当前位置:文档之家› 圆筒内作用压力的应力分析实验报告

圆筒内作用压力的应力分析实验报告

圆筒内作用压力的应力分析实验报告
圆筒内作用压力的应力分析实验报告

圆筒内作用压力的应力分析实验报告

圆筒内作用压力的应力分析实验报告

小组成员:焦翔宇1120190146 李雪枫1120190149 宋佳1120190152

一实验目的: 1.了解薄壁容器在内压作用下,筒体的应力分布情况;验证薄壁容器筒体应力计算的理论公式。

2.熟悉和掌握电阻应变片粘贴技术的方法和步骤。

3.掌握用应变数据采集测量仪器测量应变的原理和操作方法。

二实验原理:① 理论测量原理

如右图是圆筒内作用压力的压力传感器结构简图,在压力P1作用下,圆筒外表面的周向应力σy 和轴向应力σx 分别为:

周向应变和周向应变分别为:

由上式可见,圆筒外表面的周向应变比轴向应变打,亮着又均为正值。为了提高灵敏度,并达到温度补偿的目的,将两个应变敏感元件R1、R4安装在圆筒外壁的周向;两个应变敏感元件R2、R3安装在圆筒上,见右图。四个应变敏感元件的应变分别为:

采用恒压电桥电路。输出电压为:

由上式可知:在这种情况下,采用恒压电桥电路时,压力与输出电压之间存在非线性关系。采用双恒流源电路时,输出电压为:

由上式可见:在小变形情况下,采用双恒流源电路时,压力与输出电压之间为线性关系。在大变形情况下,赢考虑变形的影响,这是周向应变为:

圆筒内的径向压力使得圆筒的半径变大,周向力使圆筒的半径减小。可得到由于径向压力引起的圆筒半径变化为:

轴向力引起的直径变化为:

圆筒半径的变化量为:

变形后,两半径的比值为:

应变敏感元件R1、R4处的应变值为:

由上式可见:考虑圆筒变形的影响后,压力与圆筒外壁应变之间为非线性关系。由于

,因此是递增非线性。

采用恒压电桥电路时,输出电压为:

由上式可见:考虑圆筒变形的影响后,采用双恒流源电路也存在着压力与输出电压之

间的非线性。

下图是圆筒内作用压力的一种压力传感器的结构图:

② 用电阻应变仪测量应变原理:

电阻应变测量法是测定压力容器筒壁应变的常用方法之一。其测量装置由三部分组成:即电阻应变片,连接导线和电阻应变仪。常用的电阻应变片是很细的金属电阻丝粘

于绝缘的薄纸上而成。见图一所示,将此电阻片用特殊的胶合剂贴在容器壁欲测之部位。当容器受内压作用发生变形时,电阻丝随之而变形。电阻丝长度及截面的改变引起其电

值的相应改变,则可以用电阻应变仪测出电阻的改变,再换算成应变,直接由应变

仪上读出。

电阻丝的应变与电阻的改变有如下的关系:

由于电阻丝的电阻R 和K 值对于一定的电阻片为一已知值,故只要测得Δ R (电阻丝电阻改变)就可以求出ε值。电阻应变仪是采用电桥测量原理测出Δ R 并换成με(即为)的

变形量。

三实验步骤: 1.了解试验装置(包括管路、阀门、容器、压力自控泵等在实验装

置中的功能和操作方法)及电阻片粘贴位置,测量电气线路,转换旋钮等。

2. 制作实验用圆筒,截下一段pvc 塑料管,在两端用哥俩好胶水粘合金属块使圆筒

形成内部气密舱。再两端金属块打孔,一段装入气压计,另一端安装打气孔,粘合使其不

漏气。 3. 应变片的安装:

(1)根据选择的测点位置,用砂纸打光;再按筒体的经线和纬线方向用划针或铅笔

划出测点的位置及方向;以后再用棉球、丙酮等除去污垢。

(2)测量电阻应变片的电阻值,记录电阻片的灵敏系数,以便将应变仪灵敏系数点

放在相应的位置上(实验室已准备好)。

(3)将“502”胶液均匀分布在电阻片的背面(注意:胶液均均匀涂在电阻片反面,

不可太多,引出线须向上)。随即将电阻片粘贴在欲测部位,并用滤纸垫上,施加接触

压力,挤出贴合面多余胶水及气泡(注意:电阻丝方向应与测量方向一致,用手指按紧

一至两分钟)。(4)在电阻片引出线下垫接线端子(用胶液粘贴),用于电阻应变片的

引出线和测量导线的焊接连接(测量导线和仪器的连接以及补偿片的粘贴已由实验室准备好)。

(5)用万用表测量应变片阻值,全部检查合格后,再进入应变测量仪器测量的调节步骤。

4. 进行实验测量,调节好仪器后打开气泵对圆筒充气,气压计每变化一格记录对应的应变仪器(右图)示数。

5. 反复测量多次得到多组数据,去除操作失误得到的错误数据。

实验过程中注意事项:

1.对仪器、工具、药品等要注意爱惜,节约使用滤纸、棉球、丙酮、胶水、电阻片等消耗品;实验结束后,药品、工具等要加以整理和清洁。

2.应变仪属于精密电子仪器,故在转动开关及调节盘宜时要轻巧缓慢,禁止在尚未熟悉使用仪器前任意拨动开关。

3.实验准备及仪器调试完备,经指导老师检查后方可升压进行测量;测量过程中应避免设备、导线移动,以免引起接触电阻的改变。

4.容器加、减压应缓慢进行,待压力稳定后再进行测量。 5.各组实验结果最后须经指导老师检查并认可,整理好仪器设备,打扫现场方可离开实验现场。

四数据分析:

① 数据一

线性回归系数:A=109 B=-121 R=-0.95

② 数据二

线性回归系数:A=92.7 B=-112.5 R= -0.9938

③ 数据三

线性回归系数:A=1.8 B=-104.6 R= 0.9996

综上三组数据|r|

力学实验报告

力学实验报告 篇一:工程力学实验(全) 工程力学实验学生姓名:学号:专业班级:南昌大学工程力学实验中心目录实验一金属材料的拉伸及弹性模量测定试验实验二金属材料的压缩试验实验三复合材料拉伸实验实验四金属扭转破坏实验、剪切弹性模量测定实验五电阻应变片的粘贴技术及测试桥路变换实验实验六弯曲正应力电测实验实验七叠(组)合梁弯曲的应力分析实验实验八弯扭组合变形的主应力测定实验九偏心拉伸实验实验十偏心压缩实验实验十二金属轴件的高低周拉、扭疲劳演示实验实验十三冲击实验实验十四压杆稳定实验实验十五组合压杆的稳定性分析实验实验十六光弹性实验实验十七单转子动力学实验实验十八单自由度系统固有频率和阻尼比实验 1 2 6 9 12 16 19 23 32 37 41 45 47 49 53 59 62 65实验一金属材料的拉伸及弹性模量测定试验实验时间:设备编号:温度:湿度:一、实验目的二、实验设备和仪器三、实验数据及处理引伸仪标距l =mm 实验前 2低碳钢弹性模量测定 E? 实验后 ?F?l = (?l)?A 屈服载荷和强度极限载荷 3载荷―变形曲线(F―Δl曲线)及结果四、问题讨论(1)比较低碳钢与铸铁在拉伸时的力学性能;(2)试从不同的断口特征说明金属的两种基本破坏形式。 4篇二:工程力学实验报告工程力学实验报告自动化12级实验班 1-1 金属材料的拉伸实验一、试验目的 1.测定低碳钢(Q235 钢)的强度性能指标:上屈服强度ReH,下屈服强度ReL和抗拉强度Rm 。 2.测定低碳钢(Q235 钢)的塑性性能指标:断后伸长率A和断面收缩率Z。 3.测定铸铁的抗拉强度Rm。 4.观察、比较低碳钢(Q235 钢)和铸铁的拉伸过程及破坏现象,并比较其机械性能。 5.学习试验机的使用方法。二、设备和仪器 1.试验机(见附录)。 2.电子引伸计。 3.游标卡尺。三、试样 (a) (b) 图1-1 试样拉伸实验是材料力学性能实验中最基本的实验。为使实验结果可以相互比较,必须对试样、试验机及实验方法做出明确具体的规定。我国国标GB/T228-2002 “金属材料室温拉伸试验方法”中规定对金属拉伸试样通常采用圆形和板状两种试样,如图(1-1)所示。它们均由夹持、过渡和平行三部分组成。夹持部分应适合于试验机夹头的夹持。过渡部分的圆孤应与平行部分光滑地联接,以保证试样

材料力学实验指导书(矩形截面梁纯弯曲正应力的电测实验)

矩形截面梁纯弯曲正应力的电测实验 一、实验名称 矩形截面梁纯弯曲正应力的电测实验。 二、实验目的 1.学习使用电阻应变仪,初步掌握电测方法; 2.测定矩形截面梁纯弯曲时的正应力分布规律,并与理论公式计算结果进行比较,验证弯曲正应力计算公式的正确性。 三、实验设备 1.WSG-80型纯弯曲正应力试验台 2.静态电阻应变仪 四、试样制备及主要技术指标 1、矩形截面梁试样 材料:20号钢,E=208×109Pa; 跨度:L=600mm,a=200mm,L1=200mm; 横截面尺寸:高度h=28mm,宽度b=10mm。

2.载荷增量 载荷增量ΔF=200N (砝码四级加载,每个砝码重10N 采用1:20杠杆比放大),砝码托作为初载荷,F0=26 N 。 3.精度 满足教学实验要求,误差一般在5%左右。 五、实验原理 如图1所示,CD 段为纯弯曲段,其弯矩为a 2 1 F M = , 则m N M ?=6.20,m N M ?=?20。根据弯曲理论,梁横截面上各点的正应力增量为: z I y M ?= ?理σ (1) 式中:y 为点到中性轴的距离;Iz 为横截面对中性轴z 的惯性矩,对于矩 形截面, 12 bh I 3 z = (2) 由于CD 段是纯弯曲的,纵向各纤维间不挤压,只产生伸长或缩短,所以各点均为单向应力状态。只要测出各点沿纵向的应变增量ε?,即可按胡克定律计算出实际的正应力增量实σ?。 εσ?=?E 实 (3) 在CD 段任取一截面,沿不同高度贴五片应变片。1片、5片距中性轴z 的 距离为h/2,2片、4片距中性轴z 的距离为h/4,3片就贴在中性轴的位臵上。 测出各点的应变后,即可按(3)式计算出实际的正应力增量实σ?,并画出正应力实σ?沿截面高度的分布规律图,从而可与(1)式计算出的正应力理论值理σ?进行比较。 六、实验步骤 1.开电源,使应变仪预热。

纯弯梁的弯曲应力测定

纯弯梁的弯曲应力测定实验报告 使用设备名称与型号 同组人员 实验时间 1、 实验目的 1.测定梁纯弯曲时横截面上的正应力大小及分布规律,并与理论值比较,以验证弯曲正应力公式。 2.观察正应力与弯矩的线性关系。 3.了解电测法的基本原理和电阻应变仪的使用方法。 2、 实验设备与仪器 1.弯曲梁实验装置和贴有电阻应变片的矩形截面钢梁。 2.静态数字电阻应变仪YJ28A-P10R(见附录四)和载荷显示仪。 3.直尺。 3、 实验原理 梁纯弯曲时横截面上的正应力公式为σ= ,式中M为作用在横截面上的弯矩,Y为欲求应力点到中性轴Z的距离,I z为梁横截面对中性轴的惯性矩。本实验采用矩形截面钢梁,实验时将梁的支承及载荷情况布置如图6-1所示,梁的CD段为纯弯曲,在梁的CD段某截面不同高度(四等分点)处贴五片电阻应变片,方向平行梁轴,温度补偿片粘贴梁上不受力处,当纯弯梁受载变形时,利用电阻应变仪测出各应变片的应变值(即梁上各纵向应变值)ε实。由于纵向纤维间不互相挤压,故根据单向应力状态的虎克定律求出应力σ实=Eε实。E为梁所用材料的弹性模量。为了减少测量误差,同时也可以验证正应

力与弯矩的线性关系,采用等量加载来测定沿高度分布的各相应点的应变,每增加等量的载荷 F,测定各点相应的应变一次,取应变增量的平均值 ε实。求出各应力增量 σ实=E ε实,并与理论值 σ理= 进行比较,其中 M= Fa.,从而验证理论公式的正确性。

图6-1纯弯梁示意图 4、 实验操作步骤 1.将梁放在实验装置的支座上。注意应尽量使梁受平面弯曲,用尺测量力作用点的位置及梁的截面尺寸。 2.在确保梁的最大应力小于材料的比例极限σp前提下,确定加载方案。 3.将梁上各测点的工作应变片逐点连接到应变仪的A、B接线柱上,而温度补偿片接在B、C接线柱上。按电阻应变仪的使用方法,将应变仪调整好。 4.先加载至初载荷,记录此时各点的应变值,然后每次等量增加载荷 ΔF,逐次测定各点相应的应变值,直到最终载荷终止。卸载后,注意记录各测点的零点漂移。 5.检查实验数据是否与离开中性轴的距离成正比,是否与载荷成线形关系,结束工作。 5、 实验结果及分析计算 1、 实验数据 12345

材料力学实验报告册概要

实验日期_____________教师签字_____________ 同组者_____________审批日期_____________ 实验名称:拉伸和压缩试验 一、试验目的 1.测定低碳钢材料拉伸的屈服极限σs 、抗拉强度σb、断后延伸率δ及断 面收缩率ψ。 2.测定灰铸铁材料的抗拉强度σb、压缩的强度极限σb。 3.观察低碳钢和灰铸铁材料拉伸、压缩试验过程中的变形现象,并分析 比较其破坏断口特征。 二、试验仪器设备 1.微机控制电子万能材料试验机系统 2.微机屏显式液压万能材料试验机 3.游标卡尺 4.做标记用工具 三、试验原理(简述) 1

四、试验原始数据记录 1.拉伸试验 低碳钢材料屈服载荷 最大载荷 灰铸铁材料最大载荷 2.灰铸铁材料压缩试验 直径d0 最大载荷 教师签字:2

五、试验数据处理及结果 1.拉伸试验数据结果 低碳钢材料: 铸铁材料: 2.低碳钢材料的拉伸曲线 3.压缩试验数据结果 铸铁材料: 3

4.灰铸铁材料的拉伸及压缩曲线: 5.低碳钢及灰铸铁材料拉伸时的破坏情况,并分析破坏原因 ①试样的形状(可作图表示)及断口特征 ②分析两种材料的破坏原因 低碳钢材料: 灰铸铁材料: 4

6.灰铸铁压缩时的破坏情况,并分析破坏原因 六、思考讨论题 1.简述低碳钢和灰铸铁两种材料的拉伸力学性能,以及力-变形特性曲线 的特征。 2.试说明冷作硬化工艺的利与弊。 3.某塑性材料,按照国家标准加工成直径相同标距不同的拉伸试样,试 判断用这两种不同试样测得的断后延伸率是否相同,并对结论给予分析。 5

七、小结(结论、心得、建议等)6

压力管道应力分析的内容及特点 马佳

压力管道应力分析的内容及特点马佳 发表时间:2019-10-10T10:51:38.057Z 来源:《建筑学研究前沿》2019年13期作者:马佳 [导读] 压力管道应力分析是管道设计中最关键的工作之一。管道设计应根据工业金属管道设计规范进行,进行管道设计应该从管道应力、管道材料和配管方面着手。 新疆天麒工程项目管理咨询有限责任公司 834000 摘要:压力管道应力分析是管道设计中最关键的工作之一。管道设计应根据工业金属管道设计规范进行,进行管道设计应该从管道应力、管道材料和配管方面着手。因为压力管道上存在复杂性的各种载荷,进行压力管道的应力分析的难度较大,导致阻碍管道设计工作,而且管道在运行和生产过程中的安全和质量关键是因为应力而存在的,因此找到管道应力分析的方法具有重要意义。论述压力管道的应力特点和分布,能够提供给工程施工、管道选择和管道设计可靠的信息数据作参考,进而确保土建结构与管道连接的设备和管道自身的安全,保证了整个生产作业的安全,使压力管道提高使用价值。 关键词:应力;特点;压力;内容;管道 前言:压力管道具有十分广泛的应用范围,而且在各个场所中的应用作用十分关键,压力管道关键作用是运输物质,在重要的大型建设工程中应用,如冶金工程、电力工程、天然气体、石油化工等,为满足一些需要进行供给或运输。因为外界环境因素与整个管道系统均会很大程度的影响到压力管道应力,而且会受影响于流体的流动,这使应力分析增加了复杂度,应力分析压力管道应该结合实际的管道状况,尽量将接近实际、正确的分析结果准确模拟出来。 1应力分析压力管道的涵义 在市政建设行业、化工行业、石油石化等产业普遍应用到管道,这些行业存在较高要求的工程安全指数与投资额,对压力管道进行应力分析应该对概念充分了解。应力指的是管道构件应用在建设需要中承受的单位面积内力,其在荷载外力下形成的值较大,若是超出能够承受的材料极限强度,将造成管材失稳、破裂、变形等状况,关键在于因为外部热荷载与机械荷载导致的。应力分析管道的状况下,能够确保良好的使用工艺装置而且保持其柔软性,精准的计算与分析热荷载与机械荷载后,获取设计管道的配件参数,计算变形与应力、应力与荷载,提供给管道配置合理的数据凭据,能够使管道产生的震动干扰减少,进而错开震源的震动频率,使管道的可靠性与安全性得到确保。 2应力分析压力管道的内容 清楚了解分析的种类是应力分析压力管道的重要前提基础,按照不同种类应力的特点,应用针对性措施是压力管道减小应力,按照压力管道承受应力的作用方向、范围、强度大小,能够将压力管道上承受的应力分类成一、二次应力与峰值应力。应力分析压力管道的关键内容是管道材料的承受力、应力的影响因素、应力种类、管道应力分布、工作流程、分配的分析任务等。最重要的是应力种类,关于管道的设计工作技术方面的最基本要求是对应力的种类掌握了解并且快速分析。 2.1压力管道一次应力分析内容 导致压力管道形成一次应力是因为受到一定的外载荷,致使压力管道上存在外载荷的关键原因为受影响于外界力,如风压、介质压力、重力等,通过受到的平衡受力得知外界力与一次应力具有相同的大小,一次应力伴随改变的外界力改变,所以所以具备无自限性特点的一次应力所以出于无线增大的外力影响下,压力管道将无限制增长受到的应力,进而产生压力管道变形或裂缝的现象,然而压力管道受到的应力方向相反于外界力方向。因为压力管道受到的不确定方向的外界力,导致存在不同分布范围的应力,能够按照压力管道受到作用范围的一次应力,分成局部薄膜弯曲一次应力、一次应力与总体薄膜一次应力导致压力管道变形与破裂的关键原因在于被一次应力所影响,压力管道承受的一次应力大小若是比压力管道材料具备的塑性变形值大的状况下便会产生这种现象,进而致使运输流体在压力管道中对正常运行工程项目产生影响与损失。所以想要防止产生一次应力超出管材具备的塑性变形值,应该压力管道承受的外界力严格控制,而且在对压力管道选取管材时保证相较于外界力管材具备的塑性变形值更大。 2.2压力管道二次应力分析内容 像气体一样,被温度所影响,流体的体积大小将受到影响,因为对于液体来讲,压力管道具备的变形性特别小,在低温或高温的状况下,压力管道会出现热胀冷缩的状况,而且因为温度等原因导致连接于压力管道的设备出现初始位移,因为管道在这些状况下形成的变形致使被约束于外界条件,如土建结构、设备管口等,使应力形成,二次应力是因为附加位移与热胀冷缩等形成的。二次应力最基本的不同在于,二次应力没有一次应力存在的无自限性,而且二次应力不会由于改变外界力的大小而受到改变,若是外界力导致产生局部屈服的状况下,管道出现变形直到外界力和一次应力处于平衡状态,也不会影响到二次应力。在压力管道存在很大的塑性变形值的基础上,压力管道受到初次荷载的状况下,导致破坏压力管道的原因不是二次应力,压力管道受到多次变化的荷载的状况下,导致压力管道不断降低塑性变形值,使管道产生疲劳破坏的状况,压力管道会受到二次压力重要的破坏,关于管道受到二次应力而遭到破坏的状况,并非是受到一次应力限定的破坏时间,是因为循环次数与交变的应力导致的。 2.3压力管道峰值应力分析内容 在局部范畴中压力管道遭受的应力便是峰值应力,并非是压力管道承受的最大应力值,因为压力管道具有十分复杂的形状,会产生形状突变如急转等状况,受影响于突然产生变化的荷载致使峰值应力受力于压力管道,导致产生峰值的原因紧密关系着压力管道中构成设备仪器的形式,峰值压力不会导致压力管道产生破裂与变形的现象,然而在压力管道产生疲劳受力的状况下,若是受到峰值应力将导致压力管道破裂的状况形成。 3应力分析压力管道的特点探讨 伴随我国目前不断发展的科学技术和应力分析压力管道方面不断提高的技术水平,应力分析压力管道的状况下越发能够有效、清楚的将相关应力处理,然而在处理压力管道应力管道应力方面相比于西方发达国家还有明显的差异存在,导致产生差异的关键原因在于规范的校核原则不足。应力分析压力管道的过程中,设计人员通常情况下对局部薄膜应力和一次弯曲应力分析忽视,无法对产生一次应力的原因与受力全面的了解,进而致使对压力管道分析的数据有一定程度的差错产生,使工作人员编制的后期数据报告存在错误,从而使正常运行

梁弯曲正应力测量实验报告

厦 门 海 洋 职 业 技 术 学 院 编号:XH03J W024-05/0 实训(验) 报告 班级: 姓名: 座号: 指导教师: 成绩: 课程名称: 实训(验): 梁弯曲正应力测量 年 月 日 一、 实训(验)目的: 1、掌握静态电阻应变仪的使用方法; 2、了解电测应力原理,掌握直流测量电桥的加减特性; 3、分析应变片组桥与梁受力变形的关系,加深对等强度梁概念的理解。 二、 实训(验)内容、记录和结果(含数据、图表、计算、结果分析等) 1、实验数据: (1) 梁的尺寸: 宽度b =9mm ;梁高h=30mm ;跨度l =600mm;AC 、BD:弯矩a=200m m。测点距轴z 距离: 21h y ==15mm;42h y ==7.5mm ;3y =0cm ;-=-=44h y 7.5mm;-=-=2 5h y 15mm;E=210Gpa 。 抗弯曲截面模量W Z =b h2/6 惯性矩J Z =bh 3 /12 (2) 应变)101(6-?ε记录:

(3) 取各测点ε?值并计算各点应力: 1ε?=16×10-6 ;2ε?=7×10-6 ;3ε?= 0 ;4ε?=8×10-6 ;5ε?=15×10 - 6 ; 1σ?=E 1ε?=3.36MPa;2σ?=E 2ε?=1.47MP a;3σ?=0 ; 4σ?=E 4ε?=1.68MPa;5σ?=E 5ε?=3.15MPa ; 根据ΔM W=ΔF ·a/2=5 N ·m 而得的理论值: 1σ?=ΔM W/W Z =3.70MPa;2σ?=ΔMWh/4(J Z)=1.85M Pa ;3σ?=0 ; 4σ?=ΔM W h/4(J Z )=1.85MPa;5σ?=ΔMW /W Z=3.70MPa; (4) 用两次实验中线形较好的一组数据,将平均值ε?换算成应力εσ?=E ,绘在坐标 方格纸上,同时绘出理论值的分布直线。

压力管道应力分析的内容及特点

压力管道应力分析的内容及特点 摘要:压力管道应力分析是管道设计中最关键的工作之一。管道设计应根据工 业金属管道设计规范进行,进行管道设计应该从管道应力、管道材料和配管方面 着手。因为压力管道上存在复杂性的各种载荷,进行压力管道的应力分析的难度 较大,导致阻碍管道设计工作,而且管道在运行和生产过程中的安全和质量关键 是因为应力而存在的,因此找到管道应力分析的方法具有重要意义。论述压力管 道的应力特点和分布,能够提供给工程施工、管道选择和管道设计可靠的信息数 据作参考,进而确保土建结构与管道连接的设备和管道自身的安全,保证了整个 生产作业的安全,使压力管道提高使用价值。 关键词:应力;特点;压力;内容;管道 前言:压力管道具有十分广泛的应用范围,而且在各个场所中的应用作用十 分关键,压力管道关键作用是运输物质,在重要的大型建设工程中应用,如冶金 工程、电力工程、天然气体、石油化工等,为满足一些需要进行供给或运输。因 为外界环境因素与整个管道系统均会很大程度的影响到压力管道应力,而且会受 影响于流体的流动,这使应力分析增加了复杂度,应力分析压力管道应该结合实 际的管道状况,尽量将接近实际、正确的分析结果准确模拟出来。 1应力分析压力管道的涵义 在市政建设行业、化工行业、石油石化等产业普遍应用到管道,这些行业存 在较高要求的工程安全指数与投资额,对压力管道进行应力分析应该对概念充分 了解。应力指的是管道构件应用在建设需要中承受的单位面积内力,其在荷载外 力下形成的值较大,若是超出能够承受的材料极限强度,将造成管材失稳、破裂、变形等状况,关键在于因为外部热荷载与机械荷载导致的。应力分析管道的状况下,能够确保良好的使用工艺装置而且保持其柔软性,精准的计算与分析热荷载 与机械荷载后,获取设计管道的配件参数,计算变形与应力、应力与荷载,提供 给管道配置合理的数据凭据,能够使管道产生的震动干扰减少,进而错开震源的 震动频率,使管道的可靠性与安全性得到确保。 2应力分析压力管道的内容 清楚了解分析的种类是应力分析压力管道的重要前提基础,按照不同种类应 力的特点,应用针对性措施是压力管道减小应力,按照压力管道承受应力的作用 方向、范围、强度大小,能够将压力管道上承受的应力分类成一、二次应力与峰 值应力。应力分析压力管道的关键内容是管道材料的承受力、应力的影响因素、 应力种类、管道应力分布、工作流程、分配的分析任务等。最重要的是应力种类,关于管道的设计工作技术方面的最基本要求是对应力的种类掌握了解并且快速分析。 2.1压力管道一次应力分析内容 导致压力管道形成一次应力是因为受到一定的外载荷,致使压力管道上存在 外载荷的关键原因为受影响于外界力,如风压、介质压力、重力等,通过受到的 平衡受力得知外界力与一次应力具有相同的大小,一次应力伴随改变的外界力改变,所以所以具备无自限性特点的一次应力所以出于无线增大的外力影响下,压 力管道将无限制增长受到的应力,进而产生压力管道变形或裂缝的现象,然而压 力管道受到的应力方向相反于外界力方向。因为压力管道受到的不确定方向的外 界力,导致存在不同分布范围的应力,能够按照压力管道受到作用范围的一次应

实验力学实验分析报告

实验力学实验报告

————————————————————————————————作者:————————————————————————————————日期:

实验力学实验报告 姓名:耿臻岑 学号:130875 指导老师:郭应征

实验一薄壁圆管弯扭组合应力测定实验 一、实验目的 1、用应变花测定薄壁圆管在弯扭条件下一点处的主应力和主方向 2、测定薄壁圆管在弯扭组合条件下的弯矩、扭矩和剪力等内力 3、进一步熟悉和掌握不同的桥路接线方法 4、初步了解在组合变形情况下测量某一内力对应应变的方法 二、实验设备 1、电阻应变仪YJ-28 2、薄壁圆管弯扭组合装置,见图1-1 本次实验以铝合金薄壁圆管EC为测试对象,圆管一段固定,另一端连接与之垂直的伸臂AC,通过旋转家里手柄将集中荷载施加在伸臂的另一端,由力传感器测出力的大小。荷载作用在伸臂外端,其作用点距圆通形心为b,圆通在荷载F 作用下发生弯扭组合变形。要测取圆筒上B截面(它到荷载F作用面距离为L)处各测点的主应力大小和方向。试样弹性模量E=72GPa,泊松比μ=0.33,详细尺寸如表1-1 图1-1 薄壁圆筒弯扭组合装置 表1-1 试样参数表 外径D(mm) 内径d(mm) b(mm) L(mm)

40 34 200 300 三、实验原理 1、确定主应力和主方向 平面应力状态下任一点的应力有三个未知数(主应力大小及方向)。应用电阻应变仪应变花可测的一点沿不同方向的三个应变值,如图1-2所示的三个方向已知的应变。根据这三个应变值可以计算出主应变的大小和方向。因而主应力的方向也可确定(与主应变方向重合) ()() () () 45450 4545 22 4545 1,2450450 4545 04545 112 2 221 2 2 22 tan2 2 1 1 x y xy E E εε εεεε γεε εε εεεεε εε α εεε σεμε μ σεμε μ - - - - - - = =+- =- + =±-+- - = -- =+ - =+ - o o o o o o o o o o o o o o o o o 图1-2 应变花示意图图1-3 B、D点贴片位置示意图 2、测定弯矩 在靠近固定端的下表面D上,粘一个与点B相同的应变花,如图1-3所示。将B点的应变片和D点的应变片,采用双臂测量接线法(自补偿半桥接线法),得:()() () 000 44 2 2 64 r T T r r E E E D d M D εεεεεε ε σε π ε =+--+= == - =

压力管道应力分析计算软件在工程设计中应用的探讨

压力管道应力分析计算软件在工程设计中应用的探讨 摘要:随着新工艺和新设备的出现,发电、化工、海洋、石油、市政等领域, 管道的压力、温度、管径和壁厚不断加大,敷设的方式也越来越复杂。传统手工 进行管道应力分析的计算已不能满足实际的需要,各设计和研究单位借助专门的 管道应力分析软件进行计算已成为常态。 关键词:压力管道;应力分析;计算软件;工程应用 导言 上世纪60年代以来,随着发电、化工、市政等领域新工艺和新设备的不断出现,管道的压力、温度提高,管径和壁厚不断加大,管道应力分析也受到越来越 多的重视。由于计算机的不断普及,国际上出现了一批管道应力分析专用计算机 程序。国内虽然也出现了一些自行编制的管道应力分析程序但大多应用于少数特 定领域,与国外软件相比较,软件功能、开发完善、标准规范、技术支持等方面,还存在一定差距,实际使用中,大多数设计单位还是使用国外成熟的管道应力分 析软件。 1 管道应力分析的原则 管道应力分析主要保证管道在设计条件下具有足够的柔性,防止管道因热胀 冷缩、管道支承或端点附加位移造成应力问题。 2 压力管道应力分析的内容和目的 2.1管道应力分析的内容 管道应力分析分为静力分析和动力分析。 静力分析包括:1)压力荷载和持续荷载作用下的一次应力计算;2)管道热 胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算;3)管道对设备作 用力的计算;4)管道支吊架的受力计算;5)管道上法兰的受力计算。 动力分析包括:l)管道自振频率分析;2)管道强迫振动响应分析;3)往复 压缩机(泵)气(液)柱频率分析;4)往复压缩机(泵)压力脉动分析。 2.2 管道应力分析的目的 管道应力分析的目的:1)使管道和管件内的应力不超过许用应力值2)使与 管系相连的设备的管口荷载在制造商或规范规定的许用范围内;3)使与管系相 连的设备管口的局部应力在规定的允许范围内;4)计算管系的支架和约束的设 计荷载;5)进行操作工况碰撞检查而确定管子的位移量;6)优化管系设计。 3 工程设计中常用的压力管道应力分析软件 目前各大设计单位对压力管道应力分析计算基本采用计算机,但采用的软件 各院不尽相同,计算软件的开发品种较多。在压力管道计算方面采用软件情况: 化工、医药、机械行业设计采用美国的CAESAR II,AutoPipe较多,市政热水、蒸 汽及石油输送管道常用sisKMR、START软件。国内自主开发的软件有RJCAD热力 工程设计软件,主要用于热力管网的计算。 3.1.CAESAR II管道应力分析软件 CAESAR II软件历史久远,功能强大,包含动态和静态管道应力分析,在化工,石油,海洋工程方面有很多应用,在国内电力行业也有很多成功应用。 CAESARII可进行管系在承受自重、压力载荷、热载荷、地震载荷等静态载荷,和水锤、蒸汽锤以及安全阀泄放等动态载荷下的应力分析。软件的功能特点如下:

实验力学实验报告

实验力学实验报告 姓名:耿臻岑 学号:130875 指导老师:郭应征

实验一薄壁圆管弯扭组合应力测定实验 一、实验目的 1、用应变花测定薄壁圆管在弯扭条件下一点处的主应力和主方向 2、测定薄壁圆管在弯扭组合条件下的弯矩、扭矩和剪力等内力 3、进一步熟悉和掌握不同的桥路接线方法 4、初步了解在组合变形情况下测量某一内力对应应变的方法 二、实验设备 1、电阻应变仪YJ-28 2、薄壁圆管弯扭组合装置,见图1-1 本次实验以铝合金薄壁圆管EC为测试对象,圆管一段固定,另一端连接与之垂直的伸臂AC,通过旋转家里手柄将集中荷载施加在伸臂的另一端,由力传感器测出力的大小。荷载作用在伸臂外端,其作用点距圆通形心为b,圆通在荷载F 作用下发生弯扭组合变形。要测取圆筒上B截面(它到荷载F作用面距离为L)处各测点的主应力大小和方向。试样弹性模量E=72GPa,泊松比μ=0.33,详细尺寸如表1-1 图1-1 薄壁圆筒弯扭组合装置 表1-1 试样参数表 外径D(mm) 内径d(mm) b(mm) L(mm) 40 34 200 300 三、实验原理 1、确定主应力和主方向 平面应力状态下任一点的应力有三个未知数(主应力大小及方向)。应用电阻应变仪应变花可测的一点沿不同方向的三个应变值,如图1-2所示的三个方向已知的应变。根据这三个应变值可以计算出主应变的大小和方向。因而主应力的方向

也可确定(与主应变方向重合) ()( ) ()() 045450 4545 2 2 4545 1,2450 4504545 0045451122 2212 22 2 tan 2211x y xy E E εεεεεεγεεεεεεεεεεεαεεεσεμεμσεμεμ------==+-=-+= ± -+--= --= +-=+-o o o o o o o o o o o o o o o o o 图1-2 应变花示意图 图1-3 B 、D 点贴片位置示意图 2、测定弯矩 在靠近固定端的下表面D 上,粘一个与点B 相同的应变花,如图1-3所示。将B 点的应变片和D 点的应变片,采用双臂测量接线法(自补偿半桥接线法),得: ()()()00004422 64r T T r r E E E D d M D εεεεεεεσεπε=+--+=== -= 图1-4 测点A 贴片位置示意图 3、测定扭矩 当圆管受扭转时,A 点的应变片和C 点的应变片中45°和-45°都沿主应力方向,示意图如图1-4,但两点的主应力大小却不相同,由于圆管是薄壁结构,不能忽略由剪力产生的弯曲切应力。A 点的应变片扭转切应力与弯曲切应力的方向相

管道应力分析报告概述

管道应力分析概述 CAESARII软件介绍 CAESARII管道应力分析软件是由美国COADE公司研发的压力管道应力分析专业软件。它既可以分析计算静态分析,也可进行动态分析。CAESARII向用户提供完备的国际上的通用管道设计规范,使用方便快捷。交互式数据输入图形输出,使用户可直观查看模型(单线、线框,实体图)强大的3D计算结果图形分析功能,丰富的约束类型,对边界条件提供最广泛的支撑类型选择、膨胀节库和法兰库,并且允许用户扩展自己的库。钢结构建模,并提供多种钢结构数据库.结构模型可以同管道模型合并,统一分析膨胀节可通过标准库选取自动建模、冷紧单元/弯头,三通应力强度因子(SIF)的计算、交互式的列表编辑输入格式用户控制和选择的程序运行方式,用户可定义各种工况。 一、管道应力分析的原则 管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。 二、管道应力分析的主要内容 管道应力分析分为静力分析和动力分析。 静力分析包括: 1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏; 2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算——防止疲劳破坏; 3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行; 4)管道支吊架的受力计算——为支吊架设计提供依据; 5)管道上法兰的受力计算——防止法兰汇漏。 动力分析包括:

l)管道自振频率分析——防止管道系统共振; 2)管道强迫振动响应分析——控制管道振动及应力; 3)往复压缩机(泵)气(液)柱频率分析——防止气柱共振; 4)往复压缩机(泵)压力脉动分析——控制压力脉动值。 三、管道上可能承受的荷载 (1)重力荷载:包括管道自重、保温重、介质重和积雪重等; (2)压力荷载:压力载荷包括内压力和外压力; (3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4)风荷载; (5)地震荷载; (6)瞬变流冲击荷载:如安全阀启跳或阀门的快速启闭时的压力冲击: (7)两相流脉动荷载; (8)压力脉动荷载:如往复压缩机往复运动所产生的压力脉动; (9)机械振动荷载:如回转设备的振动。 四、管道应力分析的目的 1)为了使管道和管件内的应力不超过许用应力值; 2)为了使与管系相连的设备的管口荷载在制造商或国际规范(如 NEMA SM-23、API-610、API-6 17等)规定的许用范围内; 3)为了使与管系相连的设备管口的局部应力在 ASME Vlll的允许范围内; 4)为了计算管系中支架和约束的设计荷载;

纯弯曲梁的正应力实验参考书报告

《纯弯曲梁的正应力实验》实验报告 一、实验目的 1.测定梁在纯弯曲时横截面上正应力大小和分布规律 2.验证纯弯曲梁的正应力计算公式 二、实验仪器设备和工具 3.XL3416 纯弯曲试验装置 4.力&应变综合参数测试仪 5.游标卡尺、钢板尺 三、实验原理及方法 在纯弯曲条件下,梁横截面上任一点的正应力,计算公式为 σ= My / I z 式中M为弯矩,I z 为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。 为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。 实验采用半桥单臂、公共补偿、多点测量方法。加载采用增量法,即每增加等量的载荷△P,测出各点的应变增量△ε,然后分别取各点应变增量的平均值△ε实i,依次求出各点的应变增量 σ实i=E△ε实i 将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。 四、实验步骤 1.设计好本实验所需的各类数据表格。 2.测量矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a及各应变 片到中性层的距离y i 。见附表1 3.拟订加载方案。先选取适当的初载荷P 0(一般取P =10%P max 左右),估 算P max (该实验载荷范围P max ≤4000N),分4~6级加载。 4.根据加载方案,调整好实验加载装置。

5. 按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。 6. 加载。均匀缓慢加载至初载荷P 0,记下各点应变的初始读数;然后分级 等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值εi ,直到最终载荷。实验至少重复两次。见附表2 7. 作完实验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。 附表1 (试件相关数据) 附表2 (实验数据) 载荷 N P 500 1000 1500 2000 2500 3000 △P 500 500 500 500 500 各 测点电阻应变仪读数 με 1 εP -33 -66 -99 -133 -166 △εP -33 -33 -34 -33 平均值 -33.25 2 εP -16 -3 3 -50 -67 -83 △εP -17 -17 -17 -16 平均值 16.75 3 εP 0 0 0 0 0 △εP 0 0 0 0 平均值 0 4 εP 1 5 32 47 63 79 △εP 17 15 1 6 16 平均值 16 5 εP 32 65 9 7 130 163 △εP 33 32 33 33 平均值 32.75 五、实验结果处理 1. 实验值计算 根据测得的各点应变值εi 求出应变增量平均值△εi ,代入胡克定律计算 各点的实验应力值,因1με=10-6ε,所以 各点实验应力计算: 应变片至中性层距离(mm ) 梁的尺寸和有关参数 Y 1 -20 宽 度 b = 20 mm Y 2 -10 高 度 h = 40 mm Y 3 0 跨 度 L = 620mm (新700 mm ) Y 4 10 载荷距离 a = 150 mm Y 5 20 弹性模量 E = 210 GPa ( 新206 GPa ) 泊 松 比 μ= 0.26 惯性矩I z =bh 3/12=1.067×10-7m 4 =106667mm 4

青岛理工大学材料力学实验报告记录

青岛理工大学材料力学实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

材料力学实验报告 系别 班级 姓名 学号 青岛理工大学力学实验室

目录 实验一、拉伸实验报告 实验二、压缩实验报告 实验三、材料弹性模量E和泊松比μ的测定报告 实验四、扭转实验报告 实验五、剪切弹性模量实验报告 实验六、纯弯曲梁的正应力实验报告 实验七、等强度梁实验报告 实验八、薄壁圆筒在弯扭组合变形下主应力测定报告 实验九、压杆稳定实验报告 实验十、偏心拉伸实验报告 实验十一、静定桁架结构设计与应力分析实验报告 实验十二、超静定桁架结构设计与应力分析实验报告 实验十三、静定刚架与压杆组合结构设计与应力分析实验报告实验十四、双悬臂梁组合结构设计与应力分析实验 实验十五、岩土工程材料的多轴应力特性实验报告

实验一 拉伸实验报告 一、实验目的与要求: 二、实验仪器设备和工具: 三、实验记录: 1、试件尺寸 实验前: 实验后: 2、实验数据记录: 屈服极限载荷:P S = kN 强度极限载荷:P b = kN 材 料 标 距 L 0 (mm) 直径(mm ) 截面 面积 A 0 (mm 2) 截面(1) 截面(2) 截面(3) (1) (2) 平均 (1) (2) 平均 (1) (2) 平均 材 料 标 距 L (mm) 断裂处直径(mm ) 断裂处 截面面积 A(mm 2) (1) (2) 平均

四、计算 屈服极限: ==0 A P s s σ MPa 强度极限: == A P b b σ MPa 延伸率: =?-= %10000 L L L δ 断面收缩率: =?-= %1000 0A A A ψ 五、绘制P -ΔL 示意图:

弯曲正应力实验报告

一、实验目的 1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律; 2、验证纯弯曲梁的正应力计算公式。 3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。 二、实验仪器和设备 1、多功能组合实验装置一台; 2、TS3860型静态数字应变仪一台; 3、纯弯曲实验梁一根。 4、温度补偿块一块。 三、实验原理和方法 弯曲梁的材料为钢,其弹性模量E=210GPa ,泊松比μ=0.29。用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为: x M y I σ= 式中:M 为弯矩;x I 为横截面对中性轴的惯性矩;y 为所求应力点至中性轴的距离。由上式可知,沿横截面高度正应力按线性规律变化。 实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。当增加压力P ?时,梁的四个受力点处分别增加作用力/2P ?,如下图所示。 为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。此外,在梁的上表面和下表面也粘贴了应变片。 如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎克定律公式E σε=,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。 σ实 =E ε实 式中E 是梁所用材料的弹性模量。

图3-16 为确定梁在载荷ΔP 的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP 测定各点相应的应变增量一次,取应变增量的平均值Δε实来依次求出各点应力。 把Δσ实与理论公式算出的应力Z I MY =σ比较,从而验证公式的正确性,上述理论公式中的M 应按下式计算: Pa ?= M 2 1 (3.16) 四、实验步骤 1、检查矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离a ,及各应变片到中性层的距离i y 。 2、检查压力传感器的引出线和电子秤的连接是否良好,接通电子秤的电源线。检查应变仪的工作状态是否良好。分别采用1/4桥,1/2桥,全桥的接线方法进行测量,其中1/4桥需要接温度补偿片,1/2桥通过交换接线方式分别进行两次试验来比较试验结果。 3、根据梁的材料、尺寸和受力形式,估计实验时的初始载荷0P (一般按00.1s P σ=确定)、最大载荷max P (一般按max 0.7s P σ≤确定)和分级载荷P ? (一般按加载4~6级考虑)。 本实验中分四次加载。实验时逐级加载,并记录各应变片在各级载荷作用下的读数应变。 4、实验完毕后将载荷卸掉,关上电阻应变仪电源开关,并请教师检查实验数据后,方可离开实验室。 五、数据处理

材料力学实验报告——桥路与弯曲应力

实验名称:桥路与弯曲应力实验 实验日期:2012.3.22 实验人:XXX 学号:XXXXXX 班级:XXXXX 同组人员:XXX 一.实验目的 1. 测量矩形截面梁在横弯时指定截面的最大应变值,比较和掌握不同组桥方式如何提高测量灵敏度的方法。并求出各种组桥方式下的桥臂系数B。 2. 测量矩形梁在横弯条件下指定截面的应力分布规律,并与理论值进行比较。 二.实验装置及仪器设备 1.实验装置 本实验是将矩形截面梁安置在WDW-3020型电子万能试验机上,梁的受力方式为三点弯曲。通过试验机的控制面板操作试验机,实现对三点弯曲梁加载,施加的载荷由控制面板读出。在指定截面上沿梁的高度分布有9枚电阻应变片,施加到额定载荷时,由YE2539高速静态应变测试系统自动检测电阻应变片所感受的应变值。装置简图如图2-7所示。 2.实验设备 1)WDW-3020电子万能试验机 2)矩形截面梁一根 3)YE2539高速静态应变测试系统 三.实验基本原理 在平面弯曲条件下,矩形截面梁任一截面上的应力沿高度的变化可按下式计算。

式中: M——该截面上的弯距; Jy ——截面惯性距; Z——所求点至中性轴的距离。 其最大应力产生在上、下表面,最大值为 式中W为梁的抗弯截面系数。(2-13)式是在平面假设的条件下推导出来的,是否正确可通过实验来验证。 本实验指定截面的电阻应变片布置如图(2.7)所示。在初载荷P0和末载荷PN时,通过应变仪分别读出测量值即为初读数ε0 和末读数εN。此时各片电阻片的测量应变值为Δε=εN-ε0,通过ζ=Eε即可计算出各点的应力值。 在梁的上下表面各布置了两枚电阻片,可利用各种组桥方式测定最大应变值,并比较各种组桥方式下的灵敏度大小。 四.实验步骤 1. 检查矩形截面梁的加力点位置与支座位置是否正确(以梁上刻线为准),梁的截面 尺寸由同学自己测量。 2. 根据试样尺寸及机械性能指标计算试验的许可载荷,并确定初载荷P0及末载荷PN, 单位为牛(N)。 3. 熟悉并掌握试验机的操作规程及高速静态应变测试系统的使用方法;设置试验的 负荷定载值,该值要稍大于PN值,以便使试样不因误操作造成试样的损坏。启动 试验机预加载荷到P0值。待仪器稳定后,通过操作计算机的控制软件进行初始平 衡和试采样,使测量的各通道应变初值ε0置零;然后将载荷加至PN值测量εN, 求出两次读数差值。共重复加卸载2~3次,每次 ε相对误差不超过5%,否则应 检查接线是否牢靠,仪器工作是否正常,排除故障然后重做。 4.用单臂组桥方法测9个应力片的ε0、εN,计算实验△ε、σ实,理论σ理,并比较相对误差。测量梁的尺寸数据。 5. 完成全部试验内容,实验数据经教师检查合格后,卸掉载荷、关闭电源、拆下引 线、整理好实验装置,将所用工具放回原处后离开实验室。 5. 试验数据的整理及结果计算

弯曲正应力实验报告

弯曲正应力实验 一、实验目的:1、初步掌握电测方法和多点测量技术。; 2、测定梁在纯弯和横力弯曲下的弯曲正应力及其分布规律。 二、设备及试样: 1. 电子万能试验机或简易加载设备; 2. 电阻应变仪及预调平衡箱; 3. 进行截面钢梁。 三、实验原理和方法: 1、载荷P 作用下,在梁的中部为纯弯曲,弯矩为1 M=2 Pa 。在左右两端长为a 的部分内为横力弯曲,弯矩为11 =()2 M P a c -。在梁的前后两个侧面上,沿梁的横截面高度,每隔 4 h 贴上平行于轴线上的应变片。温度补偿块要放置在横梁附近。对第一个待测应变片联同温度补偿片按半桥接线。测出载荷作用下各待测点的应变ε,由胡克定律知 E σε= 另一方面,由弯曲公式My I σ=,又可算出各点应力的理论值。于是可将实测值和理论值进 行比较。 2、加载时分五级加载,0F =1000N ,F ?=1000N ,max F =5000N ,缷载时进行检查,若应变差值基本相等,则可用于计算应力,否则检查原因进行复测(实验仪器中应变ε的单位是 610-)。 3、实测应力计算时,采用1000F N ?=时平均应变增量im ε?计算应力,即 i i m E σε?=?,同一高度的两个取平均。实测应力,理论应力精确到小数点后两位。 4、理论值计算中,公式中的3 1I=12 bh ,计算相对误差时 -100%e σσσσ= ?理测 理 ,在梁的中性层内,因σ理=0,故只需计算绝对误差。 四、数据处理 1、实验参数记录与计算: b=20mm, h=40mm, l=600mm, a=200mm, c=30mm, E=206GPa, P=1000N ?, max P 5000N =, k=2.19 3 -641I= =0.1061012 bh m ? 2、填写弯曲正应力实验报告表格

相关主题
文本预览
相关文档 最新文档