当前位置:文档之家› 催化剂的表征

催化剂的表征

催化剂的表征
催化剂的表征

负载型金属簇催化剂的结构及表征方法

郭兴龙2120111462 化学工程与技术生命学院

摘要:综述了XRD ,CO-FTIR ,EXAFS ,XPS ,HRTEM等物化方法在负载型金属簇催化

剂的结构性能(包括金属分散度、表面结构、电子状态)等方面的应用。为更好地认识和使用负载型金属簇催化剂提供了可靠的依据。

关键词:负载型金属;催化剂;结构;表征方法

负载型金属簇催化剂以载体作为一个支撑平台,将具有催化活性的金属尽可能均匀地分散于载体表面。这种催化剂有很多优点,金属多半能以微小晶体的形式,高度分散在载体的整个表面,从而产生较大的活性表面。分散于载体中的金属粒子愈小,暴露于表面的金属原子所占的比例愈大,愈有利于金属粒子与反应物的接触,从而提高了催化剂中金属活性组分的利用率。另外,载体还能改善反应热的散发,阻止金属微晶的烧结与由此产生的活性表面的降低等等因此,负载型金属簇催化剂已广泛应用于石油炼制,汽车尾气转化,一氧化碳加氢,脂肪化合物加氢等催化反应过程中。大量的研究结果表明,负载金属催化剂表面金属粒子的结构与催化性能之间存在着密切的关系,所以运用各种物化表征方式准确地测定催化剂的表面结构是非常重要的。本文对负载型金属簇催化剂的结构表征方法进行了综述,主要的结构表征方法包括:X-射线衍射( XRD) ,扩展X-射线精细结构吸收谱(EXAFS) ,CO作探针的红外吸附光谱(CO-FTIR) , X-射线光电子能谱(XPS)以及透射电子显微镜(TEM)等。

一、X-射线衍射法(XRD)

X-射线衍射线宽分析(LBA)方法已被广泛用来表征负载型催化剂中金属晶粒的分散程度。利用LBA不仅可以根据Scherrer公式估计金属粒子的平均粒径,而且还可根据完全的线型分析确定晶粒的粒径分布和晶格变型情况[ 1 ]。该方法适用于2~100 nm之间晶粒的分析。

以嵌入Y型沸石的Pd簇的研究为例[ 2 ],说明XRD用于表征负载金属簇催化剂中金属粒子分布的情况以及粗略地判断负载型金属簇中簇的大小。当Pd 簇中有大的Pd 粒子出现时,在样品衍射峰中除Y型分子筛的晶相外,还会出现金属Pd的尖峰(2θ为40. 0°处) ,由此可以说

明沸石外表面聚集有大颗粒。如果2θ为40. 0°的位置并未出现金属Pd的尖峰,而且其半峰宽很宽,依多晶X-射线衍射理论,粒子越小,衍射峰半峰宽越宽。当粒子小到只有几十个原子时(常称“簇合物”) ,XRD图上对应的弥散的衍射峰基本消失。

二、扩展X-射线吸收精细结构(EXAFS)

研究表明,活性组分的分散程度及其与载体的相互作用对活性和选择性有很大影响。分散程度高的小原子簇,表现出与大颗粒材料完全不同的催化性能。对于负载在载体上的高分散金属簇催化剂,当金属原子簇粒径小于2 nm 时,已不存在长程有序的晶体结构,电镜和X-射线粉末衍射法等结构分析手段几乎提供不了有价值的结构信息,EXAFS则不受这些条件的限制[3 ,4 ] 。

EXAFS原理[4]较为简单。当X-射线光子被原子吸收时,从原子K层射出光电子,形成出射光电子波。如果吸收原子周围没有其它原子,出射光电子波将远离吸收原子传播,不会产生EXAFS.如果吸收原子近邻有其它原子围绕,就象在多原子分子气体或凝聚态物质中那样,出射光电子波将受到周围原子的散射,产生背散射光电子波(见文献[4]) ,散射波与出射波在吸收原子处相干涉。当吸收原子周围的环境一定时,改变X-射线光子的能量,也就是改变光电

子的波长,出射和散射光电子波间的位相差随之变化,干涉的相消相长使吸收曲线出现振

荡现象,产生EXAFS.因此, EXAFS含有吸收原子周围原子的品种、数量、距离等信息。

EXAFS实验得到元素的吸收谱,经背景扣除、μ0拟合、E→K转换并加权后得到EXAFS函数χ( k)k2 通过Fourier 变换处理,在r空间各配位壳层的结构信息依次分开为相应的配位振幅峰,然后进行结构参数模拟计算得吸收原子近邻几个配位壳层配位原子种类、距离和配位数。EXAFS为揭示催化剂的微观结构,建立活性与结构的关系起了很重要的作用。

如前所述, EXAFS是叠加在平滑背底μ0上的振荡结构,起因于近邻壳层对中心出射光电子的散射,是多壳层正弦波的叠加,即

式中: Ni 为第i 壳层近邻配位数; Ri 为壳层间距;σ2i为德拜2瓦勒因子; Fi 为散射振幅;λ为平均自由程。

由此得到每一壳层(第i壳层) 独立的正弦波χi(k) ,同时得出相关的结构信息(壳层半径,配位数等)。研究接近吸收边界的吸收切面的振荡变化,可以提供催化剂中存在元素的三种类型的信息[5] ,即原子间距R;配位数N;Debye-Waller 因子σ2i. 显然,原子间距越小,则对应的金属簇粒度越小。不难理解, 配位数与粒度也成正比关系。而Debye-Waller 因子反映催化剂中金属粒子的无序度,受三个方面的影响:热无序性(样品分子热运动,受实验温度影响) ;结构无序性(吸收原子的静态无序) ;位无序性(吸收原子不同位的存在) 。文献[6]报道,相对较高的Δσ2可以作为金属粒子是否进入分子筛孔道的判据。

以负载型铂簇[7 ]为例,分别比较以NaMOR与SiO2作载体的负载金属簇中铂金属原子的配位数及德拜-瓦勒因子与金属粒度的关系(见表1) 。从表1可以看出,随铂粒子的减小,配位数减小,Δσ2却明显增大。显然,配位数越低意味着金属簇平均粒度越小;而较高的Δσ2是金属簇结构无序性的典型标志。

作为一项用途广泛的结构探测技术,EXAFS的不足在于它只能提供平均的结构信息[8 ]。从催化剂研究的角度说,EXAFS不能区分表面和体相的结构异同,所得的参数是所有粒子的平均结果,即得到的参数是各种结构可能性共存的多种参数的算术平均。例如,一个0. 19 nm 的键与5个0. 20 nm 的键混合为一个壳层时,只得到配位数为6和平均键长为0. 20 nm ,而根本看不到0. 19 nm 这个有特殊“意义”的情形。

三、CO-红外吸收光谱(CO-FTIR)

在负载型金属的各种表征手段中,红外吸收光谱是一种信息含量大且简便快速的方法

一。原位红外技术观察CO吸附态长期以来被用于表征负载型金属催化剂中金属粒子的电子状态及分散度。

通常,当CO吸附于铂金属簇催化剂上时,主要产生两个CO的吸附峰[9] :一个出现在2090 cm-1和2040 cm-1之间,归属为CO在金属原子上的线式吸附态; 另一个是大约为1860 cm-1和1780cm-1之间,归属为CO吸附在两个或多个金属原子上的桥式吸附态。CO桥式吸附态的峰强度一般比较弱。

根据CO吸附峰的位置可以考察催化剂金属粒子的分散情况。催化剂中金属分散度越高,即金属粒子越小,CO线式吸附峰对应波数越低。图2为CO在不同分散度的Pt/ Al2O3 催化剂上的红外吸附谱图[9]。从图2可以看出,随金属粒子分散度的增加,即n (H) / n ( Pt ) 从0. 09增加到0. 99 ,CO线式吸附峰频率从2098 cm- 1移向2073 cm-1. M. J .Kappers[10]利用Blyholder 的模型将催化剂金属分散度与CO线式吸附峰位置之间的关系解释为立体效应作用的结果,即金属粒度越小(配位数越低) ,对应的诸如边、角、台阶等的不饱和位越多,因此CO的振频越低。

另外,由CO吸附峰的形状亦可判断催化剂中金属粒子的相对大小(见文献[9]) 。在较大金属粒子( n (H) / n (Pt) = 0. 09)的Pt/ Al2O3 的线式CO的红外吸附峰是尖锐对称的。当铂粒子减小( n ( H) /n (Pt) = 0. 99) 时,对应CO线式吸附峰明显宽化,而且在低波数一侧出现了肩峰,这是由于在较小尺寸铂粒子表面有较多的低配位部位所致。

CO吸附态的线式峰与桥式峰的强度比(简称线桥比)可反映催化剂载体的酸碱性,是负载金属簇催化剂中载体与金属之间相互作用程度的判据。载体与金属之间的相互作用强弱影响金属d-轨道键能大小。当金属电子键能越接近于CO的2π*轨道键能时, 对应的CO吸附峰中线桥比越小。D.C.Koningsberger 等[11]考察了三种负载型催化剂Pd/L TL ,Pt/ L TL ,Pt/ SiO2上CO吸附态的线桥比与载体酸碱度关系,指出随着载体碱度的增加,CO吸附态的线桥比降低。

四、X-射线光电子能谱(XPS)

金属价层电子的变化影响内层电子的结合能,而XPS揭示价层电子的变化。过去的光谱方法是通过测定两个金属能级之差而间接地得到一些有关电子结构的信息,XPS则是通过测定来自样品单个能级光电发射电子的能量分布直接得到电子能级结构的信息。从能量范围来看,如果把红外光谱提供的信息称之为“分子指纹”,那么XPS所提供的信息可称作“原子指纹”[12 ]。

原子周围的化学环境决定了原子在某一特定轨道的结合能( Eb) 。从XPS谱图得到的关于待测原子的指纹特征可以获得该种元素的定性分析,从谱峰位移和形状可获得化学价态和化学结构等信息。

利用XPS可以考察载体对负载型金属簇中金属粒子的影响。以负载于分子筛NaY上的催化剂Pd/ NaY为例[13],Pd 簇与载体中的质子之间的电子分享会导致金属Pd的3d5/ 2结合能升高,而在Pd/HY中,由于载体中存在更高的质子浓度,对金属结合能的影响会更明显。

催化剂中金属粒子的电子性能也受金属粒子分散度的影响。一般而言,无论载体为何种类型,金属电子结合能随着金属分散度的增加(粒度减小) 而略有升高。Yu. A. Ryndin 等[14]

用XPS研究了负载型金属簇催化剂Pd/ SiO2和Pd/ Al2O3 ,发现当催化剂中的Pd金属粒度由1. 0nm 增至3. 0~4. 0nm 时,金属3d5/ 2结合能由335. 9 eV降至335. 3 eV.

五、透射电子显微镜(TEM)

TEM特别适合于研究负载金属簇催化剂的分散度,可以直接观测到催化剂金属粒子形貌、大小及分布[15] 。当然,能否观测到金属粒子大小要受仪器分辨率的限制。

对负载型金属簇催化剂,人们非常关心催化剂中载体与金属粒子之间的结构信息。对此, TEM不能提供有益的信息,因为TEM图像显示的是投影效应,而催化剂中的金属粒子边缘的

结构信息受载体结构信息的干扰。

除了上述各种表征手段以外,催化反应、氢吸附法等也不失为一种有效的负载型金属簇催化剂的表征手段。对很多反应来说,粒径的变化导致催化性质的明显变化。如负载于TiO2上的Pd原子簇催化剂,当粒径为3~4 nm 时,在常温常压下,催化1-己烯加氢反应,可完全转化为己烷。但在相同的反应条件下,用通常工业Pd 催化剂只能得到29. 7 %的己烷,21. 6 %的己烯异构体和48. 7 %的1-己烯。另外,H2化学吸附法由于其测试设备简单而被广泛用于金属分散度的测定,因为H2对Pt ,Pd ,Rh 等贵金属和Ni等过渡金属的吸附具有明确的计量关系,因此可以通过吸附量的测定计算出金属分散度。然而,金属与载体的强相互作用会显著影响金属粒子的吸附性能,从而影响了H2化学吸附得到的金属分散度的数据的准确性[16] 。

各种表征手段都不能完全孤立地判断催化剂的结构特性,需要其它表征手段的补充与佐证。多种手段联合推测出催化剂的结构,可以帮助我们更准确地真实地理解催化剂。例如,对于沸石分子筛负载金属簇而言, TEM受测量条件的限制,所看到的粒子大部分位于沸石外表面,而不是孔道内, TEM推绎出的金属-金属配位数要比EXAFS大得多,但是EXAFS是对催化剂金属粒子统计所得的平均结果[17] ,所以我们可以从二者结合起来的数据更准确

地分析催化剂孔道内外粒子分布情况。

总之,对于负载型金属簇催化剂的结构表征,现代物化手段具有巨大的潜能。不断更新和发展的催化剂测试和表征方法,为我们更好地认识和使用负载型金属簇催化剂提供了可靠的依据。

参考文献:

1Ertl G, Knozinger H , Weitkamp J . Handbook of Heterogeneous Catalysis[M] . Wiley-VCH , 1997 :446-449 2嵇天浩,孟宪平. 嵌入Y型沸石中Pd簇的合成及其催化性能[J ] . 高等学校化学学报,1997 ,18 (1) :6-10

3韦世强. 负载型镍系双组分催化剂的EXAFS研究[J ] . 化学物理学报,1994 ,7 (5) :448-454.

4殷士龙,卞清,韦世强. 实验室EXAFS 研究[J ] . 东南大学学报,1991 ,29 (1) :1552158.

5托马斯,兰伯特. 催化剂的表征[M] . 北京:化学工业出版社,1987 :282-290.

6Jentys A , Simon L , Lercher J A. On the determination of the Location of Metal Clusters Supported on Molecular Sieves by X-ray Aborsorption Spectroscopy[J ] . J Phys Chem (B) ,2000 ,104 (40) : 9411-9415.

7Tzou M S , Teo B K, Sachtler W M H. Formation of Pt Particles in Y-Type Zeolites[J ] . J Catal ,1988 , 113 (1) : 220-235.

8寇元,邹鸣. 固体催化剂的研究方法[J ] . 石油化工,2000 ,29 :802-811.

9Menorval L de , Chaqroune A , Coq B , et al . Characterization of mono- and bi-metallic platinum catalysts using CO FTIR spectroscopy[J ] . J Chem Soc Faraday Trans , 1997 , 93 (20) :3715-3720.

10Kappers MJ , van der Maas J H. Correlation between CO frequency and Pt coordination number :A DRIFT study on supported Pt catalysts[J ] . Catal Lett ,1991 , 10 (2) :365-374.

11Koningsberger D C , Ramaker D E , Miller J T , et al . The direct influence of the support on the electronic structure of the activesites in supported metal catalysts : evidence from Pt-H anti2bonding shape resonance and Pt-CO FTIR data[J ] . Topics in Catalysis ,2001 , 15 (1) : 35-42.

12刘世宏,王当憨,潘乘璜. X2射线光电子能谱分析[M] . 北京:科学出版社,1988 :27-30.

13Stakheev Yu A , Sachtler W M H. Determination by X-Ray Photoelectron Spectroscopy of the Electronic State of Pd Clusters in YZeolite[J ] . J Chem Soc Faraday Trans , 1991 , 87 (22) : 3703-3708.

14Ryndin Y u A , Nosova L V , Boronin A I , et al . Effect of Dispersion of Supported Palladium on its Electronic and Catalytic Properties in the Hydrogenation of Vinylacetylene[J ] . Appl Catal , 1988 , 42 (1) : 131-141.

15刘希尧等编. 工业催化剂分析测试表征[M] . 北京:烃加工出版社,1990 :225-227.

16Khodakov A , Barbouth N , Oudar J . Investigation of Dispersion and Location of Platinum Species in Mazzite Using EXAFS[J ] . JPhys Chem (B) , 1997 , 101 (5) : 766-770.

17Graaf J de , van Dillen A J . Preparation of Highly Dispersed Pt Particles in Zeolite Y with a Narrow Particle Size Distribution :Characterization by Hydrogen Chemisorption , TEM , EXAFS Spectroscopy , and Particle Modeling[J ] . J Catal , 2001 ,203 (27) :307-321.

催化剂制备与表征

催化原理考试复习题 一概念 离子交换法:利用载体表面存在着可进行离子交换得离子,将活性组分通过离子间得变换而附载在载体上得方法。 化学键合法:通过化学键(离子键、共价键、配位键)把络合物催化剂与高分子载体相结合得过程。 吸附法:利用载体对活性组分得吸附作用来制备负载型催化剂得方法。 超均匀共沉淀:就是将沉淀分两步进行,首先制备盐溶液得悬浮层,并将这些悬浮层立即混合成为超饱与溶液,然后由超饱与溶液得到均匀沉淀。 二、填空 1、沉淀老化时,颗粒长大方法有:再凝结、凝聚 2、正加法加料时,溶液得PH值由低到高 3。竞争吸附时,当反应由外扩散控制时,球形催化剂上活性组分得分布以蛋壳型为益,由动力学控制时,均匀型为益 三、简答题 1、固体催化剂制备方法:①原料准备②催化剂(母体)得制备③成型④活化 2、催化剂制备可粗分为:干法与湿法 干法包括热熔法、混碾法与喷涂法 湿法包括胶凝法、沉淀法(共沉淀法,均匀沉淀法与超均匀沉淀法)、浸渍法、离 子交换法、沥滤法。 3、催化剂在工业得到应用满足得条件 ★催化性能:具有良好得活性,选择性与稳定性 ★机械性能:有一定得机械强度,合适得形状,颗粒大小与分布 ★有一定得抗毒性能:最好能活化再生,使用寿命长 ★催化剂制备方面:要求原料能稳定供应,制备工艺能适合于大规模工业生产,环境友好,最好无"三废”污染。 4、选择原料得基本原则: A原料中要包括催化剂所需要得全部组分,同时也要考虑到原料中得杂质能适合 生产中得要求。 B原料中不含对催化剂有害得成分,或对环境有污染得成分 C来源充足,价格便宜 D使用活性组分含量高,用量少得原料。 5、催化剂组成得表示方法: 固体催化剂…主催化剂,助催化剂,载体 配合物催化剂~助催化剂与助催化剂 酶催化剂:酶蛋白与辅酶

柴油车尾气净化催化剂制备、表征及性能测试实验报告(DOC)

广州大学化学化工学院 本科学生综合性、设计性实验报告实验课程化学工程与工艺专业实验 实验项目化学工程与工艺专业实验 专业精细化工 班级08精工 学号0813020060 姓名赖家雄 指导教师及职称梁红教授 开课学期2011 至2012 学年第一学期 时间2011 年11 月20 日

柴油车尾气净化催化剂制备、表征及性能测试化学化工学院 08精工 0813020060 赖家雄 摘要:本实验通过小组设计方案,制备柴油车尾气净化催化剂及其表征和性能进行测试。目的是掌握柴油车尾气处理净化催化剂的制备方法,并了解催化剂的制备过程中影响催化剂性能的各种因素;了解催化剂活性测试方法和仪器的构成和使用方法;学会用X-射线衍射仪(XRD)测定催化剂的晶相结构。学会用FT-IR测定催化剂的结构。预习实验报告了解了柴油车尾气的危害,同时了解沉淀法制备催化剂的主要方法,以氧化铝为载体进行制备。 关键词: 柴油车尾气; 危害;催化剂制备方法; 温度:数据处理 柴油车排放的污染物主要是颗粒物(PM)和氮氧化物(NOx),还有少量的一氧化碳(CO)、碳氢化合物(HC)、挥发性烃类有机化合物(VOC)。柴油车排放的污染物和汽油车相比较,汽油车排气中的CO、HC和VOC比较多,柴油车排气中的PM比较多,近年来因机动车所造成的污染日趋严重,对机动车尾气进行治理具有重要意义。综合目前柴油车尾气的处理方法,采用催化燃烧的方法除去颗粒物是目前实现柴油车颗粒物排放控制最为有效和简单的方法,其中催化剂的选择是最为关键的因素。 实验内容 一、实验目的 本实验拟以金属氧化物为活性组分,三氧化二铝(Al 2O 3 )为载体制备柴油车尾气 净化催化剂,并了解催化剂制备过程中各种因素对催化剂活性的影响,拟达到如下目的: 1.初步了解和掌握催化剂产品开发的研究思路和实验研究方法; 2.学会独立进行实验方案的设计,组织与实施; 3.了解和掌握催化剂的各种制备方法,催化剂活性评价方法及数据处理的方法; 4.了解催化剂比表面积(BET),X射线粉末衍射(XRD)、程序升温还原(TPR)等

钒改性催化剂制备及表征论文

钒改性催化剂的制备及表征 摘要:为了提高废水处理的效果,文章以高岭土为载体,制备了负载型的钒改性高岭土催化剂,并通过x射线单晶衍射、傅立叶红外光谱、扫描电子显微镜等手段对催化剂进行了表征,结果表明:高岭土经改性后,高岭土中的al-o八面体结构部分被破坏,导致结构无序化,高岭土的层间距和比表面积显著增大,改性后的催化剂负载铁离子时催化效果较好。 abstract: v-modified kaolin was prepared using kaolin as the starting materials. xrd, ftir, sem are used to character the v-modified kaolin. the results indicated that, the v- polycations are introduced into the layer of kaolin and such materials show enhanced basal spacing, and surface are stability. 关键词:高岭土;制备表征;钒改性高岭土;催化剂 key words: kaolin;preparation;characterization;v- modified kaolin;catalyst 中图分类号:g633.8 文献标识码:a 文章编号:1006-4311(2012)33-0011-02 0 引言 目前,水污染是世界各国普遍面临的急需解决的问题之一。水处理过程中涉及的催化剂种类较多,主要有均相催化剂(金属盐类)、非均相催化剂(铜系、贵金属系及稀土系列)等,金属盐类

催化剂的制备与表征

一、简答(任选五25) (1)沸石的笼结构;(2)离子交换法制备催化剂;(3)布拉格方程(Bragg衍射条件方程,要求:写出方程,并注明每个字母的物理意义):(4)催化剂的中毒;(5)载体的 作用;(6)简述沉淀法制备催化剂过程的主要影响因素;(7)溶胶——凝胶过程制 备催化剂。 二、对于下列催化剂反应(15) 苯+H2——环己烷 请(1)选择一个固体催化剂;(2)写出它的制备过程及方法;(3)表征方法(要求:简要描述所列表正内容)。 三、金属分散度是金属催化剂的重要表面性质之一。对于负载型金属催化剂,可以利用测定 氢气在金属上的化学吸附量来计算金属组分的分散度,请以H2在载体型铂催化剂上的化学吸附为例,给出Pt的分散度计算公式。 提示:一般认为,请以原子态吸附:H2+2M——2M-H 四、蒸汽转化催化剂是以Al2O3为载体,活性组分为NiO.其制备方法为:85%的Al(OH)3 先于1100oC煅烧4h,磨细再与15%的NiO 干混,成型,于1100oC煅烧2h.对4.0g催化剂作还原TG测试(如下图),发现TG曲线有三个失重段,其中:400-500oC失重段,△W=0.8g;760-1000oC失重段,△W=1.3g. 请组成及其含量,并描述分析过程。 五、简述电子能谱分析基本原理。下图为三氟乙酸乙酯的C1s XPS光电子能谱。请在图中标出CF3C=OOCH2CH3中每个C原子对应的化学位移 六.简述红外技术在催化剂研究中的应用。下图为利用固体红外技术测定固体表面酸性的结果,请简要分析。(e)为粘土REY,(f)为SIO2-Al2O3。实验过程为:150度,1.6×103Pa吡啶下固体催化剂吸附1h后,150 抽空6h,

催化剂制备与表征之欧阳家百创编

催化原理考试复习题 欧阳家百(2021.03.07) 一概念 离子交换法:利用载体表面存在着可进行离子交换的离子,将活性组分通过离子间的变换而附载在载体上的方法。 化学键合法:通过化学键(离子键、共价键、配位键)把络合物催化剂与高分子载体相结合的过程。 吸附法:利用载体对活性组分的吸附作用来制备负载型催化剂的方法。 超均匀共沉淀:是将沉淀分两步进行,首先制备盐溶液的悬浮层,并将这些悬浮层立即混合成为超饱和溶液,然后由超饱和溶液得到均匀沉淀。 二、填空 1.沉淀老化时,颗粒长大方法有:再凝结、凝聚 2.正加法加料时,溶液的 PH值由低到高 3.竞争吸附时,当反应由外扩散控制时,球形催化剂上活性组分的分布以蛋壳型为益,由动力学控制时,均匀型为益 三、简答题 1.固体催化剂制备方法:①原料准备②催化剂(母体)的制备③成型 ④活化 2.催化剂制备可粗分为:干法和湿法

干法包括热熔法、混碾法与喷涂法 湿法包括胶凝法、沉淀法(共沉淀法,均匀沉淀法和超均匀沉淀法)、浸渍法、离子交换法、沥滤法。 3.催化剂在工业得到应用满足的条件 ★催化性能:具有良好的活性,选择性和稳定性 ★机械性能:有一定的机械强度,合适的形状,颗粒大小和分布 ★有一定的抗毒性能:最好能活化再生,使用寿命长 ★催化剂制备方面:要求原料能稳定供应,制备工艺能适合于大规模工业生产,环境友好,最好无"三废"污染。 4.选择原料的基本原则: A原料中要包括催化剂所需要的全部组分,同时也要考虑到原料中的杂质能适合生产中的要求。 B原料中不含对催化剂有害的成分,或对环境有污染的成分 C来源充足,价格便宜 D使用活性组分含量高,用量少的原料。 5.催化剂组成的表示方法: 固体催化剂…主催化剂,助催化剂,载体 配合物催化剂~助催化剂和助催化剂 酶催化剂:酶蛋白和辅酶 6.金属溶解一般选用稀HNO3原因: ★大多数金属(除Au,Pt)可溶解在硝酸中制成硝酸盐 ★NO3在加热时,能除去,不会使之留在催化剂中。 ★节省原料角度,稀硝酸好

催化剂制备与表征

催化剂制备简答题: 36.挤条成型过程中影响催化剂的性能有哪些因素? 粉体颗粒度、混捏时间和方式、水粉比、助挤剂。 37.喷雾干燥、油柱成型的原理是什么? 喷雾干燥成型和油柱成型是利用物料的自身表面张力、收缩成微球或小球。原理:前者是把料浆高速通过喷头(雾化器)将原料浆液分散成雾滴,并用高温气流干燥雾滴,失水成干燥微球;后者是将溶胶滴入油类中,利用介质和溶胶本身的表面张力将物料切割成小滴并收缩成小球。 38.连续流动搅拌反应器和活塞流反应器(无体积变化)的速率公式推导。 (1)连续流动搅拌反应器 从反应的稳态料平衡分析: 反应物进入反应器的流速=反应物离开反应器的流速+ 反应物反应速率 Q 0:反应物体积进料速度;W :反应器中催化剂的重量; C 0和C :反应物进入和流出反应器的摩尔浓度 r :单位重量催化剂上的总反应速率。 则上述物料平衡式可表述为Q 0C 0=Q 0C+rW 所以r=(C 0-C)Q 0/W 另一方面,速率也可以按单位催化剂体积来表示,在这种情况下r=(C 0-C)Q/V 式中V 为反应器中所盛催化剂的体积。 测量进料和出料中反应物浓度的变化,即可求得反应速率。 (2)活塞流反应器 在理想的活塞流反应器中,假定没有轴混,而且无浓度或流体速度的径向梯度,只是流体的组成随流动的距离而变化,所以须分析微分体积元dV 中的物料平衡。参照图,对微分体积元dV ,设 F :反应物的摩尔流量;V :催化剂体积;r :单位催化剂体积的反应速率. 则物料平衡式为F=(F+dF)+rdV 由此可得出r= -dF/dV 设F 0为反应物进入反应器的摩尔进料速率,x 为转化率,如果在反应时无体积改变,则 F =F o (1一x),r= - dF/dV=F 0×dx/dV 对截面为S 的管式反应器,dV =Sdl ,dl 为微分圆柱形体积元的厚度,则 F r 与CSTR 相反,PFR 不能直接测量反应速率,只有在转化率小到可以用x 代替dx 时才给出速率的直接测量。这实际上意味着使用极少量的催化剂,这种反应器称之为微分反应器。在这种条件下,速率可以由简单的差分方程计算而得 然而极小的dx 值在分析上有较大的困难,所以PFR 大都是在较高的转化率的情况下进行实验的,即按积分方式运转。其反应速率随反应器的轴向位置而改变,此时 (1) 式中停留时间=V/Q 0。将(1)式对整个反 应器积分,则得

丙烷脱氢催化剂的制备与表征

丙烷脱氢催化剂的制备与表征 目前,丙烷脱氢制丙烯催化剂主要分为丙烷直接催化脱氢催化剂和丙烷氧化脱氢催化剂两大类,直接催化脱氢催化剂主要有Cr系催化剂和Pt系催化剂。 Pt系催化剂的制备方法 浸渍法 浸渍法是将贵金属负载到载体上的最常用的方法,以Pt系催化剂为例:制备单Pt催化剂时,先将Pt的前驱物如(NH4)2PtCl6,H2PtCl6或Pt(acac)2等用去离子水或有机溶剂制备成溶液,采用初湿浸渍法浸渍到载体上,然后再在适当的温度下进行烘干、焙烧和还原;制备Pt-Sn催化剂,可以采用顺序浸渍法,也可采用共浸渍法。顺序浸渍法是分别将Pt、Sn的前驱物制备成溶液,先浸渍一种,烘干后再浸渍另一种。共浸渍法则是将两种前驱物先制备成一种溶液再进行浸渍。 浸渍法虽然简单,但不能控制金属颗粒的大小,负载双金属或多金属时不能控制金属颗粒的组成。金属颗粒的大小和组成,与金属前驱体的组成、载体性质以及浸渍方法等都有关。此外采用有机溶剂溶解金属前驱物,在工业生产中还要考虑溶剂的回收问题。 离子交换法 该方法的原理是利用贵金属前驱物与载体表面的羟基相互作用,例如采用离子交换法制备Pt/SiO2催化剂,SiO2表面存在硅羟基,Pt的四铵络合物[Pt(NH3)4(OH)2]与硅羟基中的质子可以发生离子交换反应得到[Pt(NH3)4]2+,离子交换反应后先将催化剂烘干,然后在500℃下氧化,再用H2还原,制得Pt/SiO2催化剂,其中Pt颗粒的粒径集中分布在1~3 nm。采用离子交换法,也可以将Pt负载到Al2O3载体上,可以选用氯铂酸、氯铂酸铵等化合物作为Pt的前驱物。 溶胶凝胶法 溶胶凝胶法是制备催化剂的常用方法,一般用于制备金属氧化物催化剂和负载型非贵金属催化剂。该方法制备贵金属催化剂可在一定程度防止贵金属颗粒的烧结。采用溶胶凝胶法制备负载型贵金属催化剂,有以下2种方法:一种是将预先制备好的金属颗粒,直接加入到载体的溶胶凝胶中;另一种方法是将金属盐与制备载体的材料一起成胶或直接加入到制备载

催化剂性能的评价、测试和表征

催化剂性能的评价、测试和表征概述主要内容 ?活性评价和动力学研究 ?催化剂的宏观物理性质测定 ?催化剂微观性质的测定和表征 工业催化剂性能评价的目的 ①为应用提供依据 ②为开发制备提供判别的标准 ③基础研究的需要 评价内容 ①使用性能 活性,选择性,寿命 ②.宏观性能:比表面积,孔结构,形状与尺寸 ③.微观性能:晶相组成,表面酸碱性 ?工业催化剂的性能要求及其物理化学性质 4

催化剂测试

? 催化剂的物理性质的测定 ,包括宏观物理性质(孔容、孔径分布、比表面等)及微观物理 性质(催化剂的晶相、晶格缺陷、微观粒径尺寸等) 几个基本概念 评价(evaluation ),对催化剂的化学性质考察和定量描述; 测试(test ),对工业催化剂物理性质(宏观和微观)的测定; 表征(Characterization ),综合考察催化剂的物理、化学的性质和内在联系,特别是研究活 性、选择性、稳定性的本质原因。 第一节.活性评价和动力学研究 活性测定方法:流动法和静态法,流动法用得最多(一般流动法、流动循环法、催化色谱法) 本质上是对工业催化过程的模拟 流动循环法、催化色谱法多用于反应动力学和反应机理 活性测试的目的 a )由催化剂制造商或用户进行的常规质量控制检验 b )快速筛选大量催化剂,以便为特定的反应确定一个催化剂评价的优劣。 c )更详尽的比较几种催化剂 d )测定在特定催化剂上反应的详尽动力学,包括失活或再生动力学。 e )模拟工业反应条件下催化剂的连续长期运转 活性的表示方法 ? 转化率(X A ) 活性的表示方法 ? 选择性(S) 收率(Y) Y=X A ×S ? ? ? 时空得率(STY ):每小时、每升催化剂所得产物的量 % 100?= 的起始摩尔数 反应物已转化的摩尔数 反应物A A X A % 100?=摩尔数 已转化的某一反应物的所得目的产物的摩尔数 S % 100?= 起始反应物的摩尔数 生成目的产物的摩尔数 Y

催化剂表征简称一览表

催化剂表征技术术语一览表 英文名称中文名称Sieving 筛分法 Optical microscopy 光学显微镜法Scanning electron microscopy 扫描电镜法Transmission electron microscopy (TEM) 透射电镜法 Scanning TEM (STEM) 扫描透射电镜法Scanning tunneling microscopy (STM) 扫描隧道显微镜Scanning force microscopy (SFM) 扫描力显微镜Gravitaional sedimentation 重力沉降法 Resistive pulsed 电阻法 Light obscuration 光透法 Fraunhofer diffraction 夫琅和费衍射法Cetrifugal sedimentation 离心沉降法 Photon correlation spectroscopy(PCS) 光子相关光谱分析法Hydrodynamic chromatography(HCD) 流动色层分析法 Field flow fractionation(FFF) 场流分离法 BET method BET法 Small angle X-ray scatiering(XSAS) X-射线小角度散射法Chemisorption 化学吸附法Adsorption-Titration method 吸附-滴定法 Mercury porosimetry 压汞法 Incipient wetness 初湿含浸法Permeametry 渗透测粒法Counterdiffusion 反扩散法 Small angle neutron scatiering(NSAS) 中子小角散射法Volumetric adsorption 体积吸附法Gravimetric adsorption 重量吸附法 Dynamic adsorption 动态吸附法Calorimetry 量热法 IR-spectroscopy 红外光谱法 Raman spectroscopy 拉曼光谱法 UV-Vis spectroscopy 紫外-可见光光谱法Mass spectrometry 质谱 Atomic absorption spectroscopy(AAS)原子吸收光谱 Auger electron spectroscopy (AES) 俄歇电子能谱

催化剂表征方法

催化剂的表征方法之核磁共振法催化剂的表征就是应用近代物理方法和实验技术,对催化剂的表面及体相结构进行研究,并将它们与催化剂的性质、性能进行关联,探讨催化材料的宏观性质与微观结构之间的关系,加深对催化材料的本质的了解。近代物理方法主要包括:X射线衍射技术、色谱技术、热分析析技术、电子显微技术、光谱技术、低电子能谱、穆斯堡尔谱等…… 1 近代物理方法简介 1.1对催化剂的组成分析(体相) 化学分析(CA Chemical Analysis )用于Pt, Pd, Rh等贵金属分析。原子吸收光谱(AAS。X射线荧光光谱(XRF。电感耦合等离子体光谱(ICP). 1.2组成分析(表面) 射线光电子能谱(XPSX)。俄歇电子能谱(AES .分析深度:AES < XPS (表面10个原子层,<3 nm)。灵敏度:AES > XPS (分析取样量在微克级。释谱: XPS?谱和数据分析容易,应用更广。 1.3物相性质(结构) 多晶X射线衍射(XRD)――最普遍、最经典的物相性质鉴定手段。反映长程有序度,但对于高分散物相不适用 . 傅里叶变换红外光谱(FT-IR)――许多无机物固体在中红外区(400- 4000cm- 1)有振动吸收,反映短程有序度 . 拉曼光谱(RAM拉曼散射效应)一一拉曼光谱与红外光谱都能得到分子振动和转动光谱,但分子的极化率改变时才会产生拉曼活性,而红外光谱是偶极矩变化时有红外活性,因此两者有一定程度的互补性。 紫外可见光谱(UV-vis)――电子光谱 , 是由分子外层电子或价电子吸收一定能量的光跃迁所产生的 , 给出样品结构的信息 . 核磁共振技术(NMR)适用于含有核磁距的组元,如1H、13C 31P、 27Al 、 29Si. 1.4形貌 扫描电子显微镜(SEM :分辨率为6-10nm,放大倍数为2万倍. 透射电子显微镜(TEM :分辨率为0.1?0.2nm,放大倍数为几万?百万倍. 原子力显微镜( AFM): 可达到原子级分辨率 . 1.5 负载相(金属)的分散度

催化剂表征

催化剂: 在化学反应里能改变反应物化学反应速率而不改变化学平衡,且本身的质量和化学性质在化学反应前后都没有发生改变的物质叫催化剂。据统计,约有90%以上的工业过程中使用催化剂,如化工、石化、生化、环保等。催化剂种类繁多,按状态可分为液体催化剂和固体催化剂;按反应体系的相态分为均相催化剂和多相催化剂,均相催化剂有酸、碱、可溶性过渡金属化合物和过氧化物催化剂。 催化剂表征: 《催化剂表征》是2008年华东理工大学出版社出版的图书,作者是王幸宜。本书介绍了催化剂表征中所采用的各种传统的、经典的以及近代的技术和方法。 内容简介: 《催化剂表征》以大量的应用实例为根基详细介绍催化剂常用的表征技术。其中对于催化剂微观性质与性能的表征又分为表面性质和体相性质两方面。在此章中,对各种表征技术和方法的适用范围、优点以及缺点作了详细的总结与归纳,同时也对同类表征技术作了详细的比较。第2章至第11章对各种具体的表征技术在催化研究中的应用作了详细介绍,此部分主要以基础理论为辅、以实例为主向读者传达各种表征方法可以用来获取催化剂的何种性质。第12章介绍了目前催化剂表征技术中被认为最有发展前途的原位技术。 《催化剂表征》可供从事催化研究的工作者和高等院校催化专业的教师阅读、参考。《催化剂表征》尤其适合催化专业的研究生、本

科生将其作为教材及参考书来使用。 目录: 第l章催化剂表征 第2章低温物理吸附技术 第3章电镜技术 第4章热分析技术 第5章程序升温分析技术 第6章多晶x射线衍射技术 第7章电子能谱法 第8章分子光谱技术 第9章紫外漫反射光谱技术 第10章核磁共振技术 第11章电子顺磁共振技术 第12章原位技术 参考文献

铂氧化铝催化剂的制备表征及评价研究

Studies on chlorided Pt/Al 2O 3catalysts:preparation,characterization and n -butane isomerization activity Anand V.Jain,Narayan C.Pradhan,Ajay K.Dalai *,and Narendra N.Bakhshi Catalysis and Chemical Reaction Engineering Laboratories,Department of Chemical Engineering, University of Saskatchewan,Saskatoon,SK S7N5C9,Canada Received 3September 2002;accepted 10December 2002 A series of chlorided Pt/Al 2O 3(both and )catalysts were prepared and characterized for various physicochemical properties.The chloride content of the catalysts was found to increase with chloride treatment time up to a certain level and then decrease owing to prolonged exposure at high temperature.The surface area and pore volume of the catalysts were decreased by chloride treatment.The activity of the prepared catalysts were tested in n -butane isomerization.The platinum content of the catalysts was found to have no e?ect on catalytic activity up to 0.2wt%whereas the chloride content of the catalyst strongly in?uenced the activity and a >20-fold increase in activity was observed on chloriding Pt/Al 2O 3catalysts.The catalyst activity was found to be directly related to its acidity.KEY WORDS:chloriding;Pt/Al 2O 3;ammonia chemisorption;ammonia TPD;Br?nsted acidity;butane;isomerization. 1.Introduction In many important catalytic reactions,such as isomerization,cracking,alkylation,polymerization,etc.,acid sites on the catalyst surface play an important role in the transformations.The acid sites are instrumental in the formation of carbonium ions and subsequent trans-formations of carbon skeletons [1]. Isomerization of straight-chain hydrocarbons to branched hydrocarbons is an important process for the production of clean-burning fuel in the petroleum re?ning industry [2,3].The process is applied for the improvement of octane numbers of light naphtha and also for some individual straight-chain hydrocarbons mostly in the range C 4–C 7.Among individual hydro-carbons,isomerization of n-butane to isobutane is of particular interest as it can be alkylated with isobutene (which can also be obtained from n-butane by dehydro-isomerization)to give the most-desired fuel component,isooctane (2,2,4-trimethylpentane).Isobutene,from iso-butane,is also a key component for the manufacture of methyl tert -butyl ether (MTBE). As a reaction of high commercial importance,isomer-ization of n-butane has been studied extensively over a wide variety of catalysts.It is generally accepted that isomerization reactions should be carried out on a bifunctional catalyst,consisting of a protonating acid function and a hydrogenating/dehydrogenating metal function. The e?ect of platinum loading on the isomerization of n-butane over small crystals of H-beta has been studied [4].Pt–H-beta catalyst demonstrates higher conversion and selectivity to isobutane than H-beta.Based on the product distribution,a mechanism has been proposed for the isomerization reaction which includes hydro-genolysis and dehydrogenation over Pt,and cracking,isomerization and disproportionation over acid sites.Dehydroisomerization of n-butane to isobutene has been studied over Pd/SAPO catalysts [5,6].The activity and selectivity for isobutene have been reported to change with pore size and the highest values are obtained with Pd/SAPO-11having a 10-membered ring opening [6].Dehydroisomerization of n-butane has also been studied over Pt-promoted Ga-substituted silicoalumino-phosphates and the possible formation of Pt–Ga alloy and/or the formation of discrete Pt particles decorated by metallic Ga are invoked to explain the higher dehydrogenation and lower hydrogenolysis activity shown by Pt–Ga–SAPO-11catalyst [7]. Sulfated zirconia catalysts have also been extensively studied for their activity in isomerizing linear alkanes [8–13].The pretreatment of persulfated zirconia in air has been found to enhance its initial activity toward n-butane isomerization [14].The n-butane isomerization activity of sulfated zirconia supported on MCM-41has been improved signi?cantly by the addition of an appro-priate amount of gallium as a promoter [15].The addi-tion of platinum to this catalyst has been shown to exhibit higher steady-state conversion compared with the Pt-free form.Platinum supported on chlorinated alumina and H-mordenite has also been extensively studied for the production of isobutene from n-butane [16–21].However,the acidity of chlorided Pt/Al 2O 3catalyst has not been extensively correlated with the isomerization activity.The present work is concerned Catalysis Letters Vol.86,No.4,March 2003(#2003)221 1011-372X/03/0300-0221/0#2003Plenum Publishing Corporation *To whom correspondence should be addressed.E-mail:dalai@https://www.doczj.com/doc/b51614116.html,ask.ca

催化剂表征技术

催化剂的表征技术;即特性的描述。采用现代科学手段与现代分析仪器,对一种物 质进行物理化学鉴定、鉴别等一系列特性及特征的描述。表征用Characterization 来表示。 4.1 电镜技术4.2 X射线衍射4.3 全自动比表面及孔隙度分析仪 4.4 X射线光电子谱(XPS)4.5 热分析技术4.6 激光拉曼技术4.7 程序升温分析技术4.8 红外吸附4.1 电镜技术 电镜技术主要用于测量材料的颗粒度、粒径及分散性,可观察到样品表面的微细形态结构。 第一代光学显微镜 它使人类“看”到了致病的细菌、微生物和微米级的微小物体,对社会的发展起了巨大的促进作用,至今仍是主要的显微工具。 第二代电子显微镜 20世纪三十年代早期卢斯卡(E. Ruska)发明了电子显微镜。使人类能“看”到病毒等亚微米的物体,它与光学显微镜一起成了微电子技术的基本工具。 第三代扫描探针显微镜(纳米显微镜) 1981年比尼格和罗勒尔发明了扫描隧道显微镜(STM),使人类观察到单个原子。1985年比尼格发明了具有原子分辨率、可适用于非导电样品的原子力显微镜(AFM)。STM与AFM 一起构建了扫描探针显微镜(SPM)系列。 使用SPM不仅能观察单个原子或分子,还能操纵单个原子或分子,人们称SPM是纳米世界的“眼”和“手”。比尼格、罗勒尔和卢斯卡分享了1986年的诺贝尔物理奖。 SEM (Scanning Electronic Microscopy) TEM (Transmission Electron Microscope) STM (Scanning Tunnelling Microscope) AFM (Atomic Force Microscope)

费托反应催化剂的制备-表征与评价

Fe—Co费托合成催化剂的制备,表征与评价 摘要 Fe—Co催化剂经常用共沉淀法来制备,可用来通过CO的氢化合成低碳烯烃。但是催化剂的活性和产物的选择性会随着不同的制备条件和反应条件发生变化,比如Fe/Co组分比,制备催化剂时的pH值和温度,费托合成反应的操作温度计压力,以及助剂和助剂负载量等。该文章主要研究了在固定床微反应器中Fe/Co组分比,制备催化剂时的pH值和温度,费托合成反应的操作温度计压力,以及助剂和助剂负载量等变量对催化剂活性和乙烯、丙烯选择性的影响,反应过程中催化剂相结构的变化。最后发现Fe/Co组分比为3/1,SiO2 wt.%为载体时CO转化率和低碳烯烃选择性较好。这些不同变量的催化剂的表征是用X射线衍射(XRD),热重分析(TGA),插式扫描量热法(DSC),扫描电子显微镜(SEM),N2等温吸附脱附如BET 和BJH 来完成的。 前言 费托合成(Fischer-Tropsch synthesis,简称“F一T合成”或“费托合成”)是指以CO和H2为原料在催化剂作用下生产碳数分布较宽的烷烃和烯烃等产物的化学反应,并可副产醇、醛、酮、酸和酷等有机含氧化合物。费托合成产物经进一步提质加工可得到优质液体燃料、高级蜡及其他化学品等化工产品。 在费托合成中最关键的是催化剂,催化剂不同产品的组成和选择性就不同。通过某种催化剂合成高选择性的低碳烯烃是我们的合成目标之一。Fe-Mn或Co-Mn催化剂是目前研究的比较多的催化剂,研究发现Fe-Mn催化剂对C2-C4高选择性是因为有Fe-Mn尖晶石氧化物的存在,但是在反应过程中由于碳化物的形成,催化剂的寿命比较短。有研究发现Co在费托合成反应中制备低碳烯烃时的渗碳现象要小于Fe。因为受尖晶石的保护,没有被碳包围的金属相是生成C2-C4中必须的活性组分。后来发现,Fe和Co组合形成的合金催化剂对费托合成反应合成气的转化率和产物选择性有较好的影响。这种合金催化剂的催化性能比单个的Co或Fe组成的催化剂的性能要好。但是由于受热力学和动力学因素的研制,低碳烯烃的选择性还是不能较大的提高。 本文主要借助XRD、SEM、TEM、N2吸附方法优化了Fe/Co催化剂的制备条件和组成摩尔比,优化了费托合成的反应条件。通过这些影响因素的优化CO转化率和C2-C4选择性有了较大提高,CH4和CO2选择性也有了降低。 ¥ 实验部分 催化剂的制备 Fe—Co催化剂是用共沉淀法在油包水微乳液中制备的。Fe(NO3)3·9H2O M) 溶液和 Co(NO3)2·5H2O M) 在搅拌下加入体积分数分别为70和30 v/v %的1-丁醇和氯仿的混合液中,以十二烷基硫酸钠(SDS)为表面活性剂。然后将形成的透明溶液继续搅拌老化30h后,搅拌保持温度在30-55℃加入NH4OH (20%)溶液,生成沉淀后通过离心的得到固体,然后再用去离子水和乙醇洗涤,在120℃下干燥12h制得催化剂前驱体,然后将前驱体在静态空气氛围中500℃条件下焙烧6h,升温速率为2℃·min-1,最后制得所需催化剂。通过测试发现Fe/Co 比为3/1时催化剂有最好的活性和选择性。为了测试载体的影响,在组分比为3/1的铁和钴的混合溶液中加入同样量的各种载体(TiO2、SiO2、AL2O3、和La2O5),然后沉淀,测试后发现SiO2 载体的催化性能最好。

催化剂表征方法

1.2比表面测试 单位重量催化剂所具有的表面积称为比表面,其中具有活性的表面称活性比表面,也称 有效比表面。尽管催化剂的活性、选择性以及稳定性等主要取决于催化剂的化学结构,但其 在很大程度上也受到催化剂的某些物理性质如催化剂的表面积的影响。一般认为,催化剂表 面积越大,其上所含有的活性中心越多,催化剂的活性也越高。因此,测定、表征催化剂的 比表面对考察催化剂的活性等性能具有很大的意义和实际应用价值。 催化剂的表面积针对反应来说可以分为总比表面和活性比表面,总比表面可用物理吸附的方 法测定,而活性比表面则可采用化学吸附的方法测定。催化剂的比表面积的常见表征方法见 表2。 1.2.1 总表面积的测定 催化剂总表面积的测定目前所采用的方法基本上均为低温物理吸附法,而其中的BET法则更是推崇为催化剂表面积测定的标准方法。有关BET法的具体介绍见第二章,在此不展开讨论。 1.2.2 有效表面积的测定 BET法测定的是催化剂的总表面积。但是在实际应用中,催化剂的表面中通常只是其 中的一部分才具有活性,这部分称为活性表面。活性表面的面积测定通常采用“选择化学吸附”进行测定。如附载型金属催化剂,其上暴露的金属表面是催化活性的,以氢、一氧化碳 为吸附质进行选择化学吸附,即可测定活性金属表面积,因为氢、一氧化碳只与催化剂上的 金属发生化学吸附作用,而载体对这类气体的吸附可以忽略不计。同样,用碱性气体的选择 化学吸附可测定催化剂上酸性中心所具有的表面积。表2列出了用于测定催化剂比表面积的 常见方法。 表2 催化剂比表面表征

(1)金属催化剂有效表面积测定[17-19] 金属表面积的测定方法很多,有X-射线谱线加宽法、X-射线小角度法、电子显微镜法、BET真空容量法及化学吸附法等。其中以化学吸附法应用较为普遍,局限性也最小。所谓化学吸附法即某些探针分子气体(CO、H2、O2等)能够选择地、瞬时地、不可逆地化学吸附在金属表面上,而不吸附在载体上。所吸附的气体在整个金属表面上生成一单分子层,并且这些气体在金属表面上的化学吸附有比较确定的计量关系,通过测定这些气体在金属表面上的化学吸附量即可计算出金属表面积。下面对经常采用的某些探针分子气体的化学吸附法作简单的介绍: (a)H2吸附法 H2吸附法的关键在于使催化剂表面吸附的H原子达到饱和,由于形成H2饱和吸附的条件比较苛刻,H2的程序升温脱附不能在常压反应器中进行,因此限制了该法的应用,而且不同的吸附压力和吸附时间下得到的饱和吸附量不同,从而影响了测量的准确性。 (b)其它吸附法 化学吸附法除了最常用的H2吸附法外,常见的吸附法还有CO吸附法、O2吸附法、N2O吸附法、CO吸附法等,其中N2O吸附法最近又发展了很多更为实用的技术如(a)量热法;(b)脉冲色谱法;(c)前沿反应色谱法;(d)容量法。CO吸附法、O2吸附量热法、N2O吸附法用于表面积测试一般情况下不如H2吸附法,得到的结果也没有H2吸附法令人满意,因为这些气体生成单层和化学吸附的化学计量比都不容易控制。但是,这些方法在某些特殊情况下具有很大的应用价值。如,O2吸附法对于不容易化学吸附氢或一氧化碳的金属则比较有价值,而且氧化学吸附脉冲色谱法不仅不需要高真空装置,而且操作简便、快速、灵敏度高;CO吸附法对于容易生成羰基化合物的金属则不适宜;N2O吸附法是测定负载型铜和银催化剂中金属表面积的优选方法。 (c)吸附-滴定法 只要化学计量比是已知和可以重现的,则吸附物种和气相物种之间的反应可以用来测定表面积。 最常采用的是H2-O2滴定法,该法用于Pt负载催化剂的表面积测试最为有效,其用于非负载型金属粉末也只能严格地看作氢化学吸附法的代用方法,因为金属粉末要得到完全洁净而无烧结的表面存在着严重的困难。滴定方法有价值的第二种场合是双金属催化剂,其中反应籍以进行的条件可能强烈的与化学吸附成分所处的金属组分的本性有关。这可供区别组分之用。 表面氢氧滴定也是一种选择吸附测定活性表面积的方法。先让催化剂吸附氧,然后再吸附氢、吸附的氢与氧反应生成水。由消耗的氢按比例推出吸附的氧的量。从氧的量算出吸附中心数,由此数乘上吸附中心的截面积,即得活性表面积。当然做这种计算的先决条件是先吸附的氧只与活性中心发生吸附作用。 (2)氧化物催化剂有效表面积测定 如果只存在单独一种氧化物组分,显然表面积(总表面积)最好用物理吸附(BET)来测定。然而如果在催化剂中不止存在—种组份就具有在其他氧化物或金属组分存在下,选择性地测定指定氧化物表面积的问题。 1.3孔结构 孔结构的表征主要包括孔径、孔径分布、孔容和孔隙率等几个方面,其表征方法很多(主要表征方法见表1),需根据孔结构的类型具体确定。在众多表征方法中则属N2低温物理吸附法最为常用。

相关主题
文本预览
相关文档 最新文档