当前位置:文档之家› 支气管哮喘的表观遗传学研究进展

支气管哮喘的表观遗传学研究进展

支气管哮喘的表观遗传学研究进展
支气管哮喘的表观遗传学研究进展

支气管哮喘的表观遗传学研究进展

摘要:支气管哮喘(简称: 哮喘)是一种常见的呼吸道疾病,发病率呈逐年上升趋势,其病理机制极其复杂,涉及环境因素、免疫调节紊乱、遗传背景等。近年来越来越多的证据表明表观遗传学在其发病机制中发挥重要作用,哮喘的表观遗传学相关研究主要涉及DNA甲基化、组蛋白修饰、miRNA调控等方面。随着相关机制研究的深入,哮喘的表观遗传学相关药物研究也在进行中。

关键词:表观遗传;哮喘;甲基化;组蛋白修饰;miRNA

表观遗传学现象包括DNA甲基化、组蛋白修饰、miRNA 调控等,可不改变DNA 序列而改变基因表达水平,产生可遗传性改变。表观遗传调节的异常参与了癌症、炎症、代谢性疾病、神经精神疾病等的发生发展,近年来支气管哮喘的表观遗传学越来越受到关注,取得了一定进展。下面将从DNA甲基化、组蛋白修饰、miRNA 调控以及临床应用四个方面进行阐述。

1.DNA 甲基化

DNA甲基化是指DNA碱基在DNA甲基化转移酶( DNA methyltransferases DNMTs)的催化下与甲基发生共价结合的一种表观遗传修饰现象。大部分DNA 甲基化发生在位于结构基因启动子的核心序列和转录起始点的胞嘧啶-鸟嘌呤( CPG)[1],DNA甲基化由DNMTs催化,DNMTs包括DNMT1、DNMT3A和DNMT3B,其中DNMT3A和DNMT3B主要功能是起始甲基化,DNMT1维持DNA甲基化水平[2]。基因启动子内的CpG岛高甲基化导致基因转录沉默,而低甲基化促进转录的发生。哮喘患者的Th1/Th2细胞失衡向Th2偏移是哮喘的一个明显特征,T淋巴细胞中Th1/Th2细胞失衡,Th2占优势与哮喘发病密切相关,由幼稚CD + 4T细胞分化为Th2产生多种细胞因子如IL-4、IL-5和IL-13等与过敏反应密切相关。DNA甲基化水平与遗传相关,同时受环境、年龄、疾病影响,遗传易感个体在致病环境暴露后通过DNA甲基化促进哮喘发生发展[3],儿童哮喘及其他过敏性疾病的国际研究( ISAAC) 显示哮喘发病的时间趋势伴有一定地域性特点,亦提示环境因素与哮喘发病相关[4],环境中的空气污染物、

生物污染物等危险因素可诱发关键基因发生甲基化改变促进哮喘发生,儿童时期暴露于环境污染物多环芳烃等使DNA 的叉头框P3基因( forkhead box transcription factor 3,Foxp3) 过甲基化,Foxp3是控制调节T细胞功能的关键基因之一,Foxp3过甲基化使儿童在7岁前后发生哮喘的几率及严重程度增加[5]。孕妇于农场微生物环境暴露下则可以增加后代Foxp3去甲基化水平,脐血调节T 细胞及Foxp3高表达,从而降低哮喘等过敏性疾病发生率[6]。

2.组蛋白修饰

组蛋白是真核生物染色质中的碱性蛋白质,富含精氨酸和赖氨酸等碱性氨基酸。组蛋白修饰主要包括:磷酸化、泛素化、乙酰化和甲基化,随着研究深入又发现其他一些修饰,如Sumo化、ADP ribosylation、巴豆酰化等,其中研究较多的是乙酰化和甲基化,组蛋白乙酰化作用发生在赖氨酸残基被组蛋白乙酰化转移酶催化,使得染色质的结构更加开放,导致基因转录易于进行; 组蛋白甲基化是另一种组蛋白修饰,这一过程与CD+4 T细胞的分化有关,组蛋白H3赖氨酸9( H3K9) 的甲基化在DNA甲基化的建立和维护中发挥了重要作用。DNA甲基化与组蛋白修饰相互影响、共同作用在表观遗传学修饰中发挥作用。哮喘患者存在组蛋白乙酰转移酶(HAT) 及组蛋白去乙酰化酶(HDAC) 的表达及活性异常。患有哮喘的吸烟者HDACs活性降低,其降低程度与哮喘的严重程度相关,且此类患者对激素类药物耐药。Notch1信号调节异常是哮喘患者Th1 /Th2失衡向Th2 偏移的重要通路,启动子Notch-1 的HAT活性增强,同时H3K9、H3K14、H3K27、H3K18、H3K16高度乙酰化,H3K4、H3K79高甲基化导致T细胞Notch-1 信号异常调节[7]。与健康人群相比,哮喘患者气道平滑肌细胞在H3K18乙酰化作用下能够分泌更多的CXCL8 趋化因子。H3K4甲基化与IFN-γ、IL-4、IL-17A及IL- 17F表达增加有关,Th17、调节T细胞相关转录因子ROR(γ)、Foxp3 表达升高,Th17及调节T细胞失衡与哮喘变态反应相关[8],H3K4me2在哮喘相关基因CCR4、CCL5存在多态性,促进CD + 4 T细胞向Th2细胞分化[9],进而促进哮喘发生。激素抵抗型严重哮喘患者及HDAC2缺陷细胞细胞系对激素不敏感,增加HDAC2的表达可以恢复其激素敏感性[10]。HDAC2可致糖皮质激素受体脱乙酰从而抑制哮喘的炎症相关基因。严重哮喘患者HDAC1水平上调对于气道上皮重塑具有重要作用,抑制HDAC1 通过SOX2 失表达抑制气道上

皮细胞生长,减轻气道上皮重塑。

3.miRNA 调控

miRNA是一种非蛋白质基因表达调控因子,广泛存在于真核生物中,在转录后水平对生物体各种生命活动起调控作用。氧化应激可以通过miRNAs及DNA的甲基化改变调节性T 细胞的表达,从而实现表观遗传学修饰[11]。miRNA 及miRNA靶基因位点的单核苷酸多态性与哮喘相关,miR-146a 前体的多态性降低miR- 146a的表达进而可降低中国及墨西哥患者的哮喘发病率[12],基因多态性使HLA 基因HLAG3’端miR-148 /miR-152 结合位点或整合素ITGB3 miR- 124 位点产生功能性转录降低哮喘发生率[13]。在哮喘患者活检标本及动物模型与正常对照相比存在10-20% miRNA表达差异,比较公认的有: let-7c,miR-21,miR-29,miR-135,miR-142,miR-146,miR-150,miR-155,miR-181,miR-193,miR-223,miR-365,miR-375,miR-452和miR-615[14]。在体外实验中过表达miR-21促进CD + 4 T向Th2分化,而miR-27 、miR-128 抑制活化CD + 4 T 产生IL-4、IL-5[15],miR-155直接作用于IL-4逆转录因子Maf,在CCR4 +Th2 -的CD +4 T 细胞亚群中表达上调抑制CD + 4 T细胞向Th2分化。miRNA 作用于多个mRNA 形成一个调控网络起到增强和减弱过敏反应,哮喘患者miR-19a在气道浸润T细胞表达上调促进Th2 细胞产生细胞因子,作用于编码PTEN、SOCS1、A20 的mRNA 共同作用于若干信号通路促进哮喘发生[16]。哮喘发生中气道重塑可导致气道高反应性、持续性气流受阻,从而引起不可逆的肺功能损害。转化生长因子β1( TGF-β1) / Smad信号通路是导致形成支气管哮喘气道重塑的重要信号转导机制之一,在支气管上皮及平滑肌细胞系的研究中表明miRNA在气道重塑相关信号通路中同样有作用,哮喘患者气管平滑肌细胞中TGF-β诱导miR-221 高表达,使IL-6分泌增多[17],miR-19a 在支气管上皮细胞中高表达直接作用于TGFβR2,进而影响下游SMAD3通路,提示miRNA在哮喘细胞信号通路中起重要作用。

4.临床应用

目前临床控制哮喘的药物主要包括糖皮质激素及β2受体激动剂,部分患者存在激素抵抗性治疗效果不佳,在哮喘缓解期长期吸入糖皮质激素的安全性尚值得定论,随着表观遗传学研究的不断深入,表观遗传学相关检测项目及药物的研

究也日益增多。现有针对哮喘检测主要包括IGE等传统项目,DNA甲基化有望成为新的检测指标。DNA甲基化相关药物在临床实体肿瘤及骨髓增生异常综合征中已有所应用,DNA甲基化转移酶抑制剂5-氮脱氧胞苷( 5-azacytidine Aza) 能通过调控FoxP3进而影响调节性T细胞减轻哮喘发生,哮喘小鼠给予Aza后气道高反应性降低[18],甲基化药物的底物结构和功能都需要被进一步研究,目前临床尚无针对哮喘的甲基化药物应用,基因甲基化特异性治疗目前尚在研究中[19]。在组蛋白修饰研究进展中,组蛋白去乙酰化酶抑制剂、组蛋白乙酰基转移酶抑制剂、含溴结构域蛋白抑制剂及甲基化组蛋白结合蛋白的抑制剂等都有望为哮喘患者提供新的治疗方案,其中组蛋白去乙酰酶抑制剂( Histone deacetylase inhibitors HDACi) 研究较多,HDACi可使组蛋白去乙酰基而改变基因表达,其中包括药物曲古抑菌素A( trichostatin A TSA) ,慢性哮喘小鼠给予TSA 后,与对照组相比支气管肺泡灌洗液中总炎性细胞及嗜酸性粒细胞减少,同时气道上皮下胶原沉积减少,气道重塑减轻,气道高反应性下降[20]。miRNA 调控治疗哮喘理论上是可行的,miRNA在体内能影响过敏反应,调控miRNA可实行动物模型中miRNA抑制剂及激动剂例如let-7a,miR- 106a,miR-126,miR-221 和miR-145,能改善气道炎性及高反应性[21],miRNA 调控治疗有望提供针对疾病亚型的治疗,在体外实验中miR-9 拮抗剂能使激素抵抗性气道高反应细胞恢复激素敏感性[22],但miR-9拮抗剂及let-7 拮抗剂均存在体内及体外实验不一致,反应miRNA在单一细胞系与机体大环境中作用结果有所差异。miR-21基因敲除小鼠可促进CD + 4T向Th1细胞分化,增加树突状细胞分泌IL- 12,T细胞分泌IFN-γ[23],应用过敏原刺激后气道炎性减轻。下一步将需要进行更多的体内调节miRNA起到减轻哮喘发生的研究。一些表观遗传学修饰是可逆,为新的哮喘治疗提供了可行性,更多表观遗传学相关临床、流行病学等研究有待进行,以期为哮喘患者的一级预防及个体化治疗提供新的思路。

5.结语

目前关于哮喘的表观遗传学研究日益增多,研究越来越深入,DNA甲基化、组蛋白修饰、miRNA 调控相互作用形成调控网络在哮喘的发生发展中起到重要作用,但相互作用具体机制不明,部分研究结果存在争议,临床应用尚处于探索阶段,仍有待进一步深入研究,为明确哮喘的发病机制及未来治疗提供新的研究

方向。

参考文献:

[1]Schübeler D.Function and information content of DNA methylation [J].Nature,2015,517(7534) : 321-326.

[2] Jurkowska RZ,Jeltsch A.Mechanisms and Biological Roles of DNA Methyltransferases and DNA Methylation: From Past Achievements to Future Challenges[J].Adv Exp Med Biol,2016,9 45: 1 - 17.

[3]Yang IV,Schwartz DA.Epigenetic mechanisms and the development of asthma[J].J Allergy Clin Immunol,2012,130(6) : 1243-1255.

[4]Mallol J,Crane J,von Mutius E,et al.The International Study of Asthma and Allergies in Childhood ( ISAAC) Phase Three: a global synthesis[J].Allergol Immunopathol ( Madr) ,2 013,4 1( 2) : 73 -85.

[5]Brunst KJ,Leung YK,Ryan PH,et al.Forkhead box protein 3 ( FOXP3) hypermethylation is associated with diesel exhaust exposure and risk for childhood asthma[J].J Allergy Clin Immunol,2013,1 31( 2) : 592 - 594.e1 -e3.

[6]Sharma S,Litonjua A.Asthma,allergy,and responses to methyl donor supplements and nutrients[J].J Allergy Clin Immunol,2014,133( 5) : 1246 -1254.

[7]Cui ZL,Gu W,Ding T,et al.Histone modifications of Notch1 promoter affect lung CD4 + T cell differentiation in asthmatic rats [J].Int J Immunopathol Pharmacol,2013,26( 2) : 371 - 381.

[8]Singh A,Yamamoto M,Ruan J,et al.Th17 /Treg ratio derived using DNA methylation analysis is associated with the late phase asthmatic response[J].Allergy Asthma Clin Immunol,2014,10 (1) : 32.

[9]Brook PO,Perry MM,Adcock IM,et al.Epigenome-modifying tools in asthma [J].Epigenomics,2015,7 (6) : 1017 -1032.

[10]Barnes PJ.Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease[J].J Allergy Clin Immunol,2013,131( 3) : 636 -645.

[11]Gruzieva O,Xu CJ,Breton CV,et al.Epigenome-Wide Meta-Analysis of Methylation in Children Related to Prenatal NO2 Air Pollution Exposure[J].Environ Health Perspect,2017,

1 25( 1) : 104 - 110.

[12]Su XW,Yang Y,Lv ML,et al.Association between single-nucleotide polymorphisms in pre-miRNAs and the risk of asthma in a Chinese population[J].DNA Cell Biol,2011,3 0( 11) : 919 -923.

[13]Zhang Y,Han Y,Dong L,et al.Genetic variation of ITGB3 is associated with asthma in Chinese Han children[J].PLoS One,2013,8( 2) : e56914.

[14]Pua HH,Ansel KM.MicroRNA regulation of allergic inflammation and asthma[J].Curr Opin Immunol,2015,3 6: 101 - 108.

[15]Sawant DV,Wu H,Kaplan MH,et al.The Bcl6 target gene microRNA- 21 promotes Th2 differentiation by a T cell intrinsic pathway[J].Mol Immunol,2013,5 4(3 -4) : 435 - 442.[16]Seumois G,Vijayanand P,Eisley CJ,et al.An integrated nanoscale approach to profile miRNAs in limited clinical samples[J].Am J Clin Exp Immunol,2012,1 (2) : 70 - 89.[17]Simpson LJ,Patel S,Bhakta NR,et al.A microRNA upregulated in asthma airway T cells promotes TH2 cytokine production[J].Nat Immunol,2014,1 5( 12) : 1162 -1170.[18]Perry MM,Baker JE,Gibeon DS,et al.Airway smooth muscle hyperproliferation is regulated by microRNA-221 in severe asthma [J].Am J Respir Cell Mol Biol,2014,5 0(1) : 7 - 17.

[19]Wu CJ,Yang CY,Chen YH,et al.The DNA methylation inhibitor 5-azacytidine increases regulatory T cells and alleviates airway inflammation in ovalbumin-sensitized mice[J].Int Arch Allergy Immunol,2013,1 60( 4) : 356 - 364.

[20]Di Ruscio A,Ebralidze AK,Benoukraf T,et al.DNMT1-interacting RNAs block gene-specific DNA methylation[J].Nature,2013,503 ( 7476) : 371 -376.

[21]Royce SG,Dang W,Yuan G,et al.Effects of the histone deacetylase inhibitor,trichostatin A,in a chronic allergic airways disease model in mice[J].Arch Immunol Ther Exp ( Warsz),2012,60 ( 4) : 295 - 306.

[22]Li JJ,Tay HL,Maltby S,et al.MicroRNA-9 regulates steroid-resistant airway hyperresponsiveness by reducing protein phosphatase 2A activity[J].J Allergy Clin Immunol,2015,136( 2) : 462 - 473.

[23]Lu TX,Hartner J,Lim EJ,et al.MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12 /IFN-gamma pathway,Th1 polarization,and the severity of delayed-type

hypersensitivity[J].J Immunol,2011,187( 6) : 3362-3373.

西南大学[1194]《生活中的DNA科学》答案

1、下面哪种酶是在重组DNA技术中不常用到的酶() 1.限制性核酸内切酶 2.DNA聚合酶 3.DNA连接酶 4.DNA解链酶 2、长期接触X射线的人群,后代遗传病发病率明显升高,主要原因是该人群生 殖细胞发生() 1.基因重组 2.基因突变 3.基因互换 4.基因分离 3、朊病毒的主要组成成分是:( ) 1.RNA 2.蛋白质 3.多糖 4.DNA 4、Western blot是() 1.检测DNA的方法 2.检测RNA的方法 3.检测蛋白的方法 4.检测酶的方法 5、针对耐药菌日益增多的情况,利用噬菌体作为一种新的抗菌治疗手段的研究 备受关注。下列有关噬菌体的叙述,正确的是() 1.利用宿主菌的氨基酸合成子代噬菌体的蛋白质 2.以宿主菌DNA为模板合成子代噬菌体的核酸 3.外壳抑制了宿主菌的蛋白质合成,使该细菌死亡 4.能在宿主菌内以二分裂方式增殖,使该细菌裂解 6、在真核细胞中肽链合成的终止原因是( ) 1.已达到mRNA分子的尽头 2.具有特异的tRNA识别终止密码子 3.终止密码子本身具有酯酶作用,可水解肽酰与tRNA之是的酯键 4.终止密码子被终止因子(RF)所识别 7、tRNA的作用是( ) 1.将一个氨基酸连接到另一个氨基酸上 2.把氨基酸带到mRNA位置上

3.将mRNA接到核糖体上 4.增加氨基酸的有效浓度 8、“转基因动物”是指( ) 1.含有可利用基因的动物 2.基因组中插入外源基因的动物 3.本身具有抗体蛋白类的动物 4.能表达基因信息的动物 9、a和b是不同顺反子的突变,基因型ab/++和a+/+b的表型分别为() 1.野生型和野生型 2.野生型和突变型 3.突变型和野生型 4.突变型和突变型 10、法医DNA科学涉及的学科有() 1.分子遗传学 2.生物化学 3.生物统计学 4.以上都是 11、下列哪种碱基不属于DNA/RNA的碱基() 1.腺嘌呤 2.鸟嘌呤 3.次黄嘌呤 4.胸腺嘧啶 12、下列哪项不是法医DNA分析技术的衍生技术() 1.RT-PCR 2.SSP - PCR 3.PCR - SSOP 4.MVR – PCR 13、下列哪项不属于现在主要开发研究的微型化DNA分析仪器() 1.微芯片毛细管电泳装置 2.微型热循环仪 3.杂交阵列 4.流式细胞仪 14、不属于质粒被选为基因运载体的理由是() 1.能复制

支气管哮喘相关生存质量研究进展

作者:王宁群, 姜良铎, 李宗信 【关键词】支气管哮喘; 生活质量; 综述 生存质量是指不同文化和价值体系中的个体,对与他们的目标、期望、标准以及所关心的事情有关的生存状况的体验[1]。生存质量是在新的医学模式下产生的全面评估病人身体、心理和社会适应等三方面总体健康状况的一个综合指标。它不仅包括病人健康状况的客观指标如症状、体征,还包括病人的一些主观指标,如患者心理、社会活动、健康意识等。 哮喘是影响患者生存质量的慢性疾病之一。既往对于哮喘治疗效果的评价是通过患者的临床症状、药物的需求量、第1秒用力呼气量和气道反应性等方面的变化来进行。但在临床上,由于心理状况、社会活动、环境刺激、药物副作用等方面的影响,上述指标的改善并不一定都伴随患者健康状况的好转[2]。有些哮喘患者活动受限明显,但对心理情绪方面的影响却并不很明显,而有些患者病情较轻,但“害怕哮喘发作”、“担心长期用药的副作用”等心理影响却很明显。因此,对哮喘病情的评估应注重评估疾病对患者躯体、心理和社会适应能力的整体影响[3]。 1 影响哮喘患者生存质量的因素 影响哮喘患者生存质量的因素比较多,主要因素有年龄、性别、种族、文化程度、气道反应性、哮喘发作程度和治疗措施、收入、吸烟等[4-6]。此外,还受患者心理因素如自我安慰、对疾病治愈的期望值等的影响[7]。近年来的研究发现,对哮喘患者的教育是影响哮喘患者生存质量的重要因素。哮喘患者的教育包括对哮喘病的认识,如何恰当应用哮喘药物和药物吸入技术,哮喘病情恶化的识别和处理以及哮喘日记的应用等[4]。经过适当的哮喘知识培训,哮喘患者的生存质量得到明显提高。表现为氨茶碱用量减少,急诊及住院次数减少,吸入糖皮质激素用量减少,对治疗的依从性增加,活动受限状况改善,患者对哮喘的治疗更为乐观等[8-10]。 哮喘伴发的抑郁状态对哮喘患者生存质量的影响也是近年来研究的热点。抑郁是哮喘的严重并发症,可影响患者的生存质量及预后[11,12]。具有喘息、夜间因哮喘症状而觉醒、晨起哮喘等症状的患者,其抑郁的发生率明显增高,生存质量较低。 2 国外对哮喘相关生存质量的研究 2.1 哮喘相关生存质量评估量表的研究哮喘生存质量的评估量表分为对全身生存质量状况评定的总量表(普适量表)和对支气管哮喘特定生存质量评定的疾病特异性量表(专用量表)两大方面。 常用于支气管哮喘生存质量评定的总量表有疾患影响程度问卷、诺丁汉健康问卷、生存质量指数、世界卫生组织生存质量测量表和健康状况调查问卷(short form-36, sf-36)等[13]。在对哮喘患者的研究中,最常用的普适量表是sf-36。sf-36由美国医学结局研究中心研制,是国际生活质量评价组织认可的,对哮喘患者最为适用的总体量表。oga等[14]比较了sf-36等几种普适量表在哮喘病应用中的反应性,结果显示sf-36的反应性最佳,sf-36的变化与哮喘生存质量评估表(asthma quality of life questionnaire, aqlq)的变化有中度相关性,并且其评估内容与aqlq不同,可作为专用量表的补充,有效地运用于哮喘的临床试验当中。 用于支气管哮喘生存质量评定的专用量表有juniper创立的aqlq及在此基础上开发的标准版aqlq量表(aqlq scale, aqlq-s)和微型版aqlq量表(mini-aqlq)。此外,常用的哮喘专用量表还有marks创立的哮喘生存质量评估表(marks-aqlq)、哮喘症状调查表、哮喘生活问卷和哮喘影响询问表等[13]。juniper等[15]还对aqlq量表进行改进,形成适合急性重症哮喘病人生存质量评价的acute-aqlq量表。 国外学者对哮喘生存质量量表的功能和特性进行了较为广泛和深入的研究。量表一般应具有预测功能、辨别功能和评价功能;其基本特性包括信度、效度、反应度等[16]。例如,aqlq

浅谈表观遗传学

浅谈表观遗传学 摘要:表观遗传学改变包括DNA甲基化、组蛋白修饰、非编码RNA作用等,产生基因组印记、母性影响、基因沉默、核仁显性、休眠转座子激活等效应。表观遗传变异是环境因素和细胞内遗传物质间交互作用的结果,其效应通过调节基因表达,控制生物学表型来实现。本文则从以上几个方面简述了表观遗传学的改变以及基本原理。 经典遗传学认为,核酸是遗传的分子基础,生命的遗传信息储存在核酸的碱基序列。每个个体内虽然所有细胞所含有的遗传信息是相通的,但由于基因的选择性表达,即不同细胞所表达的基因种类不同,这些来源相同的细胞经过增殖分化后将变成功能形态各不相同的细胞,从而组成机体内不同的组织和器官。几年来发现,在DNA序列不发生改变的情况下,基因表达也可发生能够遗传的改变,这种现象就被定义为表观遗传。它的主要论点是生命有机体的大部分性状是由DNA序列中编码蛋白质的基因传递的,但是DNA序列以外的化学标记编码的表观遗传密码,对于生命有机体的健康及其表型特征,同样也有深刻的影响。 表观遗传学的调节机制主要包括组蛋白修饰、DNA甲基化、非编码RNA作用等,通过这些调节模式,影响基因转录和(或)表达,从而参与调控机体的生长、发育、衰老及病理过程。这些调节模式相比核酸蛋白质的经典遗传途径更容易受环境的影响,因此表观遗传学更加关注环境诱导的表观遗传变异。因为表观遗传的这些调节机制易受环境影响,而任何一种调节机制发生异常都可能导致细胞状态、功能等发生紊乱,进而引起各种疾病,同时又由于许多表观遗传变异是可逆的,导致表观遗传异常引发的疾病相对容易治疗,因此近年来表观遗传学致病的研究成为了热门的话题之一。 组蛋白在DNA组装中发挥了关键作用, 利用核心组蛋白的共价修饰包括组蛋白甲基化、乙酰化、磷酸化、泛素化、ADP-核糖基化及特定氨基酸残基N-末端的SUMO化传递表观遗传学信息。修饰的主要靶点是组蛋白氨基末端上的赖氨酸、精氨酸残基,这些组蛋白翻译后修饰对基因特异性表达的调控,是其表观遗传学的重要标志。正常机体内,组蛋白修饰保持着可逆的动态平衡,当平衡打破,组蛋白去乙酰化则使得乙酰基从乙酰化组蛋白转移到乙酰辅酶A上,形成了致密的染色质状态, 从而使基因转录下降或沉默。

第十六章表观遗传学(答)

第十一章表观遗传学 、名词解释 epige netics; huma n epige nome project,HEP; hist one code 一、A型题 1脆性X综合征是何基因发生重新甲基化而沉默导致?(D) A.H19基因 B. MeCP2基因 C. IGF2基因 D. FMR1 基因 2、对表观遗传的生物学意义的表述错误的是(D) A、补充了“中心法则”,阐明核酸并不是存储遗传信息的唯一载体。 B “表观遗传修饰”可以影响基因的转录和翻译。 C表观遗传学修饰的可遗传性在基因和环境的共同作用中起重要作用。 D“表观遗传修饰”不能在个体世代间遗传。 3、 Prader-Willi ( PW$综合征是由于 __________________ 印记基因缺失引起。(A) A、父源15q11-q13缺失 B 、母源15q11-q13 缺失 C父源和母源15q11-q13缺失 D 、父源11P15.5缺失 4、 Amgelma n (AS)综合征是由于 ________________ 印记基因缺失引起。(B) A、父源15q11-q13缺失 B 、母源15q11-q13 缺失 C父源和母源15q11-q13缺失 D 、父源11P15.5缺失 5、表观遗传学三个层面的含义不包括:(D) A、可遗传性,可在细胞或个体世代间遗传; B、基因表达的可变性; C、无DNA序列的变化。 D、可遗传性,可在细胞世代间遗传但不可在个体世代间遗传; 6、 siRNA相关沉默修饰的作用机制是:(A ) A.与靶基因互补而降解靶基因 B. 抑制靶mRNA翻译 C.去除靶mRNA勺多聚腺苷酸尾巴,使其被 3 '核酸外切酶水解

2015年武汉大学885分子生物学研究生入学考试初试真题

一、专业术语翻译与解释(共10小题,每小题4分,共40分) 1.Exon 2.Promoter 3.Proteomics 4.Frame-shift mutation 5.Wobble hypothesis 6.Single-strand binding protein 7.Tandem affinity purification 8.Chromation remodeling 9.Single Nucleotide Polymorphisms 10.Alternative splicing 二、简答题(共5小题,每小题10分,共50分) 1.真核细胞蛋白质磷酸化主要发生在哪三种氨基酸上?催化蛋白质磷酸化和去磷酸化的酶是什么?请举两个例证说明蛋白磷酸化对功能的影响。 2.请简述三种RNA在蛋白质生物合成中的作用。 3.什么是RNA干扰(RNA interference,RNAi)?请简述RNA于扰的作用机制。 4.遗传密码有哪些特点?请简述。 5.什么是表观遗传学?为什么研究与组蛋白乙酸化修饰相关的酶是表观遗传学领域的一个热点?

三、论述题(共3小题,每小题20分,共60分) 1.1953年,沃森和克里克发现了DMA双螺旋的结构,开启了分子生物学时代。请从主链、碱基配对、大沟小沟以及结构参数等多方面介绍DNA双螺旋结构。 2.请从基本结构、作用形式、功能特点等多方面论述原核生物和真核生物mRNA的主要区别。 3.假设你想要分析在果蝇发育过程中基因的表达变化情况。为此,你从果蝇胚胎和成虫中分别提取了总mRNA,并针对果蝇发育过程中必需的基因Z的mRNA序列,利用特异识别该基因编码区中间部分的DNA标记探针进行了Northern Blot杂交实验,结果如图1所示。

支气管哮喘的表观遗传学研究进展

支气管哮喘的表观遗传学研究进展 摘要:支气管哮喘(简称: 哮喘)是一种常见的呼吸道疾病,发病率呈逐年上升趋势,其病理机制极其复杂,涉及环境因素、免疫调节紊乱、遗传背景等。近年来越来越多的证据表明表观遗传学在其发病机制中发挥重要作用,哮喘的表观遗传学相关研究主要涉及DNA甲基化、组蛋白修饰、miRNA调控等方面。随着相关机制研究的深入,哮喘的表观遗传学相关药物研究也在进行中。 关键词:表观遗传;哮喘;甲基化;组蛋白修饰;miRNA 表观遗传学现象包括DNA甲基化、组蛋白修饰、miRNA 调控等,可不改变DNA 序列而改变基因表达水平,产生可遗传性改变。表观遗传调节的异常参与了癌症、炎症、代谢性疾病、神经精神疾病等的发生发展,近年来支气管哮喘的表观遗传学越来越受到关注,取得了一定进展。下面将从DNA甲基化、组蛋白修饰、miRNA 调控以及临床应用四个方面进行阐述。 1.DNA 甲基化 DNA甲基化是指DNA碱基在DNA甲基化转移酶( DNA methyltransferases DNMTs)的催化下与甲基发生共价结合的一种表观遗传修饰现象。大部分DNA 甲基化发生在位于结构基因启动子的核心序列和转录起始点的胞嘧啶-鸟嘌呤( CPG)[1],DNA甲基化由DNMTs催化,DNMTs包括DNMT1、DNMT3A和DNMT3B,其中DNMT3A和DNMT3B主要功能是起始甲基化,DNMT1维持DNA甲基化水平[2]。基因启动子内的CpG岛高甲基化导致基因转录沉默,而低甲基化促进转录的发生。哮喘患者的Th1/Th2细胞失衡向Th2偏移是哮喘的一个明显特征,T淋巴细胞中Th1/Th2细胞失衡,Th2占优势与哮喘发病密切相关,由幼稚CD + 4T细胞分化为Th2产生多种细胞因子如IL-4、IL-5和IL-13等与过敏反应密切相关。DNA甲基化水平与遗传相关,同时受环境、年龄、疾病影响,遗传易感个体在致病环境暴露后通过DNA甲基化促进哮喘发生发展[3],儿童哮喘及其他过敏性疾病的国际研究( ISAAC) 显示哮喘发病的时间趋势伴有一定地域性特点,亦提示环境因素与哮喘发病相关[4],环境中的空气污染物、

支气管哮喘研究进展

支气管哮喘的研究进展 作者:张志伟;学号:G131403039 指导老师:曹磊 【论文摘要】支气管哮喘是一种严重的呼吸道疾病,同时也是一种免疫功能异常的变态反应性疾病,是一个世界性的问题,其不但发病率高,而且病程长且发作反复,已经成为了一个严重的公共卫生问题。该病目前尚无彻底根治之法,但可以利用药物缓解,若治疗不及时或不恰当,极有可能危及患者生命,严重影响其身心健康,同时也给家庭和社会带来巨大的经济负担。可见深入研究本病的病因、机制以及治疗对防治本病具有非常重要的意义。因此,本文现对支气管哮喘的病因以及临床治疗进展等方面进行研究探讨。 【关键词】支气管哮喘;变态反应性;免疫功能 哮喘又名支气管哮喘。支气管哮喘是由多种细胞及细胞组分参与的慢性气道炎症,此种炎症常伴随引起气道反应性增高,导致反复发作的喘息、气促、胸闷和(或)咳嗽等症状,多在夜间和(或)凌晨发生,此类症状常伴有广泛而多变的气流阻塞,可以自行或通过治疗而逆转。 1.病因 1.1遗传因素:哮喘是一种具有复杂性状的,具多基因遗传倾向的疾病。其特征为: ①外显不全,②遗传异质化,③多基因遗传,④协同作用。 1.2.变应原:哮喘最重要的激发因素可能是吸入变应原。 (1)室内变应原屋螨是最常见的,危害最大的室内变应原,是哮喘在世界范围内的重要发病因素。常见的有4种:屋尘螨,粉尘螨,宇尘螨和多毛螨。 (2)职业性变应原可引起职业性哮喘常见的变应原有谷物粉、面粉、木材、饲料、茶、咖啡豆、家蚕、鸽子、蘑菇、抗生素(青霉素、头孢霉素)异氰酸盐、邻苯二甲酸、松香、活性染料、过硫酸盐、乙二胺等。 (3)药物及食物添加剂阿司匹林和一些非皮质激素类抗炎药是药物所致哮喘的主要变应原。 1.3.促发因素 (1)大气污染空气污染(SO 、NO)可致支气管收缩、一过性气道反应性增高 2 并能增强对变应原的反应。 (2)吸烟香烟烟雾(包括被动吸烟)是户内促发因素的主要来源,是一种重要的哮喘促发因子,特别是对于那些父母抽烟的哮喘儿童,常因吸烟引起哮喘发作。 (3)呼吸道病毒感染呼吸道病毒感染与哮喘发作有密切关系。婴儿支气管病毒感染作为哮喘发病的启动病因尤其受到关注。呼吸道感染常见病毒有呼吸道合胞病

表观遗传学修饰与肿瘤耐药关系的研究进展

表观遗传学修饰与肿瘤耐药关系的研究进展本文就DNA甲基化和组蛋白乙酰化与恶性肿瘤耐药的关系及其在逆转耐药中的作用方面的研究进展述之如下。 1DNA甲基化和组蛋白乙酰化 1.1DNA甲基化DNA甲基化是指在DNA复制以后,在DNA甲基化酶的作用下,将S-腺苷甲硫氨酸分子上的甲基转移到DNA分子中胞嘧啶残基的第5位碳原子上,随着甲基向DNA分子的引入,改变了DNA分子的构象,直接或通过序列特异性甲基化蛋白、甲基化结合蛋白间接影响转录因子与基因调控区的结合。目前发现的DNA甲基化酶有两种:一种是维持甲基转移酶;另一种是重新甲基转移酶。 1.2组蛋白乙酰化染色质的基本单位为核小体,核小体是由组蛋白八聚体和DNA缠绕而成。组蛋白乙酰化是表观遗传学修饰的另一主要方式,它属于一种可逆的动态过程。 1.3DNA甲基化与组蛋白乙酰化的关系由于组蛋白去乙酰化和DNA 甲基化一样,可以导致基因沉默,学者们认为两者之间存在串扰现象。 2表观遗传学修饰与恶性肿瘤耐药 2.1基因下调导致耐药在恶性肿瘤中有一些抑癌基因和凋亡信号通路的基因通过表观遗传学修饰的机制下调,并与化疗耐药有关。其中研究比较确切的一个基因是hMLH1,它编码DNA错配修复酶。此外,由于表观遗传学修饰造成下调的基因,均可导致恶性肿瘤耐药。 2.2基因上调导致耐药在恶性肿瘤中,表观遗传学修饰的改变也可导致一些基因的上调,包括与细胞增殖和存活相关的基因。上调基

因FANCF编码一种相对分子质量为42000的蛋白质,与肿瘤的易感性相关。2003年,Taniguchi等证实在卵巢恶性肿瘤获得耐药的过程中,FANCF基因发生DNA去甲基化和重新表达。另一个上调基因Synuclein-γ与肿瘤转移密切相关。同样,由表观遗传学修饰导致的MDR-1基因的上调也参与卵巢恶性肿瘤耐药的形成。 3表观遗传学修饰机制在肿瘤治疗中的应用 3.1DNA甲基化抑制剂目前了解最深入的甲基化抑制剂是5-氮杂脱氧胞苷(5-aza-dc)。较5-氮杂胞苷(5-aza-C)相比,5-aza-dc 首先插入DNA,细胞毒性比较低,并且能够逆转组蛋白八聚体中H3的第9位赖氨酸的甲基化。有关5-aza-dc治疗卵巢恶性肿瘤的体外实验研究结果表明,它能够恢复一些沉默基因的表达,并且可以恢复对顺柏的敏感性,其中最引人注目的是hMLH1基因。有关地西他滨(DAC)治疗的临床试验,研究结果显示,结果显示:DAC是一种有效的治疗耐药性复发性恶性肿瘤的药物。 3.2HDAC抑制剂由于组蛋白去乙酰化是基因沉默的另一机制,使用HDAC抑制剂(HDACI)是使表观遗传学修饰的基因重新表达的又一策略。根据化学结构,可将HDACI分为短链脂肪酸类、氯肟酸类、环形肽类、苯酸胺类等4类。丁酸苯酯(PB)和丙戊酸(VPA)属短链脂肪酸类。PB是临床前研究最深入的一种HDACI,在包括卵巢恶性肿瘤在内的实体肿瘤(21例)Ⅰ期临床试验中有3例患者分别有4~7个月的肿瘤无进展期,其不良反应是短期记忆缺失、意识障碍、眩晕、呕吐。因此,其临床有效性仍有待于进一步在Ⅰ、Ⅱ期临床试验中确定。在VPA的临床试验中,Kuendgen等在

表观遗传学

表观遗传学:营养之间的新桥梁与健康 摘要:营养成分能逆转或改变表观遗传现象,如DNA甲基化和组蛋白修饰,从而改变表达与生理和病理过程,包括胚胎发育,衰老,和致癌作用有关的关键基因。它出现营养成分和生物活性食物成分能影响表观遗传现象,无论是催化DNA直接抑制酶甲基化或组蛋白修饰,或通过改变所必需的那些酶反应底物的可用性。在这方面,营养表观遗传学一直被看作是一个有吸引力的工具,以预防儿科发育疾病和癌症以及延迟衰老相关的过程。在最近几年,表观遗传学已成为广泛的疾病,例如2型糖尿病的新出现的问题糖尿病,肥胖,炎症,和神经认知障碍等。虽然开发治疗或预防发现的可能性这些疾病的措施是令人兴奋的,在营养表观遗传学当前的知识是有限的,还需要进一步的研究来扩大可利用的资源,更好地了解使用营养素或生物活性食品成分对保持我们的健康和预防疾病经过修改的表观遗传机制。 介绍: 表观遗传学可以被定义为基因的体细胞遗传状态,从不改变染色质结构产生的表达改变的DNA序列中,包括DNA甲基化,组蛋白修饰和染色质重塑。在过去的几十年里,表观遗传学的研究主要都集中在胚胎发育,衰老和癌症。目前,表观遗传学在许多其它领域,如炎症,肥胖,胰岛素突出抵抗,2型糖尿病,心血管疾病,神经变性疾病和免疫疾病。由于后生修饰可以通过外部或内部环境的改变因素和必须改变基因表达的能力,表观遗传学是现在被认为是在不明病因的重要机制的许多疾病。这种诱导表观遗传变化可以继承在细胞分裂,造成永久的保养所获得的表型。因此,表观遗传学可以提供一个新的框架为寻求病因在环境相关疾病,以及胚胎发育和衰老,这也是已知受许多环境因素的影响。 在营养领域,表观遗传学是格外重要的,因为营养物质和生物活性食物成分可以修改后生现象和改变的基因的表达在转录水平。叶酸,维生素B-12,甲硫氨酸,胆碱,和甜菜碱可以影响通过改变DNA甲基化和组蛋白甲基化1 - 碳代谢。两个代谢物的1-碳代谢可以影响DNA 和组蛋白的甲基化:S-腺苷甲硫氨酸(的AdoMet)5,这是一个甲基供体为甲基化反应,并S-腺苷高半胱氨酸(的AdoHcy),这是一种产物抑制剂的甲基化。因此,理论上,任何营养素,生物活性组件或条件可影响的AdoMet或的AdoHcy水平在组织中可以改变DNA和组蛋白的甲基化。其他水溶性维生素B像生物素,烟酸和泛酸也发挥组蛋白修饰重要的作用。生物素是组蛋白生物素化的底物。烟酸参与组蛋白ADPribosylation如聚(ADP-核糖)的基板聚合酶作为以及组蛋白乙酰为底物Sirt1的,其功能作为组蛋白乙酰化酶(HDAC)(1)。泛酸是的一部分辅酶A以形成乙酰CoA,这是乙酰基的中组蛋白乙酰化的源。生物活性食物成分直接影响酶参与表观遗传机制。例如,染料木黄酮和茶儿茶素会影响DNA甲基(转移酶)。白藜芦醇,丁酸盐,萝卜硫素,和二烯丙基硫化物抑制HDAC和姜黄素抑制组蛋白乙酰转移酶(HAT)。改变酶activit这些化合物可能我们的有生之年通过改变基因表达过程中影响到生理和病理过程。 在这次审查中,我们更新了关于最新知识营养表观遗传学,这将是一个有助于理解如何营养素有助于我们的健康。 知识的现状 DNA甲基化 DNA甲基化,它修改在CpG二残基与甲基的胞嘧啶碱基,通过转移酶催化和通过改变染色质结构调节基因表达模式。目前,5个不同的转移酶被称为:DNMT1,DNMT2转移酶3A,DNMT3B和DnmtL。DNMT1是一个维护转移酶和转移酶图3a,3b和L分别从头转移酶。DNMT2的功能尚不明确。通过在我们的一生,营养成分影响这些转移酶和生物活性食物成分可以改变全球DNA甲基化,这是与染色体完整性以及genespecific启动子DNA甲基化,

表观遗传学的试题例析

生物学教学2019年(第44卷)第7期?59? 表观遗传学的试题例析 肖安庆1颜培辉2 (1广东省深圳市盐田高级中学深圳518083;2广东省深圳市教育科学研究院深圳51800) 摘要通过高考模拟试题例析了DNA甲基化、组蛋白修饰与染色质重塑、基因组印记、染色体失活和非编码RNA调控5种表观遗传学方式。 关键词表观遗传学例析高考模拟题 表观遗传学是指生物体基因序列保持不变、但基因表达和表现型发生可遗传的现象。该知识点是2017年版高中生物学课程标准新增加的重要概念,对学生形成正确的生命观念和科学思维具有重要意义。笔者收集和改编了有关表观遗传的试题,分析了DNA 甲基化、组蛋白修饰与染色质重塑、基因组印记、染色体失活和非编码RNA调控这5种方式。 1DNA甲基化 DNA甲基化是指在DNA甲基化转移酶催化下,将DNA中的某些胞嘧啶甲基化的过程,是表观遗传学最常见的方式。 例1(北京市海淀区2018届高三第二次模拟考试第2题)许多基因的启动子内富含CG重复序列。若其中部分胞嘧啶甲基化转化成5-甲基胞嘧啶,就会抑制基因的转录。下列叙述中,正确的是(C) A.DNA单链上相邻的C和G之间通过氢键连接 B.胞嘧啶甲基化导致表达的蛋白质结构改变 C.胞嘧啶甲基化会阻碍RNA聚合酶与启动子结合 D.基因的表达水平与基因的甲基化程度无关 解析:本题以DNA甲基化抑制基因的转录为背景,考查了学生理解能力和获取信息的能力。在DNA 单链上相邻的C和G之间通过“脱氧核糖一磷酸一脱氧核糖”连接,而不通过氢键连接;胞嘧啶甲基化导致的是基因转录被抑制,不能指导蛋白质合成;由于基因的表达水平与基因的转录有关,所以与基因的甲基化程度有关;从题干中获取有效信息是解决本题C选项的关键。题干中“胞嘧啶甲基化会抑制基因的转录”这一信息,可理解为:阻碍RNA聚合酶与启动子结合,C正确' 2组蛋白修饰与染色质重塑 组蛋白是染色体上基本的结构蛋白。组蛋白的修饰有甲基化、乙酰化与去乙酰化等方式。这些修饰方式与基因的失活与开启、基因转录的调控、细胞周期和死亡等生理活动有关' 染色质重塑是指染色质位置和结构的变化。当染色质处于解螺旋状态,有利于RNA聚合酶与启动子结合,但在组蛋白修饰等方式作用下,发生染色体重塑。 例2(浙江省嘉兴市2017届高三9月模拟考试第33题改编)组蛋白去乙酰酶抑制剂MS-275是一种广谱抗肿瘤药物,已证实MS-275可以抑制膀胱癌。研究发现,将MS-275与阿霉素(ADM)合用将产生更好的疗效。通过测定对膀胱癌细胞的抑制率可判断疗效。请根据以下材料用具,回答问题。 材料与用具:膀胱癌细胞,细胞培养液,浓度分别为91、叫的MS-275溶液,浓度为n1、n2的ADM溶液,培养皿若干,CO2培养箱等。 (1)分组设计如下表' 表1MS-275与ADM联合抑癌实验分组表组别MS-275浓度ADM浓度 100 2m〔n1 (2)实验思路:①取一定数量的培养皿分成若干组并编号;②每个培养皿中均加入等量的________和________,分别按上述分组设计加入相应试剂;③把培养皿放入_______中,培养适当时间;④分别测定各培养皿中癌细胞的抑制率,统计分析数据,得出结论。 (3)研究表明,MS-275可使癌细胞染色质难以螺旋化。因此MS-275抑制癌细胞增殖,是通过MS-275使膀胱癌细胞停留在细胞周期的_______期。 解析:本题以组蛋白修饰为背景,考查学生的综合应用能力。为验证MS-275与阿霉素合用对膀胱癌细胞的抑制率,题②中应设置细胞培养液对照组和膀胱癌细胞组。为维持培养液的pH,题③中动物细胞培养应放在CO2培养箱中。综合运用有丝分裂的知识,根据题干有关组蛋白修饰的信息,是分析本题(3)的关键。题干“MS-275可使癌细胞染色质难以螺旋化”,可理解为:MS-275使膀胱癌细胞处于解螺旋状态,不进入分裂期,停留在间期。 参考答案:膀胱癌细胞细胞培养液CO2培养箱间。

表观遗传学

表观遗传学 比较通俗的讲表观遗传学是研究在没有细胞核DNA序列改变的情况时,基因功能的可逆的、可遗传的改变。也指生物发育过程中包含的程序的研究。在这两种情况下,研究的对象都包括在DNA序列中未包含的基因调控信息如何传递到(细胞或生物体的)下一代这个问题。表观遗传学是与遗传学(genetic)相对应的概念。遗传学是指基于基因序列改变所致基因表达水平变化,如基因突变、基因杂合丢失和微卫星不稳定等;而表观遗传学则是指基于非基因序列改变所致基因表达水平变化,如DNA甲基化和染色质构象变化等;表观基因组学(epigenomics)则是在基因组水平上对表观遗传学改变的研究。所谓DNA甲基化是指在DNA 甲基化转移酶的作用下,在基因组CpG二核苷酸的胞嘧啶5'碳位共价键结合一个甲基基团。正常情况下,人类基因组“垃圾”序列的CpG二核苷酸相对稀少,并且总是处于甲基化状态,与之相反,人类基因组中大小为100—1000 bp左右且富含CpG二核苷酸的CpG岛则总是处于未甲基化状态,并且与56%的人类基因组编码基因相关。人类基因组序列草图分析结果表明,人类基因组CpG岛约为28890个,大部分染色体每1 Mb就有5—15个CpG岛,平均值为每Mb含10.5个CpG岛,CpG岛的数目与基因密度有良好的对应关系[9]。由于DNA甲基化与人类发育和肿瘤疾病的密切关系,特别是CpG岛甲基化所致抑癌基因转录失活问题,DNA甲基化已经成为表观遗传学和表观基因组学的重要研究内容。 几十年来,DNA一直被认为是决定生命遗传信息的核心物质,但是近些年新的研究表明,生命遗传信息从来就不是基因所能完全决定的,比如科学家们发现,可以在不影响DNA序列的情况下改变基因组的修饰,这种改变不仅可以影响个体的发育,而且还可以遗传下去。这种在基因组的水平上研究表观遗传修饰的领域被称为“表观基因组学(epigenomics)”。表观基因组学使人们对基因组的认识又增加了一个新视点:对基因组而言,不仅仅是序列包含遗传信息,而且其修饰也可以记载遗传信息。 摘要表观遗传学是研究没有DNA 序列变化的可遗传的基因表达的改变。遗传学和表观遗传学系统既相区别、彼此影响,又相辅相成,共同确保细胞的正常功能。表观遗传学信息的改变,可导致基因转录抑制、基因组印记、细胞凋亡、染色体灭活以及肿瘤发生等。 关键词表观遗传学;甲基化;组蛋白修饰;染色质重塑;非编码RNA 调控;副突变 表观遗传学( epigenetics) 是研究没有DNA序列变化的可遗传的基因表达的改变。它最早是在1939 年由Waddington在《现代遗传学导论》一书中提出,当时认为表观遗传学是研究基因型产生表型的过程。1996 年,国内学术界开始介绍epigenetics 研究,其中译名有表遗传学、表观遗传学、表型遗传修饰等10 余种,其中,表观遗传学、表遗传学在科技文献中出现的频率较高。 1 表观遗传学调控的分子机制 基因表达正确与否,既受控于DNA 序列,又受制于表观遗传学信息。表观遗传学主要通过DNA 的甲基化、组蛋白修饰、染色质重塑和非编码RNA 调控等方式控制基因表达。近年发现,副突变也包含有表观遗传性质的变化。 1.1 DNA 甲基化DNA 甲基化是由酶介导的一种化学修饰,即将甲基选择性地添加到蛋白质、DNA 或RNA上,虽未改变核苷酸顺序及组成,但基因表达却受影响。其修饰有多种方式,即被修饰位点的碱基可以是腺嘌呤N!6 位、胞嘧啶的N!4 位、鸟嘌呤的N!7 位和胞嘧啶的C!5 位,分别由不同的DNA 甲基化酶催化。在真核生物DNA 中,5- 甲基胞嘧啶是唯一存在的化学性修饰碱基,CG 二核苷酸是最主要的甲基化位点。DNA 甲基化时,胞嘧啶从DNA 双螺旋突出,进入能与酶结合的裂隙中,在胞嘧啶甲基转移酶催化下,有活性的甲基从S- 腺苷甲硫氨酸转移至胞嘧啶5' 位上,形成5- 甲基胞嘧啶( 5mC)。DNA 甲基化不仅可影响细胞基因的表达,

浙江大学通识课《生命科学》期末考试复习要点课稿

浙江大学2012年秋冬学期生命科学考前复习重点内容 考试(2012年秋冬学期) 简述6 5 论述10 4 单选判断填空 名词解释;区分名词;是非;填空;论述;自由发挥 什么是合成生物学?你所了解的合成生物学10’ 上课要求找的资料: 生物芯片的应用:DNA序列分析;基因表达分析;基因诊断;药物筛选 芯片实验室:在同一芯片上细胞分离、基因扩增及产物电泳等联用装置,实现Lab-on-a-chip 技术 基因芯片:将大量探针分子固定在支持物上,然后与标记的样品进行杂交,通过检测杂交信号的强弱进而判断样品中靶分子的种类和数量 生物芯片(来自百度百科)又称DNA芯片或基因芯片,它们是DNA杂交探针技术与半导体工业技术相结合的结晶。该技术系指将大量探针分子固定于支持物上后与带荧光标记的DNA 样品分子进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息。 杂交技术:核酸杂交技术 探针标记技术:萤光探针标记法

检测技术:激光共聚焦检测技术 特殊之处:微阵列技术和微点样技术 蛋白芯片:蛋白质芯片是一种高通量的蛋白功能分析技术,可用于蛋白质表达谱分析,研究蛋白质与蛋白质的相互作用,甚至DNA-蛋白质、RNA-蛋白质的相互作用,筛选药物作用的蛋白靶点等。 探针:低密度蛋白质芯片的探针包括特定的抗原、抗体、酶、吸水或疏水物质、结合某些阳离子或阴离子的化学集团、受体和免疫复合物等具有生物活性的蛋白质。 应用:诊断疾病:如传染病、肿瘤、遗传病及心血管疾病等;蛋白质相互作用研究;蛋白质与DNA相互作用研究 1:获取基因的方法有哪些 1.从基因文库中获取目的基因 2.化学合成法。已知目的基因的核苷酸序列,可用DNA合成仪直接合成。 3.用PCR技术扩增技术提取。 4.cDNA文库法(逆转录法):cDNA文库,是指汇集以某生物成熟mRNA为模板逆转录而成的cDNA序列的重组DNA群体。 5.鸟枪法 2:合成生物学 (1)合成生物学是在分子水平上对生命系统的重新设计和改造,基因工程、蛋白质工程等技术是其核心的技术手段。 (2)合成生物学是生物技术在基因组时代的延伸。 (3)它将原有的生物技术上升到工程化、系统化、标准化的工程高度,并正在学科交叉与技术整合的基础上,孕育技术创新飞跃。 (4)主要研究内容:合成新的生物元器件、有目的地对生物元器件进行组装、生产出能满足人类需要的新的生命系统。 (5)合成生物学的目的:从冰箱里取出相应的生物零件,把他们组装起来,成为一个微小

支气管哮喘发病机制的研究进展

World Latest Medicne Information (Electronic Version) 2016 Vo1.16 No.64 34 [2] 朱远玲,曹奎轩,郭玲,刘鏐,等.针刀疗法配合截血膏外敷治疗早 期膝骨性关节炎180例[J].湖北中医杂志,2011年,第33卷(第10期):62-63. [3] 秦强,王风云.推拿手法配合TDP照射治疗膝骨性关节炎130例[J]. 中国实用医药,2011年8月,第6卷(第24期):233. [4] 张钟浩.中药口服加外敷治疗膝骨性关节炎119例[J].中国中医 药科技,2011年9月,第18卷(第5期):428.[5] 刘明祥.臭氧与玻璃酸钠在骨性关节炎治疗中的应用[J].当代医 学,2011年7月,第17卷(第21期总第248期):77--78. [6] 汤紫英.综合疗法治疗膝关节骨性关节炎[J].特色疗法中国民间 疗法,2011年5月,第19卷(第5期):35. [7] 张蓉,李峰,李珩,王常海,宋月晗,等.膝关节骨性关节炎针灸治 疗选穴特点及分析[J].中国康复医学杂志,2007年,第22卷(第4期):357-358. ·综述· 支气管哮喘发病机制的研究进展 杨潇,沈金花 (中南民族大学生命科学学院 医学生物研究所,湖北 武汉 430074) 摘 要:哮喘是一种气道慢性炎症引起的以气道高反应性和可逆性阻塞为特点的疾病,在老人和儿童群体中具有很高的发病几率。随着学者对其研究的越来越深入,对其发病机制的阐述也越来越全面。本文主要从细胞及细胞因子方面阐述哮喘的发病机制。 关键词:支气管哮喘;发病机制;细胞;细胞因子 中图分类号:R562.2+5 文献标识码:A DOI:10.3969/j.issn.1671-3141.2016.64.024 0 引言 支气管哮喘(简称:哮喘)是一种严重威胁人类健康的慢性的长期的呼吸系统疾病,目前,全球有大约3亿人口患有哮喘并且患病率还有逐年增加的趋势。哮喘不仅对人类健康造成威胁,而且对经济也产生了巨大的影响。哮喘有两个最重要的两个特征是气管平滑肌细胞的收缩性增强以及气道的兴奋性应答[1]。由于哮喘的发病机制复杂,诱发以及参与发病的因素很多,至今尚未对其机制解释清楚。哮喘是由肥大细胞、嗜酸性粒细胞(EOS)、T 淋巴细胞等多种细胞和细胞因子参与的气道慢性变态反应性炎症,其中,T淋巴细胞在哮喘发病机制中起着尤为重要的作用。同时哮喘也是一种外周免疫耐受机制发生缺陷而引起的疾病,机体免疫耐受受损,导致免疫细胞对自身组织结构和功能的破坏。本文主要就引起哮喘的细胞及细胞因子和免疫学机制做一综述。 1 T淋巴细胞在哮喘中的影响 自1980年以来,辅助性T细胞(Th细胞)已经被确定为可以调控免疫反应的一类关键的免疫细胞,Th细胞可以分为Th1、Th2等。Th1细胞也称为炎症性T细胞,主要介导细胞免疫和炎症反应,通过释放IL-2、IL-3、INF-γ、TNF-β等细胞因子产生免疫应答反应,对哮喘具有较好的保护作用。Th2可以产生IL-4、IL-5、IL-6和IL-13等细胞因子,在寄生虫入侵引起的免疫反应中扮演了关键的角色[2],也在过敏性哮喘的发病机制中具有重要作用。Th2存在于肺部疾病缓解期间,接触过敏原,刺激感受器激活,参与病情恶化[3]。 现在学者一致认为哮喘的发生是体内Th1/Th2比例失衡所导致的。Th1/Th2比例失衡是哮喘发病的重要基础。Th1/Th2比例关系趋于Th2占优势,IL-4、IL-5、IL-6和IL-13等细胞因子明显增多,IL-4促进IgE的产生,IL-5促进嗜酸性粒细胞的生长分化,IL-13促进粘液的分泌和诱导气道高反应。可见,Th2细胞的异常增殖在哮喘发病机制中尤为重要。B7分子表达与活化的B细胞表面,CD28和CTLA-4都表达在活化的T细胞上。在免疫调节中,B7与CD28结合可以为初始T细胞提供协同刺激信号,促进T细胞活化增殖,而B7与CTLA-4结合则提供抑制信号给活化的T细胞,抑制T细胞增殖。因此,此途径可以纠正Th1/Th2平衡失调,对治疗哮喘具有重要的意义。2 细胞因子对哮喘的影响 细胞可以诱导气道的慢性炎症,但细胞因子是免疫活性细胞的效应因子,细胞因子的免疫调节功能在哮喘发病机制中处于中心地位。这里主要介绍IL-3、IL-4、IL-5和IL-13等细胞因子的功能。 2.1 IL-3。IL-3也称为多能集落刺激因子,是嗜酸性粒细胞(EOS)的活化因子,主要由活化的CD4+T细胞产生。IL-3可以促进组胺的释放,增强EOS的活性,促进EOS抗体依赖性细胞介导的细胞毒作用,破坏气道上皮,参与气道炎症形成。 2.2 IL-4。Th0细胞产生IL-4,产生的IL-4诱导Th0细胞向Th2细胞转化,并刺激Th2细胞产生更多的IL-4。IL-4是B细胞生长因子,作用于B淋巴细胞,促进其增殖分化为浆细胞,产生IgE,IL-4还可以改变B细胞产生抗体的类型,使IgM转化为IgE,与哮喘变应性炎症的发生。 2.3 IL-5。IL-5由抗原活化的CD4+ T细胞和肥大细胞产生,主要刺激嗜酸性粒细胞的增殖分化。IL-5对气道炎症中EOS浸润和活性调节起着重要作用,IL-5可以通过阻止EOS发生凋亡而延长其存活。IL-5特异性的作用于EOS,引起EOS增殖和活化,引起气道上皮损伤和气道高反应。目前,IL-5已经成为筛选抗哮喘药物的新的重要靶点。 2.4 IL-13。IL-13也是由T细胞分泌的细胞因子,作用于B细胞,可促进B细胞的分化,诱导B细胞产生IgG、IgM抗体并向IgE 转化,提高体内IgE水平,参与哮喘的发生。IL-3还可以激活内皮细胞表达VCAM-1,血液中的嗜酸性粒细胞能自发地黏附VCAM-1,导致呼吸急促以及嗜酸性细胞释放蛋白。 综上所述,哮喘是一种有多个因素参与的,复杂的呼吸道疾病,并且每一个因素都在其发病机制中参与了重要的作用。随着研究更加深入,更多有效的新型药物将被应用于临床,哮喘的治疗手段也逐渐由传统的单一疗法转变为联合治疗,这必将使广大哮喘患者的症状得到更好的控制,生存质量也不断提高。 参考文献 [1] Katsumoto TR, Kudo M, Chen C, Sundaram A, Callahan EC, Zhu JW, Lin J, Rosen CE, Manz BN, Lee JW et al: The phosphatase CD148 promotes airway hyperresponsiveness through SRC family kinases. The Journal of clinical investigation 2013, 123(5):2037-2048. [2] Li Z, Zhang Y, Sun B: Current understanding of Th2 cell dif- ferentiation and function. Protein & cell 2011, 2(8):604-611. [3] Epstein MM: Targeting memory Th2 cells for the treatment of aller- gic asthma. Pharmacology & therapeutics 2006, 109(1-2):107-136.

表观遗传学简介及其与有关疾病的联系

表观遗传学及其与有关疾病的联系 刘松鹤 (山东理工大学生命科学学院,山东淄博255000) 摘要:表观遗传学是指以不涉及到核苷酸序列的改变,但可以通过有丝分裂和减数分裂进行遗传的生物现象为内容的生命学科。本文将细致的介绍表观遗传学所涉及的调控机制来加以对其了解,并将阐述其与有关疾病的关系。 关键词:表观遗传学、调控机制、疾病 Epigenetics and it with the relationship between the Disease LIU Song-he (Shandong University of Technology School of Life Sciences,Shandong Zibo 255000) Abstract: Epigenetics refers to not related to the sequence of nucleotides changed, but can be by mitosis and meiosis of genetic biological phenomenon for content of life science. This paper will introduce the meticulous epigenetics involves the regulatory mechanisms to be the understanding, and describes the relationship with the disease. Keywords: epigenetics, control mechanism, disease 引言 表观遗传学是研究表观遗传变异的遗传学分支学科。表观遗传变异(epigenefie variation)是指,在基因的DNA序列没有发生改变的情况下,基因功能发生了可遗传的变化,并最终导致了表型的变化。早在1942年的时候,C.H.Waddington就首次提出了Epigenetics一词,并指出表观遗传与遗传是相对的,主要研究基因型和表型的关系。几十年后,霍利迪(R.Holiday)针对Epigenetics提出了更新的系统性论断,也就是人们现在比较统一的认识,即表观遗传学研究没有DNA序列变化的、可遗传的基因表达改变”。(1)表观遗传学涉及到DNA甲基化、组蛋白修饰、染色体重塑和非编码RNA调控等内容(2)。 1调控机制 表观遗传学通过DNA的甲基化、组蛋白修饰、染色质重塑和非编码RNA调控4种方式来控制表观遗传的沉默。(3)可以说,任何一方面的异常都将影响染色质结构和基因表达。1.1 DNA的甲基化 在DNA共价修饰中,最主要的是DNA甲基化,它普遍存在于动植物细胞以及细菌中,是表观遗传学的重要研究内容之一。它由DNA甲基转移酶(Dnmt)家族以S一腺苷甲硫氨酸(SAM)作为甲基供体,将C转变为5一甲基胞嘧啶(5MC),在真核生物DNA中,5一甲基胞嘧啶是唯一存在的化学性修饰碱基。cG二核苷酸是最主要的甲基化位点。由于DNA甲

相关主题
文本预览
相关文档 最新文档