载:压力载荷包括内压力和外压力; (3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4)风荷载;

Solidworks应力分析实例

基于Solidworks 软件的应力分析 Solidworks 中有限元分析插件CosMos/Works 分析零件的静力学性能,得出载荷分布情况,定性的分析极限载荷(这里指的是最大扭矩)下的应力,应变分布及其安全性能。 其分析流程如下: 1、建立一个简化的分析模型; 2、指定材料、元素和截面; 3、加约束和载荷; 4、设定网格; 5、执行分析; 6、结果显示; 7、生成研究报告。 分析对象 电机轴及啮合处的变速器输入轴,离合器花键轴及啮合处的离合器从动盘,电机轴和离合器花键轴之间的联接螺栓(M12x40,10.9级)。 材料 目前公司所用的变速器输入轴材料为20CrMnTi ,考虑其受力情况,材料不一致,其强度就会不一样,容易导致强度差的失效,因此根据目前情况,电机轴和离合器花键轴均选用20CrMnTi 。 20CrMnTi 用于制作渗碳零件,渗碳淬火后有良好的耐磨性和抗弯强度,有较高的低温冲击韧性,切削加工性能良好,承受高速、中载或重载以及冲击和摩擦的主要零件。 对于截面为15的样件,经过第一次淬火880℃,第二次淬火870℃,油冷;在经过回火200℃,水冷和空冷。得到的力学性能:抗拉强度MPa b 1080=σ,屈服强度MPa s 835=σ,伸长率(式样的标距等于5倍直径时的伸长率)%105=δ,断面收缩率%45=ψ,冲击韧度2/55cm J A kU =,硬度217HB 。

对于截面尺寸小于等于100的样件,经过调质处理,力学性能:抗拉强度 MPa b 615=σ,屈服强度MPa s 395=σ,伸长率%175=δ,断面收缩率%45=ψ, 冲击韧度2/47cm J A kU =。本分析还要使用到的参数:泊松比25.0=μ,抗剪模量G=7.938GPa ,弹性模量E=207GPa ,密度23/108.7m N ?=ρ。 螺栓联接受力分析 螺纹联接根据载荷性质不同,其失效形式也不同。受静载荷螺栓的失效形式多为螺纹部分的塑性变形或螺栓被拉断;受变向载荷螺栓的失效形式多为螺栓的疲劳断裂;对于受横向载荷的绞制孔用螺栓联接,其失效形式主要为螺栓杆被剪断,螺栓杆或连接孔接触面被挤压破坏。 对于10.9级M12的普通螺栓,屈服强度MPa s 900=σ,拧紧力矩T=120N.m 。 为了增强螺纹连接的刚性、防松能力及防止受载螺栓的滑动,装配时需要预紧。 其拧紧扳手力矩T 用于克服螺纹副的阻力矩T1及螺母与被连接件支撑面间的摩擦力矩T2,装配时可用力矩扳手法控制力矩。 公式: d * F *K =T2+T1=T 0 拧紧扳手力矩T=120N.m ,其中K 为拧紧力矩系数,0 F 为预紧力N ,d 为螺 纹公称直径12mm 。 摩擦表面状态 K 值 有润滑 无润滑 精加工表面 0.1 0.12 一般工表面 0.13-0.15 0.18-0.21 表面氧化 0.2 0.24 镀锌 0.18 0.22 粗加工表面 - 0.26-0.3

相关主题
文本预览
相关文档 最新文档