当前位置:文档之家› 仪器与系统可靠性结课论文

仪器与系统可靠性结课论文

仪器与系统可靠性结课论文
仪器与系统可靠性结课论文

电子信息与自动化学院

《仪器与系统可靠性》

课程结课论文

姓名:

班级:

学号:

专业:

院系:电子信息与自动化学院

2015年6月

仪器系统可靠性原理及分析方法

目录

摘要 (1)

一、可靠性设计基础 (2)

(一)可靠性的基本概念 (2)

(二)可靠性的发展过程 (2)

1. 过程系统趋向大型化、复杂化 (3)

2.仪表使用环境条件日益严酷 (3)

3. 新材料、新工艺越来越多的采用 (3)

4. 经济效益要求 (3)

(四)可靠性学科研究的基本内容与应用 (3)

二、系统可靠性的分析方法 (4)

(一)可靠度 (4)

(二)故障率 (5)

1.故障率概念 (5)

2.故障率函数曲线 (6)

(三)平均寿命 (7)

(四)维修度 (8)

(五)有效度 (8)

(六)重要度 (9)

结论 (9)

参考文献 (9)

[摘要] 随着集成电路、微电子技术在各类仪器中的广泛运用,电子仪器的复杂程度越来越高,传统的仪器只能完成测量、显示功能,而现代的智能仪器往往具有只能诊断、智能学习能力。因此,在应用系统中,电子仪器起的作用也越来越大,电子仪器能否可靠地完成其任务,也逐渐成为人们越来越关注的问题。可靠性设计在军事、航空航天以及核工业等行业中尤为重要,在这些行业中使用的仪器,其可靠性设计必须放在首位,否则会产生非常严重的后果。对于某些应用于军事方面的电子仪器,其可靠性不仅会影响仪器的正常使用,而且有时会对战争的胜利起到关键作用;对于某些应用于航空航天的电子仪器,其可靠性非常重要。本文就仪器系统可靠性原理以及分析方法进行介绍说明。

[关键词] 可靠性仪器仪表分析方法

一、可靠性设计基础

(一)可靠性的基本概念

仪表是人们进行科学实验和实现生产过程参数自动检测和自动控制的重要技术工具,因此对它的可靠性要求愈益显得重要。

衡量产品的质量,通常包括两类性质的指标:一是产品的性能指标是否达到满足功能要求;二是在工作中能否连续满足功能要求,即技术指标保持的程度和产品损坏情况。前者是产品的性能问题,后者就是产品的可靠性问题。

产品的技术性能与可靠性的关系是极为密切的,无数事例说明,如果产品不可靠,它的技术指标再好,也难以发挥作用,譬如一台仪表,尽管其测量准确度、灵敏度等指标都很高,但却常出故障(即产品容易丧失规定的功能),那么其测量值也就不可信了,甚至不能被实际使用。

因此,可以说产品的可靠性是产品质量的基础。没有可靠性这个基础,理论上再先进、技术指标再高的产品也是没有多少使用价值的。

(二)可靠性的发展过程

可靠性是衡量机械产品质量的重要指标一之。

20世纪40年代是可靠性萌芽时期, 1943年美国成立了电子管研究委员会专门研究电子管的可靠性问题;

1951年ARINC开始了最早的一个可靠性改进计划;1952年美国国防部成立了电子设备可靠性咨询组(AGREE);1955年AGREE开始实施从设计、试验、生产到交付、储存和使用的全面的可靠性发展计划,并于1957年发表了《军用电子设备可靠性》的研究报告,从9个方面阐述了可靠性设计、试验及管理的程序及方法,确定了美国可靠性工程的发展方向,成为可靠性发展的奠基性文件,标志着可靠性已经成为一门独立的学科,是可靠性工程发展的重要里程碑。

20世纪60年代~70年代,是可靠性工程全面发展和步入成熟的阶段。美国在许多武器装备中推行可靠性工程,美军形成了一系列较完善的标准

20世纪80年代以来,可靠性向更广泛和更深入的方向发展,并以武器装备的效能为目标,将可靠性、维修性和保障性有机的综合在一起,形成可靠性系统工程我国从20世纪80年代,才真正在武器装备中开展可靠性工程;

21世纪初,可靠性工程在我国全面深入的研究与应用

(三)仪表可靠性研究的必要性

1.过程系统趋向大型化、复杂化

随着生产过程自动化水平的提高,过程控制系统的规模越来越大,越来越复杂。例如年产30万吨乙烯的大型装置,检测点多达2500个,调节回路有460多个,其中除常规的PID调节外,尚有均匀、分程、串级、选择等复杂调节,整个系统使用仪表数以千计。它们对生产过程起着监和控制作用,确保生产安全和高产优质。

对于如此庞大的系统,假如每台仪表平均每年出现一次故障(即平均故障率约为1%/千小时),那么,该系统每天将会出现数次故障;如果平均故障率为10%/千小时,则每天将出现数十次的故障,这无疑将影响生产的正常进行,甚至造成严重事故。系统越复杂,出现故障的机会就越大,使系统的可靠性降低。

因此,随着系统复杂程度的增加,对它的可靠性提出了更高的要求。

2.仪表使用环境条件日益严酷

生产的发展和科学技术的进步,促使自动检测和自动控制的领域和对象逐渐扩大,仪表的应用范围越来越广,从实验室到工厂、从室内到野外,从热带到寒带、从山谷到高原,从地面到天空和海洋,各种仪表的使用环境条件日益严酷。例如在高温、腐蚀性气氛、振动、辐射等恶劣环境下,仪表的故障率将会增加。

为了使仪表能适应各种环境条件,也必须提高其可靠性。

3.新材料、新工艺越来越多的采用

产品越先进,采用的新材料、新工艺也越来越普遍,而尚未注意到的地方、没有研究开发的领域也增多。所有这些都是产生不可靠、不安全的因素。因此更需要加强可靠性的研究。

4.经济效益要求

产品设计既要保证质量、提高可靠性,同时又要降低成本,获得较大的经济效益。由于现代化仪表在生产和科学实验中所处的特殊地位,一旦出了故障,造成的影响和经济损失有时是相当严重的。以每秒轧制30多米钢材的高速轧钢机为例,假若其中某一台关键的仪表出现故障,轻则控制偏差增大,造成次品,重则发生生产事故,停机停产,甚至酿成设备损坏,人员伤亡等严重后果,经济损失已远远超出一台仪表原有的价值。

由此可见,仪表结构功能越复杂,仪表使用环境越恶劣,要求仪表使用寿命越长,可靠性,问题就越尖锐突出。为了解决这些问题,对仪表必须进行可靠性研究工作。

(四)可靠性学科研究的基本内容与应用

可靠性学科所涉及的内容相当广泛,大致可分为三个方面:可靠性理论基础、可

靠性工程、可靠性管理。

可靠性理论基础包括可靠性数学及可靠性物理(又称故障物理)。

可靠性工程包括系统和零部件的可靠性设计、制造的可靠性、可靠性试验、使用及维修的可靠性等方面。

可靠性管理包括可靠性计划,组织可靠性设计评审,进行可靠性认证,制订可靠性标准、可靠性增长、确定可靠性指标等等。

根据仪表专业的学习内容和学时要求,对上述内容不可能全部介绍。主要讲述有关可靠性基础及其在仪表可靠性设计、分析、试验过程中的应用。通过此课程的学习能够在今后的仪表设计、制造以及生产管理中能运用可靠性知识去解决一些实际问题。

可靠性应用(主要有以下几个方面)

1)方案论证、2)设计研制、3)生产及试验、4)现场使用

二、系统可靠性的分析方法

为了评价机械零部件、机器、系统等的可靠性、必须对可靠性制定一些行之有效的指标,并加以数量化。

衡量可靠性的尺度主要有可靠度、故障率、平均寿命、维修度,有效度、重要度等。

从以上衡量指标可知可靠性尺度具有以下特点:

(1)可靠性尺度具有多指标性。在不同的场合和不同的情况下,可用不同的指标来表示系统的可靠性。

(2)可靠性尺度具有随机性。研究对象在规定的时间内保持正常功能的可靠性是随机的,一般用概率方法进行定量衡量。

(3)可靠性具有定量表示的时间性,即定量指标多是时间的函数。

(一)可靠度

可靠度是指零部件或系统在规定的条件下和规定的时间内,能正常行使功能的概率。

假设E表示上述定义中的对象在诸条件下正常行使功能的事件,则出现该事件的概率即为它的可靠度,即:

因可靠度是时间的函数,不同的工作时间其可靠度不同,故它的另一种表述形式为零部件或系统的寿命T不低于规定工作时间t的概率。

与可靠度对立的就是不可靠度,它表示零部件或系统的不可靠程度,即:

可靠度与不可靠度存在下述关系,即R(t)与F(t)互补。

(二)故障率

1.故障率概念

故障率系指零件、产品、系统工作到t时刻后在单位时间内故障的概率,它反映了研究对象在任一瞬时故障概率的变化趋势。

设有N个零件,从t=0开始工作,到时刻t时故障总数为n(t),则残存数N-n(t),又设在(t+△t)时间内又有△n(t)个零件故障,则定义时刻t的故障率为:

故障率与可靠度的关系为:

式中:是机械系统或零件的寿命分布概率密度函数。

将系统的故障率λ(t)随时间变化的函数用曲线在坐标λ(t)—t上绘出,则反映了系统工作全过程的故障趋势变化情况。它反映了系统故障率曲线的不同阶段与工作时间, 见图1.1。从图中我们可以看出它的形状与浴盆的剖面十分相似,故又称为浴盆曲线,它反映了系统故障的三个特征时间期。

图 1

1)早期故障期

它的特征在于系统一开始工作时故障率较高,但随工作时间的增长呈下降趋势。

通常是由于设计、制造、工艺缺陷或检验等原因引起的,它可以通过筛选、检验、强化试验等方法加以排除。

2)随机故障期

它的特征是系统故障率很低且在数值上基本保持恒定,故障处于完全不可预测的状态。零部件或系统的故障是由偶然原因所引起的,这一时期是零部件或系统的正常工作时期,因此我们总希望其故障率低且持续时间长。

3)耗损故障期

它的特征是系统故障率随时间逐渐上升,且上升趋势较快,此种形式多见于机械零件的磨损寿命。该类型的故障是由零部件或系统的耗损与老化所引起的,一般可以通过“事前维修”来加以防止。

2.故障率函数曲线

随着科学技术的发展,数控机械系统、加工中心等现代化机械系统不断出现。这些精密、大型、数控等结构复杂机械系统的故障规律与传统的浴盆曲线相背离,促使人们对这些机械系统的故障规律进行深入研究。研究发现,除典型的浴盆曲线外,还有五种故障率曲线,如下图所示。

图 2

故障率曲线1显示,系统具有恒定的或者略增的故障率,接着就是磨损期;据统计2%的复杂机械系统遵循该故障率曲线。

图 3

故障率曲线2显示,机械系统缓慢增长的故障率,但没有明显的磨损期;据统计约5%的复杂机械系统遵循该故障率曲线。

图 4

故障率曲线3显示,新机械系统从刚出厂的低故障率,急剧地增长到一个恒定的故障率,据统计约2.7%的复杂机械系统遵循该故障率曲线

图 5

故障率曲线4显示,机械系统整个寿命周期内的一个恒定的故障率。据统计约有14%的复杂机械系统遵循曲线D

图 6

故障率曲线5显示,开始有高的初期故障率,然后急剧地降低到一个恒定的或者是增长极为缓慢的故障率,据统计不少于68%的复杂机械系统遵循该故障率曲线。

(三)平均寿命

平均寿命对不可修与可修的零部件或系统其含义不同。针对不可修系统是指它的平均无故障工作时间MTTF(Meam Time To Failure),其数学表达式为:

式中,N是样品数;ti是第i个零件的无故障工作时间。

对可以修复的系统而言平均寿命系指平均故障间隔时间MTBF(Meam Time Between Failure),其数学表达式为:

式中,tij是第i个零件的第j次故障间隔时间;ni是第i个零件的故障数;N 是零件的总数。

结合上式平均寿命的统一表述形式为:

(四)维修度

维修度系指可修的系统、机器或零部件等在规定的条件下和规定的时间内完成维修的概率,用M(t)表示。

维修度与可靠度相对比知它们均是时间的函数,且都是用概率来度量的,用曲线的形式表达。但它们之间具有不同点,即维修度还与人的因素有关,一般地维修度受到以下三个因素的影响。

1)受承受维修设备的影响,即结构设计上故障发生是否容易发现和易于排除。

2)维修技术人员水平的高低。

3)维修条件,即设备维修与工具的先进性及是否齐备。

若用非负随机变量t来描述处于故障状态机械系统的维修时间时,则维修度函数M(t)表示给定时间区间(0,t)机械系统被维修的概率:

将维修度函数M(t)对维修时间t求导数,即为维修度分布密度函数,用m(t)表示,有:

或者

一般,系统的维修时间主要服从于指数分布、正态分布、对数正态分布和威布尔分布等。

(五)有效度

有效度是将可靠度与维修度综合起来的一个可靠性评价尺度。它表示系统、机器或零部件在规定的使用条件下使用时,在任意时刻正常工作的概率。

一般地对可修产品的可靠度,若发生故障但因能在规定的时间内修复后又能正常工作,从而使系统、机器或零部件处于正常工作的概率增大。

系统长时间使用的平均有效度可以用时间系数加以表示,即:

(六)重要度

重要度是指系统或机器的某构成部份发生故障时,能引起系统或机器发生故障的概率,可用下式表示:

当E =1时,表示该构成部分发生故障时,系统必将丧失工作能力;当E =0时,表示该构成部分发生故障时,不影响系统正常工作;当E 在(0,1)区间变化时,表示该构成部分发生故障时,系统以相应的概率发生故障。

结论

近年来,我国仪表业发展迅速,据统计资料显示,从我国仪表出厂到实现千亿元产值,历时55年。第二个亿元仅用了3年,这是我们值得骄傲和欣慰的,但是从另一方面,我们又不得不看到我们的差距,据中国科协2007年3月发布的调查结果表明:我国仪表在数量、技术、测量精度、产品的网络化等方面,与国外仪表仍存在着较大的差距。重庆市科委2007年特别提出了“智能化仪器仪表的可靠性技术研究及应用”,并要求重点研究我国仪表的可靠性技术及应用问题。

通过查询资料,对仪器仪表可靠性原理及分析方法进行了论述,仪器仪表的可靠性分析方法除了在本文中所采用的方法外,还有一些方法,如数据分析中的最小二乘法。仪器仪表可靠性分析方面的工作还有很多,如无故障数据或间断数据的分析方法、在实际使用中的风险系数估计及可靠性信息系统的建立,需要进一步完善。我国的仪器仪表可靠性发展还有很长一段路需要走。

参考文献

[1]李伯成编著.嵌入式系统可靠性设计[M]. 电子工业出版社, 2006

[2]李光辉,张培铭. 智能化电器可靠性技术[J]. 江苏电器. 2001(01)

[3]华优基. 仪表自动化可靠性问题探讨[J]. 冶金自动化. 1990(03)

[4]宋正海. 可靠性技术在自动控制系统设计中的应用[J]. 山东冶金. 1995(05)

[5]杨培双. 智能仪器硬件可靠性设计[J]. 仪表技术. 2009(03)

可靠性分析课程论文概述

可靠性分析 一可靠性概念 产品在规定条件下和规定的时间内完成规定功能的能力叫产品的“可靠性”。通俗地说,产品故障出的少,就是可靠性高。可靠性的概率度量叫可靠度,用R(t)表示。设N 个产品从时刻“0”开始工作,到时刻t 失效的总个数为n(t),当N 足够大时 R(t)≈[N-n(t)]/N=N(t)/N 这里边重点是产品、规定条件、规定时间、规定功能。 产品:硬件(汽车、电视机等)、流程性材料(水泥、燃油、煤气等)、 软件(程序、记录等)、服务(理发、导游等)。 规定条件:主要指自然、人文等环境。 规定时间:指时间段或某一时刻。 规定功能:产品所应达到的能力和效果。 我们这里讲到的产品可靠性通俗说就是我们研制生产的设备或系统在用户所处的环境中使用时实现其应有的技战术性能的能力。 产品的可靠性变化一般都有一定的规律, 其特征曲线如图1所示, 由于其形状象浴盆,通常称之为“浴盆曲线”。在实验和设计初期,由于产品设计制造中的错误、软件不完善以及元器件筛选不够等原因而造成早期失效率高; 通过修正设计、改进工艺、老化元器件、以及整机试验等,使产品进入稳定的偶然失效期;使用一段时间后,由于器件耗损、整机老化以及维护等原因, 产品进入了耗损失效期。这就是可靠性特征曲线逞“浴盆曲线”型的原因。 在国际上,可靠性起源于第二次世界大战,1944 年纳粹德国用V-2 火箭袭击伦敦,有80 枚火箭在起飞台上爆炸,还有一些掉进英吉利海峡。由此德国提出并运用了串联模型得出火箭系统可靠度,成为第一个运用系统可靠性理论的飞行器。当时美国海军统计,运往远东的航空无线电设备有60%不能工作。电子设备在规定使用期内仅有30%的时间能有效工作。在此期间,因可靠性问题损失的飞机2.1 万架,是被击落飞机的 1.5 倍。由此引起人们对可靠性问题的认识,通过大量现场调查和故障分析,采取对策,诞生了可靠性这门学科。上述例子充分证明了装备可靠性的重要。因此现代武器装备既要重视性能,又不能轻视可靠性。要获得装备的高可靠性,目前通用的做法是采用工程化的方法进行设计和管理。下面我们介绍一下可靠性工程方法的一些基本内容。也是目前我们工作中常用到的内容。 二常用的可靠性工程技术指标

仪器仪表的可靠性分析及抗干扰设计

仪器仪表的可靠性分析及抗干扰设计 发表时间:2017-08-17T14:52:51.307Z 来源:《基层建设》2017年第12期作者:王卫军[导读] 摘要:仪器仪表的可靠性有利于提升其在工业生产中的运行能力,做好可靠性及防干扰设计,体现仪器仪表在可靠性方面的优势,促使其更加适应工业生产的需求。 中国石油吐哈油田分公司销售事业部新疆鄯善 838202 摘要:仪器仪表的可靠性有利于提升其在工业生产中的运行能力,做好可靠性及防干扰设计,体现仪器仪表在可靠性方面的优势,促使其更加适应工业生产的需求。可靠性逐渐成为仪器仪表的评价指标,仪器仪表需要达到可靠性的标准,才可在工业生产中发挥重要的价值,全面控制工业生产的系统,提高工业生产的效益和效率,体现仪器仪表可靠性的优势。因此,文章就仪器仪表的可靠性进行研究分 析,从而提出仪器仪表抗干扰设计的几点策略,仅供参考。 关键词:仪器仪表;可靠性分析;抗干扰设计 1仪器仪表可靠性分析 仪器仪表主要由元件、线路组成,其达到可靠性后能够提升生产系统的控制效率,保障工业生产达到规定的标准。而可靠性又是工业选择仪器仪表的主要标准,不同类型的仪器仪表均具有可靠性的特性,可靠性能越高,仪器仪表的功能越强。仪器仪表的可靠性是评价其质量好坏的重要指标之一,可靠性用概率表示时称为可靠度,就是在规定的时间和规定使用条件下,无故障地发挥运行功能的概率。我们可以从理论和实际两方面对可靠度进行分析。 1.1理论可靠度分析 由图2可看出,其特性曲线共分为三段。在仪器仪表安装运行初期即0~t1时间内,仪器仪表可靠性较差。分析可知,此时之所以出现故障,多是设计与生产工艺不当造成的。在设计时,元件的选用、逻辑电路的设计本身存在不完善、不匹配的地方。尤其是现在的仪器仪表企业,大多数都是整机厂,其电子元器件等都要外购,而其筛选和老化处理电子元器件的时间和手段相对有限,加上仪器仪表应用单位初期操作人员技术水平及新环境因素的影响,这就造成了在实际应用中,初始阶段仪器仪表可靠性较低,而不同于理论上在初期仪器仪表可靠性最高的分析。 在仪器仪表运行中间时期即t1~t2时间内,仪器仪表可靠性相对平衡,故障少,接近理论状态。这是由于在初期故障后,经过修理、维护,仪器仪表元器件都已得到老化处理和考验,机械、光学、电子部件也未受到损耗或衰老,性能趋于稳定,操作人员技术水平也得到了提高,与仪器仪表相配的周围环境也有了改善,从而使这段时间内仪器仪表出现故障少,可靠性高。这一时期偶尔出现的故障,是由于随机因素影响而造成的。但是在此阶段为了提高测量的精度,需要对测试干扰进行重点处理,以达到测量的要求。 在仪器仪表使用后期即t2时间后,仪器仪表故障增多,可靠性大幅下降。这是由于仪器仪表的部分元件经过使用期后损耗严重,已超出了寿命期限,从而造成仪器仪表的部分或全部功能失灵,无法正常工作,需要更换仪器仪表元件或整机。 2仪器仪表抗干扰设计措施

毕业设计_网络存储的可靠性论文

计算机系统结构课程论文题目网络存储的可靠性 学院物电学院 专业计算机软件与理论

摘要 随着信息技术的不断发展,数据日益成为人们口常生活中重要资源。爆炸式增长的数据必然带来存储设备的持续增加。为了减少本地存储压力,云储存正成为时尚。目前,海量数据存储环境下的现代数据中心的存储节点规模少则几万多则几十万,但在规模巨大的存储环境系统中,磁盘损毁或者存储节点失效己成为一种常态行为;与此同时,因网络连接设备或者存储节点其它元器件造成的数据不可访问或者丢失现象也时有发生。为了满足口益扩展的数据存储需求,人们对数据存储的可靠性提出了更高的要求,如何实现海量数据在网络存储中低冗余度高可靠性存储己经成为业界面临的一个巨大挑战。 因而,本文网络存储中低冗余度高可靠性海量数据存储系统的关键问题,在总结了当今数据可靠性增强理论和海量数据存储系统基本架构的基础上,对基于纠删码的数据分布策略研究进行一定介绍。在存储系统中,提出了基于纠删码的数据冗余分布模型,研究了涉及到的数据读写,恢复算法等关键技术。通过理论分析得出了这种冗余方案对提高系统可靠性更有优势:要使数据达到相同的可用性,基于纠删码方案只需要较低的冗余度;同样在相同的冗余度情况下,基于纠删码冗余方案的数据有更高的可用性。 关键字: 可靠性;网络存储;海量数据;纠删码

一、绪论 近年来,随着云计算、物联网、社交网络等新兴技术的迅猛发展,无所不在的移动设备、无线射频识别标签、无线传感器等每分每秒都在产生感知世界的信息。数以亿计用户的互联网服务时时刻刻都在产生新的数据,同时记录人们生活的历史信息也呈现爆炸式增长。数据的快速增长必然带来存储设备的持续增加。同时,为了满足口益扩展的数据存储需求,数据存储系统的体系结构也在不断发展与变化,从传统的集中式存储到分布式存储,近几年还出现了云存储等新型海量数据存储模式。 2008年2月,几千个构建在亚马逊EC2和S3上的小型网站因数据中心宕机而受到影响;次年三月,谷歌公司的Docs出现系统故障,随后,联邦商务委员会被请求调查此事,以确定谷歌的云计算服务对客户的隐私与安全可能带来的隐患。可见,数据的丢失或失效,会给人们带来不可估量的损失。 进入20世纪以后,随着网络技术的持续发展、各种信息服务形式的不断出现、所需存储的数据呈现爆炸式增长,有研究者开始利用普通的PC机来构建大规模的存储系统,最为典型的是Google的GFS,例如,2004年Google的集群中的PC机节点达到18000台,每台PC越挂载两个磁盘。该技术的出现,使得人们对存储系统多了一种选择。现在,很多研究者和大型企业开始构建利用普通计算机硬件搭建的数据存储平台,如Apache Hadoop开源项目 , Facebook的Cassandra系统、淘宝的TFS ( Tao file system)。在存储系统中,特别是大规模数据存储系统中,系统会因为这样或那样的问题出现数据的暂时不可用或者丢失损毁现象。从数据存储系统的组成上看,不论是DAS, NAS, SAN构建的小型存储系统,还是大规模分布式集群系统乃至超大规模数据中心,其基本存储运算单元都可以分为三个部分:首先是由磁盘搭建的基础存储设备,它是数据存储的物质基础;其次是系统中心网络,它是连接存储资源和计算资源的神经中枢。最后是计算设备和系统管理软件,它负责计算任务的完成和系统节点的管理和监测。 一方面是存储数据量的爆炸式增长对基础存储设备规模上的需求,一方面是大规模海量数据存储系统频繁的失效行为,另一方面是数据的丢失给数据拥有者和使用者带来的巨大损失,这一切使得数据存储系统的可靠性成为海量数据存储面临的一个函待解决的重要挑战。当然,系统的可靠性问题可以通过单纯增加硬件冗余的方式加以解决,但这样带来的硬件成本太高,本文则从数据管理与组织的角度探讨应对海量数据存储系统中数据的可靠性问题。 二、存储系统的可靠性

可靠性分析报告..

可靠性工程结课论文 题目:混频器组件可靠性分析 学院:机电学院 专业:机械电子工程 学号: 201100384216 学生姓名:郭守鑫 指导教师:尚会超 2014年6月

目录 摘要 (3) 关键词 (3) 1. 元器件清单 (3) 2. 可靠性预测 (4) 3. 可靠性分析 (6) 3.1可靠性数据分析 (7) 3.2故障模式影响 (7) 3.3 危害性分析 (8) 4. 结论和建议 (10) 参考文献 (10)

混频器组件可靠性分析 郭守鑫 (中原工学院机电学院河南郑州 451191) 【摘要】变频,是将信号频率由一个量值变换为另一个量值的过程。具有这种功能的电路称为变频器(或混频器)。输出信号频率等于两输入信号频率之和、差或为两者其他组合的电路。混频器通常由非线性元件和选频回路构成。 【关键词】混频器,变频,组件 【Abstract】frequency conversion, is to signal frequency by a value transform into another process of the value. Which has the function of the circuit is called inverter (or mixers). The output signal frequency is equal to the sum of two input signal frequency, or for both other combination of the circuit. Mixer is usually composed of nonlinear components and frequency selective circuit. 【keywords】mixer, frequency conversion, components

自动化仪表可靠性的相关问题分析

自动化仪表可靠性的相关问题分析 随着经济建设的快速发展,自动化仪表在工业生产中得到了广泛的应用,在提高生产效率,保证生产质量方面起到了重要的作用。自动化仪表在运行的过程中,其可靠性对于生产具有重要的影响。自动化仪表的选型、运行环境、日常维护等因素都会对可靠性有所影响,所以要根据运行的具体环境而具体分析。文章对于自动化仪表可靠性的相关问题进行了分析,对于提高自动化仪表运行的可靠性具有重要的意义。 标签:自动化仪表;可靠性;评价指标 引言 自动化仪表是科学技术进步的体现,在人们的日常生活以及工业生产中得到了广泛的应用。随着工业生产的进步,自动化仪表逐渐向智能化和精细化的方面发展,在可靠性方面也逐渐提升。由于受到各种因素的限制会影响到测量的可靠性,所以要对影响原因进行分析,从而不断的改善,提高测量的可靠性。根据自动化仪表运行的环境不同,要有针对性的分析影响因素,进而制定出解决的策略。 1自动化仪表产品可靠性的概念 1.1 自动化仪表可靠性概述 在工业生产中,需要对生产的产品进行性能检测,以保证产品的质量符合规定的标准要求。而自动化仪表是人们进行科学实验以及对生产过程的参数进行检测的重要工具,通过自动化仪表的测量,可以检测到产品的各项性能参数,从而确定产品质量是否符合标准。关于产品的质量问题,一是其性能是否能够满足工业生产的基本功能,二是在连续生产应用的过程中,是否能够满足持续性功能,也就是说在连续运行的过程中,能够持续稳定的运转,这就是可靠性特征。产品的技术性能与运行的可靠性是密切相关的,二者互相影响。 1.2 仪表可靠性研究的必要性 随着工业生产的快速发展,企业的生产规模逐渐扩大,对于生产水平的要求不断提升。而工业生产是一个复杂而系统的过程,一个产品的成型需要历经多道工序才可以完成,而在生产的过程中,为了保证产品的生产质量,需要自动化仪表对其生产过程进行监控。在每道生产程序中都需要布控仪表,对产品的工艺参数进行测量,从而保证生产的质量。在整个生产工艺的过程中,所布控的自动化仪表数量非常多,如果仪表出现故障的几率较高,致使仪表的可靠性降低,将会直接影响到生产过程的安全性和产品的质量。所以为了保证产品的生产质量和工业生产的稳定性,要不断的完善自动化仪表的可靠性。 2 自动化仪表可靠性分析

会计信息的相关性与可靠性(论文)

应用本科生 毕业论文(设计) 浅析会计信息的相关性与可靠性 专业:会计 考号: 学生姓名: xxxx 指导教师: xxx 完成时间: xxxx年xx月

目录 中文摘要 (1) 前言 (1) 1 会计信息的相关性与可靠性的含义 (1) 1.1会计信息的含义 (1) 1.2会计信息相关性的含义 (2) 1.3会计信息可靠性的含义 (2) 1.4会计信息的几项原则 (2) 1.4.1 相关性原则 (2) 1.4.2 全面性原则 (3) 1.4.3 重要性原则 (3) 1.4.4 实质重于形式原则 (3) 1.4.5 谨慎性原则 (4) 2 浅谈会计信息的相关性与可靠性的关系 (4) 2.1排斥性 (4) 2.2依存性 (4) 3 权衡会计信息的相关性与可靠性关系 (5) 4 关于会计信息的相关性与可靠性的现实思考 (6) 4.1关于相关性的现实思考 (6) 4.2关于可靠性的现实思考 (6) 5 浅谈我国目前会计信息相关性和可靠性的现状 (6) 6 提高会计信息相关性和可靠性的措施 (7) 6.1提高会计人员素质 (7) 6.2加强对会计法律制度和会计准则体系的健全和完善 (7) 6.2.1 健全相关的会计法律制度 (7) 6.2.2 完善会计法规体系,增强可操作性 (7) 6.3加强对会计信息监督机制的建设 (7) 结束语 (8) 参考文献 (8) 致谢 (9)

浅析会计信息的相关性与可靠性 摘要:相关性与可靠性是会计信息质量中的两大特征,相关性与可靠性是会计信息质量中的两大特征。在某些层面上,想关性与可靠性是相互统一的,而在另一些方面又存在着对立的关系,因而,很难协调两者之间的矛盾关系。如何的在两者之间做出权衡,以便让会计信息使用者得到最有用的信息,这需要我们不断的思考,完善与总结。伴随着社会的发展,生产力的提高,经济市场的不可预测性,会计信息在经济活动中受到了越来越多的关注。而正确地认识可靠性与相关性之间的关系,并且妥善的协调可靠性与相关性的矛盾,这对于如何选用更加科学合理的会计政策,有着极其重要的意义。因此,只有在相关性与可靠性中做出准确的、透彻的分析,才会使信息质量提高。 关键词:会计信息相关性可靠性矛盾统一 前言 近年来伴随着我国资本主义市场的不断形成,会计作为一种必不可少的管理手段正在发挥着越来越重要的作用。而会计信息质量也越来越受到人们的关注。通常所说的会计信息质量特征是指在会计信息应该具有的质量标准所做的具体的描述要求,也是对会计信息质量做评判的最一般和最基本的依据。会计信息质量特征是为会计目标服务的,它是联系会计目标与实现目标之间的桥梁,对会计信息起约束的作用,并使会计信息符合会计目标的要求。根据我国现行的预算会计制度及其解释性文献的有关内容中不难看出,我国目前对政府财务报告信息的质量特征的概括主要有:可靠性、相关性、可比性、一致性、及时性、明晰性、重要性等。其中,最为重要的是相关性和可靠性原则。 作为会计信息中的两大特征,相关性与可靠性的重要性尤为凸显。在面对来势汹汹的知识经济浪潮中,重新认识会计信息的相关性与可靠性,对于迎接对财知识经济务会计失误挑战,完善会计准则,以及正确认识和治理会计信息失真的问题都有重要的意义。当然,相关性与可靠性作为会计信息关键质量特征虽已达成共识,但两者却并不是一致的。因此如何权衡两者之间的关系,成为当下的热点。如何才能提高会计信息的相关性与可靠性,避免产生矛盾,这些都是我们必须面对的问题和有待解决的难点。本片文章将对此浅析会计信息的相关性与可靠性的关系,并对对今后如何权衡及其改善二者之间的关系提出建设性意见。 1会计信息的相关性与可靠性的含义 1.1会计信息的含义 会计信息是指对人们有用的,能够帮助使用者预测过去、现在和未来事件的结果,或证实或更正先前的预期并在决策中起作用的信息。信息对决策的影响是通过提高决策者预测能力或提供对先前信息同时作用于二者。而今会计信息是指会计单位通过财务报表、财务报告或附注等形式向投资者、债权人或其他信息使用者揭示单位财务状况和经营成果的信息。 1.2会计信息相关性的含义 会计信息相关性是指要求企业提供的会计信息应当与投资者等财务报告使

测量仪器可靠性分析(标准状态:现行)

中华人民共和国国家计量技术规范 J J F1024—2006 测量仪器可靠性分析 R e l i a b i l i t y A n a l y s i s f o rM e a s u r i n g I n s t r u m e n t s 2006-09-06发布2007-03-06实施国家质量监督检验检疫总局发布

测量仪器可靠性分析R e l i a b i l i t y A n a l y s i s f o r M e a s u r i n g ?????????????? ?????? ???????????? ? ? ? ? ? ? ?? ?? I n s t r u m e n t s J J F1024 2006代替J J F1024 1991 本规范经国家质量监督检验检疫总局于2006年9月6日批准,并自2007年3月6日起施行三 归口单位:全国法制计量管理计量技术委员会 起草单位:信息产业部电子第五研究所 江西省计量测试研究院 中国计量科学研究院 本规范由全国法制计量管理计量技术委员会负责解释

本规范起草人: 谢少锋(信息产业部电子第五研究所) 虞惠霞(江西省计量测试研究院) 陈大舟(中国计量科学研究院) 张增照(信息产业部电子第五研究所) 古文刚(信息产业部电子第五研究所) 施昌彦(全国法制计量管理计量技术委员会)

目 录 1 范围(1)…………………………………………………………………………………… 2 引用文献(1)……………………………………………………………………………… 3 术语(1)…………………………………………………………………………………… 4 可靠性分析程序和方法(2)………………………………………………………………4.1 可靠性指标的分析和确定(2)…………………………………………………………4.2 建立可靠性模型(3)……………………………………………………………………4.3 可靠性指标的分配(5)…………………………………………………………………4.4 可靠性预计(7)…………………………………………………………………………4. 5 故障模式与影响分析(10)………………………………………………………………4. 6 故障树分析(10)…………………………………………………………………………4. 7 容差和漂移分析(11)……………………………………………………………………5 可靠性评估(11)……………………………………………………………………………5.1 寿命试验(12)……………………………………………………………………………5.2 环境试验(14)……………………………………………………………………………5.3 检修期分析(15)…………………………………………………………………………6 可靠性工作项目应用时机(15)……………………………………………………………附录A 测量仪器可靠性寿命评价试验(16)………………………………………………附录B 全电子式电能表型式评价可靠性试验(21)………………………………………附录C 参考标准(25)………………………………………………………………………

可靠性工程论文

学校代码:11517 学号:20121110**** 《可靠性工程技术》 课程论文 题目机械产品可靠性设计分析 学生姓名** 专业班级工业工程1242 学号201211104231 系(部)管理工程学院 指导教师(职称)***(教授) 完成时间 2015年5月19日 目录

机械产品可靠性设计分析 摘要................................................... I Abstract ................................................. I I 1可靠性设计的基本概念 (1) 1.1 可靠性设计的定义 (1) 2 可靠性设计的基本原理 (1) 3 可靠性设计的基本方法 (2) 3.1 产品可靠性设计采取的措施 (2) 4 应用实例:基于虚拟样机的机械产品可靠性设计分析 (3) 4.1 机械产品可靠性设计分析方法 (3) 4.2 基于概率虚拟样机的可靠性设计分析流程 (5) 4.3 基于可靠性的机械产品参数设计 (9) 5 结论 (10) 参考文献 (11)

机械产品可靠性设计分析 摘要 机械产品可靠性设计是解决机械可靠性设计的重大课题。本文研究的目的是在总结归纳工程经验的基础上,研究目前机械可靠性设计中突出的技术问题,为日后工作中遇到的机械产品可靠性设计进行分析,指导研究型号可靠性工作,提供实用方法和技术支持。本文研究的主要内容有对可靠性设计的基本概述,可靠性设计的基本原理和基本方法,可靠性分析的应用实例等几个方面。采用实例对机械可靠性问题进行研究,并将研究结果运用到可靠性工程中解决实际问题。 关键词:机械设计;可靠性;可靠性设计

自动化仪表可靠性的相关问题分析

自动化仪表可靠性的相关问题分析 一、自动化仪表产品可靠性的概念 1、自动化仪表可靠性概述 在工业生产中,需要对生产的产品进行性能检测,以保证产品的质量符合规定的标准要求。而自动化仪表是人们进行科学实验以及对生产过程的参数进行检测的重要工具,通过自动化仪表的测量,可以检测到产品的各项性能参数,从而确定产品质量是否符合标准。关于产品的质量问题,一是其性能是否能够满足工业生产的基本功能,二是在连续生产应用的过程中,是否能够满足持续性功能,也就是说在连续运行的过程中,能够持续稳定的运转,这就是可靠性特征。产品的技术性能与运行的可靠性是密切相关的,二者互相影响。 2、仪表可靠性研究的必要性 随着工业生产的快速发展,企业的生产规模逐渐扩大,对于生产水平的要求不断提升。而工业生产是一个复杂而系统的过程,一个产品的成型需要历经多道工序才可以完成,而在生产的过程中,为了保证产品的生产质量,需要自动化仪表对其生产过程进行监控。在每道生产程序中都需要布控仪表,对产品的工艺参数进行测量,从而保证生产的质量。在整个生产工艺的过程中,所布控的自动化仪表数量非常多,如果仪表出现故障的几率较高,致使仪表的可靠性降低,将会直接影响到生产过程的安全性和产品的质量。所以为了保证产品的生产质量和工业生产的稳定性,要不断的完善自动化仪表的可靠性。 二、关于自动化仪表可靠性的影响因素分析 1、监管不到位 在对自动化仪表进行安装之后,如果任其发展的话,自动化仪表也不能保持良好的运行状况。随着现代管理技术的不断加强,监管工作在各行各业当中都有着重要的作用。但是现在的应用自动化仪表的企业往往不具有相应的专业知识,也缺乏相应的监管意识,这样对于

机械设备可靠性分析论文

机械设备可靠性分析摘要:机械的可靠性设计在机械设计中具有重要的作用,它对机械是否能够稳定的工作起决定性的作用。本文主要介绍了机械可靠性设计的特点,机械可靠性设计的流程,以及在机械可靠性设计中的常用的可靠性分析方法和设计技术,最后结合最近的机械可靠性的发展,介绍了机械可靠性设计的发展趋势,从而对可靠性技术在机械领域的应用和发展有一个全面的、客观的认识。 引言:随着科学技术的发展,对产品的要求不断提高,不仅要具有好的性能,更要具有高的可靠性水平。采用可靠性设计弥补了常规设计的不足,使得设计方案更加贴近生产实际。所谓可靠性是指“产品在规定时间内,在规定的使用条件下,完成规定功能的能力或性质”。可靠性的概率度量称为可靠度。可靠性工程的诞生已近半个世纪的历史, 以电子产品可靠性设计为先导的可靠性工程迄今发展得比较成熟, 已形成一门独立的学科。相比之下, 机械产品的可靠性设计与研究则起步较晚。所谓机械可靠性,是指机械产品在规定的使用条件下、规定的时间内完成规定功能的能力。由于工程材料特性的离散性以及测量、加工、制造和安装误差等因素的影响,使机械产品的系统参数具有固有的不确定性,因此考虑这种固有随机性的可靠性设计技术至关重要。据有关方面统计,产品设计对产品质量的贡献率可达70%~80%,可见设计决定了产品的固有质量特性(如:功能、性能、寿命、安全性和可靠性等),赋予了产品“先天优劣”的本质特性。上世纪60年代, 对机械可靠性问题引起了广泛的重视并开始对其进行了系统研究。虽然国内外都投入了研究力量, 取得了一定的进展,但终因机械产品可靠性涉及的领域太多、可靠性研究的范围大、基础性数据缺乏等原因,机械可靠性设计在工程实际中应用得并不广泛。本文简要介绍了可靠性技术在机械领域中的应用,主要介绍了一些在机械产品设计中应用的较为成熟的可靠性技术和可靠性设计方法,并且结合当今可靠性工程学科的发展,指出了可靠性技术在机械领域中的发展和趋势。 正文:机械产品的可靠性要受到诸多因素的影响,从产品的设计、制造、试验,到产品使用和维护,都会涉及到可靠性间题,也就是说它贯穿于产品的整个寿命周期之内。如何使产品在整个寿命周期内失效率最小,有效度高,维修性好,经济效益大,经济寿命长,是我们对产品进行可靠性设计的根本目的。机械产品的可靠性设计并不是一种崭新的设计方法, 而是在传统机械设计的基础上引入以概率论和数理统计为基础的可靠性设计方法。这样的设计可以更科学合理地获得较小的零件尺寸、体积和重量, 同时也可使所设计的零件具有可预测的寿命和失效率, 从而使产品的设计更符合工程实际。 目前在机械工程中可靠性设计主要应用在产品的设计、制造、使用和维修等方面。现代生产的经验表明,在设计、制造和使用的三个阶段中,设计决定了产品的可靠性水平,即产品的固有可靠性,而制造和使用的任务是保证产品可靠性指标的实现。可靠性试验数据是可靠性设计的基础,但是试验不能提高产品的可靠性,只有设计才能决定产品的固有可靠性。图1所示为三者的关系。 图1 机械产品与可靠性关系框图 机械产品的设计,它包括整机产品的设计和零部件的设计。整机产品可将其作为一个系统进行设计,设计的方式主要有两种,第一种是根据零部件的可靠性预测结果,计算产品系统的可靠性指标,这就是系统的可靠性预测,其结果满足指标要求即可。如果不能满足要求,就要按第二种方式

王玉玺-212015472-机械与结构系统的可靠性概述

《机械与结构系统的可靠性》课程总结 授课教师:刘电霆教授 学生姓名:王玉玺班级:机械工程15级学号:212015472 1 机械可靠性设计原理 1.1安全系数设计法与可靠性设计方法 安全系数设计法主要指的是产品的设计主要满足产品使用要求和保证机械性能要求。 机械结构在承受外在载荷后,计算得到的应力小于该结构材料的许用应力,然后计算塑性材料静强度及脆性材料静强度,最后计算疲劳强度时。 可靠性设计:结构可靠性和机构可靠性 机械可靠性设计:定性可靠性设计和定量可靠性设计 1.2应力强度干涉理论及可靠度计算 可靠性设计理论的基本任务:在故障物理学研究的基础上,结合可靠性试验以及故障数据的统计分析,提出可供实际计算的物理数学模型及方法,如图一所示。 图一 可靠度的计算方法有: 数值积分法(已知应力和强度的概率密度函数f(s)和f(S)时,进行数值积分,求出可靠度R(t),基于Simpson法则并且利用计算机软件); 应力——强度干涉模型法; 功能密度函数积分法; 蒙特卡洛模拟法。 2 机械系统可靠性设计 机械系统可靠性设计主要分为可靠性预测设计和可靠性分配两个方面。2.1可靠性预测设计 系统可靠性预计是在方案设计阶段为了估计产品在给定的工作条件下的可靠性而进行的工作。根据系统、部件、零件的功能、工作环境及其有关资料,推

测给系统将具有的可靠度。是一个由局部到整体、由小到大、由下到上的过程,是一种综合的过程。 实现步骤为: 1)对被预计的系统做出明确定义 2)确定分系统 3)找出影响系统可靠度的主要零件 4)确定各分系统中所用的零部件的失效率 5)计算分系统的失效率 6)定出用以修整各分系统失效率基本数值的修正系数。 7)计算系统失效率的基本数值 8)定出用以对系统失效率的基本数值进行修正的修正系数 9)计算系统的失效率 10)计算系统的可靠度 2.2可靠性分配 可靠性分配指的是把系统的可靠性指标按一定的原则合理地分配给分系统和零部件的方法。 分配基本原则为: 1)对于改进潜力大的分系统或部件,分配的指标可以高一些。 2)由于系统中关键件发生故障将会导致整个系统的功能受到严重影响,因此关键件的可靠性指标应分配得高一些。 3)在恶劣环境条件下工作的分系统或部件,可靠性指标要分配得低一些。 4)新研制的产品,采用新工艺、新材料的产品,可靠性指标也应分配的低一些。 5)易于维修的分系统或部件,可靠性指标可以分配的低一些。 6)复杂的分系统或部件,可靠性指标可以分配的低一些。 3 故障模式影响分析 3.1 故障模式影响及危害性分析 3.1.1故障模式影响及危害分析(FMECA) 通过分析系统中各个零部件的所有可能的故障模式及故障原因以及对系统的影响,并判断这种影响的危害度有多大,从而找出系统中潜在的薄弱环节和关键的零部件、采取必要的措施,以避免不必要的损失和伤亡。 3.1.2故障模式影响分析(FMEA) 只作故障模式影响分析,不作危害性分析。 3.2故障树分析 故障树分析法的步骤: 1)建立故障树 2)建立故障树的数学模型 3)进行系统可靠性的定性分析 4)进行系统可靠性的定量分析 故障树分析法的优点: 1)图文兼备,表达清晰,可读性好,便于交流 2)是工程技术人员故障分析思维流的图解,易于掌握

自动化检测仪表可靠性分析

自动化检测仪表可靠性分析 发表时间:2019-07-16T14:29:08.360Z 来源:《电力设备》2019年第6期作者:范长民1 白新波2 廉和国3 [导读] 摘要:随着工业自动化的快速发展,现场检测仪表也与时俱进,智能化、数字化等仪表蓬勃发展。 (1、大庆油田天然气分公司油气储运一大队大庆市 163000;2、大庆油田天然气分公司油气加工六大队大庆市 163000;3、大庆油田天然气分公司油气加工五大队大庆市 163000) 摘要:随着工业自动化的快速发展,现场检测仪表也与时俱进,智能化、数字化等仪表蓬勃发展。针对仪表的基本性能,主要从多方面对压力、温度、液位、安全监测几类仪表的可靠性进行了综合分析,有利于仪表的正常运行,也为相关工作提供参考和依据。 关键词:自动化仪表、可靠性、接地、干扰 前言近几年来,随着新工艺、新技术的发展,在生产现场中采用了大量的自动化仪表,提高了企业的生产技术水平。但由于多数生产现场所处环境相对恶劣,对仪表的可靠性提出了更高的要求。因此,有必要对仪表的可靠性进行综合分析,有针对性地采取各种措施,切实保障仪表长期正常平稳运行,确保安全生产。 1、压力仪表 电容式和单晶硅谐振式智能压力变送器,主要用于生产过程中各点的压力测量,它们都具有测量准确度高,性能稳定的优点,在使用过程中故障率一直比较低,得到了广大仪表维护人员的好评。通过多年的工作总结归纳,影响其可靠性的主要因素有: 1.1安装中最常见的三种现象:①露天安装的压力变送器,防爆接头连接不紧密,导致雨天雨水渗入变送器接线腔,造成仪表故障或输出电流异常;②变送器接线腔空间狭小,信号电缆接入变送器后会留有余量,接线完毕恢复仪表接线盒盖时造成电缆挤压破损,引起短路,使仪表故障或输出电流异常;③个别变送器信号电缆未用整根电缆,留有中间接头,使用一段时间后,导致中间接头氧化、腐蚀,造成仪表无法供电或信号异常。 1.2接地部分仪表外壳未接地、接地螺钉连接不牢、接地螺钉腐蚀等,导致雷击时电荷无法快速释放,造成仪表损坏。 1.3使用最典型的就是由于频繁单边吹扫,导致差压变送器的传感器损坏。这样的案例比较多。由于在用的差压变送器多为智能变送器,设计也具备全量程的单边受压能力,使一些使用者错误地认为可以无限制的单边承压,时间一长就导致膜片损伤或变形,使仪表损坏或出现较大测量偏差。 2、温度仪表 铂热电阻配合温度变送器是温度测量的主要类型,铂热电阻价格低,稳定性好。影响其可靠性的主要因素有: 2.1安装中最常见的几种现象:①防爆接头连接不紧密或方向有误,导致雨水渗入铂电阻接线腔,导致上传电阻值变化,造成测量异常;②接线腔空间狭小,信号电缆接入铂电阻后留有余量,接线完毕恢复接线盒盖时造成电缆挤压破损,引起短路,使仪表测量异常;③输出端子接线不牢,造成测量波动。 2.2电阻插入深度偏差过大,很多铂电阻都参与天然气流量计算,根据行业标准的有关规定,一些小口径的管线达不到插入深度要求,从而造成测量偏差。 2.3部分温度变送器(隔离器)热稳定性不够好,其标称准确度等级可达到0.2级,但在使用中实际达不到该指标,导致测量误差超差。 3、液位仪表 3.1浮筒式液位变送器用于生产现场测量大型储罐的介质液位,测量环境比较恶劣,而浮筒式液位计属于变浮力式液位计,介质密度和清洁程度对测量都有影响。主要因素有:介质中杂质偏多,影响了浮筒的上下移动,造成测量偏差;个别型号弹簧式浮筒液位计材质不够好,在含硫量较高的环境下造成浮筒挂钩腐蚀断裂,浮筒坠入底部,致使液位无法测量;计算中介质密度和筒体压力与实际情况有较大差别,造成测量偏差;筒体外部缺少保温措施,冬季生产中,气温过低时生成天然气水化物,导致浮筒冻堵,产生虚假液位。 3.2雷达式液位计是通过计算电磁波到达液体表面并反射回接收天线的时间来进行液位测量的。雷达液位计采用的是非接触测量的方式,影响其可靠使用的主要就是干扰电磁波发送、反射、接收环节的因素主要有:液位波动较大,引起测量波动;液面变化产生较多泡沫,电磁波产生散射或无法穿透,产生虚假液位;部分测量介质中介电常数较大的杂质附着于探针上,也会使电磁波无法穿透而返回,产生虚假液位;液位计在安装时或者使用中时,因受外力作用,其探针接触到液位计外筒体壁,产生虚假液位。 3.3差压式液位计是利用容器内的液位改变时,由液柱产生的静压也相应变化的原理而工作的,实际上就是通过液柱的压差来反映液位的。通过液柱压强计算公式可知,影响测量的最直接因素就是介质的密度和液柱的高度。在实际使用中主要表现有:实际介质密度与计算压差时的密度不一致,引起量程设置错误,最终产生测量错;液柱高度取值错误,造成量程设置错误,导致测量值错误;液位计安装位置发生变动后,未考虑零点迁移,未及时更换量程,造成测量偏差;安装有平衡阀的变送器,平衡阀关闭不严或内漏,导致测量偏差。 4、安全监测仪表 安全监测仪表用于检测生产现场环境中的可燃气体、有毒有害气体的浓度,确保生产和人员安全。影响气体检测仪表可靠使用的主要因素有:接地问题,个别可燃气体检测仪表的外壳和端子分别接地在强电和弱电的两个接地网上;安装问题,防爆接头连接不紧密,导致雨天雨水渗入仪表接线腔,造成仪表损坏;检测校验、使用维护不当。 结束语:仪表可靠性是在使用中得以实现的,它是相对和不断发展的。因此,要提高自动化仪表的可靠性,不能只关注仪表本身,而应当从设计、选型、安装、应用环境、维修维护等多个环节全面分析,从中找出影响仪表可靠使用的各种因素,并采取相应的措施加以解决,在动态过程中提高仪表的可靠性,最大限度确保安全生产。 作者简介: 范长民:男,大庆油田天然气分公司储运一大队,仪表维修技师,专长流量仪表维修维护工作。 白新波:男,大庆油田天然气分公司油气加工六大队,仪表维修技师,专长常规检测仪表维修维护作。廉和国:男,大庆油田天然气分公司维修三厂,仪表维修技师,专长常规检测仪表维修维护工作。

仪器与系统可靠性结课论文

电子信息与自动化学院 《仪器与系统可靠性》 课程结课论文 姓名: 班级: 学号: 专业: 院系:电子信息与自动化学院 2015年6月

仪器系统可靠性原理及分析方法 目录 摘要 (1) 一、可靠性设计基础 (2) (一)可靠性的基本概念 (2) (二)可靠性的发展过程 (2) 1. 过程系统趋向大型化、复杂化 (3) 2.仪表使用环境条件日益严酷 (3) 3. 新材料、新工艺越来越多的采用 (3) 4. 经济效益要求 (3) (四)可靠性学科研究的基本内容与应用 (3) 二、系统可靠性的分析方法 (4) (一)可靠度 (4) (二)故障率 (5) 1.故障率概念 (5) 2.故障率函数曲线 (6) (三)平均寿命 (7) (四)维修度 (8) (五)有效度 (8) (六)重要度 (9) 结论 (9) 参考文献 (9) [摘要] 随着集成电路、微电子技术在各类仪器中的广泛运用,电子仪器的复杂程度越来越高,传统的仪器只能完成测量、显示功能,而现代的智能仪器往往具有只能诊断、智能学习能力。因此,在应用系统中,电子仪器起的作用也越来越大,电子仪器能否可靠地完成其任务,也逐渐成为人们越来越关注的问题。可靠性设计在军事、航空航天以及核工业等行业中尤为重要,在这些行业中使用的仪器,其可靠性设计必须放在首位,否则会产生非常严重的后果。对于某些应用于军事方面的电子仪器,其可靠性不仅会影响仪器的正常使用,而且有时会对战争的胜利起到关键作用;对于某些应用于航空航天的电子仪器,其可靠性非常重要。本文就仪器系统可靠性原理以及分析方法进行介绍说明。 [关键词] 可靠性仪器仪表分析方法

LED可靠性分析报告

可靠性分析报告 品质是设计出来而不是制造出来,广义的品质除了外观、不良率外、还需兼长期使用下的可靠性,因此,在开发新产品前之可靠性预估及开发的实验推断相互印证是很重要的,本篇即针对可靠性分析的一般术语,如何事前预估,事后实验推断以及如何做加速试验及寿命试验做个说明. 1. 概论: (1) 何谓可靠性(Reliability)? 可靠性系指某种零件或成品在规定条件下,且于指定时间内,能依要求发挥功能的 概率,即 时间t 时的可靠性R(t)= (例) 假设开始时有100件物品参与试验,500小时后剩80件,则500小时后的可靠性R(t=500)为80/100=0.8简单地说,可靠性可看为残存率. (2) 何谓瞬间故障率(Hazard Rate ,Failure Rate), 时间t 时每小时之故障数 瞬间故障率h (t )= 时间t 时之残存数 上例中,若500小时后剩80件,若当时每小时故障数为两件,则第500小时之瞬间故障为2/80=2.5%换句话说,瞬间故障率系指时间t 时,尚未发生故障的物件,其单位时间内发生故障之概率. 时间t 时残存数 开始时试验总数

(3)浴缸曲线(Bath Tub Curve) 瞬 间 故 障 率 h(t) h(t)=常数= 耗竭期 Period period A.早期故障期:a.设计上的失误(线路稳定度Marginal design) b.零件上的失误(Component selection & reliability) c.制造上的失误(Burn-in testing) d.使用上失误。 一般产品之Burn-in 即要消除早期故障(Infant Mortality)使客户接到手时已经是恒定故障率h(t)= B、恒定故障率期:此时故障为random,为真正有效使用此段时期越长越好。 C、耗竭故障期;零件已开始耗竭,故障率急剧增加,此时维护重置成本为高。(4)平均故障间隔时间(Mean Time Between Failure,MTBF)当故障率几乎为恒定时(若0.002/小时),此时进行10000小时约有0.002/小时*10000小时=20个故障,即平均500小时会发生一次故障,故MTBF 为500小时,为0.002/小时的倒数,即MTBF=1/λ.λ可看成频率(Frequency),MTBF即代表周期(Period)

系统可靠性习题

系统可靠性习题 学号___________ 姓名___________ 第一章习题 1-1如图所示,有三个阀门连在一起。阀门如发生故障,水便不能通过。设三个阀门发生故障的概率均为p。求水能流过a、c的概率。 图1-1 1-2判断系统是否正常工作,采用“多数表决”,即有两个或三个单元正常工作,系统就可正常工作。如各单元的可靠工作概率为R,表决器可靠工作概率为1,求系统的可靠工作概率。 工作单元 图1-2 2/3多数表决系统 1-3信号机灯泡使用时数在1000小时以上概率为0.2,求三显示信号机三个灯泡在使用1000小时后最多有一个坏了的概率。 1-4在某个车站电气集中设备中有800个继电器。设在某段时间里每个继电器的故障率为0.005。求在这段时间内不多于10个继电器故障的概率。 1-5某产品先后通过A、B、C三种机器加工,这些机器的偶然故障及人为原因将影响产品质量。产品是否合格只有在生产全过程终了时才能检查出来。根据统计资料,三种产品的合格率分别为30%,40%和20%。假设机器独立运转,求产品的合格率。 1-6计算机内第K个元件在时间T内发生故障的概率等于P K(K=1,2……n)。所有元件的工

作是相互独立的,如果任何一个元件发生故障计算机就不能正常工作。求在时间T内计算机正常工作的概率。 1-7电路由电池Ⅰ与两个并联的电池Ⅱ、Ⅲ串联而成。设电池Ⅰ、Ⅱ、Ⅲ损坏的概率分别为0.3、0.2和0.2,各个电池损坏与否是独立的。求电路由于电池损坏而发生故障的概率。 1-8 电路由五个元件联接而成,设各个元件发生故障是独立的,已知元件1、2发生断路故障的概率各为0.2,元件3、4、5发生断路故障的概率为0.5,求: ⑴由于元件1或2发生断路故障而电路断路的概率; ⑵由于元件3、4、5都发生断路故障而电路断路的概率; ⑶由于任何元件发生断路故障而电路断路的概率。 第二章习题 2-1有两种零件,一种寿命分布呈指数型,平均寿命为1000小时;另一种寿命分布呈正态型,平均寿命为900小时,标准离差为400小时。现打算在100小时的使用时间内尽量不发生故障,问选择哪一种零件为宜? 2-2某种产品的寿命服从指数分布,λ为5*10-4/小时,求100小时内与1000小时内的可靠度。 2-3失效服从指数分布时,为使1000小时的可靠度在80%以上,失效率必须低于若干? 2-4某产品寿命服从指数分布,投入运用到平均寿命时,产品可靠度为多少?说明什么问题? 2-5某铁路机车信号系统可靠度服从指数分布,投入运用后,平均四年,35,040小时失效一次,若调好后用一个月(720小时),问可靠度是多少?若调好后用了四年,可靠度又是多少? 2-6一种晶体管的使用寿命(单位:小时),分布密度为: 100/x2x≥100 Φ(x)= 0 x<100 设某种仪器内装三个上述晶体管,求: ①使用的最初150小时内设有一个晶体管损坏的概率; ②这段时间只有一个晶体管损坏的概率; ③ε0的分布函数及其图形。 2-7某设备平均故障时间为4000小时,试求其连续使用500小时的可靠度。如要求该设备连续运行的可靠度为95%,问可期望其运行多少时间(设备失效服从指数分布)。 2-8在可靠性试验中,产品损坏概率为0.05,试验100件产品,求:

相关主题
文本预览
相关文档 最新文档