当前位置:文档之家› 催化剂表征测试

催化剂表征测试

催化剂表征测试
催化剂表征测试

“X射线”是德国物理学家伦琴(Roentgen)于1895年11月8日发现,并很快以“论一种新射线”为题发

点阵常数:a, b, c棱边夹角: α, β, γ正交点阵中一些晶面的面指数

C B

θθD

JCPDS《粉末衍射卡片集》ZSM-5

同θ角对试样进行扫描, 记录l ~2θ的变化.

X射线粉末衍射仪

日本理学(RIGAKU)

电机株式会社

D/Max 2000 X射线

衍射仪

:晶体绕垂直轴转动的圆;

圆: 带动计数器转动的圆。四圆衍射仪结构示意

德国Bruker公司Smart 1000 CCD X-射线单晶衍射仪

固体催化剂表征技术论文

固体催化剂表征技术论文题目X射线衍射仪(XRD)在催化剂表 征中的应用 征技术中的应用 学院 专业 姓名 学号 指导教师

X射线衍射仪(XRD)在催化剂表征技术中的应用 摘要:本文简单介绍了X射线衍射仪的工作原理,并就其在催化剂研究中的表征技术,对其进行举例说明。 关键词:XRD;催化剂;衍射峰;谱图 一、XRD的工作原理 ⑴、光的衍射现象光是具有波粒二象性的,X射线也是一种光波,因此它也有波粒二象性。波有衍射现象,所以X射线也会发生衍射现象。 X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。 ⑵、布拉格公式[1] 如果用X射线照射某 个晶体,其情况如图所示: 图中黑点表示晶体的晶格质点(原子、分子或离子)。当X射线刚好打在晶体最表面一层的质点上时,入射角为θ,会以同样的角度反射出去。当第二束X射线以同样的角度θ打击晶体时,最表面一层若没有质点和它相碰撞,而恰好打在晶体第二层质点上,也会以同样的角度反射出去。同理,其他X射线打在第三层、…等质点上,也是同样的现象。 这两束X射线的光程相差应为MB+NB。因此:MB=KBcos(90°‐θ) NB=KBcos(90°‐θ)

所以光程差:MB+NB=2KB cos(90°‐θ)=2K B sinθ,设KB=d,即MB+NB=2dsinθ当光程差刚好为波长的整倍数时,这两个X射线的强度便会得到最大的加强,即nλ=2dsinθ n=0,1,2、… 这就是布拉格公式,θ称为布拉格角。 二、X射线衍射仪在催化剂研究中的应用实例 (1)高比表面积Cr2O3-α-AlF3催化剂的XRD表征[2] X射线粉末衍射(XRD)实验:在PANalytical公司的X′Pert PRO MPD型X射线衍射仪上进行。以Cu-Kα为射线源,管电压为40kV,管电流为40mA,扫描速率为0. 3(°)?min-1,扫描范围10°~90°(2θ)。 对每一步所制备的催化剂进行X射线衍射(XRD)技术表征研究如下: 图1.XRD patterns of samples represented in the synthesis procedure DF表示Cr2O3-γ-Al2O3与HF直接氟化 图1中,我们发现在填满碳模板(C@Cr2O3-γ-Al2O3)后,γ-Al2O3结晶相没有发生变化。当C@Cr2O3-γ-Al2O3氟化后,从谱图中可清楚地观察到α-AlF3的衍射

催化剂表征与测试

Sieving 筛分法Optical microscopy 光学显微镜法Scanning electron microscopy 扫描电镜法Transmission electron microscopy (TEM) 透射电镜法Scanning TEM (STEM) 扫描透射电镜法Scanning tunneling microscopy (STM) 扫描隧道显微镜Scanning force microscopy (SFM) 扫描力显微镜Gravitaional sedimentation 重力沉降法Resistive pulsed 电阻法 Light obscuration 光透法Fraunhofer diffraction 夫琅和费衍射法Cetrifugal sedimentation 离心沉降法Photon correlation spectroscopy(PCS) 光子相关光谱分析法Hydrodynamic chromatography(HCD) 流动色层分析法Field flow fractionation(FFF) 场流分离法 BET method BET法 Small angle X-ray scatiering(XSAS) X-射线小角度散射法Chemisorption 化学吸附法Adsorption-Titration method 吸附-滴定法Mercury porosimetry 压汞法

Incipient wetness 初湿含浸法Permeametry 渗透测粒法Counterdiffusion 反扩散法 Small angle neutron scatiering(NSAS) 中子小角散射法Volumetric adsorption 体积吸附法Gravimetric adsorption 重量吸附法Dynamic adsorption 动态吸附法Calorimetry 量热法 IR-spectroscopy 红外光谱法Raman spectroscopy 拉曼光谱法 UV-Vis spectroscopy 紫外-可见光光谱法Mass spectrometry 质谱 Atomic absorption spectroscopy (AAS)原子吸收光谱Auger electron spectroscopy (AES) 俄歇电子能谱Electron spectroscopy for chemical analysis (ESCA) 化学分析电子能谱 X-ray photoelectron spectroscopy (XPS)X 射线电子能谱 Uv-photoelectron spectroscopy (UPS)紫外光电子能谱Energy dispersive spectroscopy (EDS) 能量色散谱Wavelength dispersive spectroscopy (WDS) 波长分散谱Mossbauer spectroscopy 穆斯堡尔谱Electron spin resonance (ESR) 电子自旋共振Electron Paramagnetic Resonance(EPR) 电子顺磁共振

金属氧化物催化剂的表征方法与工业应用实例

固体酸催化剂的表征方法与工业应用实例 表格1固体超强酸的酸性测定常用方法 侧定方法原理准确度及其它 Hammett指示剂法具有不同pK值的有机物在酸 性介质上反应而引起的颜色 变化 不适宜有色催化剂的侧定.该 方法在某些情况下具有不确 定性,必须用其它方法进行佐 证,才能得出最后结论 减性分子(如氨、毗咬、正丁胺等)的程序升温脱附(TPD) 碱性分子在不同中心上吸附 强度的差异导致其脱附温度 的不同,由此而形成的谱图。 强酸易导致吸附质的的分解, 欲用TPD表征固休超强酸的 酸性,需要找到一种拢氧化性 的适当的碱性探针分子。 特征吸附光谱法利用氨、毗嘴等吸附质与固体 表面的酸中心作用形成特征 频率的波谱,以此来区分不同 类型的酸中心 红外光谱法较常用,但难于准 确定量,电子自旋共振技术比 较繁琐但方法准确 分光光度法[8j 指示剂在不同酸介质中引起 的吸收波的转移 该法的关键是选择适当的指 示溶剂 模型反应 正丁烷或环己烷是相对德定 的分子,但固体超强酸能在室 温下使之发生骨架异构,用 IR鉴定异构产物.以此判断催 化剂是否是超强酸 易行且可靠 1.2 催化剂的表征 1.2.1 IR使用美国尼高力(Nicolet)公司Nexus-670傅里叶红外光谱仪,KBr压片. 1.2.2 Py-IR使用美国尼高力(Nicolet)公司Nexus 470傅里叶变换红外光谱仪(FT-IR),波数范围:4000 cm-1~400 cm-1(实测至1300 cm-1,CaF2窗),分辨率:4 cm-1,波数精度0.01 cm-1,扫描次数:32次. 1.2.3 XPS X光电子能谱测试在美国PHI 1600ESCA SYSTEM X光电子能谱图仪上进行.以MgKα线为X射线光源,光电子能量为1254 eV.真空室真空度10-7Pa,工作电压15 kV,能量标尺以污染碳(C1S,BE=284.6 eV)校正结合能数值,分析面积0.8 mm2,通过峰面积计算表面积含量. 2 结果和讨论 2.1 IR光谱研究催化剂酸性 K.Arata等〔7〕认为SO2-4/MXOY型固体超强酸中的活性中心是由氧化物表面的金属原子与高价硫配位形成的.金属原子与硫酸根双配位结合时有两种状态,即螯合双配位和桥式双配位,如图,一般认为表面SO2-4最高振动吸收峰位置在IR中1200 cm-1以上,是螯合双配位结合,在1200 cm-1以下是桥式双配位结合. 为了考察各因素对催化剂的影响,制备了一系列催化剂(SZSB系列),催化剂编号、组成及其硫含量、酯化率结果见表1,其中催化剂3和4即催化剂SZB-10和SZSB-11. 表1 催化剂组成及编号 Table1 Composition and serials of catalysts 催化剂编号催化剂组成制备条件硫含量/w%酯化率C% 1 S2O2-8/ZrO2-SiO20.75~0.0%(未焙烧) / 31.94

催化剂表征简称一览表

催化剂表征技术术语一览表 英文名称中文名称Sieving 筛分法 Optical microscopy 光学显微镜法Scanning electron microscopy 扫描电镜法Transmission electron microscopy (TEM) 透射电镜法 Scanning TEM (STEM) 扫描透射电镜法Scanning tunneling microscopy (STM) 扫描隧道显微镜Scanning force microscopy (SFM) 扫描力显微镜Gravitaional sedimentation 重力沉降法 Resistive pulsed 电阻法 Light obscuration 光透法 Fraunhofer diffraction 夫琅和费衍射法Cetrifugal sedimentation 离心沉降法 Photon correlation spectroscopy(PCS) 光子相关光谱分析法Hydrodynamic chromatography(HCD) 流动色层分析法 Field flow fractionation(FFF) 场流分离法 BET method BET法 Small angle X-ray scatiering(XSAS) X-射线小角度散射法Chemisorption 化学吸附法Adsorption-Titration method 吸附-滴定法 Mercury porosimetry 压汞法 Incipient wetness 初湿含浸法Permeametry 渗透测粒法Counterdiffusion 反扩散法 Small angle neutron scatiering(NSAS) 中子小角散射法Volumetric adsorption 体积吸附法Gravimetric adsorption 重量吸附法 Dynamic adsorption 动态吸附法Calorimetry 量热法 IR-spectroscopy 红外光谱法 Raman spectroscopy 拉曼光谱法 UV-Vis spectroscopy 紫外-可见光光谱法Mass spectrometry 质谱 Atomic absorption spectroscopy(AAS)原子吸收光谱 Auger electron spectroscopy (AES) 俄歇电子能谱

催化剂表征方法

表征方法仪器设备规格及使用条件在课题中的作用 物相分析(XRD)X光衍射仪采用D/Max2500VB2+/PC型X光衍射 仪,工作电流为200mA,工作电压40 kV,Cu靶。 1.在不同焙烧温度下(如550、800℃)对新鲜催化剂进行晶相分析, 对不同的新鲜催化剂进行晶相分析。 2.对添加了不同助剂的催化剂进行晶相分析。 3.根据其晶相衍射峰,衍射峰越窄,催化剂的结晶度越大。 新鲜催化剂的晶粒分 析(TEM) 透射电子显微镜 (TEM)在日立H-800型透射电子显微 镜下进行,新鲜催化剂首先在 50%H2/N2气氛下,800℃温度下还原 3小时后在透镜下直接观察催化剂的 表面镍晶粒,随机测量数百颗镍晶粒 最大直径,用统计的方法算出算术平 均直径作为镍晶粒的平均粒径。 对新鲜催化剂金属镍粒径大小进行分析。较小的镍粒径,有利于提 高催化剂的分散度,减少积碳的形成。 比表面分析(BET) 比表面分析仪(BET)在mireomerities-Tristar3000型 表面分析仪进行,采用液氮温度下N2 吸附法测得表面积。 采用BET对不同的新鲜催化剂(不同温度下的同种催化剂、不同种 类的催化剂、是否添加助剂)的比表面积进行表征,催化剂的比表 面积越大,其催化反应的活性就越高。 表面分析(XPS) X射线光电子能谱仪采用ESCALAB 250型X 射线光电子 能谱仪上进行,AlKα射线为激发源, 以污染碳C1s 电子结合能(E b=284.8 eV)为内标进行校正。 对不同焙烧温度下(主要为550、370、570℃)的催化剂进行扫描, 知道催化剂表面的主要组成元素,对照相应的TPO图,根据催化剂 表面C1s的XPS谱,可得出其电子结合能,以此分析催化剂表面的 积碳组成成分。 升温氧化/积碳差热分析(TPO/DTA)TGA-2050型热分析 仪、DTAS型热分析 仪 (TPO)在TGA–2050型热分析仪进行, 测定时样品在空气氛围中以10 ℃ /min 速率升温至920 ℃。 (DTA)在DTAS型热分析仪进行,测定 时样品在空气/氮气氛围中以10℃ /min的速率升温至800℃。 对反应30min后的催化剂(不同温度下的同种催化剂、不同种类的 催化剂、是否添加助剂)表面进行TPO实验,根据催化剂的TPO 曲线和在空气/氮气下的DTA曲线,对照其DTG曲线,研究积碳的 形成机理。

催化剂表征

催化剂: 在化学反应里能改变反应物化学反应速率而不改变化学平衡,且本身的质量和化学性质在化学反应前后都没有发生改变的物质叫催化剂。据统计,约有90%以上的工业过程中使用催化剂,如化工、石化、生化、环保等。催化剂种类繁多,按状态可分为液体催化剂和固体催化剂;按反应体系的相态分为均相催化剂和多相催化剂,均相催化剂有酸、碱、可溶性过渡金属化合物和过氧化物催化剂。 催化剂表征: 《催化剂表征》是2008年华东理工大学出版社出版的图书,作者是王幸宜。本书介绍了催化剂表征中所采用的各种传统的、经典的以及近代的技术和方法。 内容简介: 《催化剂表征》以大量的应用实例为根基详细介绍催化剂常用的表征技术。其中对于催化剂微观性质与性能的表征又分为表面性质和体相性质两方面。在此章中,对各种表征技术和方法的适用范围、优点以及缺点作了详细的总结与归纳,同时也对同类表征技术作了详细的比较。第2章至第11章对各种具体的表征技术在催化研究中的应用作了详细介绍,此部分主要以基础理论为辅、以实例为主向读者传达各种表征方法可以用来获取催化剂的何种性质。第12章介绍了目前催化剂表征技术中被认为最有发展前途的原位技术。 《催化剂表征》可供从事催化研究的工作者和高等院校催化专业的教师阅读、参考。《催化剂表征》尤其适合催化专业的研究生、本

科生将其作为教材及参考书来使用。 目录: 第l章催化剂表征 第2章低温物理吸附技术 第3章电镜技术 第4章热分析技术 第5章程序升温分析技术 第6章多晶x射线衍射技术 第7章电子能谱法 第8章分子光谱技术 第9章紫外漫反射光谱技术 第10章核磁共振技术 第11章电子顺磁共振技术 第12章原位技术 参考文献

催化剂表征技术

催化剂的表征技术;即特性的描述。采用现代科学手段与现代分析仪器,对一种物 质进行物理化学鉴定、鉴别等一系列特性及特征的描述。表征用Characterization 来表示。 4.1 电镜技术4.2 X射线衍射4.3 全自动比表面及孔隙度分析仪 4.4 X射线光电子谱(XPS)4.5 热分析技术4.6 激光拉曼技术4.7 程序升温分析技术4.8 红外吸附4.1 电镜技术 电镜技术主要用于测量材料的颗粒度、粒径及分散性,可观察到样品表面的微细形态结构。 第一代光学显微镜 它使人类“看”到了致病的细菌、微生物和微米级的微小物体,对社会的发展起了巨大的促进作用,至今仍是主要的显微工具。 第二代电子显微镜 20世纪三十年代早期卢斯卡(E. Ruska)发明了电子显微镜。使人类能“看”到病毒等亚微米的物体,它与光学显微镜一起成了微电子技术的基本工具。 第三代扫描探针显微镜(纳米显微镜) 1981年比尼格和罗勒尔发明了扫描隧道显微镜(STM),使人类观察到单个原子。1985年比尼格发明了具有原子分辨率、可适用于非导电样品的原子力显微镜(AFM)。STM与AFM 一起构建了扫描探针显微镜(SPM)系列。 使用SPM不仅能观察单个原子或分子,还能操纵单个原子或分子,人们称SPM是纳米世界的“眼”和“手”。比尼格、罗勒尔和卢斯卡分享了1986年的诺贝尔物理奖。 SEM (Scanning Electronic Microscopy) TEM (Transmission Electron Microscope) STM (Scanning Tunnelling Microscope) AFM (Atomic Force Microscope)

催化剂表征方法

1.2比表面测试 单位重量催化剂所具有的表面积称为比表面,其中具有活性的表面称活性比表面,也称 有效比表面。尽管催化剂的活性、选择性以及稳定性等主要取决于催化剂的化学结构,但其 在很大程度上也受到催化剂的某些物理性质如催化剂的表面积的影响。一般认为,催化剂表 面积越大,其上所含有的活性中心越多,催化剂的活性也越高。因此,测定、表征催化剂的 比表面对考察催化剂的活性等性能具有很大的意义和实际应用价值。 催化剂的表面积针对反应来说可以分为总比表面和活性比表面,总比表面可用物理吸附的方 法测定,而活性比表面则可采用化学吸附的方法测定。催化剂的比表面积的常见表征方法见 表2。 1.2.1 总表面积的测定 催化剂总表面积的测定目前所采用的方法基本上均为低温物理吸附法,而其中的BET法则更是推崇为催化剂表面积测定的标准方法。有关BET法的具体介绍见第二章,在此不展开讨论。 1.2.2 有效表面积的测定 BET法测定的是催化剂的总表面积。但是在实际应用中,催化剂的表面中通常只是其 中的一部分才具有活性,这部分称为活性表面。活性表面的面积测定通常采用“选择化学吸附”进行测定。如附载型金属催化剂,其上暴露的金属表面是催化活性的,以氢、一氧化碳 为吸附质进行选择化学吸附,即可测定活性金属表面积,因为氢、一氧化碳只与催化剂上的 金属发生化学吸附作用,而载体对这类气体的吸附可以忽略不计。同样,用碱性气体的选择 化学吸附可测定催化剂上酸性中心所具有的表面积。表2列出了用于测定催化剂比表面积的 常见方法。 表2 催化剂比表面表征

(1)金属催化剂有效表面积测定[17-19] 金属表面积的测定方法很多,有X-射线谱线加宽法、X-射线小角度法、电子显微镜法、BET真空容量法及化学吸附法等。其中以化学吸附法应用较为普遍,局限性也最小。所谓化学吸附法即某些探针分子气体(CO、H2、O2等)能够选择地、瞬时地、不可逆地化学吸附在金属表面上,而不吸附在载体上。所吸附的气体在整个金属表面上生成一单分子层,并且这些气体在金属表面上的化学吸附有比较确定的计量关系,通过测定这些气体在金属表面上的化学吸附量即可计算出金属表面积。下面对经常采用的某些探针分子气体的化学吸附法作简单的介绍: (a)H2吸附法 H2吸附法的关键在于使催化剂表面吸附的H原子达到饱和,由于形成H2饱和吸附的条件比较苛刻,H2的程序升温脱附不能在常压反应器中进行,因此限制了该法的应用,而且不同的吸附压力和吸附时间下得到的饱和吸附量不同,从而影响了测量的准确性。 (b)其它吸附法 化学吸附法除了最常用的H2吸附法外,常见的吸附法还有CO吸附法、O2吸附法、N2O吸附法、CO吸附法等,其中N2O吸附法最近又发展了很多更为实用的技术如(a)量热法;(b)脉冲色谱法;(c)前沿反应色谱法;(d)容量法。CO吸附法、O2吸附量热法、N2O吸附法用于表面积测试一般情况下不如H2吸附法,得到的结果也没有H2吸附法令人满意,因为这些气体生成单层和化学吸附的化学计量比都不容易控制。但是,这些方法在某些特殊情况下具有很大的应用价值。如,O2吸附法对于不容易化学吸附氢或一氧化碳的金属则比较有价值,而且氧化学吸附脉冲色谱法不仅不需要高真空装置,而且操作简便、快速、灵敏度高;CO吸附法对于容易生成羰基化合物的金属则不适宜;N2O吸附法是测定负载型铜和银催化剂中金属表面积的优选方法。 (c)吸附-滴定法 只要化学计量比是已知和可以重现的,则吸附物种和气相物种之间的反应可以用来测定表面积。 最常采用的是H2-O2滴定法,该法用于Pt负载催化剂的表面积测试最为有效,其用于非负载型金属粉末也只能严格地看作氢化学吸附法的代用方法,因为金属粉末要得到完全洁净而无烧结的表面存在着严重的困难。滴定方法有价值的第二种场合是双金属催化剂,其中反应籍以进行的条件可能强烈的与化学吸附成分所处的金属组分的本性有关。这可供区别组分之用。 表面氢氧滴定也是一种选择吸附测定活性表面积的方法。先让催化剂吸附氧,然后再吸附氢、吸附的氢与氧反应生成水。由消耗的氢按比例推出吸附的氧的量。从氧的量算出吸附中心数,由此数乘上吸附中心的截面积,即得活性表面积。当然做这种计算的先决条件是先吸附的氧只与活性中心发生吸附作用。 (2)氧化物催化剂有效表面积测定 如果只存在单独一种氧化物组分,显然表面积(总表面积)最好用物理吸附(BET)来测定。然而如果在催化剂中不止存在—种组份就具有在其他氧化物或金属组分存在下,选择性地测定指定氧化物表面积的问题。 1.3孔结构 孔结构的表征主要包括孔径、孔径分布、孔容和孔隙率等几个方面,其表征方法很多(主要表征方法见表1),需根据孔结构的类型具体确定。在众多表征方法中则属N2低温物理吸附法最为常用。

催化剂表征与测试

A 、体相组成与结构 体相组成:XRF 、AAS 物相分析: XRD :晶体结构 DTA :记录样品与参比物温差随温度变 化曲线,吸热为负峰,放热为正峰 TG :样品质量随温度变化曲线 B 、比表面与孔结构 BET(压汞法) C 、活性表面、分散度(XR D 、Chemisorption 、TEM) D 、表面组成与表面结构 H2-O2滴定:H2吸附饱和后用O2滴定或O2吸附饱和后用H2滴定 XPS :表面组成 LEED :表面结构排列 E 、酸碱性 TPD;IR F 、氧化还原性 TPR TPO TPSR :表面吸附物种与载气中反应物发生反应并脱附 比表面积 转化率比活性= 3、X-射线衍射(XRD ) 作用 a 、物相的鉴定、物相分析及晶胞参数的确定 b 、确定晶粒大小,研究分散度 c 、研究处理条件对催化剂微观结构的影响 原理:2dsin θ = n λ 例:XRD 物相分析 每种晶体都有它自己的晶面间距d ,而且其中原子按照一定的方式排布着。这反映在衍射图上各种晶体的谱线有它自己特定的位置、数目和强度I 。因此,只须将未知样品衍射图中各谱线测定的角度θ及强度I 去和已知样品所得的谱线进行比较就可以达到物相分析的目的。 XRD 测定平均晶粒度的测定 hkl hkl k D θβλcos = 4、透射电镜(TEM ) 作用 ? 1、催化剂物性的检测 ? a 、物相鉴别 ? b 、粒子(或晶粒)大小及其分布的测定 ? c 、孔结构的观察

? 2、研究负载型催化剂——金属分散度 ? 3、催化剂制备过程研究 ? 4、催化剂失活、再生研究 基本原理 ? 以波长极短的电子束代替可见光,照射厚度在50nm 的超薄切片上,透过样品的电 子束通过多级电磁透镜聚集,放大成TEM 图像 使用电镜的电子衍射功能可以判断样品的结晶状态 5、扫描电镜(SEM ) 特点: 1、能够以较高的分辨率和很大的景深清晰地显示粗糙样品的表面形貌,是进行试样表面形貌分析的有效工具; 2、与能谱(EDS ,WDS)组合,又可以以多种方式给出试样表面微区成份等信息。 原理 电子探针的入射电子与样品作用时,由于样品表面特征(形貌结构、原子序数、晶体结构等)不同,各处被激发的二次电子数不同,从而形成明暗不同的反差。 6、热分析(TA ) ? 定义 ? 热分析是通过测定物质加热或冷却过程中物理性质(目前主要是重量和能量)的变 化来研究物质性质及其变化,或者对物质进行分析鉴别的一种技术。应用最广泛的方法是热重(TG )和差 ? 热分析(DTA ) 7、光电子能谱(XPS ) 最常用的表面能谱之一。因最初以化学领域应用为主要目标,故又称为化学分析用电子能谱法(ESCA)。XPS 采用软X-射线(E<5Kev)照射被测样品,使被测样品中的金属原子核外电子(通常是内层电子)受激发射,研究受激发射电子的结合能的一种表征手段。具有较好的分辨率和较高的灵敏度。 基本原理 k b E hv E -= 入射X 光子能量已知,这样,如果测出电子的动能Ek ,便可得到固体样品电子的结合能。各种原子,分子的轨道电子结合能是一定的。因此,通过测定样品产生的光 子的能量,就可以了解样品中元素的组成。 由于XPS 是一种表面分析技术,不可能接受到催化剂小孔内的活性组分的信息,因此,它所测得的活性组分的峰强不仅与活性组分的分散度有关,而且还与活性组分在载体表面上的分布有关。只有当活性组分在载体的孔内外分布都是均匀的时候,测出的结果才比较可靠。 8、红外(IR ) ? 作用

催化剂表征方法

负载型金属催化剂Au/CeO的结构表征2摘要:本文主要利用一些常用的方法制备Au/CeO催化剂,并且 2通过X-射线衍射法(XRD),程序升温还原(H2-TPR),CO-红外吸收光谱(C0-FTIP),透射电子显微镜(TEM)等表征方法对该催化剂进行表征。为更好地认识和使用负载型催化剂Au/CeO提供了可靠的依据。2关 键词:负载型催化剂,Au/CeO,结构表征。2 负载型金属簇催化剂以载体作为一个支撑平台,将具有催化活性

的金属尽可能均匀地分散于载体表面。这种催化剂有很多优点,金属多半能以微小晶体的形式,高度分散在载体的整个表面,从而产生较大的活性表面。分散于载体中的金属粒子愈小,暴露于表面的金属原子所占的比例愈大,愈有利于金属粒子与反应物的接触,从而提高了催化剂中金属活性组分的利用率。另外,载体还能改善反应热的散发,阻止金属微晶的烧结与由此产生的活性表面的降低等等。因此,负载型金属簇催化剂已广泛应用于石油炼制,汽车尾气转化,一氧化碳加氢,脂肪化合物加氢等催化反应过程中。大量的研究结果表明,负载金属催化剂表面金属粒子的结构与催化性能之间存在着密切的关系,所以运用各种物化表征方式准确地测定催化剂的表面结构是非常重 要的。本文对负载型金属簇催化剂的结构表征方法进行了综述,主要的结构表征方法包括X-射线衍射(XRD),扩展X-射线精细结构吸收谱(EXAFS),CO作探针的红外吸附光谱(C0-FTIR),X-射线光电子能 谱!(XPS)以及透射电子显微镜(TEM)等。 1.X-射线衍射法(XRD) X-射线衍射线宽分析(LBA)方法已被广泛用来表征负载型催化剂中金属晶粒的分散程度。利用LBA不仅可以根据Scherrer公式估计金属粒子的平均粒径,而且还可根据完全的线型分析确定晶粒的粒径分布和晶格变型情况。该方法适用于2-100nm之间晶粒的分析。X-射线粉末衍射(XRD)分析的样品在Rigaku 300 X -射线衍射仪上进行旋转阳极的发电机和一个单色探测器。使用铜Kα辐射。CeO的晶体尺2.寸和金计算的高峰期,扩大使用Scherrer公式。

催化剂的表征

负载型金属簇催化剂的结构及表征方法 郭兴龙2120111462 化学工程与技术生命学院 摘要:综述了XRD ,CO-FTIR ,EXAFS ,XPS ,HRTEM等物化方法在负载型金属簇催化 剂的结构性能(包括金属分散度、表面结构、电子状态)等方面的应用。为更好地认识和使用负载型金属簇催化剂提供了可靠的依据。 关键词:负载型金属;催化剂;结构;表征方法 负载型金属簇催化剂以载体作为一个支撑平台,将具有催化活性的金属尽可能均匀地分散于载体表面。这种催化剂有很多优点,金属多半能以微小晶体的形式,高度分散在载体的整个表面,从而产生较大的活性表面。分散于载体中的金属粒子愈小,暴露于表面的金属原子所占的比例愈大,愈有利于金属粒子与反应物的接触,从而提高了催化剂中金属活性组分的利用率。另外,载体还能改善反应热的散发,阻止金属微晶的烧结与由此产生的活性表面的降低等等因此,负载型金属簇催化剂已广泛应用于石油炼制,汽车尾气转化,一氧化碳加氢,脂肪化合物加氢等催化反应过程中。大量的研究结果表明,负载金属催化剂表面金属粒子的结构与催化性能之间存在着密切的关系,所以运用各种物化表征方式准确地测定催化剂的表面结构是非常重要的。本文对负载型金属簇催化剂的结构表征方法进行了综述,主要的结构表征方法包括:X-射线衍射( XRD) ,扩展X-射线精细结构吸收谱(EXAFS) ,CO作探针的红外吸附光谱(CO-FTIR) , X-射线光电子能谱(XPS)以及透射电子显微镜(TEM)等。 一、X-射线衍射法(XRD) X-射线衍射线宽分析(LBA)方法已被广泛用来表征负载型催化剂中金属晶粒的分散程度。利用LBA不仅可以根据Scherrer公式估计金属粒子的平均粒径,而且还可根据完全的线型分析确定晶粒的粒径分布和晶格变型情况[ 1 ]。该方法适用于2~100 nm之间晶粒的分析。 以嵌入Y型沸石的Pd簇的研究为例[ 2 ],说明XRD用于表征负载金属簇催化剂中金属粒子分布的情况以及粗略地判断负载型金属簇中簇的大小。当Pd 簇中有大的Pd 粒子出现时,在样品衍射峰中除Y型分子筛的晶相外,还会出现金属Pd的尖峰(2θ为40. 0°处) ,由此可以说 明沸石外表面聚集有大颗粒。如果2θ为40. 0°的位置并未出现金属Pd的尖峰,而且其半峰宽很宽,依多晶X-射线衍射理论,粒子越小,衍射峰半峰宽越宽。当粒子小到只有几十个原子时(常称“簇合物”) ,XRD图上对应的弥散的衍射峰基本消失。 二、扩展X-射线吸收精细结构(EXAFS) 研究表明,活性组分的分散程度及其与载体的相互作用对活性和选择性有很大影响。分散程度高的小原子簇,表现出与大颗粒材料完全不同的催化性能。对于负载在载体上的高分散金属簇催化剂,当金属原子簇粒径小于2 nm 时,已不存在长程有序的晶体结构,电镜和X-射线粉末衍射法等结构分析手段几乎提供不了有价值的结构信息,EXAFS则不受这些条件的限制[3 ,4 ] 。 EXAFS原理[4]较为简单。当X-射线光子被原子吸收时,从原子K层射出光电子,形成出射光电子波。如果吸收原子周围没有其它原子,出射光电子波将远离吸收原子传播,不会产生EXAFS.如果吸收原子近邻有其它原子围绕,就象在多原子分子气体或凝聚态物质中那样,出射光电子波将受到周围原子的散射,产生背散射光电子波(见文献[4]) ,散射波与出射波在吸收原子处相干涉。当吸收原子周围的环境一定时,改变X-射线光子的能量,也就是改变光电

催化剂特性表征方法

X射线CT成像、μ-XRF、μ-XRD和XANES技术在催化剂分析中的应用 催化剂在工业上的应用使得经济生产总值提升了35%,90%的化学反应中需要采用催化剂,2010年催化剂的产值高达到295亿美元。在能源和环境方面应用的催化剂价值以每年 6.6%速率在增长。巨大的应用价值吸引了众多科学家参与催化剂的研制。采用适当的分析技术对催化剂进行表征,使得催化剂在不同尺度的理化性质“可视化”。CT、XRF-CT、XRD-CT、XRD、μ-XRF、XANES 等先进的微观电子技术可以在更高的空间分辨率下研究结构催化剂的理化性质。 以生产合成气的主要工艺,甲烷蒸汽重整反应为例。催化剂必须同时满足三个条件(1)CH4的转化率高,制备合成气的选择性好;(2)在煅烧条件下稳定性好、抗氧化和防止碳沉积;(3)启动反应迅速。这些性能与催化剂载体和镀层的特性息息相关。尤其是剧烈的反应条件下载体3D结构的稳定性,涂层的均一性和附着强度,金属的形态等。所以成功的偏氧化结构型催化剂是涂层的化学性质、载体的形状和形貌,制备过程以及催化剂载体3D结构的综合作用的结果。 Francesco Basile等[1]采用X-CT技术对结构型催化剂进行分析,表明Fe/Cr/Al/Y金属泡沫基体是中空结构,如图1所示,孔隙直通表面,减少了反应过程中流体对载体产生的压力,增大比表面积。通过μ-XRF和μ-XRD技术相结合,同时获得元素含量和形态微区分布图,如图2、3所示。揭示催化层是由均匀分布的NiAlO2和非匀分布的NiO组成,催化层是沉积在金属基体上氧化出的Al2O3层上,而不是直接与金属基体相结合,增强了催化剂与基体的结合强度。NiAl2O4还原后得到的单质Ni 的晶粒尺寸不到10 nm, 分散性好、活性高, H2选择性好,有助于抑制副反应(CO2+H2=CO+H2O)的进行。NiAl2O4尖晶石相的形成有效地抑制了Ni 颗粒在反应条件下的烧结和长大,是改善催化剂性能的重要原因[2]。同时发现在催化层中夹杂了ZnO和CuO,可增加催化剂活性的。Patricia Benito等[3]人,采用μ-XRF/XANES相结合技术对电镀法制备的泡沫型铁铬合金载体结构型催化剂进行研究。μ-XRF分析结果表明电合成反应在载体内外表面同时发生,增加有效催化面积,并确定所有元素(Rh、Mg和Al)相间分布,浓度分布存在差异,这与SEM-EDS分析结果一致。通过XANES光谱分析拟合发现Rh在尖晶石结构中以Mg (RhxAl1?x)2O4形态存在,而不是Rh2O3形态存在。

催化剂性能表征

催化剂性能表征 催化剂性能优劣的判断指标。其中最主要的是动力学指标,对于固体催化剂还有宏观结构指标和微观结构指标。 催化剂性能的动力学表征衡量催化剂质量的最实用的三大指标,是由动力学方法测定的活性、选择性和稳定性。 活性催化剂提高化学反应速率的性能的一种定量的表征。在实际应用中,用特定条件下某一反应物的转化率或时空得率等数值来衡量它,选择性指催化剂对反应类型、复杂反应(平行或串联反应)的各个反应方向和产物结构的选择催化作用。分子筛催化剂对反应分子的形状还有择形选择性。催化剂的选择性通常用产率或选择率和选择性因子来量度稳定性指催化剂对温度、毒物、机械力、化学侵蚀、结焦积污等的抵抗能力,分别称为耐热稳定性、抗毒稳定性、机械稳定性、化学稳定性、抗污稳定性。这些稳定性都各有一些表征指标,而衡量催化剂稳定性的总指标通常以寿命表示。寿命是指催化剂能够维持一定活性和选择性水平的使用时间。催化剂每活化一次能够使用的时间称为单程寿命;多次失活再生而能使用的累计时间称为总寿命。 密度通常所说的密度ρ是质量m与其体积v之比,即ρ=m/v。然而,对于多孔性催化剂来说,因为颗粒堆集体积v′是由颗粒间的空隙体积v1、颗粒内的孔隙体积v2和颗粒真实的骨架体积v3三项共同组成的:v′=v1+v2+v3,所以同一个质量除以不同涵义的体积,便得堆集密度、颗粒密度、骨架密度。堆集密度ρ1是单位堆集体积的多孔性物质所具有的质量,即ρ1=m/(v1+v2+v3);颗粒密度ρ2是单位颗粒体积的物质具有的质量,即ρ2=

m/(v2+v3);骨架密度ρ3是单位骨架体积的物质具有的质量,即ρ3=m/v3。 测定堆集密度通常使用量筒法;颗粒密度则用汞置换法;骨架密度多用苯置换法或氦、氩、氮等置换法。 孔结构许多多孔性催化剂含有大量的微孔,宛如一块疏松的海绵。要使催化反应顺利进行,反应物与产物分子必须靠扩散才能自由出入微孔。描述微孔结构的主要参数有孔隙率、比孔容积、孔径分布、平均孔径等。 催化剂的孔隙容积与颗粒体积之比称为孔隙率;单位质量催化剂具有的孔隙容积称为比孔容。孔隙率的大小与孔径、比表面、机械强度有关,较理想的孔隙率多在0.4~0.6之间。用四氯化碳吸附法测定比孔容,方法简单,操作方便,一次可同时测定几个样品。理想的孔隙结构应当孔径大小相近、孔形规整。但是,除分子筛之类的物质外,绝大部分固体催化剂的孔径范围非常宽,而且比孔容按孔径分布的曲线可能出现若干个高峰。孔径分布一般用气体吸附法与压汞法联合测绘。硅胶等物质只有一个微孔体系,大部分孔径偏离中央平均值不远,可用平均孔半径(垝)代表孔径大小。其值可由实验测得的比孔容(v g)和比表面(s g)按下式计算:垝=2v g/s g。 比表面多孔性固体催化剂由微孔的孔壁构成巨大的表面积,为反应提供广阔的场地。1克催化剂所暴露的总表面积称为总比表面(简称比表面)。1克催化剂中活性组分暴露的表面积称为活性组分比表面。于是,催化剂的总表面积是活性组分、助催化剂、载体以及杂质各表面积的总和。 总比表面可用非选择性的物理吸附法测定,其中包括BET静态容量法(见彩图)、重量法和流动色谱热脱法、迎头法等。活性组分 固体催化剂的宏观结构和性能表征几何形状和粒度固体催化

红外光谱法用于固体催化剂表征

红外光谱法用于固体催化剂表征 董庆年 (中国科学院山西煤炭化学研究所,太原,030001) 一.序言 在非均相催化反应研究中,红外光谱法已成为常用手段之一。一般说来,这方面的工作主要集中在两个方面:1.研究催化反应机理。2.考察催化剂本身。但对复杂反应来说,红外光谱法用于前者往往受到限制,这是因为反应物、中间物以及最终产物的光谱叠加,大大增加了谱图解析的困难,再者,仪器的扫描速度也难以截获快速反应中寿命短促的中间物的信息,虽然“时间分辨光谱”附件的出现,已可使跟踪速度提高到微秒级,但对反应体系的苛刻要求,以及实验操作的复杂,又使一般实验室望而生畏。然而如果用红外光谱法来研究非均相过程中另一主角催化剂的表面微观状态,则困难往往要小得多。 这种观察固体催化剂表面微观状态的测定也称催化剂的表面表征,或简称催化剂表征。当用红外光谱法来进行这类表征时,不是直接测定催化剂本身的谱图,而是借助所谓的“探针分子”,用探针分子吸附物种的红外特征峰位置和强度来获得所需要的信息。 对探针分子的选择,一般要求其吸附态分子具有较高的稳定性,且其特征峰的吸收系数较大(灵敏度高)和不被催化剂本身吸收干扰的优点。目前常用的探针分子有:CO,NO,H2O,CO2,NH3,C5H5N(吡啶),HCOOH等,其中高纯CO由于价廉易得,在研究金属/金属氧化物催化剂时,尤为常用。 当选用CO作探针分子在催化剂表面作化学吸附时,有两个过程可能发生,即σ-给予(σ-donation)过程和π反馈(π-back donation)过程。 σ-给予过程发生在CO的5σ分子轨道〔“MO”(molecule orbit)〕和催化剂表面缺电子中心之间,由于CO 5σ-MO中的单独电子对与表面原子共享,将导致CO键增强,引起它的线型吸附态特征峰向高波数方向位移(兰移)。 所谓π反馈则发生在CO吸附在金属原子或金属离子上,其时,金属原子或离子上的d电子进入CO分子的2π*反键分子轨道(anti-bonding 2π*-MO),结果CO键减弱,它的线型吸附物种的特征峰移向低波数(红移)。 探针分子吡啶,NH3常用来表征催化剂的表面酸中心,这种表征方法的特点

催化剂表征 论文

催化剂性能表征 催化剂性能表征,指催化剂性能优劣的判断指标。其中最主要的是动力学指标,对于固体催化剂还有宏观结构指标和微观结构指标。 催化剂性能表征 催化剂性能的动力学表征衡量催化剂质量的最实用的三大指标,是由动力学方法测定的活性、选择性和稳定性。 活性催化剂提高化学反应速率的性能的一种定量的表征。在实际应用中,用特定条件下某一反应物的转化率或时空得率等数值来衡量它,例如下列反应: a A+ b B─→ c C+ d D A的转化率x A定义为: 式中n┱是反应前A的摩尔数;n A是反应后A的摩尔数。时空得率为单位体积催化剂上所得产物的重量,其单位为千克/(米3·小时)。这类数值与反应装置和条件有关,而且在给定条件下,若催化剂层存在着物理因素(传热、传质等)的影响,则其活性数值并不代表催化剂本身的本征活性。在理论研究中,常采用无物理因素影响的动力学参数(反应速率、反应速率常数、活化能等)来表征催化剂的活性。但反应速率和反应速率常数与催化剂计量的基准单位(表面积、体积、质量)有关。以表面积为基准的量分别称为表面比反应速率和表面比速率常数;以质量为基准的称为比反应速率或催化剂的比活性。反应速率常数的数值还与所用的速率方程的形式有关。随着对催化作用的活性中心认识的深入和测试方法的进步,已引用酶催化中的转化频率来表示一般催化剂的活性。其定义为单位时间内每个活性中心上起反应的次数或分子数。转化频率的数值也须注明温度、起始浓度或压力和反应度。 选择性指催化剂对反应类型、复杂反应(平行或串联反应)的各个反应方向和产物结构的选择催化作用。分子筛催化剂对反应分子的形状还有择形选择性。催化剂的选择性通常用产率或选择率和选择性因子来量度。对于前述反应式,目的产物C的产率s C定义为C 的摩尔数n C对已转化的反应物A的摩尔数n A之百分比,即: 式中a和c为常数。如果已知主、副反应的反应速率常数分别为k1和k2,则选择性用选择性因子s来表示,s=k1/k2。产率越高或选择性因子越大,则催化剂的选择性越好。 在实际应用中,还采用收率来综合衡量催化剂的活性和选择性。对于前述反应,C的收率Y C定义为: 显而易见,收率等于转化率和产率的乘积: Y C=x A·s C 稳定性指催化剂对温度、毒物、机械力、化学侵蚀、结焦积污等的抵抗能力,分别称为耐热稳定性、抗毒稳定性、机械稳定性、化学稳定性、抗污稳定性。这些稳定性都各有一些表征指标,而衡量催化剂稳定性的总指标通常以寿命表示。寿命是指催化剂能够维持一定活性和选择性水平的使用时间。催化剂每活化一次能够使用的时间称为单程寿命;多次失活再生而能使用的累计时间称为总寿命。

催化剂表征

1 形貌表征 3 Morphology controlled synthesis of metallic cobalt 5 内部介孔化ZSM -5 表面介孔化ZSM -5 常规ZSM -5 例2: 3.91 3.66 17.021.8 38.8 9.92 8.82 99.8 内部介孔化HZSM -5 10.12.6023.921.442.24.185.7299.6表面介孔化HZSM -5 3.665.7517.120.537.010.19.5599.6常规HZSM -5芳烃 C 5+b C 4H 8C 3H 6C 2H 4C 1?4a P/E 比 选择性(mol%)转化率 (%)催化剂 不同沸石催化剂样品的MTP 反应结果c a C 1?4饱和烃;b C 5及C 5以上烃类;c 反应条件:T = 470 o C, WHSV =1 h -1, PCH3OH = 0.5 atm, H 2O:CH 3OH = 1:1 ——谢在库等,中国石化上海石油化工研究院 6 具有高电化学活性的铂纳米粒子 分散于含氮纳米碳管表面 例3: 台湾纳米影相竞赛 TEM 组获奖作品

(001)Si 晶片表面制备的大面积蜂窝状排列氧化钛/氧化铝双相纳米结构阵列的TEM 照片及其对应的EDS -Linescan 分析結果 TEM 组获奖作品 8 超薄(~10nm)氮化铟片状生长形成的纳米花型结构 9 台湾纳米影相竞赛SEM 组获奖作品 例6: 在三种半导体基板上,蚀刻出來的纳米针尖阵列(Nanotips array) 直径= 100 ~200 nm, 长度= 1~2 μm 10 早期的光学显微镜 11 ?光源:可见光 (390nm -780nm) ?玻璃透镜 光学显微镜的主要特征

相关主题
文本预览
相关文档 最新文档