当前位置:文档之家› 原子吸收分光光度计测定Pb离子含量

原子吸收分光光度计测定Pb离子含量

原子吸收分光光度计测定Pb离子含量
原子吸收分光光度计测定Pb离子含量

姓名:张舸专业/年级/班级/分组:环境科学2013/02/01

学号:222013320260072 实验日期:2015-9-19

实验一原子吸收光谱分析仪的基本构造及使用

一.实验目的

1.掌握原子吸收分光光度法测锌离子含量的分析方法。

2.学习正确使用原子吸收分光光度计。

3. 熟悉原子吸收光度计的基本构造及使用方法。

4. 掌握原子吸收光谱仪中的火焰原子化法。

二.仪器的基本工作原理

1)基本原理:当有辐射通过自由原子蒸气,且入射辐射的频率等于原子中的电子由基态跃迁到较高能态所需能量频率时,原子就要从辐射场中吸收能量,产生共振吸收,电子由基态跃迁到激发态,同时伴随着原子吸收光谱的产生。

2)原子吸收测定的定量依据:在使用锐线光源的条件下原子蒸气的吸光度与峰值吸收成正比:

A = lg(I0/I)= 0.4343K0L (Lamber-Beer 定律)

式中A为中心频率处的吸光度;L为原子蒸气的厚度

由上式可知,只要测定吸光度并固定L,就可求得K0,而K0与原子蒸气中原子的浓度成正比。并且在稳定的测定条件下,被测定试样中待测元素的浓度与原子蒸气中的原子浓度也成正比。

所以,吸光度与试样中待测元素的浓度C也成正比:

A = KCL

K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础。

三.实验所用主要仪器设备及材料

TA5-990AAS原子吸收分管光度计

光源:提供待测元素原子吸收的特征谱线。光源应满足的条件:a.锐线光源。b.辐射光强度大,稳定性好,背景小。本次试验采用空心阴极灯。

原子化器:产生高温将样品液中元素原子化

分光系统(单色器):将空心阴极灯灯料的杂质发出的谱线—惰性气体发出的谱线以及分析线等与共振线吸收线分开。

检测器:检测光强度产生并放大电信号。

四.仪器的基本操作步聚

1)去掉仪器罩,防止被测元素的空心阴极灯。

2)打开主机检查检查排液管水封是否正常。

3)打开电脑进入BRAIC界面。编辑新方法,选择火焰强度、测量元素,记住编号;确定吸收波长;点击

元素→等位置→选择要测元素→确定→样品表→添加待测样品。

4)点火:打开空气压缩机,调节空气出口压力,打开乙炔气阀,调压,按点火开关。

5)测量前调零两三次,将毛细管一次侵入标液中,点击“读数”。

6)关闭:先关乙炔阀门,再关空压机,关仪器电源,退程序,关电脑。

五.实验结果及分析

1.原子吸收光谱分析的基本工作条件

光源:锌空心阴极灯

分析波长: 213.9nm

灯电流: 3.0 mA

狭缝宽度: 0.4 nm

检测器:光电倍增管

原子化类型:空气-乙炔火焰

2.标准曲线的制作

表1为锌标准系列浓度(x)及相应的吸光度(y)测定结果,两者之间呈良好的线性关系(图

1),可用于样品的测量分析。

表1 锌标准溶液的浓度及吸光度测定结果

序号浓度(ug/ml)吸光度

2 0.500 0.147

3 1.000 0.268

4 2.000 0.465

5 3.000 0.604

3.分析方法的灵敏度

由图1中锌标准曲线的斜率可知,在本实验分析工作条件下原子吸收光谱法测定溶液锌的灵敏度为

0.1990μg/ml。

4.未知样品的测定结果

利用未知样品溶液的吸光度测定值并结合锌标准曲线(图1)计算,求得该样品溶液中锌的浓度为

0.194μg/ml 和0.793ug/ml(见表2)。

表2 未知样品溶液中铅的测定浓度(ug/ml)

序号吸光度浓度

2 0.395 0.793

原子吸收分光光度计使用说明书

GGX-5型火焰原子吸收分光光度计使用说明书 1 GGX-5火焰原子吸收分光光度计的使用 1.1 仪器特点 原子吸收是指基态自由原子对光辐射能的共振吸收。通过测量自由原子对光辐射能的吸收程度而推断出样品中的某一元素的量大小,根据这一原理研制的分析测试仪器称原子吸收分光光度计。仪器主要由原子化系统、光学系统、信号检测放大输出系统及附属设备组成。下面先将仪器部分结构的性能和特点概述一下: (1) 元素灯, 光源稳定, 寿命较长,我站较常使用的铜、铅、镉、锰、铁、镍等元素灯, 使用五至六年后才更换(具体点灯时间没有统计) 。在使用期内光源是十分稳定的,当一旦出现光能量下降得利害且光源不稳时,需反接处理或更换元素灯。 (2) 原子化系统, 现在很多生产厂家采用石英玻璃喷雾器, 玻璃喷雾器具有耐腐蚀、干扰小的优点, 出厂前已将玻璃喷雾器出口的碰撞球的位置调节固定好, 无须使用者再调节球的位置。同时配有各种口径的毛细吸液管, 使用者可根据需要选择提升量大小, 以调节最灵敏、最稳定的雾化率达到理想的检测效果。(3) GGX-5型, 由于生产厂吸取了国外同行的先进电子线路和技术, 仪器的数据输出相当稳定, 工作曲线线性、数据重复性和准确性等技术指标都能达到比较理想的水平, 部分使用同型号仪器的用户亦有同感。 1.2 原子吸收分光光度计的开关机原则“先开后关, 后开先关”原则。如开机程序“电源→A 键→B 键→C 键”, 关机时必须是“C 键→B 键→A 键→电源”。气路必须先开空气压缩机, 待一定空气压力和流量后, 才能开乙炔气点火, 关机时必须关闭(切断) 乙炔气源后, 才关空气压缩机。如果开关机程序操作混乱, 极容易损伤或烧毁电气设备, 甚至发生严重安全事故。GGX-5型采用了燃气安全阀系统, 该系统只有当仪器主机电源开通后, 空气压力和流量达到一定的条件下, 燃气阀门才能撞开, 这种装备为安全使用仪器加了一道非常实用有效的防线。开关机除了要严格按程序外, 还必须严格地、准确地将各功能键调到应处的位置。要

原子吸收光谱法习题及答案

原子吸收分光光度法 1.试比较原子吸收分光光度法与紫外-可见分光光度法有哪些异同点? 答:相同点:二者都为吸收光谱,吸收有选择性,主要测量溶液,定量公式:A=kc,仪器结构具有相似性. 不同点:原子吸收光谱法紫外――可见分光光度法 (1) 原子吸收分子吸收 (2) 线性光源连续光源 (3) 吸收线窄,光栅作色散元件吸收带宽,光栅或棱镜作色散元件 (4) 需要原子化装置(吸收池不同)无 (5) 背景常有影响,光源应调制 (6) 定量分析定性分析、定量分析 (7) 干扰较多,检出限较低干扰较少,检出限较低 2.试比较原子发射光谱法、原子吸收光谱法、原子荧光光谱法有哪些异同点? 答:相同点:属于原子光谱,对应于原子的外层电子的跃迁;是线光谱,用共振线灵敏度高,均可用于定量分析. 不同点:原子发射光谱法原子吸收光谱法原子荧光光谱法 (1)原理发射原子线和离子线基态原子的吸收自由原子(光致发光) 发射光谱吸收光谱发射光谱 (2)测量信号发射谱线强度吸光度荧光强度 (3)定量公式lgR=lgA + blgc A=kc I f=kc (4)光源作用不同使样品蒸发和激发线光源产生锐线连续光源或线光源 (5)入射光路和检测光路直线直线直角 (6)谱线数目可用原子线和原子线(少)原子线(少) 离子线(谱线多) (7)分析对象多元素同时测定单元素单元素、多元素 (8)应用可用作定性分析定量分析定量分析 (9)激发方式光源有原子化装置有原子化装置 (10)色散系统棱镜或光栅光栅可不需要色散装置 (但有滤光装置) (11)干扰受温度影响严重温度影响较小受散射影响严重 (12)灵敏度高中高 (13)精密度稍差适中适中 3.已知钠蒸气的总压力(原子+离子)为1.013 l0-3Pa,火焰温度为2 500K时,电离平

原子吸收试题_答案解析

原子吸收分光光度计试卷 答卷人:评分: 一、填空题(共15 分1 分/空) 1. 为实现峰值吸收代替积分吸收测量,必须使发射谱线中心与吸收谱线中心完全重合,而且发射谱线的宽度必须比吸收谱线的宽度窄。 2. 在一定条件下,吸光度与试样中待测元素的浓度呈正比,这是原子吸收定量分析的依据。 3. 双光束原子吸收分光光度计可以减小光源波动的影响。 4. 为了消除火焰发射的干扰,空心阴极灯多采用脉冲方式供电。 5. 当光栅(或棱镜)的色散率一定时,光谱带宽由分光系统的出射狭缝宽度来决定。 6. 在火焰原子吸收中,通常把能产生1%吸收的被测元素的浓度称为特征浓度。 7. 与氘灯发射的带状光谱不同,空心阴极灯发射的光谱是线状的光谱。 8. 用原子吸收分析法测定饮用水中的钙镁含量时,常加入一定量的镧离子,其目的是消除磷酸根离子的化学干扰。 9. 使用火焰原子吸收分光光度法时,采用乙炔-空气火焰,使用时应先开空气,后开乙炔。 10. 待测元素能给出三倍于空白标准偏差的吸光度时的浓度称为检出限。 11. 采用氘灯校正背景时,空心阴极灯测量的是原子吸收+背景吸收(或AA+BG)信号,氘灯测量的是背景吸收(或BG)信号。 12、空心阴极灯灯电流选择的原则是在保证放电稳定和有适当光强输出的情况下,尽量选择低的工作电流。 二、选择题(共15 分1.5 分/题) 1.原子化器的主要作用是( A )。 A.将试样中待测元素转化为基态原子; B.将试样中待测元素转化为激发态原子; C.将试样中待测元素转化为中性分子;

D.将试样中待测元素转化为离子。 2.原子吸收的定量方法—标准加入法,消除了下列哪种干扰?( D ) A.分子吸收B.背景吸收C.光散射D.基体效应 3.空心阴极灯内充气体是( D )。 A.大量的空气 B. 大量的氖或氮等惰性气体 C.少量的空气D.低压的氖或氩等惰性气体 4.在标准加入法测定水中铜的实验中用于稀释标准的溶剂是。(D ) A.蒸镏水 B.硫酸 C.浓硝酸 D.(2+100)稀硝酸 5.原子吸收光谱法中单色器的作用是( B )。 A.将光源发射的带状光谱分解成线状光谱; B.把待测元素的共振线与其它谱线分离开来,只让待测元素的共振线通过;C.消除来自火焰原子化器的直流发射信号; D.消除锐线光源和原子化器中的连续背景辐射 6.下列哪个元素适合用富燃火焰测定?( C ) A.Na B.Cu C. Cr D. Mg 7.原于吸收光谱法中,当吸收为1%时,其对应吸光度值应为( D )。 A.-2 B.2 C.0.1 D.0.0044 8.原子吸收分析法测定钾时,加入1%钠盐溶液其作用是( C )。 A.减少背景B.提高火焰温度 C.减少K 电离D.提高K 的浓度 9.原子吸收光谱法中的物理干扰可用下述哪种方法消除?( D ) A.释放剂B.保护剂C.缓冲剂D.标准加入法 10.下列哪一个不是火焰原子化器的组成部分?(A ) A.石墨管 B.雾化器 C.预混合室 D.燃烧器 三、简答题(共30 分) 1.用火焰原子吸收法测定水样中钙含量时,PO43-的存在会干扰钙含量的准确测定。请说明这是什么形式的干扰?如何消除?(8 分)

原子吸收分光光度计操作规程 (含原理图)

原子吸收分光光度计(火焰法)使用规程 一、开机 1.打开主机电源,预热30分钟。 2.安装空心阴极灯,通过主机键盘输入工作灯电流,预热15分钟。 二、测试条件选择 3.主机和空心阴极灯预热结束,打开计算机,然后打开工作站。 4.选择测定元素。 5.输入一定负高压后,调整灯位。 6.对光路和调节燃烧器高度。 7.选择测定波长和调节能量值。 8.输入积分时间和测定次数。 三、样品测试(火焰法) 9.开空气压缩机。 10.打开乙炔钢瓶开关,调节减压阀至压力为0.075kp a。 11.输入标准溶液浓度。 12.打开乙炔开关,调节流量为1.5,按点火按钮点火。 13.燃烧3分钟后吸喷去离子水,燃烧状态稳定后按增益键调零。 14.测试标准溶液。 15.测试样品。 四、关机 16.测试完毕,吸喷1%硝酸溶液5~10分钟,然后吸喷去离子水15分钟。17.关闭燃气。 18.排去空气压缩机内的水分,关空气压缩机。 19.排去管路中的乙炔和空气。 20.退出工作站,关灯和主机。 21.关排气扇。 22.倒干净废液罐中的废液,并用自来水冲洗废液罐。 23.待燃烧器冷却后,卸下燃烧器,用自来水从颈部冲洗燃烧器内部,然后用去离子水冲洗,最后用干毛巾和滤纸擦干水。 24.清洁燃烧室、实验桌、仪器室。 25.登记仪器使用情况,关好门窗水电。

仪器原理 1、原子吸收光谱分析的基本过程: (1)用该元素的锐线光源发射出特征辐射; (2)试样在原子化器中被蒸发、解离为气态基态原子; (3)当元素的特征辐射通过该元素的气态基态原子区时,部分光被蒸气中基态原子吸收而减弱,通过单色器和检测器测得特征谱线被减弱的程度,即吸光度,根据吸光度与被测元素的浓度成线性关系,从而进行元素的定量分析。 元素在燃烧器或者热解石墨炉中被加热原子化,成为基态原子蒸汽,对空心阴极灯发射的特征辐射进行选择性吸收。在一定浓度范围内,其吸收强度与试液中被的含量成正比。其定量关系可用郎伯-比耳定律,A= -lg I/I o= -lgT = KCL , 式中I为透射光强度;I0为发射光强度;T为透射比;L为光通过原子化器光程(长度),每台仪器的L值是固定的;C是被测样品浓度;所以A=KC。 2、原子吸收分光光度计的基本部件: 原子吸收分光光度计一般由四大部分组成,即光源(单色锐线辐射源)、试样原子化器、分光系统(单色仪)和数据处理系统(包括光电转换器及相应的检测装置以及显示系统),如下图: 原子化器主要有两大类,即火焰原子化器和电热原子化器。火焰有多种火焰,目前普遍应用的是空气—乙炔火焰。电热原子化器普遍应用的是石墨炉原子化器,因而原子吸收分光光度计,就有火焰原子吸收分光光度计和带石墨炉的原子吸收分光光度计。前者原子化的温度在2100℃~2400℃之间,后者在2900℃~3000℃之间。 火焰原子吸收分光光度计,利用空气—乙炔测定的元素可达30多种,若使用氧化亚氮—乙炔火焰,测定的元素可达70多种。但氧化亚氮—乙炔火焰安全性较差,应用不普遍。空气—乙炔火焰原子吸收分光光度法,一般可检测到PPm级(10-6),精密度1%左右。国产的火焰原子吸收分光光度计,都可配备各种型号的氢化物发生器(属电加热原子化器),利用氢化物发生器,可测定砷(As)、锑(Sb)、锗(Ge)、碲(Te)等元素。一般灵敏度在ng/ml级(10-9),相对标准偏差2%左右。汞(Hg)可用冷原子吸收法测定。 石墨炉原子吸收分光光度计,可以测定近50种元素。石墨炉法,进样量少,灵敏度高,有的元素也可以分析到pg/ml级。而且石墨炉的原子化效率接近100%,而火焰法的原子化效率只有1%左右;用石墨炉进行原子化时,基态原子在吸收区内的停留时间较长。

原子吸收实验报告

原子吸收光谱法 原子吸收光谱法是基于含待测组分的原子蒸汽对自己光源辐射出来的待测元素的特征谱线(或光波)的吸收作用来进行定量分析的。由于原子吸收分光光度计中所用空心阴极灯的专属性很强,所以,原子吸收分光光度法的选择性高,干扰较少且易克服。而且在一定的实验条件下,原子蒸汽中的基态原子数比激发态原子数多的多,故测定的是大部分的基态原子,这就使得该法测定的灵敏度较高。由此可见,原子吸收分光光度法是特效性、准确性和灵敏度都很好的一种金属元素定量分析法。 一.实验目的 1.熟悉原子吸收光度计的基本构造及使用方法。 2.掌握原子吸收光谱仪中的石墨炉原子化法和火焰原子化法。 二.实验原理 原子光谱是由于其价电子在不同能级间发生跃迁而产生的。当原子受到外界能量的激发时,根据能量的不同,其价电子会跃迁到不同的能级上。电子从基态跃迁到能量最低的第一激发态时要吸收一定的能量,同时由于其不稳定,会在很短的时间内跃迁回基态,并以光波的形式辐射现同样的能量。根据△E=hυ可知,各种元素的原子结构及其外层电子排布的不同,则核外电子从基态受激发而跃迁到其第一激发态所需要的能量也不同,同样,再跃迁回基态时所发射的光波频率即元素的共振线也就不同,所以,这种共振线就是所谓的元素的特征谱线。加之从基态跃迁到第一激发态的直接跃迁最易发生,因此,对于大多数的元素来说,共振线就是元素的灵敏线。在原子吸收分析中,就是利用处于基态的待测原子蒸汽对从光源辐射的共振线的吸收来进行的。 三火焰原子化器与石墨炉原子化器 原子化系统的作用是将待测试液中的元素转变成原子蒸汽。具体方法有火焰原子化法和无火焰原子化法两种,前者较为常用。

实验4火焰原子吸收光谱法测定铁(标准曲线法)

实验四火焰原子吸收光谱法测定铁(标准曲线法) 一、目的与要求 1.加深理解火焰原子吸收光谱法的原理和仪器的构造。 2.掌握火焰原子吸收光谱仪的基本操作技术。 3.掌握标准曲线法测定元素含量的分析技术。 二、方法原理 金属铬和其他杂质元素对铁的原子吸收光谱法测定,基本上没有干扰情况,样品经盐酸分解后,即可采用标准曲线法进行测定。 标准曲线法是原子吸收光谱分析中最常用的方法之一,该法是在数个容量瓶中分别加入成一定比例的标准溶液,用适当溶剂稀释至一定体积后,在一定的仪器条件下,依次测出它们的吸光度,以加入标推溶液的质量(μg)为横坐标,相应的吸光度为纵坐标,绘出标准曲线。 试样经适当处理后,在与测定标准曲线吸光度的相同条件下测定其吸光度(一般采用插入法测定,即将试样穿插进测定标准溶液中间进行测量),根据试样溶液的吸光度,通过标准曲线即可查出试样溶液的含量,再换算成试样的含量(%)。 三、仪器与试剂 1.原子吸收分光光度计。 2.铁元素空心阴极灯。 3.空气压缩机。 4.瓶装乙炔气体。 5.(1+1)盐酸溶液。 6.浓硝酸 7.铁标推溶液(储备液),·mL-1:准确称取高纯金属铁粉1.000g,用30mL盐酸(1+1)溶解后,加2~3mL浓硝酸进行氧化,用蒸馏水稀释至1L,摇匀。 8.铁标准溶液(工作液),100μg·mL-1:取上述铁标准溶液(储备被),用盐酸溶液(ω=稀释10倍,摇匀。 四、内容与步骤 1.试样的处理(平行三份) 准确称取o.2g试样于100mL烧杯中,加入1+1盐酸5mL,微热溶解,移入50 mL容量瓶并稀释至刻度,摇匀备测。 2.标准系列溶液的配制 取6个洁净的50mL容量瓶,各加入1+1盐酸5mL,再分别加入,,,,,铁标准溶液〔工作液),用蒸馏水稀释至刻度,摇匀备测。 3.仪器准备 在教师指导下,按仪器的操作程序将仪器各个工作参数调到下列测定条件,预热20min:分析线: 271.9nm 灯电流: 8mA 狭缝宽度: 0.1mm 燃器高度: 5mm 空气压力:1.4kg/cm2乙炔流量: 1.1L/min 空气流量:5L/min 乙炔压力: 0.5kg/cm2 4.测定标准系列溶液及试样镕液的吸光度。

原子吸收分光光度计操作方法

原子吸收分光光度法测定溶液中CU含量 一、实验目的 1.掌握原子吸收分光光度法的特点及应用; 2.了解原子吸收分光光度计的结构及其使用方法。 二、实验原理 原子吸收光谱分析是基于从光源中辐射出的待测元素的特征光波通过样品的原子蒸气时,被蒸气中待测元素的基态原子所吸收,使通过的光波强度减弱,根据光波强度减弱的程度,可以求出样品中待测元素的含量。 利用锐线光源在低浓度的条件下,基态原子蒸气对共振线的吸收符合朗伯—比尔定律,即: A=lg(I0/I)=KLN0 (1) 式中,A为吸光度,I0为入射光强度,I为经原子蒸气吸收后的透射光强度,K为吸光系数,L为辐射光穿过原子蒸气的光程长度,N0为基态原子密度。 当试样原子化,火焰的绝对温度低于3000K时,可以认为原子蒸气中基态原子的数目实际上接近原子总数。在固定的实验条件下,原子总数与试样浓度c的比例是恒定的,则等式(1)可记为 A==K’c (2) 式(2)就是原子吸收分光光度法定量分析的基本关系式。常用标准曲线法、标准加入法进行定量分析。 三、仪器与试剂 1.原子吸收分光光度计 2.标准溶液1~4号 3.样品溶液1~2号 四、操作步骤 1.开机前先检查水封是否有水,乙炔管道有无泄漏(空气中有无乙炔气味) 2.打开抽风机 3.打开电脑以及原子吸收分光光度计电源开关 4.分析方法设计

进入软件→点文件→选择新建→选择分析方法(火焰法、石墨法、氢化物法等)→分析任务选择(Cu、Pb、Ca等)→填写数据表(批数、个数、测量次数、稀释倍数)→展开→完成→仪器控制→点击自动波长→精调→完成→检测(准备两杯水,一杯调零,另一杯洗样管) 5.将元素灯预热30min 6.打开空压机,将压力调到0.3Mpa 7.打开乙炔钢瓶阀,将出气阀压力调到0.05~0.06Mpa之间 8.调整燃烧器高度,对好光路 9.旋开仪器上的乙炔伐,按点火开关,点火,调节火焰大小,开始检测 10.标准空白(纯水)读数5次,平均 11.标液1~标液4各读数5次,平均 12.建立标准曲线,相关系数应在0.995以上。 13.未知样品读数5次,平均。从标准曲线中求得结果。 14.检测完毕后,保存数据 15.点火吸去离子水10min,在关乙炔伐,使管道中气体烧完再关仪器、电脑、空压机。 五、结果处理 1.记录操作条件 灯电流 燃烧器高度 狭缝宽度 乙炔流量 空气流量 2.根据标准曲线计算样品中Cu含量。

实训四 AFS-920型原子荧光分光光度计的结构与使用

实训四AFS-920型原子荧光分光光度计的结构与使用 一、目的要求: 1.了解水中砷的来源和危害 2.掌握原子荧光法测定砷的原理 3.初步学会原子荧光分光光度计的简单操作方法 二、实验原理 在酸性条件下,三价砷与硼氢化钠反应生成砷化氢, 由载气(氩气)带入石英原子化器, 受热分解为原子态砷。在特制砷空心阴极灯的照射下,基态砷原子被激发至高能态, 在去活化回到基态时,发射出特征波长的荧光, 在一定的浓度范围内, 其荧光强度与砷含量成正比, 与标准系列比较定量。 三、仪器试剂 仪器:50ml具塞比色管;北京吉天AFS-920原子荧光光度计。 试剂:所用试剂纯度为优级纯或分析纯,测定用水为去离子水或同等纯度的水。浓盐酸(优级纯);还原剂:氢氧化钠为0.5%-硼氢化钠为1.0%;载流: 3-5%盐酸;硫脲+抗坏血酸溶液;砷标准使用溶液:0.1μg/mL的砷标准使用液。 四、实验条件 1.负高压:实验表明负高压为300~340V时,可满足实验需要。 2.灯电流:灯电流40~60 mA为宜。 3.炉高:8.0~10mm时,荧光强度值较好。 4.载气、屏蔽气:选择载气400~600 mL/min;屏蔽气800~1100 mL/min。 五、分析步骤 1.标准溶液的配制 去标准溶液5ml,向其中加入2.5ml浓盐酸优级纯,然后加入10ml硫脲+抗坏血酸溶液,用去离子水定容到50.0ml,配成浓度为10.00μg/L的标准溶液。 2.标准空白溶液直接由载流来代替做标准空白,上机做标准曲线。 3.水样测试 取经过处理后的一定体积的水样适量,向其中加入2.5ml浓盐酸优级纯,然后加入10ml硫脲+抗坏血酸溶液,用去离子水定容到50.0ml,上机测试。 六、测定结果 1.回归方程的计算 2.作图 3.代入法求出水样中砷的含量

原子吸收光谱法的优缺点

主要有以下优点: 1 选择性强。这是因为原子吸收带宽很窄的缘故。因此,测定比较快速简便,并有条件实现自动化操作。在发射光谱分析中,当共存元素的辐射线或分子辐射线不能和待测元素的辐射线相分离时,会引起表观强度的变化。 而对原子吸收光谱分析来说:谱线干扰的几率小,由于谱线仅发生在主线系,而且谱线很窄,线重叠几率较发射光谱要小得多,所以光谱干扰较小。即便是和邻近线分离得不完全,由于空心阴极灯不发射那种波长的辐射线,所以辐射线干扰少,容易克服。在大多数情况下,共存元素不对原子吸收光谱分析产生干扰。在石墨炉原子吸收法中,有时甚至可以用纯标准溶液制作的校正曲线来分析不同试样。 2、灵敏度高。原子吸收光谱分析法是目前最灵敏的方法之一。火焰原子吸收法的灵敏度是ppm到ppb级,石墨炉原子吸收法绝对灵敏度可达到10-10~10-14克。常规分析中大多数元素均能达到ppm数量级。如果采用特殊手段,例如预富集,还可进行ppb数量级浓度范围测定。由于该方法的灵敏度高,使分析手续简化可直接测定,缩短分析周期加快测量进程;由于灵敏度高,需要进样量少。无火焰原子吸收分析的试样用量仅需试液5~100l。固体直接进样石墨炉原子吸收法仅需~30mg,这对于试样来源困难的分析是极为有利的。譬如,测定小儿血清中的铅,取样只需10l即可。 3 分析范围广。发射光谱分析和元素的激发能有关,故对发射谱线处在短波区域的元素难以进行测定。另外,火焰发射光度分析仅能对元素的一部分加以测定。例如,钠只有1%左右的原子被激发,其余的原子则以非激发态存在。 在原子吸收光谱分析中,只要使化合物离解成原子就行了,不必激发,所以测定的是大部分原子。目前应用原子吸收光谱法可测定的元素达73种。就含量而言,既可测定低含量和主量元素,又可测定微量、痕量甚至超痕量元素;就元素的性质而言,既可测定金属元素、类金属元素,又可间接测定某些非金属元素,也可间接测定有机物;就样品的状态而言,既可测定液态样品,也可测定气态样品,甚至可以直接测定某些固态样品,这是其他分析技术所不能及的。 4、抗干扰能力强。第三组分的存在,等离子体温度的变动,对原子发射谱线强度影响比较严重。而原子吸收谱线的强度受温度影响相对说来要小得多。和发射光谱法不同,不是测定相对于背景的信号强度,所以背景影响小。在原子吸收光谱分析中,待测元素只需从它的化合物中离解出来,而不必激发,故化学干扰也比发射光谱法少得多。 5、精密度高。火焰原子吸收法的精密度较好。在日常的一般低含量测定中,精密度为1~3%。如果仪器性能好,采用高精度测量方法,精密度为<1%。无火焰原子吸收法较火焰法的精密度低,目前一般可控制在15%之内。

最新最全,原子荧光分光光度计,发展原理,分析应用方法综合对比, 讲义资料

原子荧光分光光度计 一、发展历程 1859年克希霍夫研究太阳光谱时开始原子荧光理论的研究。 1964年,Winefordner和Κuga首先提出用原子荧光光谱(AFS)作为分析方法的概念。1969年,Holak研究出氢化物气体分离技术并用于原子吸收光谱法测定砷。 1974年,Tsujiu将原子荧光光谱和氢化物气体分离技术相结合,提出了气体分离-非色散原子荧光光谱测定砷的方法,这种联合技术就是现代常用氢化物发生-原子荧光光谱(HG-AFS)。 1982年郭小伟(西北有色地质研究所)和张锦茂(地矿部物化探研究所)两个研究小组合作,研制成功了世界上首台以溴化物无极放电灯作激发光源的“WYD^2型蒸气发生-双道原子荧光光谱仪”。该仪器采用微波激发无极放电灯作为激发光源、自行研制的高温石英管原子化器、间断法氢化反应发生器,可同时测定两个可形成氢化元素及汞原子的原子荧光光谱仪。与此同时,张锦茂、范凡等开展了地球化学样品中As,Sb,Bi,Hg等两种元素同时测定分析方法的研究,取得了令人满意的分析结果。使其成为地矿部开展《20万区域化探全国扫面计划》找矿的重要配套仪器及分析方法,随即将科研成果迅速地转化为商品化仪器,按地矿部统一部署转让给北京地质仪器厂。 1985年开始由北京地质仪器厂(随后脱离出海光仪器公司)和江苏宝应仪器(种种原因到现在就没有发现该公司)进样系统以小蠕动泵为主并投入批量生产。 1995年以郭小伟为首西北有色金属研究院成立金索坤技术有限公司(不知道什么原因到目前为止市场占有率极低,目前也只有蠕动泵的产品)。 1996年北分瑞利公司与著名原子荧光光谱专家张锦茂先生合作,成功研制以蠕动泵为主的原子荧光(不知道什么原因现在市场占有率也不是很理想);随后北京东西电子研究所也推出以蠕动泵为主的原子荧光(不知打什么原因现在市场占有情况不是很理想)。 1998年,加拿大Aurora公司也推出了一款蒸气发生-原子荧光光谱仪,该仪器的性能基本上接近于我国早期同类型仪器的水平。所以国外原子荧光水平和国内至少相差15年左右。 1999年,北京有色金属研究院为了进一步提高空心阴极灯的辐射强度,满足原子荧光分析高灵敏度的需求,在我国早期吴廷照、高英奇研制成功的原子吸收高性能空心阴极灯[13]基础上结合原子荧光的特点,研制成功了用于原子荧光的“高性能空心阴极灯”。一直沿用至今(随后各厂家为灯添加特殊代码,实验灯的自动识别)。其中光源直接决定检测结果,未来发展发向是一种新型的激发光源,其性能具有单色性好、相干性强、方向集中和功率密度高等优点,但是价格也就不说咯。 2000年以刘明钟(海光第一任老总)为首成立北京吉天仪器有限公司。随后为原子荧光推出入双注射泵进样系统(目前市场占有率较高);随后普析也开始开展原子荧光的业务(目前市场占有率不是很理想)。 2005年北分瑞利成功研制推出第一台联用技术原子荧光光谱仪。随后几年内海光吉天普析等厂家也顺利推出该仪器。(为原子荧光测试重金属不同价态含量做出重要贡献)。 2006年北京路捷仪器有限公司(目前北京锐光仪器有限公司)成立致力于原子荧光各基础核心部件改进研发,并多次拿得国家重大专项目,协助制定多项有关原子荧光应用标准。并将成熟技术以授权于其他厂家使用带来良好效果。

原子吸收检测限

AAS的检出限 能以适当的置信度,测出被测元素的最小浓度(或质量浓度)或最小量称作检出限。测定原子吸收光谱法的检出限时,选取一份标准溶液,浓度c约等于资料所给出该元素检出限的5倍或10倍,在扩展10倍的条件下,连续测定10次,求得吸光度平均值为A,标准偏差为s,按下式计算检出限(XDL):XDL=2sc/A 检出限 检出限是用来衡量一台仪器或一项分析方法能以一定置信度测量的最低浓度或绝对量的指标,它是测定灵敏度和测量精密度的综合体现。测定灵敏度越高、测量精密度越好,检出限值越低。检出限可以浓度为单位表示(DLc),也可以绝对量表示(DLq),分别由(1)式和(2)式计算。 DLc=kσ/Sc (l) DLq=kσ/Sq (2) 式中:k为置信因子;σ为测定精密度(标准偏差);Sc为以浓度为单位的灵敏度;Sq为以绝对量为单位的灵敏度(即标准曲线的斜率)。 原子吸收分析中计算检出限时重复测量次数一般不应少于10次。测定所用溶液的浓度或绝对量不应大于计算出的检出限值的5倍。为此,通常应使用仪器的标尺扩展功能,并根据信号增加优于噪声增加的原则确定扩展倍数。在计算之前必须注意使σ的单位和S的单位统一。计算检出限时,(1)、(2)式中的k值一般取3。对于无限多次测量且测量值严格遵从高斯分布时,k=3的置信度为99.86%,对于有限次测量且测量值未必遵从高斯分布时,k=3的置信度大约只有90%。 例 检查一台原子吸收光谱仪火焰法测定铜的检出限。 测定溶液:Cu 0.020 μg/mL,标尺扩展X 10 10次测量值:0.019,0.020,0.020,0.022,0.024,0.026,0.026,0.027,O.027,0.030 解 计算平均值,Xa=0.0241 计算10次测定的标准偏差,σ=0.003695 计算测定灵敏度S= k取3 计算检出限,DLc = 3σ/S = 0.0092μg/mL 应该指出,检出限只是一个能够可靠地进行定性检出的最低浓度,即当上例中铜的浓度为0.009μg/mL 时,就有90%的把握(k=3)确认该元素存在,但在这一浓度处该仪器还不能进行准确的定量测定。所以检出

第3章_原子吸收光谱法(练习题)-2008级

第三章原子吸收光谱法 单选题: 1.原子吸收光谱是由下列哪种粒子产生的? (1)固体物质中原子的外层电子;(2)气态物质中基态原子的外层电子;(3)气态物质中激发态原子的外层电子;(4)气态物质中基态原子的内层电子。 2. 原子吸收光谱线的多普勒变宽是由下列哪种原因产生的? (1)原子在激发态的停留时间;(2)原子的热运动;(3)原子与其他粒子的碰撞;(4)原子与同类原子的碰撞。 3. 原子吸收光谱线的洛仑兹变宽是由下列哪种原因产生的? (1)原子在激发态的停留时间;(2)原子的热运动;(3)原子与其他粒子的碰撞;(4)原子与同类原子的碰撞。 4. 用原子吸收光度法测定钙时,加入EDTA是为了消除下述哪种物质的干扰?(1)磷酸;(2)硫酸;(3)钠;(4)镁。 5. 为了提高石墨炉原子吸收光谱法的灵敏度,原子化阶段测量信号时,保护气体的流速应: (1)减小;(2)增大;(3)不变;(4)为零。 6. 原子吸收光谱测定食品中微量砷,最好采用下列哪种原子化方法? (1)冷原子吸收;(2)空气-乙炔火烟;(3)石墨炉法;(4)气态氢化物发生法。 7. 原子吸收光谱测定污水中微量汞,最好采用下列哪种原子化方法? (1)化学还原冷原子化法;(2)空气-乙炔火烟;(3)石墨炉法;(4)气态氢化物发生法。 8. 与原子吸收光谱法相比,原子荧光光谱法: (1)要求光源发射强度高;(2)要求光源发射线窄;(3)要求单色仪分辨能力更强;(4)更适宜测高浓度样品。 9. 消除原子吸收光谱分析中的物理干扰一般用: (1)背景校正;(2)光源调制;(3)标准加入法;(4)加入缓冲剂。 10. 石墨炉法原子吸收分析,应该在下列哪一步记录吸光度信号: (1)干燥;(2)灰化;(3)原子化;(4)除残。 11. 作为原子吸收光谱分析的消电离剂,最有效的是: (1)Na;(2)K;(3)Rb;(4)Cs。 12. 空心阴极灯中对发射谱线宽度影响最大的因素是: (1)阴极材料;(2)填充气体;(3)灯电流;(4)阳极材料。 13. 原子吸收分析中,吸光度最佳的测量范围是:

原子吸收分光光度计的结构说明

原子吸收分光光度计的结构说明 原子吸收分光光度计分为单光束型和双光束型。其结构可分为五个部分:光源、原子化器、光学系统、检测系统与数据处理系统。1、光源 为测出待测元素的峰值吸收,须采用锐线光源,应满足以下一些要求:辐射强度大、辐射稳定、发射普线宽度窄。空心阴极灯是目前原子吸收光谱仪器使用的主光源,属于辉光放电气体光源。 空心阴极灯是一种由被测元素或含有被测元素的材料制成的圆筒形空心阴极和一个阳极(钨、钛或锆棒),密封在充有低压惰性气体的带有石英窗的玻璃壳内的电真空器件。 当在两极之间施加几百伏的高压,两极之间会产生放电,电子将从空心阴极内壁射向阳极,并在电子的通路上又与惰性气体原子发生碰撞并使之电离,带正电荷的惰性气体离子在电场的作用下,向阴极内壁猛烈地轰击,使阴极表面的金属原子溅射出来,而这些溅射出来的金属原子再与电子、惰性气体原子及离子发生碰撞并被激发,于是阴极内的辉光便出现了阴极物质的光谱。 空心阴极灯的阴极材料的纯度必须很高,内充气体也必须为高纯,以保证阴极元素的共振线附近不含内充气体或杂质元素的强谱线。 空心阴极灯的操作参数是灯电流,灯电流的大小可决定其所发射的谱线的强度。但是需根据具体操作情况来选择灯电流的大小。 通常情况下,空心阴极灯在使用前需预热10~15min。 2、原子化系统 原子吸收光谱中常用的原子化技术是:火焰原子化和电热原子化。此外还有一些特殊的原子化技术如氢化发生法、冷原子蒸气原子化等。 1)火焰原子化系统——火焰原子化器 火焰原子化器由雾化器、雾化室、燃烧器三部分组成。常见的燃烧器有全消耗型和预混合型。目前主要使用的是预混合型燃烧器。 2)、电热原子化系统——石墨炉原子化器 非火焰原子化器中适用广的是管式石墨炉原子化器。组成部分为:石墨管、炉体、电源。样品直接放置在管壁上或放置在嵌入管内的石墨平台上,用电加热至高

原子吸收法测定水中的铜含量

华南师范大学实验报告 原子吸收法测定水中的铜含量 一、实验目的 1. 掌握火焰原子吸收光谱仪的操作技术; 2. 优化火焰原子吸收光谱法测定水中铜的分析火焰条件; 3. 熟悉原子吸收光谱法的应用。 二、方法原理 原于吸收光谱法是根据物质产生的原子蒸气对特定波长光的吸收作用来进行定量分析的。每一种元素的原子不仅可以发射一系列特征诺线,也可以吸收与发射线波长相同的特征谱线。当光源发射的某一特征波长的光通过原子蒸气时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,与被测元素的含量成正比: A=KLc 式中,A为吸光度;K为吸收系数;L为原子吸收层的厚度;c为样品溶液中被测元素的浓度。 三、仪器和试剂 (1)仪器 TAS-986型原子吸收分光光度计; Cu空心阴极灯;容量瓶,吸量管;烧杯。 (2)试剂 20.00mg/ml铜标准溶液、水样 四、实验步骤 1.系列标准溶液配制 在100ml的容量瓶中,分别加入100μg/mL Cu标准溶液O.00mL、 0.25mL、 0.5mL、 0.75mL、l.OOmL,再用1mol/L稀硝酸稀释至刻度,摇匀。 2.实验条件: 参数铜元素参数铜元素 工作灯电流 I/mA 3.0 燃烧器高度 /mm 6.0 光谱通带 d/nm 0.4 燃烧器位置 /mm -0.5 负高压 /V 300.0 吸收线波长/nm 324.7 空气压 /MPa 0.24 主压表/Mpa 0.075 3. 标准曲线和样品分析: 根据所设定的实验条件,分别测定浓度为0μg/mL,0.500μg/mL,1.000μg/mL,1.500μg/mL,2.000μg/mL的铜系列标准溶液的吸光度。 相同条件下,测定样品的吸光度,测定两次,求平均值。 五、结果和讨论 测得实验数据如下: 0.00 0.500 1.000 1.500 2.000 样品1 样品2 试样浓 度μ

原子荧光分光光度计

一、原子荧光分光光度计 技术参数 1、工作条件要求 1.1电源: 220V,50Hz 1.2温度: 15~35℃ 1.3相对湿度: 10-75% 2、技术能力要求 2.1用途:用于食品卫生检验、环境样品检验、城市给排水检测、农产品检验、地质冶金检验、化妆品检验、土壤肥料饲料检验等样品中As、Sb、Bi、Hg、Se、Te、Sn、Ge、Pb、Zn、Cd元素的痕量分析。 2.2分析方法:非色散光学系统,进行两道元素同时测量 *2.2.1氢化物发生进样方式:双注射泵联合进样,蠕动泵主动排废 2.2.2检测能力:适用于As、Hg、Se、Pb、Ge、Sn、Te、Bi、Sb、Cd、Zn等十一种元素的痕量测定 2.2.3检测限(D.L.):As、Pb、Se、Bi、Sn、Sb、Te、Hg≤0.01μg/L;Hg(冷原子测汞)、Cd≤0.001μg/L;Ge≤0.05μg/L;Zn≤1.0μg/L *2.2.4相对标准偏差(RSD):≤0.8% 2.2.5线性范围:≥三个数量级 *2.3光学光源系统:双光束、实时监控,脉冲恒流或集束脉冲供电,无色散光学系统,自识空心阴极灯 2.4气路设计(气路控制模块): 2.4.1控制方式:质量流量控制器(MFC) 2.4.2连续可调:气体流量控制,气路自动保护装置,自动控制气路并可自动诊断,关机可自动切断气源 2.4.3气路控制:载气、屏蔽气流量分别自动控制(控制精度可达1ml/min) *2.5双检测系统:高信噪比光电倍增管双检测系统 2.6内置式两个独立注射泵进样:一路进样品载流,一路进还原剂(自动配制标准曲线,高浓度自动稀释,自动清洗,单标自配标准曲线,在线智能提示,自动在线加载还原剂、掩蔽剂) 2.7 在线分析功能:自动炉高调节、自动负高压设置、自动气路设置、在线动态

原子吸收分光光度计工作原理

原子吸收分光光度计应用及维护 工作原理: 元素在热解石墨炉中被加热原子化,成为基态原子蒸汽,对空心阴极灯发射的特征辐射进行选择性吸收。在一定浓度范围内,其吸收强度与试液中被的含量成正比。其定量关系可用郎伯-比耳定律,A= -lg I/I o= -lgT = KCL ,式中I为透射光强度;I0为发射光强度;T为透射比;L为光通过原子化器光程(长度),每台仪器的L值是固定的;C是被测样品浓度;所以A=KC。 利用待测元素的共振辐射,通过其原子蒸汽,测定其吸光度的装置称为原子吸收分光光度计。它有单光束,双光束,双波道,多波道等结构形式。其基本结构包括光源,原子化器,光学系统和检测系统。它主要用于痕量元素杂质的分析,具有灵敏度高及选择性好两大主要优点。广泛应用于特种气体,金属有机化合物,金属醇盐中微量元素的分析。但是测定每种元素均需要相应的空心阴极灯,这对检测工作带来不便。 应用 一、实验部分 1.1、试剂 Cr标准溶液1000ug/ml Cr空心阴极灯 1.2、仪器工作条件 干燥120℃,斜坡10s,保持10s,180℃,斜坡5s,保持10s;灰化1300℃,斜坡10s,保持15s;原子化2600℃,4s,停气;清洗2800℃,5s 1.3、标准使用溶液的配置 铬标准使用溶液:吸取铬标准储备液(1mg/ml)10.0ml于100ml容量瓶中,加入2%硝酸至刻度、此溶液的浓度为100ug/ml。在逐级稀释,可分别得到标准系列溶液如下: 铬:0ug/L、5.0.0ug/L、10.0ug/L、15.0ug/L、20.0ug/L 2.试样的置备:

取空心胶囊0.50g,置氟乙烯消解罐内,加硝酸5-10ml,混匀,浸泡过夜,盖好内盖,旋紧外套,置适宜的微波消解炉内,进行消解(按仪器规定的消解程序操作)。消解完全后,取消解内罐置电热板上缓缓加热至红棕色蒸气挥尽并近干,用2%硝酸转入50ml量瓶中,并稀释至刻度,摇匀,即得。同法同时制备试剂空白溶液;。取供试品溶液与对照品溶液,以石墨炉为原子化器,照原子吸收分光光度法,在357.9nm 测定,含铬不得过百万分之二

原子吸收法测定样品中的锌和铜实验报告

原子吸收法测定样品中的锌和铜 () 摘要:本实验采用了原子吸收光谱法测定发样中的锌和铜的含量,方法简单、快速、准确、灵敏度高。此实验用了火焰原子吸收法以及石墨炉原子吸收法对锌喝铜的含量作了检测。实验表明,锌所测得的含量为232.4442 ug/g;铜所测得的含量为10.0127 ug/g。铜所测得的线型数据比锌的较好。 关键词:锌;铜;发样;原子吸收光谱法 前言 随着原子吸收技术的发展,推动了原子吸收仪器[1]的不断更新和发展,而其它科学技术进步,为原子吸收仪器的不断更新和发展提供了技术和物质基础。近年来,使用连续光源和中阶梯光栅,结合使用光导摄象管、二极管阵列多元素分析检测器,设计出了微机控制的原子吸收分光光度计,为解决多元素同时测定开辟了新的前景。微机控制的原子吸收光谱系统简化了仪器结构,提高了仪器的自动化程度,改善了测定准确度,使原子吸收光谱法的面貌发生了重大的变化。联用技术[2](色谱-原子吸收联用、流动注射-原子吸收联用)日益受到人们的重视。色谱-原子吸收联用,不仅在解决元素的化学形态分析方面,而且在测定有机化合物的复杂混合物方面,都有着重要的用途,是一个很有前途的发展方向。原子吸收光度法是一种灵敏度极高的测定方法,广泛地用来进行超微量的元素分析。在这种情况下,试剂、溶剂、实验容器甚至实验室环境中的污染物都会严重地影响测得的结果。实际上,由于人们注意了这个问题,文献中所报道的多种元素在各种试样中的含量曾做过数量级的修正,这正是因为早期的实验中人们把测定中污染物造成的影响也算到试样中的含量中去所造成的。因此在原子吸收光度测定中取样要特别注意代表性,特别要防止主要来自水、容器、试剂和大气的污染;同时要避免被测元素的损失。 在火焰原子吸收法中,分析方法的灵敏度、准确度、干扰情况和分析过程是否简便快速等,除与所用的仪器有关外,在很大程度上取决于实验条件。因此最佳实验条件的选择是个重要问题,仪器工作条件,实验内容与操作步骤等方面进行了选择,先将其它因素固定在一水平上逐一改变所研究因素的条件,然后测定某一标准溶液的吸光度,选取吸光度大且稳定性好的条件作该因素的最佳工作条件。 在石墨炉原子吸收法中,使用石墨炉原子化器,则可以直接分析固体样品,采用程序升温,可以分别控制试样干燥、灰化和原子化过程,使易挥发的或易热解的基质在原子化阶段之前除去。石墨炉的维护在石墨炉膛部分,因为里面是加热高温-低温冷却,一个循环过程,同时里面还有还原性强的石墨产生积碳同时还有不同的待测物质灰化时产生的烟雾,都会在炉膛或者是在炉膛光路上的透镜上附近凝结。如果长时间不清理,炉膛底部的光控温镜可能会因为积碳的干扰,失去控温能力,直接导致石墨管烧断。灰化物在透镜上面凝结,挡住了部分光路,额外增加了负高压,积碳在加热和塞曼的震动时,有可能会随着震动,这样也变相增加了仪器的噪声。一般建议在每次更换石墨管时清洗一次石墨炉膛。

原子吸收分光光度计的原理及应用

陕西理工学院学年论文 原子吸收分光光度计的原理及应用 作者:张慧 (陕理工生物科学与工程学院生物科学专业041班,陕西汉中 723000) 指导教师:秦公伟 [摘要]:本文综述了原子吸收光谱法的使用方法及各使用方法的测定技术、优缺点、应用及与其它技术的联用,并对其发展趋势作了讨论。 [关键词]:火焰原子吸收光谱法石墨炉原子吸收光谱法氢化物原子吸收光谱法 引言:原子吸收光谱法自1955年作为一种分析方法问世以来,先后经历了初始的序幕期、爆发性的成长期、相对的稳定期和智能化飞跃期这个不同的发展时期,由此原子吸收光谱法得以迅速发展与普及,如今已成为一种倍受人们青睐的定量分析方法[1]。 二十世纪二十年代,Dymond首先将导数测量技术应用于仪器分析领域,用一阶导数技术来提高质谱检测气体激发电位的灵敏度。在随后的几十年中,导数技术本身日趋完善,在分光光度法、荧光法等领域得到越来越广泛的应用。导数技术的引进,使得这些分析方法的灵敏度、检出限得到了不同程度的改善,并且在提高方法的分辨能力和进行光谱校正方面也显示出一定的优越性。1953年,Hammond和Price 首次提出导数技术在分光光度法中的应用。六十年代末期,Morney和Butter等许多科学工作者开始将注意力转移到计算机导数技术上,低噪音运算放大器应运而生,并成功地应用于早期的导数发光光谱和导数红外光谱中。1974年,导数技术开始被应用于荧光分析领域。由于导数荧光技术能有效地解决测定过程中的背景干扰和谱带重叠问题,因而得到广泛的应用。近年来,有关利用导数光谱法校正高纯物质的ICP-AES分析中的光谱干扰的报道相继出现。导数光谱法只要求在分析线附近的一段较窄的波长范围内,干扰线强度在仪器动态范围内,因而比传统的干扰系数法和离峰分析法有更大的适用性,能有效地消除各种背景干扰[2]。 本文针对其原理、测定技术、特点、联用、应用及其进展进行综述。 1 原子吸收分光光度计使用方法 1.1 原子吸收光谱法原子化法 原子吸收光谱法作为分析化学领域应用最为广泛的定量分析方法之一,是测量物质所产生的蒸气中原子对电磁辐射的吸收强度的一种仪器分析方法。原子吸收光谱仪是由光源、原子化系统、光学系统、检测系统和显示装置五大部分组成的,其中原子化系统在整个装置中具有至关重要的作用,原子化效率的高低直接影响到测量的准确度和灵敏度。无论是传统的原子化法,还是近些年才有的原子化法,都为不同元素的测定提供了较为高效的原子化方式,以下将对不同的原子化法分别讨论。 1.1.1 火焰原子化法(FAAS) 适用于测定易原子化的元素,是原子吸收光谱法应用最为普遍的一种,对大多数元素有较高的灵敏度和检测极限,且重现性好,易于操作[3]。 1.1.2 石墨炉原子化法 石墨炉原子吸收也称无火焰原子吸收,简称CFAAS。火焰原子化虽好,但缺点在于仅有10%的试液被原子化,而90%由废液管排出,这样低的原子化效率成为提高灵敏度的主要障碍,而石墨炉原子化装

相关主题
文本预览
相关文档 最新文档