当前位置:文档之家› 微处理器概述

微处理器概述

微处理器概述
微处理器概述

第一章

冯诺依曼体系结构:

计算机应由运算器、控制器、存储器、输入设备、输出设备组成。

微处理器:mp

包括运算器和控制器,集成到一个芯片上是cpu, control processing unit。

运算器负责对信息进行处理和运算。

控制器负责根据程序的要求发出各种控制命令,协调各部件之间的工作。

存储器:

用来存放当前正字啊使用的或经常使用的程序、数据和运算结果。

分为ram(随机存储器)和rom(制度存储器)

微型计算机的主要性能:

字长:计算机内部一次可以处理的二进制的位数;

存储容量:衡量微型计算机中存储能力的指标;

运算速度:每秒能执行的质量条数;

外设扩展能力:

软件配置:

系统稳定性和兼容性:

常见CPU的位数:

4位:4004,

8位:8008,8080

16位:8086、8088,80286

32位:英特尔386,英特尔486,英特尔奔腾,英特尔高能奔腾,英特尔奔腾二,奔腾二至强,奔腾三,奔腾三至强,奔腾四

64位:至强,安腾,安腾二,奔腾M,奔腾D,Core 2 Duo

原码、反码、补码

原码就是将一个数转化为二进制数,最高位是符号位(负为1,正为0),机器内表示一个数存储原码的长度和机器字长一样,数值转化后不够机器字长的,以0补齐。

反码就是原码在符号位不变的前提下按位取反。

补码就是反码加一。

计算机常用编码

BCD码:计算机常用的是8421BCD码。

ASCII码:美国信息交换标准码。

汉字编码:信息交换用汉字编码。包括输入编码、内码、字形编码,分别用于汉字的输入、内部处理、输出。汉字的输入编码一般有数字编码、拼音码、字形编码三类。汉字的内码是用于汉字信息的存储、交换、检索等操作的机内代码。汉字字形编码是用来描述汉字字形的代码,是汉字的输出形式。

国内的微处理器介绍

关键字: register:寄存器interface:接口analog:模拟semiconductor:微处理器combination:混合体capacitor :电容器diode:二极管comparator:比较器loop:循环 polarity:极性potential:电位pickup:传感器circuitry:电路图resistance:电阻leakage:泄露电阻filt:过滤器current:电流buffering:缓冲器impedance:阻抗offset:补偿diode:二极管 国内的微处理器: ADC08031/ADC08032/ADC08034/ADC08038 8位高速单任务处理的I/O A/D转换器有多种传输方式,提高电压,和跟踪/控制功能 综述: ADC08031/ADC08032/ADC08034/ADC08038是8位连续的近似A/D转换器,有一系列I/O和配置输入多大8种方式,一系列的I/O被装置以达成NSCMICROWIRE TM的标准。简单连接COPS TM流派控制的一系列数据转换标准,也能简单连接标准转移寄存器或微处理器。 ADC08034和ADC08038提供一个2.6V中断源参考材料,为装置提供保障的电压参考温。以ADC08031/ADC08034和ADC08038为特点,一个跟踪/控制功能允许在现实A/D转换中在正极输入多种模拟电压。模拟输入被装置成操作各种但极点的有区别的,或假定一有区别的代码的混合体。总之,输入模拟跨度最小1V才能被容纳。 用途: 1,使自动传感器数字化。 2,程序控制监督程序。 3,在噪音环境中有遥感功能。 4,检测仪器。 5,测试系统。 6,嵌入式特征。 特征: 1,单任务处理器的数据连接要求少量的I/O插口。 2,模拟输入跟踪控制功能。 3,2- ,4-或8位输入多种逻辑地址的传输方式。 4,0V~5V模拟输入范围提供单极5V电压。 5,没有零或满的尺度判断要求。 6,TTL/CMOS输入/输出兼容。 7,在集成电路片上2.6V中断源参考材料。 8,0.3标准宽度.14或20个插口插入插件。 9,20个插口的微型插件 码的规范:

微处理器系统与嵌入式系统1—7章最全答案合集

“微处理器系统原理与嵌入式系统设计”第一章习题解答 1.1 什么是程序存储式计算机? 程序存储式计算机指采用存储程序原理工作的计算机。 存储程序原理又称“·诺依曼原理”,其核心思想包括: ●程序由指令组成,并和数据一起存放在存储器中; ●计算机启动后,能自动地按照程序指令的逻辑顺序逐条把指令从存储器中 读出来,自动完成由程序所描述的处理工作。 1.2 通用计算机的几个主要部件是什么? ●主机(CPU、主板、存); ●外设(硬盘/光驱、显示器/显卡、键盘/鼠标、声卡/音箱); 1.3 以集成电路级别而言,计算机系统的三个主要组成部分是什么? 中央处理器、存储器芯片、总线接口芯片 1.4 阐述摩尔定律。 每18个月,芯片的晶体管密度提高一倍,运算性能提高一倍,而价格下降一半。 1.5 讨论:摩尔定律有什么限制,可以使用哪些方式克服这些限制?摩尔定律还会持续多久?在摩尔定律之后电路将如何演化? 摩尔定律不能逾越的四个鸿沟:基本大小的限制、散热、电流泄露、热噪。具体问题如:晶体管体积继续缩小的物理极限,高主频导致的高温…… 解决办法:采用纳米材料、变相材料等取代硅、光学互联、3D、加速器技术、多核…… (为了降低功耗与制造成本,深度集成仍是目前半导体行业努力的方向,但这不可能永无止,因为工艺再先进也不可能将半导体做的比原子更小。用作绝缘材料的二氧化硅,已逼近极限,如继续缩小将导致漏电、散热等物理瓶颈,数量集成趋势终有终结的一天。一旦芯片上线条宽度达到纳米数量级时,相当于只有几个分子的大小,这种情况下材料的物理、化学性能将发生质的变化,致使采用现行工艺的半导体器件不能正常工作,摩尔定律也就要走到它的尽头了。业界专家预计,芯片性能的增长速度将在今后几年趋缓,一般认为摩尔定律能再适用10年左右,其制约的因素一是技术,二是经济。)

微处理器系统结构与嵌入式系统设计(第2版) 第3章答案

“微处理器系统原理与嵌入式系统设计”第三章习题解答 3.1处理器有哪些功能?说明实现这些功能各需要哪些部件,并画出处理器的基本结构图。 处理器的基本功能包括数据的存储、数据的运算和控制等功能。其有5个主要功能:①指令控制②操作控制③时间控制④数据加工⑤中断处理。其中,数据加工由ALU 、移位器和寄存器等数据通路部件完成,其他功能由控制器实现。处理器的基本结构图如下: 寄存器组 控制器 整数单元 浮点单元 数据通路 处理器数据传送 到内存数据来自内存数据传送到内存指令来自内存 3.2处理器内部有哪些基本操作?这些基本操作各包含哪些微操作? 处理器基本操作有:取指令、分析指令、执行指令。 取指令:当程序已在存储器中时,首先根据程序入口地址取出一条程序,为此要发出指令地址及控制信号。 分析指令:对当前取得的指令进行分析,指出它要求什么操作,并产生相应的操作控制命令。 执行指令:根据分析指令时产生的“操作命令”形成相应的操作控制信号序列,通过运算器、存储器及输入/输出设备的执行,实现每条指令的功能,其中包括对运算结果的处理以及下条指令地址的形成。 3.3什么是冯·诺伊曼计算机结构的主要技术瓶颈?如何克服? 冯·诺伊曼计算机结构的主要技术瓶颈是数据传输和指令串行执行。可以通过以下方案克服:采用哈佛体系结构、存储器分层结构、高速缓存和虚拟存储器、指令流水线、超标量等方法。

3.5指令系统的设计会影响计算机系统的哪些性能? 指令系统是指一台计算机所能执行的全部指令的集合,其决定了一台计算机硬件主要性能和基本功能。指令系统一般都包括以下几大类指令。:1)数据传送类指令。(2)运算类指令 包括算术运算指令和逻辑运算指令。(3)程序控制类指令 主要用于控制程序的流向。 (4)输入/输出类指令 简称I/O 指令,这类指令用于主机与外设之间交换信息。 因而,其设计会影响到计算机系统如下性能: 数据传送、算术运算和逻辑运算、程序控制、输入/输出。另外,其还会影响到运算速度以及兼容等。 3.9某时钟速率为2.5GHz 的流水式处理器执行一个有150万条指令的程序。流水线有5段,并以每时钟周期1条的速率发射指令。不考虑分支指令和乱序执行带来的性能损失。 a)同样执行这个程序,该处理器比非流水式处理器可能加速多少? b)此流水式处理器是吞吐量是多少(以MIPS 为单位)? a.=51p T nm S T m n =≈+-串流水 速度几乎是非流水线结构的5倍。 b.2500M IPS p n T T =≈流水 3.10一个时钟频率为2.5 GHz 的非流水式处理器,其平均CPI 是4。此处理器的升级版本引入了5级流水。然而,由于如锁存延迟这样的流水线内部延迟,使新版处理器的时钟频率必须降低到2 GHz 。 (1) 对一典型程序,新版所实现的加速比是多少? (2) 新、旧两版处理器的MIPS 各是多少? (1)对于一个有N 条指令的程序来说: 非流水式处理器的总执行时间s N N T 990 106.1)105.2/()4(-?=??= 5级流水处理器的总执行时间s N N T 991 10)4(2)102/()15(-?+=?-+= 加速比=42.310 +=N N T T ,N 很大时加速比≈3.2 (2)非流水式处理器CPI=4,则其执行速度=2500MHz/4=625MIPS 。 5级流水处理器CPI=1,则其执行速度=2000 MHz /1=2000 MIPS 。 3.11随机逻辑体系结构的处理器的特点是什么?详细说明各部件的作用。 随机逻辑的特点是指令集设计与硬件的逻辑设计紧密相关,通过针对特定指令集进行

LEON微处理器综述

摘要:随着集成电路设计水平和ic制造工艺水平的快速发展,在单芯片上集成微电子应用产品所需的所有功能的系统芯片(soc)得到广泛应用。系统芯片(soc)开发的核心是微处理器ip 核,实际上多数公司和研究机构不具备开发自己的处理器的能力,较为普遍的做法是购买已成产品的微处理器ip核,但是这需要支付为数不少的使用许可费用。还有另一种选择,即使用开放源代码的微处理器ip核。本文介绍了leon系列微处理器的软核架构、在soc设计中的优势以及片上总线。 关键词:leon;可配置性;可移植性;amba 1leon软核架构介绍 leon软核是一个与sparc v8兼容的整数处理单元iu(integer unit),leon2是5级流水线,leon3是7级流水线。leon3微处理器具有以下特点: ●七级流水线结构; ●具有硬件乘法/除法和mac功能; ●独立的指令和数据cache(哈佛结构); ●可根据需求灵活配置cache的容量; ●片上总线使用amba2.0规范,支持apb和ahb标准; ●具备一些片上常用外设(如uart、中断控制、i/o接口、实时时钟、看门狗等)。leon3微处理器软核的可配置体系架构如图1所示。 除了关键的微处理器外,外围模块也是制约系统性能的重要因素,在本文主要介绍以下几个模块: fpu和协处理器leon3提供浮点单元的接口和一个自定义的协处理器。有两个可用的fpu 控制器,一个是用于高性能的grfpu,另一个是用于meiko fpu。只要不存在数据或者资源的依赖,浮点处理器、协处理器以及整数单元的并行执行并不会阻碍操作。 内存管理单元mmu内存管理单元mmu(memory management unit)遵循所有的sparc v8的规范,实现了32位虚拟地址和36位物理存储器的映射。mmu可配置多达64个完全关联tlb 入口,用于访问正在运行的硬件和软件代码,方便后期调试。 2leon在soc芯片开发中的优势 leon微处理器具有良好的综合性能,使用dhrystone 2.1测试平台对其进行测试时,其运算速度可以达到0.85 mips/mhz。 leon软核最突出的优势是其良好的可配置性和可移植性,以及遵循gpl许可证协议的开源性。 开源性基于gpl许可证协议,leon非容错版本软核ip提供vhdl源代码,仅是容错版本的leon软核需要商业授权。源代码公开使研究者和开发者从根本上研究软核的细节从而定制满足具体应用的软核成为可能。 可配置性 leon软核有一套非常丰富的接口和运算单元ip核库,用户可以根据自己的需要对leon软核的绝大多数模块进行配置,以达到性能、功耗和面积的平衡和优化。软核iu 可以配置流水线深度、地址和数据高速缓存;外围设备可以挂载在amba总线上;而硬件加速单元可以根据需求集成。 可移植性 leon软核通过层次分明的vhdl模型实现。通过vhdl中特定的配置接口,leon 核的关键参数(例如修改cache的大小和组织方式,乘法器的生成,速度、芯片面积的调整以及容错方案的选择)都能够灵活的设置和移植。

现代仪器综述全解

现代仪器综述 学院: 专业: 班级: 姓名: 学号:

前言: 现代仪器仪表技术是一门集电子技术、单片机技术,自动化仪表、自动控制技术、计算机应用等于一体的跨学科的专业技术。自20世纪90年代初以来,这项技术已逐步引入到国内工科专业中的电子信息、通讯、自动化、计算机应用等信息类专业中。随着微电子技术和计算机技术的飞速发展,测控仪器仪表的智能化、总线化、网络化发展已在各个相关行业呈现出广阔的发展前景,同时也日益成为工程界和科技界人士所关注的重要问题之一。因此,了解和熟悉现代智能仪器仪表的特点功能,发展趋向及其应用前景是十分重要和必要的。 一:现代仪器仪表概念 近些年来,随着微处理器和单片机的发展和广泛应用,出现了一种新型的专用仪器——现代智能仪器。这种仪器一微处理器或单片机为核心,具有信息采集、显示、处理、传输以及优化检测与控制等多种功能。有些甚至还具有专家推断、逻辑分析与决策的能力。智能仪器的出现,极大地扩充了常规仪器的应用范围。由于现代智能仪器一开始就显示它强大的生命力,目前已成为仪器仪表发展的一个主导方向。它的不断发展对自动控制、电子技术、国防工程、航天技术与科学实验等将产生极其深远的影响。现代智能仪器是含有微型计算机或者微型处理器的测量仪器,拥有对数据的存储运算逻辑判断及自动化操作等功能。现代智能仪器的出现,极大地扩充了传统仪器的应用范围。现代智能仪器凭借其体积小、功能强、功耗低等优势,迅速地在家用电器、科研单位和工业企业中得到了广泛的应用。 二:现代仪器仪表的功能特点 随着微电子技术的不断发展,集成了CPU、存储器、定时器/计数器、并行和串行接口、看门狗、前置放大器甚至A/D、D/A转换器等在一块芯片上的超大规模集成电路芯片(即为主体,将计算机技术与测量控制技术结合在一起,又组成了所谓的“现代智能化测量控制系统”,也就是现代智能仪器。与传统仪器仪表相比,智现代能仪器具有以下功能特点: 1)操作自动化。仪器的整个测量过程如键盘扫描、量程选择、开关启动闭

微型计算机技术系统的发展综述

微型计算机技术发展综述 自20世纪40年代世界上第一台计算机ENIAC(Electronic Numerical Integrator and Computer) 在美国宾夕法尼亚大学问世以来,微型机以其执行结果精确、处理速度快捷、性价比高、轻便小巧等特点迅速进入社会各个领域。此外,微型机技术发展、产品更新换代迅速,从单纯的计算工具发展成为能够处理数字、符号文字、语言、图形、图像、音频、视频等多种信息的强大多媒体工具,微型计算机现已经用于信息处理、事务管理、过程控制、仪器仪表控制、通信技术与计算机网络等各行各业。便携机更是以便于携带、使用方便等优点以及发展需要越来越受移动办公人士、学生等群体所喜爱。现如今微型计算机的应用已深入到社会的各个角落,极大地改变着人们的工作、学习和生活方式,成为信息时代的主要标志。 2 微型计算机系统的组成 微型计算机系统,简称“微机系统”。它可以简单地定义为:在微型计算机硬件系统的基础上配置必要的外围设备和软件构成的实体。 微型计算机系统从局部到全局分为三个层次:微处理器(CPU)、微型计算机、微型计算机系统。微处理器是指由一片或者几片大规模集成电路组成的具有运算器和控制器功能的中央处理器部件;微型计算机是以微处理器为核心,配上存储器、输入/输出接口电路及系统总线所组成的计算机(又称主机);而微型计算机系统则是以微型计算机为中心,以相应的外围设备、电源和辅助电路(统称硬件)以及

指挥微型计算机工作的系统软件所构成的系统。 由此可知单纯的微处理器和单纯的微型计算机都不能独立工作,只有微型计算机系统才是完整的信息处理系统,才具有直接的使用意义。 完整的微型计算机系统由硬件和软件组成。硬件系统由运算器、控制器、存储器、、输入/输出接口、总线以及外部设备等构成。 软件系统通常分为系统软件、应用软件两大类。系统软件是指不需要用户干预,能生成、准备和执行其他程序所需的一组程序。主要包括:操作系统、程序设计语言、数据库管理系统、联网和网络管理系统软件。应用软件是指除了系统软件以外,利用计算机为解决某类问题而设计的程序的集合,主要包括信息管理软件、辅助设计软件、实时控制软件等。简单概括为:系统软件支持机器运行,应用软件满足业务需求。 3 微型计算机的结构及工作原理 3.1 微型计算机的结构 目前的各种微型计算机系统,从硬件体系结构来看,采用的基本上是计算机的经典结构——冯·诺依曼结构。这种结构的特点是:由运算器、控制器、存储器、输入、输出设备五大部分组成。 数据和程序以二进制代码形式不加区别地存放在存储器中,存放位置由地址指定,地址码也为二进制形式。 控制器是根据存放在存储器中的指令序列即程序来工作的,由程序计数器(即指令地址计数器)控制指令的执行。控制器具有判断能

微型计算机和微处理器的发展

微型计算机和微处理器的发展 本篇报告的目的讲述微型计算机和微处理器的发展史,以此来深化对计算机功能结构的认识,并进一步了解计算机工作的模式,在此基础上对未来的计算机发展做一个合理的推测和预期。其实微型计算机的发展和微处理器的发展其实是紧密结合,密不可分的,微型计算机的发展主要表现在其核心部件——微处理器的发展上,每当一款新型的微处理器出现时,就会带动微机系统的其他部件的一并发展,比如在微机体系结构上,存储器存取容量、存取速度上,以及外围设备都在不断改进,在此基础上新设备也在不断出现并推动微型计算机的进一步发展。 第一篇 微机的发展上根据微处理器的字长和功能,将微型计算机的发展简单划分为以下几个阶段。 第一阶段: 概述:4位和8位低档微处理器(第1代) 基本特点:采用PMOS工艺,集成度低(4000个晶体管/片), 指令系统:系统结构和指令系统简单,主要采用机器语言或简单的汇编语言,指令数目少,基本指令周期为20~50μs,用于简单的控制场合。 举例:Intel4004和Intel8008微处理器和分别由它们组成的MCS-4和MCS-8微机 第二阶段: 概述:8位中高档微处理器(第二代) 特点:采用NMOS工艺,集成度提高约4倍,运算速度提高约10~15倍 指令系统:比较较完善,具有典型的计算机体系结构和中断、DMA等控制功能 软件方面:除汇编语言外,还有BASIC、FORTRAN等高级语言和相应的解释程序和编译程序,在后期出现操作系统。 举例:Intel8080/8085、Motorola公司、Zilog公司的Z80 第三阶段: 概述:16位微处理器(第三代) 特点:用HMOS工艺,集成度(20000~70000晶体管/片)和运算速度都比第2代提高了一个数量级 指令系统:指令系统更加丰富、完善,采用多级中断、多种寻址方式、段式存储机构、硬件乘除部件,并配置了软件系统 产品举例:Intel公司的8086/8088,Motorola公司的M68000,Zilog公司的Z8000 第四阶段: 概述:32位微处理器(第四代) 产品举例:Intel公司的80386/80486,Motorola公司的M69030/68040 基本特点:采用HMOS或CMOS工艺,集成度高达100万个晶体管/片,具有32位地址线和32位数据总线 评价:微型计算机的功能已经达到甚至超过超级小型计算机,完全可以胜任多任务、多用户的作业 第五阶段: 概述:奔腾系列微处理器(第5代) 产品举例:Intel公司的奔腾系列芯片及与之兼容的AMD的K6系列微处理器芯片 特点:AMD与Intel分别推出来时钟频率达1GHz的Athlon和PentiumⅢ。00年11月,Intel又推出了Pentium4微处理器,集成度高达每片4200万个晶体管,主频为1.5GHz。2002

计算机硬件综述

计算机硬件综述 徐光林整理 一、CPU 1.简介: CPU全称为Center Processing Unit,即中央处理器。它好比是计算机的大脑,计算机中几乎所有的数据都要经过它处理。 提示:采用DMA(Direct Memory Access,直接存储器存取)方式,数据可以不经过CPU的处理就直接在存储器和输入输出设备之间进行传输。 2.组成部分及功能: 图1-1 8086的逻辑结构 BIU(总线接口部件):从内存中取数据送给EU,并把EU处理好的数据送到内存。 ALU(Arithmetic and Logic Unit,算术逻辑运算器):完成算术或逻辑运算EU(执行部件)控制器:产生控制信号来控制各个部件,完成取指和执行指令等操作。 分析和执行指令寄存器:用来保存计算所需数据和中间结果,具有极快的读写速度,数量很少。 (8086是PC的CPU家族中最简单的处理器) 通常的处理过程是:BIU从内存中读取指令和数据,送到EU,其中指令部分送到控制器进行译码、执行,数据部分送到ALU进行运算,最后的处理结果又送回内存中去。 从386开始,CPU的物理结构(元件的组成和实际布局)要较8086的复杂很多,但其逻辑结构(按功能抽象出来的结构)仍然和8086的相同。 486以后的CPU,由于时钟频率高于内存的时钟频率,所以在两者之间设置了缓存。 缓存又分为一级缓存(L1 Cache)和二级缓存(L2 Cache),先前一级缓存做在CPU中,二级缓存做在主板上,后来为了提高CPU速度,把二级缓存也集成到了CPU的内部,以CPU同速或半速运行。CPU的高速缓存属于SRAM(参见第三章内存:3.内存的工作原理)。 FPU(Floationg Point Unit,浮点运算单元)是计算机中为提高浮点数据处理能力而增加的一块单独的芯片,称为数字协处理器(numeric coprocessor),例如Intel 80287和Intel 80387。从Intel 486处理器开始,FPU也集成到CPU之内了。 3.封装和插座: 封装起着安装、密封、保护芯片及增强散热等作用。封装的不断改进实际上是要在同样的面积上安排更多的引脚。封装形式有以下几种: ●PLCC:引脚在CPU的四个边上,像286这种引脚很少的CPU采用了这种封装。 ●SECC(单边接触卡式封装)、SEPP(单边处理器封装):在CPU的发展史上曾一度出现, 实际上这只能看作是一种转接卡,CPU芯片实际上是BGA封装的,CPU焊接到了一块PCB(印刷电路板)上,PCB就成为CPU和主板之间的连接。PentiumⅡ和部分Pentium Ⅲ是采用此种封装。 ●PGA(针状栅格阵列):这是大多数CPU采用的封装形式。它与BGA的区别在于它的引 脚是针状的,便于反复插拔。这种封装的CPU根据其引脚数目的不同,对应的插座也不相同。如Socket 478有478个引脚,而Socket 423有423个引脚。 ●BGA(球状栅格阵列):笔记本电脑的CPU很少使用插座,因为它几乎不存在更换的可 能,所以通常使用BGA封装直接焊接在PCB上,此种封装只能由专门的设备焊接和拆

国内的微处理器介绍

in terface :接口 combi natio n :混合体 comparator : 比较器 potential :电位 resista nee 电阻 curre nt:电流 offset :补偿 an alog :模拟 capacitor :电容器 loop :循环 pickup : 传感器 leakage 泄露电阻 bufferi ng :缓冲器 diode :二极管 国内的微处理器: ADC08031/ADC08032/ADC08034/ADC08038 8位高速单任务处理的I /O A/D 转换器有多种传输方式,提高电压,和跟 踪/控 制功能 综述: ADC08031/ADC08032/ADC08034/ADC08038 是 8 位连续的 近似A/D 转换器,有一系列I/O 和配置输入多大8种方式,一系列的I/O 被装置 以达成 NSCMICROWIRE TM 的标准。简单连接COPS TM 流派控制的一系列数 据转换标准,也能简单连接标准转移寄存器或微处理器。 ADC08034和ADC08038提供一个2.6V 中断源参考材料,为装置提供保障 的电压参考温。以 ADC08031/ADC08034和ADC08038为特点,一个跟踪/控制 功能允许在现实A/D 转换中在正极输入多种模拟电压。模拟输入被装置成操作 各种但极点的有区别的,或假定一有区别的代码的混合体。总之,输入模拟跨度 最小1V 才能被容纳。 用途: 1, 使自动传感器数字化。 2,程序控制监督程序。 3,在噪音环境中有遥感功能。 4, 检测仪器。 5,测试系统。 6,嵌入式特征。 特征: 1,单任务处理器的数据连接要求少量的I/O 插口。 2, 模拟输入跟踪控制功能。 3, 2-,4-或8位输入多种逻辑地址的传输方式。 4, 0V~5V 模拟输入范围提供单极5V 电压。 5, 没有零或满的尺度判断要求。 6, TTL/CMOS 输入/输出兼容。 7, 在集成电路片上2.6V 中断源参考材料。 8, 0.3标准宽度.14或20个插口插入插件。 9, 20个插口的微型插件 码的规范: 关键字: register :寄存器 semic on ductor:微处理 器 diode :二极管 polarity :极性 circuitry :电路图 filt :过滤器 impedanee

微机原理课程综述

HEFEI UNIVERSITY 微型计算机原理与接口技术课程综述 系别电子信息与电气工程系 专业电气自动化 班级 09自动化1班 姓名王典 指导老师王敬生 完成时间 2012年1月1号

微型计算机原理及其接口技术课程综述 09自动化(1)班王典学号0905072002 摘要: 和串口通信和可编程接口芯片8251A等等内容。当今社会计算机领域发展十分迅速,随着计算机处理速度的更新换代频率越来越快,人类信息文明依然高度发达。作为一个当代大学生掌握计算机相关的知识时是很必要的。而要从基础入手去了解计算机的处理过程和运算规则,《原理以及接口技术》恰恰给了我们指引,引导我们从计算机的原理处去了解计算机系统整个的工作流程。微机原理与接口技术这门课程通过pc机及其兼容机的80X86 系列这个主线,分析了计算机的工作原理和接口技术,培养了我们对微型计算机应用系统的认知和分析的能力。本门课程主要内容包括:86系列微处理器芯片,汇编语言上的设计,存储器以及I/O接口和总线,微型计算机的中端系统、可编程计数/定时器8253及其应用、可编程外围接口芯片8255A及其应用 关键字:cpu 存储器总线汇编语言 正文: 一,计算机发展史: 1.第一代电子计算机 第一代电于计算机是从1946年至1958年。它们体积较大,运算速度较低,存储容量不大,而且价格昂贵。使用也不方便,为了解决一个问题,所编制的程序的复杂程度难以表述。这一代计算机主要用于科学计算,只在重要部门或科学研究部门使用。 第二代电子计算机,第二代计算机是从1958年到1965年,它们全部采用晶体管作为电子器件,其运算速度比第一代计算机的速度提高了近百倍,体积为原来的几十分之一。在软件方面开始使用计算机算法语言。这一代计算机不仅用于科学计算,还用于数据处理和事务处理及工业控制。 第三代计算机是从1965年到1970年。这一时期的主要特征是以中、小规模集成电路为电子器件,并且出现操作系统,使计算机的功能越来越强,应用范围越来越广。它们不仅用于科学计算,还用于文字处理、企业管理、自动控制等领域,出现了计算机技术与通信技术相结合的信息管理系统,可用于生产管理、交通管理、情报检索等领域。 第四代计算机是指从1970年以后采用大规模集成电路(LSI)和超大规模集成电路(VLSI)为主要电子器件制成的计算机。例如80386微处理器,在面积

机器人(系统)综述报告

机器人综述 1、机器人定义 机器人,20世纪人类最伟大的发明之一,它的研究对人类有很大的实用价值且其应用领域十分广泛。自机器人提出以来,由于机器人的不断发展、新的机型不断涌现且人们对机器人的认识不断深入,机器人没有统一的定义。1967年日本提了代表性的定义:“机器人是一种具有移动性、个体性、智能性、通用性、作业性、信息性、有限性、半机械性、自动性、奴隶性等7个特征的柔性机器”。1988年法国的埃斯皮奥将机器人定义为:“机器人学是指设计能根据传感器信息实现预先规划好的系统,并以此系统的使用方法作为研究对象。”我国科学家对机器人的定义是:“机器人是一种自动化机器,所不同的是这种机器具备一些与人或生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器。”我们可以理解为机器人是用机械传动、现代微电子技术、传感器技术、自动控制技术、人工智能等高科技制造的一种能模仿人类或动物的某种技能的机械电子设备;它是在电子、机械及信息技术的基础上发展而来的,是高级整合哦、控制论、机械电子、计算机、材料和仿生学的产物。机器人学研究领域主要有:感知系统、机构设计及驱动、运动控制与规划、多机器人协作与控制、应用研究等。 2、机器人的分类 以环境角度分类,有两大类: 工业机器人:面向工业领域的多关节机械手或多自由度的机器人。

●特种机器人:用于非制造业并服务于人类的各种先进机器人。包 括:水下机器人、空间机器人、极限作业机器人、微机器人、建筑机器人、医疗机器人、采掘机器人、服务机器人、农业机器人、个人机器人、军用机器人、娱乐机器人等。 以机器人结构形式分类: 分类名称简要解释 操作型机器人能自动控制,可重复编程,多功能,有几个 自由度,可固定或运动,用于相关自动化系 统中。 程控型机器人按预先要求的顺序及条件,依次控制机器人 的机械动作。 示教型机器人通过引导或其它方式,先教会机器人动作, 输入工作程序,机器人则自动重复进行作业。 数控型机器人不必使机器人动作,通过数值、语言等对机 器人进行示教,机器人根据示教后的信息进 行作业。 感觉控制型机器人利用传感器获取的信息控制机器人的动作。 适应控制型机器人机器人能适应环境的变化,控制其自身的行 动。 学习控制型机器人机器人能“体会”工作的经验,具有一定的 学习功能,并将所“学”的经验用于工作中。 智能机器人以人工智能决定其行动的机器人。 以性能指标分类有: ●超大型机器人:负载能力在107 N以上。 ●大型机器人:负载能力:106--107 N,作业范围:102m2以上。 ●中型机器人:负载能力:105--106N,作业范围:1--102m2。 ●小型机器人:负载能力:1--105N,作业范围:0.1--1m2。 ●超小型机器人:负载能力:1N以下,作业范围:0.1m2以下。

微机电系统综述

微机电系统综述 摘要:微机电系统(MEMS)是在微电子技术的基础上兴起的一个多学科交叉的前沿领域,集中了当今科学技术发展的许多尖端成果,在汽车电子、航空航天、信息通讯、生物医学、自动控制、国防军工等领域应用前景广阔[1]。本文介绍了微机电系统起源及研究发展的背景,综述了微机电系统所涉及的器件设计、制作材料、制作工艺、封装与测试等关键技术,介绍了微机电系统在微传感器、微执行器、微机器人、微飞行器、微动力能源系统、微型生物芯片等方面的典型应用,大量先进的MEMS器件有望在未来几十年中从实验室推向实用化和产业化。 关键词:MEMS;微机械加工;封装;测试;应用 Abstract;Micro-electromechanical system(MEMS),developed on the basis of microelectronics,is a scientific research frontier of multidiscipline and assimilates the most advanced achievements in current research and development.MEMS extends into various fields with wide application prospects,such as automotive electronics, aeronautics and astronautics,information communication, biomedicine,auto-control and defense industry,and so on.This paper introduces the basic theory research of MEMS development and its background.Summarizes the key technologies of MEMS such as device design,fabricating material, machining processes ,micro-packaging and testing.Further more,the typical applications and latest development in fields including micro-sensor,micro-actuator,micro-robot,micro air vehicle,micro-power energy system,micro biological chip are discussed.A plenty of advanced MEMS devices would be put into practicality and industrialization from laboratory in recent decades. Keywords:micro-electromechanical system; micro -machining; package; testing; usage 1 引言 微机电系统简称为MEMS(Micro-Electro-Mechanical System),是利用微米/纳米技术,以微细加工为基础,将微传感器、微执行器和电子电路、微能源等组合在一起的微机电器件、装置或系统。它既可以根据电路信号的指令控制执行元件实现机械驱动,也可以利用传感器探测或接受外部信号。传感器转换后的信号经电路处理,再由执行器变为机械信号,完成执行命令[2]。基于其微细加工,可用于完成传统大尺寸所不能完成的任务,也可以把独立微器件,如微传感器或执行器直接嵌入到大尺寸系统中,以达到提高系统可靠性、降低成本、实现系统智能化和自动化的要求。 MEMS并非单纯是宏观机械的微小化,它的研究目标在于通过微型化、集成化来探索新原理、新功能的元件和系统,开辟一个新的科学技术领域和产业。微电子学、微机械学、微光学、微动

微处理器概述

第一章 冯诺依曼体系结构: 计算机应由运算器、控制器、存储器、输入设备、输出设备组成。 微处理器:mp 包括运算器和控制器,集成到一个芯片上是cpu, control processing unit。 运算器负责对信息进行处理和运算。 控制器负责根据程序的要求发出各种控制命令,协调各部件之间的工作。 存储器: 用来存放当前正字啊使用的或经常使用的程序、数据和运算结果。 分为ram(随机存储器)和rom(制度存储器) 微型计算机的主要性能: 字长:计算机内部一次可以处理的二进制的位数; 存储容量:衡量微型计算机中存储能力的指标; 运算速度:每秒能执行的质量条数; 外设扩展能力: 软件配置: 系统稳定性和兼容性: 常见CPU的位数: 4位:4004, 8位:8008,8080 16位:8086、8088,80286 32位:英特尔386,英特尔486,英特尔奔腾,英特尔高能奔腾,英特尔奔腾二,奔腾二至强,奔腾三,奔腾三至强,奔腾四 64位:至强,安腾,安腾二,奔腾M,奔腾D,Core 2 Duo 原码、反码、补码 原码就是将一个数转化为二进制数,最高位是符号位(负为1,正为0),机器内表示一个数存储原码的长度和机器字长一样,数值转化后不够机器字长的,以0补齐。 反码就是原码在符号位不变的前提下按位取反。

补码就是反码加一。 计算机常用编码 BCD码:计算机常用的是8421BCD码。 ASCII码:美国信息交换标准码。 汉字编码:信息交换用汉字编码。包括输入编码、内码、字形编码,分别用于汉字的输入、内部处理、输出。汉字的输入编码一般有数字编码、拼音码、字形编码三类。汉字的内码是用于汉字信息的存储、交换、检索等操作的机内代码。汉字字形编码是用来描述汉字字形的代码,是汉字的输出形式。

微处理器系统结构与嵌入式系统设计(第2版) 第5章答案

5.10 用16K×1位的DRAM芯片组成64K×8位存储器,要求: (1) 画出该存储器的组成逻辑框图。 (2) 设存储器读/写周期为0.5μS, CPU在1μS内至少要访问一次。试问采用哪种刷新方式比较合理?两次刷新的最大时间间隔是多少?对全部存储单元刷新一遍所需的实际刷新时间是多少? (1)组建存储器共需DRAM芯片数N=(64K*8)/(16K*1)=4*8(片)。 每8片组成16K×8位的存储区,A13~A0作为片内地址,用A15、A14经2:4译码器产生片选信号,逻辑框图如下(图有误:应该每组8片,每片数据线为1根) (2)设16K×8位存储芯片的阵列结构为128行×128列,刷新周期为2ms。因为刷新每行需0.5μS,则两次(行)刷新的最大时间间隔应小于: 为保证在每个1μS内都留出0.5μS给CPU访问内存,因此该DRAM适合采用分散式或异步式刷新方式,而不能采用集中式刷新方式。 ●若采用分散刷新方式,则每个存储器读/写周期可视为1μS,前0.5μS用于读写,后 0.5μS用于刷新。相当于每1μS刷新一行,刷完一遍需要128×1μS=128μS,满足刷新周期小于2ms的要求; ●若采用异步刷新方式,则应保证两次刷新的时间间隔小于15.5μS。如每隔14个读写周期刷新一行,相当于每15μS刷新一行,刷完一遍需要128×15μS=1920μS,满足刷新周期小于2ms的要求; 需要补充的知识: 刷新周期:从上一次对整个存储器刷新结束到下一次对整个存储器全部刷新一遍为止的时间间隔。刷新周期通常可以是2ms,4ms或8ms。 DRAM一般是按行刷新,常用的刷新方式包括: ●集中式:正常读/写操作与刷新操作分开进行,刷新集中完成。

计算机组成原理课程综述类论文—

合肥学院 计算机组成原理综述论文 题目计算机组成原理课程综述 系部计算机科学与技术系 专业 班级 学生姓名 指导教师张向东 2016 年 6 月 1 日

计算机组成原理课程综述 内容摘要: 计算机组成原理是计算机专业一门重要的主干课程,以数字逻辑为基础的课程。同时也是计算机结构、操作系统等专业课的学习基础。课程任务是使学生掌握计算机组成部件的工作原理、逻辑实现、设计方法及将各部件接连成整机的方法,建立CPU级和硬件系统级的整机概念,培养学生对计算机硬件系统的分析、开发与设计能力。同时该课程也是学好计算机硬件系列课程的重要基础。所以,我们需要了解计算机的基本概念、计算机硬件系统以及软件系统的组成及其基本功能。学习计算机的各个基本组成部件及控制单元的工作原理,掌握有关软件、硬件的基本知识,尤其是各基本组成部件有机连接构成整机的方法。 关键词:计算机系统硬件结构软件结构控制单元 一、计算机组成原理课程综述 顾名思义计算机组成原理就是介绍计算机的组成,冯-诺依曼计算机由五大部件组成,分别是运算器、存储器、控制器、输入设备和输出设备。现今绝大部门都是此类型计算机。通过对这么课的学习对计算机的组成有个整体的概念。计算机组成原理从内容上看一、虽然计算机的五大部件自成体系,较为独立,但是从整体来看,还是具有明显的整体性;二、某些设计思想可应用于不同的部件,具有相通性,例如并行性思想。 二、课程主要内容和基本原理 (一)计算机系统 计算机系统是由“硬件”和“软件”两大部分组成。所谓硬件是指计算机的实体部分,它由看得见摸的着的各种电子元器件,各类光、电、机设备的实物组成,如主机、外部设备等。所谓软件,它看不见摸不着,由人们事先编制的具有各类特殊功能的程序组成。通常把这些程序寄寓于各类媒体(如RAM、ROM、磁带、磁盘、光盘、甚至纸袋),他们通常存放在计算机的主存或辅存内。 (二)系统总线 计算机系统的五大部件之间的互连方式有两种,一种是各部件之间使用单独的连线,称

智能仪器仪表综述

智能仪器综述 智能仪器是指内含微处理器的新型仪器。它集合了计算机技术和测控技术,具有一定的人的智能特性,诸如数据记忆及处理、逻辑判断、自检验、自校正、灵活反应、故障判断、寿命预测等功能。 1.智能仪器典型功能 (1)硬件故障的自检功能。自检功能是指利用事先编制好的检测程序对仪器主要部件进行自动检测,并对故障进行定位。自检方式有三种类型,分别为开机自检、周期性自检和键盘自检。 (2)自动测量功能。智能仪器通常具有非线性校正、自动零点调整、自动量程变换以及自动触发电平调节等自动调节功能。 (3)能够处理数据。数据处理是智能仪器相比传统仪器所具有的优势,由于微控设备以及单片机的存在使得相对于传统的逻辑硬件在处理信号以及数据上更加的灵活,很多逻辑硬件无法做到的事情通过智能仪器在软件的控制下灵活的解决。 (4)自动化的操控手段。整个系统在控制上都是由单片机或者是微控设备进行操作和控制的,诸如:量程的选择以及开关的控制,采集数据以及扫描,数据的处理传输和打印显示等动作,都可以通过智能仪器实现自动化。 (5)具有可程控操作能力。一般的智能仪器都有GPIB或RS232C、USB等标准通信接口,可以很方便地与计算机联系,接收计算机的命令,使其具有可程控操作的功能。也可以与其他系统一起组成多功能的自动测试系统,从而完成更复杂的测试任务。这不仅简化了组建过程,降低了成本,还提高了效率。 (6)参数的整定与修改实时化。随着各种现场可编程器件和在线编程技术的发展,仪器仪表的参数甚至结构不必在系统设计时就确定,而是可以在仪器使用的现场实时置人和动态修改。参数的在线动态修改以及结构设计的灵活性,从而保证了后期仪器仪表系统在不改变设备硬件的前提下,由系统软件的升级换代就能实现整个系统的不断升级与更新换代。 2.智能仪器设计方法 (1)开发过程与文档合一

微处理器系统结构与嵌入式系统设计(第二版)答案全

微处理器系统结构与嵌入式系统设计(第二版)答案全

一 1.2 以集成电路级别而言,计算机系统的三个主要组成部分是什么? 中央处理器、存储器芯片、总线接口芯片 1.3 阐述摩尔定律。 每18个月,芯片的晶体管密度提高一倍,运算性能提高一倍,而价格下降一半。 1.5 什么是SoC?什么是IP核,它有哪几种实现形式? SoC:系统级芯片、片上系统、系统芯片、系统集成芯片或系统芯片集等,从应用开发角度出发,其主要含义是指单芯片上集成微电子应用产品所需的所有功能系统。 IP核:满足特定的规范和要求,并且能够在设计中反复进行复用的功能模块。它有软核、硬核和固核三种实现形式。 1.8 什么是嵌入式系统?嵌入式系统的主要特点有哪些? 概念:以应用为中心,以计算机技术为基础,软硬件可裁剪,适应应用系统对功能、可靠性、成本、体积和功耗的严格要求的专用计算机系统,即“嵌入到应用对象体系中的专用计算机系统”。 特点:1、嵌入式系统通常是面向特定应用的。 2、嵌入式系统式将先进的计算机技术、半导体技术和电子技术与各个行业的具体应用相结合的产物。 3、嵌入式系统的硬件和软件都必须高效率地设计,量体裁衣、去除冗余,力争在同样的硅片面积上实现更高的性能。

4、嵌入式处理器的应用软件是实现嵌入式系统功能的关键,对嵌入式处理器系统软件和应用软件的要求也和通用计算机有以下不同点。 ①软件要求固体化,大多数嵌入式系统的软件固化在只读存储器中; ②要求高质量、高可靠性的软件代码; ③许多应用中要求系统软件具有实时处理能力。 5、嵌入式系统和具体应用有机的结合在一起,它的升级换代也是和具体产品同步进行的,因此嵌入式系统产品一旦进入市场,就具有较长的生命周期。 6、嵌入式系统本身不具备自开发能力,设计完成以后用户通常也不能对其中的程序功能进行修改,必须有一套开发工具和环境才能进行开发。 二 2.2 完成下列逻辑运算 (1)101+1.01 = 110.01 (2)1010.001-10.1 = 111.101 (3)-1011.0110 1-1.1001 = -1100.1111 1 (4)10.1101-1.1001 = 1.01 (5)110011/11 = 10001 (6)(-101.01)/(-0.1) = 1010.1 2.3 完成下列逻辑运算 (1)1011 0101∨1111 0000 = 1111 0101 (2)1101 0001∧1010 1011 = 1000 0001 (3)1010 1011⊕0001 1100 = 1011 0111

相关主题
文本预览
相关文档 最新文档