当前位置:文档之家› 高中物理3-5第十七章 波粒二象性 学案

高中物理3-5第十七章 波粒二象性 学案

高中物理3-5第十七章 波粒二象性 学案
高中物理3-5第十七章 波粒二象性 学案

17、1能量量子化:物理学的新纪元

【学习目标】

1、了解什么是热辐射及热辐射的特性,了解黑体与黑体辐射

2、了解黑体辐射的实验规律,了解黑体热辐射的强度与波长的关系

3、了解能量子的概念

【自主学习】

一、黑体与黑体辐射

一、黑体与黑体辐射

1.热辐射:周围的一切物体都在辐射电磁波.这种辐射与物体的_____有关,所以叫做热辐射.

2.黑体:某种物体能够______吸收入射的各种波长的电磁波而不发生反射,这种物体就是绝对黑体,简称黑体.

二、黑体辐射的实验规律

1.一般材料的物体,辐射的电磁波除与______有关外,还与材料的种类及表面状况有关.

2.黑体辐射电磁波的强度按波长的分布只与黑体的温度有关.随着温度的升高,一方面,各种波长的辐射强度都有________.另一方面,辐射强度的极大值向波长较____的方向移动.

三、能量子

1.定义:普朗克认为,带电微粒辐射或者吸收能量时,只能辐射或吸收某个最小能量值的________.即:能的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做________.

2.能量子大小:ε=hν,其中ν是电磁波的频率,h称为普朗克常量.h=_______________J·s,(一般取h=6.63×10-34 J·s)

3.能量的量子化:在微观世界中能量是量子化的,或者说微观粒子的能量是分立的.这种现象叫能量的量子化.

【基础巩固】

1、关于黑体辐射的实验规律叙述正确的有( )

A.随着温度的升高,各种波长的辐射强度都有增加

B.随着温度的升高,辐射强度的极大值向波长较短的方向移动

C.黑体热辐射的强度与波长无关

D.黑体辐射无任何实验

2、黑体辐射的实验规律如图所示,由图可知( )

A.随温度升高,各种波长的辐射强度都有增加

B.随温度降低,各种波长的辐射强度都有增加

C.随温度升高,辐射强度的极大值向波长较短的方向移动

D.随温度降低,辐射强度的极大值向波长较长的方向移动

3、能引起人的眼睛视觉效应的最小能量为10—18J,已知可见光的平均波长约为60 μm,普朗克常量丸:6.63 x10—34J·s,则进人人眼的光子数至少为( )

A.1个B.3个 C .30个D.300个

3、某广播电台发射功率为10kW,在空气中波长为187.5 m的电磁波,试求:

(1)该电台每秒钟从天线发射多少个光子?

(2)若发射的光子四面八方视为均匀的,求在离天线2.5km处,直径为2m的环状天线每秒接收的光子个数以及接收功率?

学后反思:

17.2 光的粒子性:科学的转折

【学习目标】

1.通过实验了解光电效应的实验规律。

2.知道爱因斯坦光电效应方程以及意义。

3.了解康普顿效应,了解光子的动量

【重点、难点】

重点:光电效应的实验规律

难点:爱因斯坦光电效应方程以及意义

【自主学习】

一、光电效应

定义:在照射下从物体发射出的现象,发射出来的电子叫做.

二、光电效应的实验规律

1、认识研究光电效应的电路图

如右图,光线经窗口照在阴极K上,便有逸出——光电子。光电

子在电场作用下形成。

2、光电效应的实验规律

(1)存在饱和电流

在上图的实验中,保持光照的条件不变,在初始电流较小

的情况下,随着所加电压的增大,光电流,

但是存在一个,即:光电流达到此值以后,即使增加电压,

光电流也不再增加。

(2)存在遏止电压

在上图的实验中,即使电压为0,光电流也不为,只有将所加电压反向的时候(在光电管间形成使电子减速的电场),光电流才可能为。使光电流减小到0的反向电压称为,用符号表示。

遏止电压的存在表明:,初速度的上限应该满足关系:。

实验表明:对于一定颜色的光,遏止电压都是,与光照强度,这表明:光电子的能量只与有关,而与无关。

(3)存在截止频率

实验还表明,当入射光的频率减小到某一数值νc时,即使不施加反向电压也没有光电流,这表明已经没有了,这个频率称为,也就是说当:入射光的频率小于时,将不发生光电效应。

(4)光电效应具有瞬时性

当入射光频率超过截止频率νc时,无论入射光怎样微弱,几乎在照到金属时产生光电流,这个时间不超过。

三、光电效应解释中的疑难

按照经典电磁理论,对于光电效应该如何解释?

还应得出如下的结论:

3 / 11

(1) (2) (3) 但是这些结论与观察到的现象不符,为了解释光电效应,爱因斯坦在能量子假说的基础上提出光子理论,提出了光量子假设。 四、爱因斯坦的光量子假设

1、内容:光不仅在发射和吸收时能量是一份一份的,而且光本身就是由一个个不可分割的 组成的。频率为ν的光的能量子为 ,这些能量子称为 。(h 为普朗克常量)

2、爱因斯坦光电效应方程在光电效应中金属中的电子吸收了光子的能量,一部分消耗在电子 ,另一部分变为光电子逸出后的 。由能量守恒可得出:

W 0为电子逸出金属表面所需做的功,称为逸出功。E k 为光电子的最大初动能。

爱因斯坦光电效应方程:

3、爱因斯坦对光电效应的解释:

①光强大,光子数多,释放的光电子也多,所以光电流也大。

②电子只要吸收一个光子就可以从金属表面逸出,所以不需时间的累积。

③从方程可以看出光电子初动能和照射光的频率成线性关系

④从光电效应方程中,当初动能为零时,可得截止频率:h

W c 0=ν 五、光电效应理论的验证

美国物理学家密立根,花了十年时间做了“光电效应”实验,结果在1915年证实了爱因斯坦光电效应方程,h 的值与理论值完全一致,又一次证明了“光量子”理论的正确。

由于爱因斯坦提出的光子假说成功地说明了光电效应的实验规律,荣获1921年诺贝尔物理学奖。密立根由于研究基本电荷和光电效应,特别是通过著名的油滴实验,证明电荷有最小单位。获得1923年诺贝尔物理学奖。

六、康普顿效应

1、光的散射

光在介质中与物质微粒相互作用,因而 ,这种现象叫做光的散射。

2、康普顿效应

1923年康普顿在做 X 射线通过物质散射的实验时,发现散射线中除有与入射线波长相同的射线外,还有比入射线波长更长的射线,这个现象称为:

3、光电效应和康普顿效应深入的揭示了 ,前者表明:

,后者表明:

七、光子的动量

P=

【基础巩固】

1.在演示光电效应的实验中,原来不带电的一块锌板与灵敏验电器相

连,用弧光灯照射锌板时,验电器的指针张开了一个角度,如图所示,

这时 ( )

A .锌板带正电,指针带负电

B .锌板带正电,指针带正电

C .锌板带负电,指针带负电

D .锌板带负电,指针带正电

2.利用光子说对光电效应的解释,下列说法正确的是( )

A.金属表面的一个电子只能吸收一个光子

B.电子吸收光子后一定能从金属表面逸出,成为光电子

C.金属表面的一个电子吸收若干个光子,积累了足够的能量才能从金属表面逸出

D.无论光子能量大小如何,电子吸收光子并积累了能量后,总能逸出成为光电子

3.光电效应的规律中,经典波动理论不能解释的有 ( )

A.入射光的频率必须大于被照射金属的极限频率时才能产生光电效应

B.光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大

C入射光照射到金属上时,光电子的发射几乎是瞬时的,一般不超过10—9s

D.当入射光频率大于极限频率时,光电子数目与入射光强度成正比

4.如图所示,电路中所有元件完好,但光照射到光电管上,灵敏电流计中没有电流通过,其原因可能是( )

A.入射光太弱 B.入射光波长太长

C.光照时间短 D.电源正负极接反

5.用不同频率的紫外线分别照射钨和锌的表面而产生光电效应,可得到光电子最大初动能Ek随入射光频率v变化的E k—v图象,已知钨的逸出功是3.28eV,锌的逸出功是3.34eV,若将两者的图象分别用实线与虚线画在同一个E k—v图上,则下图中正确的是 ( )

6.用绿光照射金属钾时恰能发生光电效应,在下列情况下仍能发生光电效应的是 ( )

A.用红光照射金属钾,而且不断增加光的强度

B.用较弱的紫外线照射金属钾

C.用黄光照射金属钾,且照射时间很长

D.只要入射光的波长小于绿光的波长,就可发生光电效应

7.在做光电效应演示实验时,,把某金属板连在验电器上,第一次用弧光灯直接照射金属板,验电器的指针张开一个角度,第二次在弧光灯和金属板之间插入一块普通玻璃,再用弧光灯照射,验电器的指针不张开。由此可以判定,使金属板产生光电效应的是弧光灯中的( )

A.可见光成分 B.红外线成分 C.无线电波成分 D.紫外线成分

17.3 崭新的一页:粒子的波动性

【学习目标】

(1)知道光、实物粒子具有波粒二象性;

(2)知道德布罗意假说的内容,公式表达;

(3)了解物质波的验证过程。

【重点、难点】

重点:知道德布罗意波及德布罗意波波长计算粒子同样具有波动性。

难点:理解德布罗意波(物质波)及表现规律。

【自主学习】

1. 了解光的波动性和粒子性的实验基础。

干涉和衍射现象说明了光具有波动性。而光电效应现象又无可辩驳地证明了光具有粒子性,因此,现代物理学认为:光具有。

5 / 11

2.正确理解光的波粒二象性

(1)少量光子的行为表现为粒子性,大量光子的行为表现为波动性。

(2)频率越低波动性越显著,越容易看到光的干涉和衍射现象;频率越高粒子性越显著,越不容易看到光的干涉和衍射现象。

(3)光在传播过程中往往表现出波动性,与物质发生作用时往往表现为粒子性。

3.光的波动性和粒子性与经典波和经典粒子的概念不同

(1)眀条纹是光子到达的概率较大,暗条纹光子到达的概率较小,这与经典波的振动叠加原理有所不同。

(2)光的粒子性是指光的能量不连续性,能量是一份一份的光子,没有一定的形状,也不占有一定的空间,这与经典粒子的概念有所不同。

4.物质波

1924年,法国物理学家徳布罗意提出:任何运动着的物体都有一种波与它对应,这种波就叫物质波,也叫徳布罗意波。 物质波的波长:mv

h p h ==λ,其中h 是普朗克常量。

【基础巩固】

1.下列现象中,说明光具有波动性的是( )

(A )光在两种介质的界面同时发生反射和折射

(B )光的干涉和衍射

(C )几束光交叉相遇后,继续按原来方向前进

(D )光的直进

2.很容易观察到无线电波的波动性,而很难观察到γ射线的干涉和衍射现象,这是因为( )

(A )无线电波只有波动性没有粒子性

(B )γ射线只有粒子性没有波动性

(C )γ射线的波长比无线电波短得多

(D )无线电波与γ射线的产生机理不同,无法进行比较

3.对光的波粒二象性的理解,正确的是( )

(A )凡是光的现象,都可用光的波动性去解释,也可用光的粒子性去解释

(B )波粒二象性就是微粒说与波动说的统一

(C )一切粒子的运动都具有波粒二象性

(D )大量光子往往表现出波动性,少量光子往往表现出粒子性

4.下列说法中正确的是( )

(A )关于光的粒子性,牛顿提出的微粒说和爱因斯坦提出的光子说是相同的

(B )关于光的波动性,惠更斯提出的波动说和麦克斯韦提出的电磁说是相同的

(C )光的波粒二象性就是既可以把光看作宏观概念上的波,以可以把光看作微观概念的粒子

(D )光了说和光的波粒二象性都没有否定光的电磁说

6.通过对光的本性认识不断深入,光的波粒二象性的发现,使我们知道粒子也可以具有 性,微观世界具有 的规律。

7.说明光具有粒子性的现象是( )

(A )光电效应 (B )光的干涉

(C )光的衍射 (D )光的色散

8.光的干涉、衍射现象证明光具有 ,光电效应表明光具有 ,因此光具有 。

17.4概率波不确定性关系

【学习目标】

1.知道光波和物质波都是概率波

2.了解“不确定关系”的具体含义

【重点难点】

1、人类对光的本性的认识的发展过程和不确定关系的概念

2、难点: 对量子化、波粒二象性、概率波等概念的理解;对不确定关系的定量应用

【自主学习】

1.经典粒子:粒子有一定的____________,有一定的__________有的还具有电荷有关。运动的基本特征是:任意时刻的确定的____________和____________以及时空中确定的__________。

2.经典波:经典的波在时空是弥散开来的,基本特征是:具有______ 和______,即具有时空的周期性

3概率波:光波是一种概率波,光的波动性不是光子之间____________引起的,而是光子自身_________的性质,光子在空间出现的概率可以通过波动的规律确定,所以光波是一种概率波。

4.不确定性关系:(1)定义:在经典力学中,一个质点的位置和动量是可以同时测定的,在量子力学中,要同时测出位置和动量是不太可能的,这种关系叫____________关系。

(2)表达式:___________

【基础巩固】

1.下列关于物质波的认识中正确的是 ( )

A.任何一个物体都有一种波和它对应,这就是物质波

B.X光的衍射证实了物质波的假设是正确的

C.电子的衍射证实了物质波的假设是正确的 D.物质波是一种概率波

2.频率为v的光子,德布罗意波长为λ=h/p,能量为E,则光的速度为 ( )

A.Eλ/h B.pE C.E/p D.h2/Ep

3.经150V电压加速的电子束,沿同一方向射出,穿过铝箔后射到其后的屏上,则 ( )

A.所有电子的运动轨迹均相同 B.所有电子到达屏上的位置坐标均相同

C.电子到达屏上的位置坐标可用牛顿运动定律确定

D.电子到达屏上的位置受波动规律支配,无法用确定的坐标来描述它的位置

4.下列属于概率波的是( )

A水波 B.声波 C.电磁波 D.物质波

5.关丁微观粒子的运动,下列说法中正确的是( )

A光于在不受外力作用时一定做匀速运动. B.光子受到恒定外力作用时一定做匀变速运动.

C.只要知道电子的初速度和所受外力,就可以确定其任意时刻的速度.

D.运用牛顿力学无法确定微观粒子的运动规律.

6.若某个质子的动能和某个氦核的动能相等,则这两个粒子的德布罗意波长之比为( )

A.1:2

B.2:1

C.1:4

D.4:1

7.运动的电子束穿过某一薄晶体时能产生明显的衍射现象,那么下列说法中正确的是( )

A.电子束的运动速度越快,产生的衍射现象越明显.

B.电子束的运动速度越慢,产生的衍射现象越明显.

C.产生衍射现象的明显程度与电子束的运动速度无关.

D.以上说法都不对.

8.一个电子被加速后,以极高的速度在空间运动,关于它的运动,下列说法中正确的是( )

A.电子在空间做匀速直线运动.

B.电子上下左右颤动着前进.

C.电子运动轨迹是正弦曲线.

D.无法预言它的路径.

9.关丁微观粒子的运动,下列说法中正确的是( )

A光于在不受外力作用时一定做匀速运动. B.光子受到恒定外力作用时一定做匀变速运动.

C.只要知道电子的初速度和所受外力,就可以确定其任意时刻的速度.

D.运用牛顿力学无法确定微观粒子的运动规律.

10.运动的电子束穿过某一薄晶体时能产生明显的衍射现象,那么下列说法中正确的是( )

A.电子束的运动速度越快,产生的衍射现象越明显.

B.电子束的运动速度越慢,产生的衍射现象越明显.

C.产生衍射现象的明显程度与电子束的运动速度无关.

D.以上说法都不对.

11.一个电子被加速后,以极高的速度在空间运动,关于它的运动,下列说法中正确的是( )

A.电子在空间做匀速直线运动.

B.电子上下左右颤动着前进.

C.电子运动轨迹是正弦曲线.

D.无法预言它的路径.

12.质量为m、带电荷量为e、初速为零的电子,经加速电压U加速后,其电子的德布罗意波

长为

e

2mU

h

.(普朗克常量为h)电子显微镜用电子束代替光镜的光源,放大倍数可达数万倍,

这是因为( )

A.电子束的波长短.

B.电子束的频率小.

C.电子束不具波动性.

D.电子束不具粒子性.

第十七章章末测试题

(时间:90分钟;满分:100分)

一、选择题(本题包括12小题,每小题5分,共60分,在每小题给出的4个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得5分,选对但不全的得2分,有选错或不答的得0分)

1.关于黑体辐射的强度与波长的关系,下图正确的是()

解析:选B.根据黑体辐射的实验规律:随温度升高,各种波长的辐射强度都有增加,故图线不会有交点,选项C、D错误.另一方面,辐射强度的极大值会向波长较短方向移动,选项A错误,B正确.2.下列实验中,能证明光具有粒子性的是()

A.光电效应实验B.光的双缝干涉实验

C.光的圆孔衍射实验D.康普顿效应实验

解析:选AD.光电效应、康普顿效应现象的出现,使光的电磁说出现了无法逾越的理论难题,只有认为光子具有粒子性才能很好解释上述现象,故A、D支持光的粒子性,而B、C支持光的波动性,故选A、D.

3.减小狭缝宽度,屏上中央亮条纹的宽度增大,这可以理解为()

A.更窄的狭缝可以更准确地测得粒子的位置

B.说明粒子更多地到达了中央亮条纹以外的地方

C.中央亮条纹的宽度增大,说明粒子的位置不确定性更大了

D.中央亮条纹的宽度增大,说明粒子在垂直于原来动量方向上的动量增大

答案:AD

7 / 11

4.用单色光做双缝干涉实验,P 处为亮纹,Q 处为暗纹,现在调整光源和双缝,使光子一个一个通过双缝,则过去的某一光子( )

A .一定到达P 处

B .不能到达Q 处

C .可能到达Q 处

D .都不正确

解析:选C.单个光子的运动路径是不可预测的,只知道落在P 处的概率大,落在Q 处的概率小,因此,一个光子从狭缝通过后可能落在P 处也可能落在Q 处.

5.下列各种说法中正确的有( )

A .普朗克在研究黑体的热辐射问题中提出了能量子假说

B .一束光照射到某种金属上不能发生光电效应,是因为该束光的照射时间太短

C .在光的单缝衍射实验中,狭缝越窄,光子动量的不确定量越大

D .任何一个运动物体,无论是太阳、地球,还是小到电子、质子,都与一种波相对应,这就是物质波.物质波是概率波

答案:ACD

6.如图所示为一真空光电管的应用电路,其阴极金属材料的极限频率为

4.5×1014Hz ,则以下判断正确的是( )

A .发生光电效应时,电路中光电流的饱和值取决于入射光的频率

B .发生光电效应时,电路中光电流的饱和值取决于入射光的强度

C .用λ=0.5 μm 的光照射光电管时,电路中有光电流产生

D .光照射时间越长,电路中的电流越大

解析:选BC.在光电管中若发生了光电效应,单位时间内发射光电子的数目只与入射光的强度有关,光电流的饱和值只与单位时间内发射光电子的数目有关.据此可判断A 、D 错误.波长λ=0.5 μm 的光子

的频率ν=c λ=3×1080.5×10-6

Hz =6×1014Hz>4.5×1014,可发生光电效应,所以,选项B 、C 正确. 7.频率为ν的光照射某种金属材料,产生光电子的最大初动能为E k ,若以频率为2ν的光照射同一金属材料,则光电子的最大初动能是( )

A .2E k

B .E k +hν

C .E k -hν

D .

E k +2hν

解析:选B.根据爱因斯坦光电效应方程E k =hν-W 0知,当入射光的频率为ν时,可计算出该金属的逸出功W 0=hν-E k .当入射光的频率为2ν时,光电子的最大初动能为E ′k =2hν-W 0=E k +hν.

8.用同一光电管研究a 、b 两种单色光产生的光电效应,得到光电流I 与光电

管两极间所加电压U 的关系如图.则这两种光( )

A .照射该光电管时a 光使其逸出的光电子最大初动能大

B .从同种玻璃射入空气发生全反射时,a 光的临界角大

C .通过同一装置发生双缝干涉,a 光的相邻条纹间距大

D .通过同一玻璃三棱镜时,a 光的偏折程度大

解析:选BC.由图可知b 光照射时对应遏止电压U C 2大于a 光照射时的遏止电压U C 1.因qU =12

m v 2,而hν=W +12

m v 2,所以b 光照射时光电子最大初动能大,A 错,且可得νb >νa ,λb <λa ,故D 错,C 对.b 光折射率大于a 光折射率,所以a 光临界角大,B 对.

9.一束波长为7×10-5 m 的光波,每秒钟有3×1015个光子通过一个与光线垂直的平面.另有一束光,

它传输相同的能量,但波长为4×10-5 m .那么这束光每秒钟通过这个垂直平面的光子数目为( )

A.712

×1015个 B .3×1015个 C.127×1015个 D.214

×1015个 解析:选C.由题意得n 1hc λ1=n 2hc λ2

,代入数据得 3×1015×hc 7×10-5=n 2hc 4×10

-5

9 / 11

n 2=127×1015个,故选C. 10.光子有能量,也有动量,动量p =h /λ客观存在,也遵守有关动量的规律.如

图所示,真空中,有一哑铃形的装置可绕通过横杆中点的竖直轴OO ′在水平面

内灵活地转动,其中左边是圆形黑纸片,右边是与左边大小、质量相同的圆形白

纸片.当用平行光垂直正面照射这两个圆面时,对于装置开始时的转动情况(俯视),下列说法中正确的是

( )

A .顺时针方向转动

B .逆时针方向转动

C .顺时针方向和逆时针方向都有可能

D .不会转动

解析:选B.光具有粒子性,光子打在物体的表面上时,会对物体表面产生压力,该压力可由F ·t =n ·Δp 求得(n 为光子数).光子打在黑色物体表面上,将被吸收,而打在白色物体表面上时,将会被反射,动量变化较大,因而圆形白纸片的圆面所受到的作用力大,从而产生逆时针方向转动,故A 、C 、D 错误,应选B.

11.科学研究表明:能量守恒和动量守恒是自然界的普遍规律.从科学实践的角度来看,迄今为止,人们还没有发现这些守恒定律有任何例外.相反,每当在实验中观察到似乎是违反守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终.如人们发现,在两个运动着微观粒子的电磁场相互作用下,两个粒子的动量的矢量和似乎不守恒的,这时物理学家又把动量的概念推广到了电磁场,把电磁场的动量也考虑进去,总动量就又守恒了.现将沿一定方向运动的光子与一个原来静止的自由电子发生碰撞,碰后自由电子向某一方向运动,而光子沿另一方向散射出去.这个散射出去的光子与入射前相比较( )

A .速率增大

B .波长增大

C .频率增大

D .能量增大

解析:选B.根据康普顿效应可知,光子与自由电子发生碰撞后能量减小,频率减小,但波长增大,所以选项B 正确.

12.根据不确定性关系Δx Δp ≥h 4π

,判断下列说法正确的是( ) A .采取办法提高测量Δx 精度时,Δp 的精度下降

B .采取办法提高测量Δx 精度时,Δp 的精度上升

C .Δx 与Δp 测量精度与测量仪器及测量方法是否完备有关

D .Δx 与Δp 测量精度与测量仪器及测量方法是否完备无关

解析:选AD.不确定关系表明无论采用什么方法试图确定坐标和相应动量中的一个,必然引起另一个较大的不确定性,这样的结果与测量仪器及测量方法是否完备无关,无论怎样改善测量仪器和测量方法,都不可能逾越不确定关系所给出的限度.故A 、D 正确.

二、计算题(本题包括4小题,共40分.解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)

13.(8分)氦氖激光器发射波长为632.8 nm 的单色光,试计算这种光的一个光子的能量为多少?若该激光器的发光功率为18 mW ,则每秒钟发射多少个光子?

解析:根据爱因斯坦光子学说,光子能量E =hν,而λν=c ,所以E =hc λ=6.63×10-34×3×108632.8×10-9

J =3.14×10-19J ,合1.96eV .因为发光功率等于光子的总能量除以单位时间,所以1s 内发射的光子数为n =P ·t E =18×10-3×13.14×10-

19=5.73×1016(个). 答案:1.96 eV 5.73×1016个

14.(10分)经1×104 V 电压加速的电子束,其德布罗意波长是多少?用上述电压加速的质子束,其德

布罗意波长是多少?(m e =0.91×10-30 kg ,m p =1.67×10-27 kg)

解析:由功能关系得eU =12m v 2, v 1= 2eU m e = 2×104×1.6×10-190.91×10

-30 m/s ≈5.93×107 m/s ,

则λ1=h m e v 1= 6.626×10-340.91×10-30×5.93×107

m ≈1.23×10-11 m.

v 2= 2eU m p = 2×104×1.6×10-191.67×10

-27 m/s ≈1.38×106 m/s ,

则λ2=h m p v 2= 6.626×10-341.67×10-27×1.38×106

m ≈2.88×10-13 m.

答案:1.23×10-11 m 2.88×10-13 m

15.(10分)如图所示,伦琴射线管两极加上一高压电源,即可在阳极A 上产生X

射线.(h =6.63×10-34 J·s ,电子电荷量e =1.6×10-19C).求:

(1)如高压电源的电压为20 kV ,求X 射线的最短波长;

(2)如此时电流表读数为5 mA,1 s 内产生5×1013个平均波长为1.0×10-10 m 的

光子,求伦琴射线管的工作效率.

解析:(1)X 射线管阴极上产生的热电子在20 kV 高压加速下获得的动能全部变成X 光子的能量,X 光子的波长最短.

由W =Ue =hν=hc /λ得

λ=hc Ue =6.63×10-34×3×1082×104×1.6×10-19

m ≈6.2×10-11 m. (2)高压电源的电功率P 1=UI =100 W

每秒产生的X 光子的能量E =nhc /λ≈0.1 J ,功率P 2=E t

=0.1 W 效率为η=P 2P 1

×100%=0.1%. 答案:(1)6.2×10-11 m (2)0.1%

16.(12分)波长为λ=0.71 ?的伦琴射线使金箔发射光电子,电子在磁感应强度为B 的匀强磁场区域

内做最大半径为r 的匀速圆周运动,已知r ·B =1.88×10-4T·m.试求:

(1)光电子的最大初动能.

(2)金属的逸出功.

解析:(1)电子在匀强磁场中做匀速圆周运动的向心力为洛伦兹力m v 2r =e v B ,v =erB m

. 电子的最大初动能

E k =12m v 2=e 2r 2B 2

2m

=(1.6×10-19)2×(1.88×10-4)2

2×9.1×10-31

J ≈4.97×10-16J =3.1×103 eV .

(2)入射光的能量

11 / 11 E =hc λ=6.63×10-34×3.0×1087.1×10-11×1.6×10-19

eV ≈1.75×104 eV

根据爱因斯坦光电效应方程得金属的逸出功 W =hν-E k =1.44×104 eV .

答案:(1)3.1×103 eV (2)1.44×104 eV

高中物理 第十七章 波粒二象性 4 概率波学案 新人教版选修3-5

4 概率波 1.经典的粒子和经典的波 (1)经典的粒子 ①有一定的空间大小,有一定的质量,有的带有电荷。 ②遵守牛顿运动定律,能确定其在以后任意时刻的位置和速度,能确定在空间的运动轨迹。 (2)经典的波 ①经典的波是在空间弥散开来的,其特征是具有波长和频率,即具有时空的周期性。 ②只是某种运动形式的传播,不具有物质性。 【例1】下列说法正确的是( ) A.惠更斯提出的光的波动说与麦克斯韦的光的电磁说都是说光是一种波,其本质是相同的 B.牛顿提出的光的微粒说与爱因斯坦的光子说都是说光是一份一份不连续的,其实质是相同的 C.惠更斯的波动说与牛顿的微粒说也是说光具有波粒二象性 D.爱因斯坦的光子说与麦克斯韦的光的电磁说揭示了光既具有波动性又具有粒子性解析:惠更斯提出的波动说和麦克斯韦的电磁说有着本质的不同,前者仍将光看做机械波,认为光在太空中是借助一种特殊介质“以太”传播的,而后者说光波只是电磁波而不是机械波,可以不借助于任何介质而传播,A选项错误。 牛顿提出的微粒说和爱因斯坦的光子说也是有本质区别的,前者认为光是由一个个特殊的实物粒子构成的,而爱因斯坦提出的光子不是像宏观粒子那样有一定形状和体积的实物粒子,它只强调光的不连续性。光是由一份一份组成的,B选项错误。 惠更斯的波动说和牛顿的微粒说都是以宏观物体为模型提出的,是对立的、不统一的,C选项错误。据光的波粒二象性知,D选项正确。 答案:D 释疑点波粒二象性 要正确理解光的波粒二象性的含义,不能把宏观的“波”与“粒子”的概念与微观的“波”与“粒子”的概念混淆,要注意建立微观领域的认识,逐步建立起一个全新的微观世界的模型,从而正确地理解波粒二象性的含义。 2.概率波 (1)光波是一种概率波 光的波动性不是光子之间相互作用引起的而是光子自身固有的性质,光子在空间出现的概率可以通过波动的规律来确定,所以光波是一种概率波。 (2)物质波也是概率波 电子和其他微观粒子同样具有波粒二象性,所以与它们相联系的物质波也是概率波。 【例2】下列说法正确的是( ) A.光波是一种概率波 B.光波是一种电磁波 C.单色光从光密介质进入光疏介质时,光子的能量改变 D.光从光密介质进入光疏介质时,光的波长不变 解析:光具有波粒二象性,既具有波动性,又具有粒子性,光在空间各点出现的可能性的大小(概率),可以用波动规律来描述,因而光是一种概率波,故A选项正确。而由光的电磁说可知光是一种电磁波,故B选项正确。当波从一种介质进入另一种不同折射率的介质中时,光的频率不变,而光子的能量ε=hν,取决于频率,故C选项错。但由于介质不同,因而光的传播速度就不相同,由波长、波速和频率的关系可知,光波的波长也就相应地发生变化,故D选项错。 答案:AB

人教版高中物理必修2《平抛运动》导学案

第12讲 平抛运动 【重点知识梳理】 一、平抛运动的基本规律 1.性质 加速度为重力加速度g 的匀变速曲线运动,运动轨迹是抛物线. 2.基本规律 以抛出点为原点,水平方向(初速度v 0方向)为x 轴,竖直向下方向为y 轴,建立平面直角坐标系,则: (1)水平方向:做匀速直线运动,速度v x =v 0,位移x =v 0t . (2)竖直方向:做自由落体运动,速度v y =gt ,位移y =12 gt 2. (3)合速度:v =v 2x +v 2y ,方向与水平方向的夹角为θ,则tan θ=v y v x =gt v 0. (4)合位移:s =x 2+y 2,方向与水平方向的夹角为α,tan α=y x =gt 2v 0 . 3.对规律的理解 (1)飞行时间:由t =2h g 知,时间取决于下落高度h ,与初速度v 0无关. (2)水平射程:x =v 0t =v 0 2h g ,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. (3)落地速度:v t =v 2x +v 2y =v 20+2gh ,以θ表示落地速度与x 轴正方向的夹角,有tan θ=v y v x =2gh v 0,所以落地速度也只与初速度v 0和下落高度h 有关. (4)速度改变量:因为平抛运动的加速度为重力加速度g ,所以做平抛运动 的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 相同,方向恒 为竖直向下,如图所示. (5)两个重要推论 ①做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定 通过此时水平位移的中点,如图2中A 点和B 点所示.

②做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其速度方向与水平方向的夹角为α,位移方向与水平方向的夹角为θ,则tan α=2tan θ. 二、斜面上的平抛运动问题 斜面上的平抛运动问题是一种常见的题型,在解答这类问题时除要运用平抛运动的位移和速度规律,还要充分运用斜面倾角,找出斜面倾角同位移和速度与水平方向夹角的关系,从而使问题得到顺利解决.常见的模型如下: 方法 内容 斜面 总结 分解速度 水平:v x =v 0 竖直:v y =gt 合速度:v =v 2x +v 2y 分解速度,构建速度三角形 分解位移 水平:x =v 0t 竖直:y =12 gt 2 合位移:s =x 2+y 2 分解位移,构建位移三角形 1.受力特点 物体所受的合外力为恒力,且与初速度的方向垂直. 2.运动特点 在初速度v 0方向上做匀速直线运动,在合外力方向上做初速度为零的匀加速直线运动,加速度a =F 合m . 3.求解方法 (1)常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合外力的方向)的匀加速直线运动.两分运动彼此独立,互不影响,且与合运动具有等时性. (2)特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度a 分解为a x 、a y ,初速度v 0分解为v x 、v y ,然后分别在x 、y 方向列方程求解. 【高频考点突破】 考点一 对平抛运动的理解 例1.(多选)对于平抛运动,下列说法正确的是( )

波粒二象性知识点教学教材

波粒二象性知识点总结 一:黑体与黑体辐射 1.热辐射 (1)定义:我们周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫热辐射。 (2)特点:热辐射强度按波长的分布情况随物体的温度而有所不同。 2.黑体 (1)定义:在热辐射的同时,物体表面还会吸收和反射外界射来的电磁波。如果一些物体能够完全吸收投射到其表面的各种波长的电磁波而不发生反射,这种物 体就是绝对黑体,简称黑体。 (2)黑体辐射特点:黑体辐射电磁波的强度按波长的分布只与黑 体的温度有关。 注意:一般物体的热辐射除与温度有关外,还与材料的种类及 表面状况有关。 二:黑体辐射的实验规律 如图所示,随着温度的升高,一方面,各种波长的辐射强度都 有增加;另—方面,辐射强度的极大值向波长较短的方向移动。 三:能量子 1.能量子:带电微粒辐射或吸收能量时,只能是辐射或吸收某 个最小能量值的整数倍,这个不可再分的最小能量值E叫做能量子。 2.大小:E=hν。 其中ν是电磁波的频率,h称为普朗克常量,h=6.626x10—34J·s(—般h=6.63x10—34J·s)。四:拓展: 1、对热辐射的理解 (1).在任何温度下,任何物体都会发射电磁波,并且其辐射强度按波长的分布情况随物体的温度而有所不同,这是热辐射的一种特性。 在室温下,大多数物体辐射不可见的红外光;但当物体被加热到5000C左右时,开始发出暗红色的可见光。随着温度的不断上升,辉光逐渐亮起来,而且波长较短的辐射越来越 多,大约在1 5000C时变成明亮的白炽光。这说明同一物体在一定温度下所辐射的能量在不同光谱区域的分布是不均匀的,而且温度越高光谱中与能量最大的辐射相对应的频率也越高。(2).在一定温度下,不同物体所辐射的光谱成分有显著的不同。例如,将钢加热到约800℃时,就可观察到明亮的红色光,但在同一温度下,熔化的水晶却不辐射可见光。 (3)热辐射不需要高温,任何温度下物体都会发出一定的热辐射,只是温度低时辐射弱,温度高时辐射强。2、2.什么样的物体可以看做黑体 (1).黑体是一个理想化的物理模型。 (2).如图所示,如果在一个空腔壁上开—个很小的孔,那么射人 小孔的电磁波在空腔内表面会发生多次反射和吸收,最终不能从空腔 射出。这个空腔近似看成一个绝对黑体。 注意:黑体看上去不一定是黑色的,有些可看做黑体的物体由于 自身有较强的辐射,看起来还会很明亮。如炼钢炉口上的小孔。 3、普朗克能量量子化假说 (1).如图所示,假设与实验结果“令人满意地相符”, 图中小圆点表示实验值,曲线是根据普朗克公式作出的。 (2).能量子假说的意义 普朗克的能量子假说,使人类对微观世界的本质有了全 新的认识,对现代物理学的发展产生了革命性的影响。普朗 克常量h是自然界最基本的常量之一,它体现了微观世界的

(人教版)高中物理必修二(全册)精品分层同步练习汇总

(人教版)高中物理必修二(全册)精品同步练习汇总 分层训练·进阶冲关 A组基础练(建议用时20分钟) 1.(2018·泉州高一检测)关于运动的合成和分解,下列说法中正确的是 (C) A.合运动的速度大小等于分运动的速度大小之和 B.物体的两个分运动若是直线运动,则它的合运动一定是直线运动 C.合运动和分运动具有等时性 D.若合运动是曲线运动,则其分运动中至少有一个是曲线运动

2.(2018·汕头高一检测)质点在水平面内从P运动到Q,如果用v、a、F分别表示质点运动过程中的速度、加速度和受到的合外力,下列选项正确的是(D) 3.一只小船渡河,运动轨迹如图所示。水流速度各处相同且恒定不变,方向平行于河岸;小船相对于静水分别做匀加速、匀减速、匀速直线运动,船相对于静水的初速度大小均相同、方向垂直于河岸,且船在渡河过程中船头方向始终不变。由此可以确定 (D) A.船沿AD轨迹运动时,船相对于静水做匀加速直线运动 B.船沿三条不同路径渡河的时间相同 C.船沿AB轨迹渡河所用的时间最短 D.船沿AC轨迹到达对岸前瞬间的速度最大 4.如图所示,某人用绳通过定滑轮拉小船,设人匀速拉绳的速度为v0,绳某时刻与水平方向夹角为α,则小船的运动性质及此时刻小船的水平速度v x为(A)

A.小船做变速运动,v x= B.小船做变速运动,v x=v0cos α C.小船做匀速直线运动,v x= D.小船做匀速直线运动,v x=v0cosα B组提升练(建议用时20分钟) 5.(2018·汕头高一检测)质量为1 kg的物体在水平面内做曲线运动,已知该物体在互相垂直方向上两分运动的速度-时间图象分别如图所示,则下列说法正确的是(D) A.2 s末质点速度大小为7 m/s B.质点所受的合外力大小为3 N C.质点的初速度大小为5 m/s D.质点初速度的方向与合外力方向垂直 6.(多选)在杂技表演中,猴子沿竖直杆向上做初速度为零、加速度为a的匀加速运动,同时人顶着直杆以速度v0水平匀速移动,经过时间t,猴子沿杆向上移动的高度为h,人顶杆沿水平地面移动的距离为x,如图所示。关于猴子的运动情况,下列说法中正确的是( B、D )

18届高考物理一轮复习专题光电效应波粒二象性导学案2

光电效应波粒二象性 知识梳理 知识点一、光电效应 1.定义 照射到金属表面的光,能使金属中的电子从表面逸出的现象。 2.光电子 光电效应中发射出来的电子。 3.研究光电效应的电路图(如图1): 图1 其中A是阳极。K是阴极。 4.光电效应规律 (1)每种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能产生光电效应。低于这个频率的光不能产生光电效应。 (2)光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大。 (3)光电效应的发生几乎是瞬时的,一般不超过10-9s。 (4)当入射光的频率大于极限频率时,饱和光电流的强度与入射光的强度成正比。 知识点二、爱因斯坦光电效应方程 1.光子说 在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光的能量子,简称光子,光子的能量ε=hν。其中h=6.63×10-34J·s。(称为普朗克常量) 2.逸出功W0 使电子脱离某种金属所做功的最小值。 3.最大初动能 发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有的动能的最大值。

4.遏止电压与截止频率 (1)遏止电压:使光电流减小到零的反向电压U c 。 (2)截止频率:能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(又叫极限频率)。不同的金属对应着不同的极限频率。 5.爱因斯坦光电效应方程 (1)表达式:E k =h ν-W 0。 (2)物理意义:金属表面的电子吸收一个光子获得的能量是h ν,这些能量的一部分用 来克服金属的逸出功W 0,剩下的表现为逸出后光电子的最大初动能E k =12m e v 2。 知识点三、光的波粒二象性与物质波 1.光的波粒二象性 (1)光的干涉、衍射、偏振现象证明光具有波动性。 (2)光电效应说明光具有粒子性。 (3)光既具有波动性,又具有粒子性,称为光的波粒二象性。 2.物质波 (1)概率波 光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,因此光波又叫概率波。 (2)物质波 任何一个运动着的物体,小到微观粒子大到宏观物体都有一种波与它对应,其波长λ=h p ,p 为运动物体的动量,h 为普朗克常量。 考点精练 考点一 光电效应现象和光电效应方程的应用 1.对光电效应的四点提醒 (1)能否发生光电效应,不取决于光的强度而取决于光的频率。 (2)光电效应中的“光”不是特指可见光,也包括不可见光。 (3)逸出功的大小由金属本身决定,与入射光无关。 (4)光电子不是光子,而是电子。 2.两条对应关系 (1)光强大→光子数目多→发射光电子多→光电流大;

高一物理学案(必修二全册)

一、曲线运动 【要点导学】 1、物体做曲线运动的速度方向是时刻发生变化的,质点经过某一点(或某一时刻)时的速度方向沿曲线上该点的。 2、物体做曲线运动时,至少物体速度的在不断发生变化,所以物体一定具有,所以曲线运动是运动。 3、物体做曲线运动的条件:物体所受合外力的方向与它的速度方向。 4、力可以改变物体运动状态,如将物体受到的合外力沿着物体的运动方向和垂直于物体的运动方向进行分解,则沿着速度方向的分力改变物体速度的;垂直于速度方向的分力改变物体速度的。速度大小是增大还是减小取决于沿着速度方向的分力与速度方向相同还是相反。做曲线运动的物体,其所受合外力方向总指向轨迹侧。 匀变速直线运动只有沿着速度方向的力,没有垂直速度方向的力,故速度的改变而不变;如果没有沿着速度方向的力,只有垂直速度方向的力,则物体运动的速度不变而不断改变,这就是今后要学习的匀速圆周运动。 【范例精析】 例1、在砂轮上磨刀具时可以看到,刀具与砂轮接触处有火星沿砂轮的切线飞出,为什么由此推断出砂轮上跟刀具接触处的质点的速度方向沿砂轮的切线方向? 解析火星是从刀具与砂轮接触处擦落的炽热微粒,由于惯性,它们以被擦落时具有的速度做直线运动,因此,火星飞出的方向就表示砂轮上跟刀具接触处的质点的速度方向。火星沿砂轮切线飞出说明砂轮上跟刀具接触处的质点的速度方向沿砂轮的切线方向。 例2、质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,若突然撤去F1,则质点() A.一定做匀变速运动B.一定做直线运动 C.一定做非匀变速运动D.一定做曲线运动 解析:质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。由题意可知,当突然撤去F1时,质点受到的合力大小为F1,方向与F1相反,故A正确,C错误。在撤去F1之前,质点保持平衡,有两种可能:一是质点处于静止状态,则撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,则撤去F1后,质点可能做直线运动(条件是:F1的方向和速度方向在一条直线上),也可能做曲线运动(条件是:F1的方向和速度方向不在一条直线上)。故B、D的说法均是错误的。 拓展:不少同学往往错误认为撤去哪个力,合力就沿哪个力的方向。物体在三个不在同一直线上的力的作用下保持静止,处于受力平衡状态,合力为零,任

第二章波粒二象性 第五节 德布罗意波 学案

第二章波粒二象性 第五节 德布罗意波 学案 〖学习目标〗 1、知道什么是德布罗意波,了解德布罗意波长与实物粒子的动量的关系; 2、知道实物粒子和光子一样具有波粒二象性; 3、了解不确定性关系. 〖学习难点〗对德布罗意波的理解 〖自主学习〗 一、德布罗意波假说及实验验证 1、德布罗意波 任何一个实物粒子都和一个 相对应,这种与实物粒子相联系的波称为德布罗意波,也 叫做 。 2、物质波的波长、频率关系式:λ= 和v= 3、实验验证:1927年带戴维孙和汤姆生分别利用晶体做了 的实验,得到了电子的 ,证实了电子的波动性。 二、不确定性关系 以△x 表示微观粒子位置的 ,以△p 表示微观粒子 的不确定性,那么△x △p ≥h/4π,式中h 式普朗克常量。 【重难点阐释】 一、说明:光的波粒二象性的联系 (1)、E=h ν 光子说不否定波动性 光具有能量动量,表明光具有粒子性。光又具有波长、频率,表明光具有波动性。且由E=h ν,光子说中E=h ν,ν是表示波的物理量,可见光子说不否定波动说。 (2)、光子的动量和光子能量的比较:p=λh 与ε=h ν P与ε是描述粒子性的,λ、ν是描述波动性的,h 则是连接粒子和波动的桥梁 波粒二象性对光子来讲是统一的。 二、德布罗意波(物质波) 德布罗意(due de Broglie, 1892-1960)提出:一切实物粒子都有具有波粒二象性。即每一个运动的粒子都与一个对应的波相联系。 能量为E 、动量为p 的粒子与频率为v 、波长为λ的波相联系,并遵从以下关系:E=mc 2=hv p=mv=λh 其中p :运动物体的动量 h :普朗克常量 1、德布罗意波 这种和实物粒子相联系的波称为德布罗意波(物质波或概率波),其波长λ称为德布罗意波长。 2、一切实物粒子都有波动性。 后来,大量实验都证实了:质子、中子和原子、分子等实物微观粒子都具有波动性,并都满足德布罗意关系。 一颗子弹、一个足球有没有波动性呢? 【例1】试估算一个中学生在跑百米时的德布罗意波的波长。 解:估计一个中学生的质量m ≈50kg ,百米跑时速度v ≈7m/s ,则 λ=p h =1.9×10-36m 计算结果表明,子弹的波长小到实验难以测量的程度,宏观物体的物质波波长非常小,所以很难表现出其波动性。

第一章 学案2步步高高中物理必修二

学案2运动的合成与分解 [目标定位] 1.知道什么是运动的合成与分解,理解合运动与分运动等有关物理量之间的关系.2.会确定互成角度的两分运动的合运动的运动性质.3.会分析小船渡河问题. 一、位移和速度的合成与分解 [问题设计] 1.如图1所示,小明由码头A出发,准备送一批货物到河对岸的码头B.他驾船时始终保持船头指向与河岸垂直,但小明没有到达正对岸的码头B,而是到达下游的C处,此过程中小船参与了几个运动? 图1 答案小船参与了两个运动,即船垂直河岸的运动和船随水向下的漂流运动. 2.小船的实际位移、垂直河岸的位移、随水向下漂流的位移有什么关系? 答案如图所示,实际位移(合位移)和两分位移符合平行四边形定则. [要点提炼] 1.合运动和分运动 (1)合运动和分运动:一个物体同时参与两种运动时,这两种运动叫做分运动,而物体的实际运动叫做合运动. (2)合运动与分运动的关系 ①等时性:合运动与分运动经历的时间相等,即同时开始,同时进行,同时停止. ②独立性:一个物体同时参与了几个分运动,各分运动独立进行、互不影响,因此在研究某个分运动时,就可以不考虑其他分运动,就像其他分运动不存在一样. ③等效性:各分运动的相应参量叠加起来与合运动的参量相同.

2.运动的合成与分解 (1)已知分运动求合运动叫运动的合成;已知合运动求分运动叫运动的分解. (2)运动的合成和分解指的是位移、速度、加速度的合成和分解.位移、速度、加速度合成和分解时都遵循平行四边形定则. 3.合运动性质的判断 分析两个直线分运动的合运动的性质时,应先根据平行四边形定则,求出合运动的合初速度v 0和合加速度a ,然后进行判断. (1)判断是否做匀变速运动 ①若a =0时,物体沿合初速度v 0的方向做匀速直线运动. ②若a ≠0且a 恒定时,做匀变速运动. ③若a ≠0且a 变化时,做非匀变速运动. (2)判断轨迹的曲直 ①若a 与初速度共线,则做直线运动. ②若a 与初速度不共线,则做曲线运动. 二、小船渡河问题 1.最短时间问题:可根据运动等时性原理由船对静水的分运动时间来求解,由于河宽一定,当船对静水速度v 1垂直河岸时,如图2所示,垂直河岸方向的分速度最大,所以必有t min =d v 1 . 图2 2.最短位移问题:一般考察水流速度v 2小于船对静水速度v 1的情况较多,此种情况船的最短航程就等于河宽d ,此时船头指向应与上游河岸成θ角,如图3所示,且cos θ=v 2 v 1;若v 2> v 1,则最短航程s =v 2v 1d ,此时船头指向应与上游河岸成θ′角,且cos θ′=v 1 v 2 . 图3 三、关联速度的分解 绳、杆等连接的两个物体在运动过程中,其速度通常是不一样的,但两者的速度是有联系的(一般两个物体沿绳或杆方向的速度大小相等),我们称之为“关联”速度.解决此类问题的一般

人教版高中物理选修3-5第17章《光的波粒二象性》知识点总结

第十七章:波粒二象性 一、黑体辐射规律 1、黑体:只吸收外来电磁波而不反射的理想物体 2、黑体辐射的特点 黑体的辐射强度按波长分布只与温度有关,与物体的材料和表面形 状无关(一般物体的辐射强度按波长分布除与温度有关外,还与物 体的材料、表面形状有关); 3、黑体辐射规律: ① 随着温度的升高,任意波长的辐射强度都加强 ② 随着温度的升高,辐射强度的极大值向着波长减小的方向进行; 4、普朗克的量子说: 透过黑体辐射规律,普朗克认为:电磁皮的辐射和吸收,是不连续的,而是一份一份地进行的,每份叫一个能量子,能量为γεh =。爱因斯坦受其启发,提出了光子说:光的传播和吸收也是一份一份地进行的,每一份叫一个光子,其能量为νεh = 二、光电效应:说明了光具有粒子性,同时说明了光子具有能量 1、光电效应现象 紫外光照射锌板,锌板的电子获得足够的光子能量,挣脱金 属正离子引力,脱离锌板成为光电子;锌板因失去电子而带上 正电,于是与锌板相连的验电器也带上正电,金属箔张开。 2、实验原理电路图

3、规律: ① 存在饱和电流 饱和电流:在光电管两端加正向电压时,单位时间到达阳极A 的光 电子数增多,光电流越大;但当逸出的光电子全部到达阳极后,再 增加正向电压,光电流就达到最大饱和值,称为饱和电流。 ② 存在遏止电压 在光电管两端加反向电压时,单位时间内到达阳极A 的光电子数减少,光电流减小;当反射电压达到某一值U C 时,光电流减小为零,U C 就叫“遏止电压”。 ③ 存在截止频率 a 、 截止频率的定义:任何一种金属都有一个极限频率ν0,入射光的频率低于 “极限频率”ν0时,无论入射光多强,都不能发生光电效应,这个极限频率称为 截止频率。 b 、“逸出功”定义:电子从金属表面脱离金属所需克服金属正离子的引力所做的最小功。 要发生光电效应,入射光的能量(h ν)要大于 “逸出功(W )” 即: 00W hv = ④ 光电效应的“瞬时性”——因光电效应发生的时间,即为一个光子与一个电子能量交换 的时间,所以不管光强度如何,发生光电效应的时间极短,不超过10-9 s 。 4、爱因斯坦的光电效应方程: 光电子的最大初动能等于入射光光子的能量减逸出功 即:W h E K -=ν 可见“光电子的最大初动能”与入射光的强度无关,只与入射光频率有关,图象如下图

人教版高一物理必修2全册教案

课题 5.2运动的合成和分解课型新授课课时 1 教学目标 (一)知识教学点 1.知道合运动、分运动、知道合运动和分运动是同时发生的,并且互不影响,能在具体的问题中分析和判断. 2.理解运动的合成、运动的分解的具体意义.理解运动的合成和分解遵循平行四边形定则. 3.会用图示方法和教学方法求解位移,速度合成、分解的问题. (二)能力训练点 培养观察和推理的能力、分析和综合的能力. (三)教育渗透点 辩证地看待问题 (四)美育渗透点 学生在学习过程运用概念进行推理、判断,能体会到物理学科中所渗透出的逻辑美. 教学重点难点1.重点 明确一个复杂的运动可以等效为两个简单的运动的合成或等效分解为两个简单的运动,理解运动合成、分解的意义和方法. 2.难点 认识分运动和分运动相互独立、互不相干;分运动和合运动的同时性.理解两个直线运动的合运动可以是直线运动,也可以是曲线运动. 教学准备教材实验装置 课件:运动的合成和分解多媒体设备 教学过程 (一)明确目标 (略) (二)整体感知 本节的地位比较特殊.为知识的学习,涉及到许多基本概念和基本规律;作为方法的介绍,体会把较复杂的运动看作是几个简单运动的合成;作为能力的培养,提高观察和推理能力,分析和综合的能力. (三)重点、难点的学习与目标完成过程 1.什么是分运动、合运动? 演示实验(具体操作见课本) 学生观察蜡块的运动:由A到B沿玻璃管竖直向上匀速直线运动;由A到D随玻璃管向右匀速直线运动;蜡块实际的运动是上述两个运动的合成.即由A到C的匀速直线运动,如图5-2所示.

②定量分析,在 x 方向有x = 2 1a 2 t ,在y 方向有y =y v t ,约去时间t 得 k y a v x y y 2 22= 故2y =kx .此为抛物线型方程,表明合运动是曲线运动.(定量分析可结合学生情况留给学生课后思考) (2)一个曲线运动可以分解为两个方向上的直线运动 既然两个直线运动的合运动可以是曲线运动,反过来,一个曲线运动可以用两个方向上的直线运动来等效替代.也就是说,分别研究这两个方向上的受力情况和运动情况,弄清楚分运动是直线运动的规律,就可以知道作为合运动的曲线运动的规律. 作 业 布 置 练习二 (1)(2)(3)(4) 课堂总结 1.在进行运动的合成和分解时,一定要明确合运动是物体实际的运动.分运动是假想的,这与力的合成和分解是有区别的,如图5-3所示.通过一定滑轮拉一物体,使物体在水平面上运动,如果是讨论运动的合成和分解,物体实际运动即合运动的速度方向是水平的,沿绳方向的速度是分运动的速度;如果是讨论力的合成和分解,沿绳方向的拉力是物体实际受到的力,沿水平方向的力是拉力的分力. 图5-3 2.合成和分解的精髓是“等效”的思想.学习时要深刻体会,可以结合课本“思考和讨论”进一步说明.

新人教版(新教材)学案:高中第4章原子结构和波粒二象性章末综合提升学案选择性必修3(物理)

[巩固层·知识整合] [提升层·能力强化] 光电效应规律及其应用 算。求解光电效应问题的关键在于掌握光电效应规律,明确各概念之间的决定关系,准确把握它们的内在联系。 1.决定关系及联系 2.“光电子的动能”可以是介于0~E km的任意值,只有从金属表面逸出的光电子才具有最大初动能,且随入射光频率增大而增大。 3.光电效应是单个光子和单个电子之间的相互作用产生的,金属中的某个电子只能吸收一个光子的能量,只有当电子吸收的能量足够克服原子核的引力而逸出时,才能产生光电效应。 4.入射光强度指的是单位时间内入射到金属表面单位面积上的光子的总能量,在入射光频率ν不变时,光强正比于单位时间内照到金属表面单位面积上的光子数,但若入射光频率不同,即使光强相同,单位时间内照到金属表面单位面积上的光子数也不相同,因而从金属表面逸出的光电子数也不相同(形成的光电流也不相同)。

【例1】(多选)如图所示是现代化工业生产中部分光电控制设备用到的光控继电器的示意图,它由电源、光电管、放大器等几部分组成。当用绿光照射图中光电管阴极K时,可发生光电效应,则以下说法中正确的是( ) A.增大绿光的照射强度,光电子的最大初动能增大 B.增大绿光的照射强度,电路中的光电流增大 C.改用比绿光波长大的光照射光电管阴极K时,电路中一定有光电流 D.改用比绿光频率大的光照射光电管阴极K时,电路中一定有光电流 思路点拨:(1)入射光频率越大,光电子最大初动能越大。 (2)在能够发生光电效应时,光照强弱对应光电流的大小。 BD [光电子的最大初动能由入射光的频率决定,选项A错误;增大绿光的照射强度,单位时间内入射的光子数增多,所以光电流增大,选项B正确;改用比绿光波长更大的光照射时,该光的频率不一定满足发生光电效应的条件,选项C错误;若改用频率比绿光大的光照射,一定能发生光电效应,选项D正确。] [一语通关] (1)某种色光强度的改变决定单位时间入射光子数目改变,光子能量不变。 (2)光电效应中光电子的最大初动能与入射光频率和金属材料有关,与光的强度无关。 两个重要的物理思想方 法 如图所示,人们对原子结构的认识经历了几个不同的阶段,其中有汤姆孙模型、卢瑟福模型、玻尔模型、电子云模型。

2021新人教版高中物理必修2全册复习教学案

高中物理必修2(新人教版)全册复习教学案 内容简介:包括第五章曲线运动、第六章万有引力与航天和第七章机械能守恒定律,具体可以分为,知识网络、高考常考点的分析和指导和常考模型规律示例总结,是高一高三复习比较好的资料。 一、 第五章 曲线运动 (一)、知识网络 (二)重点内容讲解 1、物体的运动轨迹不是直线的运动称为曲线运动,曲线运动的条件可从两个角度来理解:(1)从运动学角度来理解;物体的加速度方向不在同一条直线上;(2)从动力学角度来理解:物体所受合力的方向与物体的速度方向不在一条直线上。曲线运动的速度方向沿曲线的切线方向,曲线运动是一种变速运动。 曲线运动是一种复杂的运动,为了简化解题过程引入了运动的合成与分解。一个复杂的运动可根据运动的实际效果按正交分解或按平行四边形定则进行分解。合运动与分运动是等效替代关系,它们具有独立性和等时性的特点。运动的合成是运动分解的逆运算,同样遵循曲线运动

平等四边形定则。 2、平抛运动 平抛运动具有水平初速度且只受重力作用,是匀变速曲线运动。研究平抛运动的方法是利用运动的合成与分解,将复杂运动分解成水平方向的匀速直线运动和竖直方向的自由落体运动。其运动规律为:(1)水平方向:a x =0,v x =v 0,x= v 0t 。 (2)竖直方向:a y =g ,v y =gt ,y= gt 2 /2。 (3)合运动:a=g ,2 2y x t v v v += ,22y x s +=。v t 与v 0方向夹角为θ,tan θ= gt/ v 0, s 与x 方向夹角为α,tan α= gt/ 2v 0。 平抛运动中飞行时间仅由抛出点与落地点的竖直高度来决定,即g h t 2= ,与v 0无关。水平射程s= v 0 g h 2。 3、匀速圆周运动、描述匀速圆周运动的几个物理量、匀速圆周运动的实例分析。 正确理解并掌握匀速圆周运动、线速度、角速度、周期和频率、向心加速度、向心力的概念及物理意义,并掌握相关公式。 圆周运动与其他知识相结合时,关键找出向心力,再利用向心力公式F=mv 2/r=mr ω2 列式求解。向心力可以由某一个力来提供,也可以由某个力的分力提供,还可以由合外力来提供,在匀速圆周运动中,合外力即为向心力,始终指向圆心,其大小不变,作用是改变线速度的方向,不改变线速度的大小,在非匀速圆周运动中,物体所受的合外力一般不指向圆心,各力沿半径方向的分量的合力指向圆心,此合力提供向心力,大小和方向均发生变化;与半径垂直的各分力的合力改变速度大小,在中学阶段不做研究。 对匀速圆周运动的实例分析应结合受力分析,找准圆心的位置,结合牛顿第二定律和向心力公式列方程求解,要注意绳类的约束条件为v 临=gR ,杆类的约束条件为v 临=0。 (三)常考模型规律示例总结 1.渡河问题分析 小船过河的问题,可以 小船渡河运动分解为他同时参与的两个运动,一是小船相对水的运动(设水不流时船的运动,即在静水中的运动),一是随水流的运动(水冲船的运动,等于水流的运动),船的实际运动为合运动. 例1:设河宽为d,船在静水中的速度为v 1,河水流速为v 2 ①船头正对河岸行驶,渡河时间最短,t 短= 1 v d ②当 v 1> v 2时,且合速度垂直于河岸,航程最短x 1=d 当 v 1< v 2时,合速度不可能垂直河岸,确定方法如下: 如图所示,以 v 2矢量末端为圆心;以 v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则 合速度沿此切线航程最短, 由图知: sin θ=2 1v v

高中物理 教科版选修3-5 4.3 光的波粒二象性 学案

3光的波粒二象性 一、康普顿效应 1.光的散射 光子在介质中与物质微粒相互作用,因而传播方向发生改变,这种现象叫做光的散射. 2.康普顿效应 美国物理学家康普顿在研究石墨对X射线的散射时,发现在散射的X射线中,除了与入射波长λ0相同的成分外,还有波长大于λ0的成分,这个现象称为康普顿效应. 3.康普顿效应的意义 康普顿效应表明光子除了具有能量之外,还具有动量,深入揭示了光的粒子性的一面. 4.光子的动量 (1)表达式:p=h λ. (2)说明:在康普顿效应中,入射光子与晶体中电子碰撞时,把一部分动量转移给电子,光子的动量变小.因此,有些光子散射后波

长变大. 二、光的波粒二象性 1.光的波粒二象性 (1)光的干涉和衍射现象说明光具有波动性,光电效应和康普顿效应说明光具有粒子性. (2)光子的能量ε=hν,光子的动量p=h λ. (3)光子既有粒子的特征,又有波的特征;即光具有波粒二象性. 2.对光的波粒二象性的理解 (1)大量光子产生的效果显示出波动性;个别光子产生的效果显示出粒子性. (2)光子的能量与其对应的频率成正比,而频率是描述波动性特征的物理量,因此ε=hν揭示了光的粒子性和波动性之间的密切联系. (3)频率低、波长长的光,波动性特征显著,而频率高、波长短的光,粒子性特征显著. (4)光在传播时体现出波动性,在与其他物质相互作用时体现出粒子性.光的粒子性和波动性组成一个有机的统一体. 三、光是一种概率波 在双缝干涉实验中,屏上亮纹的地方,是光子到达概率大的地方,暗纹的地方是光子到达概率小的地方.所以光波是一种概率波.即光波在某处的强度代表着光子在该处出现概率的大小. 在生活中我们会拍很多照片,通常我们都认为,这是由人和景物发出或反射的光波经过照相机的镜头聚焦在底片上形成的.实际上照片上的图像也是由光子撞击底片,使上面的感光材料发生化学反应形成的.下图是用不同曝光量洗印的照片,请你根据自己对光的理解作出说明.

(完整版)人教版高中物理必修2《生活中的圆周运动》导学案习题及答案

第八节生活中的圆周运动 【目标要求】 1.知识与技能 知道如果一个力或几个力的合力的效果是使物体产生向心加速,它就是圆周运动的物体所受的向心力。会在具体问题中分析向心力的来源。 理解匀速圆周运动的规律。 知道向心力和向心加速度的公式也适用于变速圆周运动,会求变速圆周运动中物体在特殊点的向心力和向心加速度。 2.过程与方法 通过对匀速圆周运动的实例学习,渗透理论联系实际的观点,提高分析和解决问题的能力. 通过匀速圆周运动的规律也可以在变速圆周运动中使用,渗透特殊性和一般性之间的辩证关系,提高分析能力. 3.情感.态度与价值观 通过对几个实例的学习,明确具体问题必须具体分析,学会用合理.科学的方法处理问题。 通过离心运动的应用和防止的实例分析,明白事物都是一分为二的,要学会用一分为二的观点来看待问题。 【巩固教材-稳扎稳打】 1.关于列车转弯处内外铁轨间的高度关系,下列说法中正确的是( ) A.内外轨一样高,以防列车倾倒造成翻车事故 B.因为列车转弯处有向内倾倒的可能,故一般使内轨高于外轨,以防列车倾倒 C.外轨比内轨略高,这样可以使列车顺利转弯,减少车轮与铁轨的挤压 D.以上说法都不对 2.关于离心运动,下列说法中正确的( ) A.物体突然受到向心力的作用,将做离心运动。 B.做匀速圆周运动的物体,在外界提供的向心力突然变大时将做离心运动。 C.做匀速圆周运动的物体,只要向心力的数值发生变化,就将做离心运动。 D.做匀速圆周运动的物体,当外界提供的向心力突然消失或变小时将做离心运动。3.下列哪些现象是为了防止物体产生离心运动( ) ①汽车转弯时要限制速度②转速很高的砂轮半径不能做得太大。 ③在修筑铁路时,转弯处轨道的内轨要低于外轨④洗衣机脱水工作。 A.①②③B.②③④ C.①②④D.①③④ 4.市内公共汽车在到达路口转变前,车内广播中就要播放录音:“乘客们请注意,前面车辆转弯,请拉好扶手”,这样以( ) A.提醒包括坐着和站着的全体乘客均拉好扶手,以免车辆转弯时可能向前倾倒 B.提醒包括坐着和站着的全体乘客均拉好扶手,以免车辆转弯时可能向后倾倒 C.主要是提醒站着的乘客拉好扶手,以免车辆转弯时可能向转弯的外侧倾倒 D.主要是提醒站着的乘客拉好扶手,以免车辆转弯时可能向转弯的内侧倾倒 【重难突破—重拳出击】 1.一个做匀速圆周运动的物体,当合力F

第十七章 波粒二象性 复习教案

第十七章 波粒二象性 复习教案 17.1 能量量子化 知识与技能 (1)了解什么是热辐射及热辐射的特性,了解黑体与黑体辐射。 (2)了解黑体辐射的实验规律,了解黑体热辐射的强度与波长的关系。 (3)了解能量子的概念。 教学重点:能量子的概念 教学难点:黑体辐射的实验规律 教学过程: 1、黑体与黑体辐射 (1)热辐射现象 固体或液体,在任何温度下都在发射各种波长的电磁波,这种由于物体中的分子、原子受到激发而发射电磁波的现象称为热辐射。所辐射电磁波的特征与温度有关。 (2)黑体 概念:能全部吸收各种波长的电磁波而不发生反射的物体,称为绝对黑体,简称黑体。 2、黑体辐射的实验规律 黑体热辐射的强度与波长的关系:随着温度的升高,一方面,各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。 提出1:怎样解释黑体辐射的实验规律呢? 在新的理论诞生之前,人们很自然地要依据热力学和电磁学规律来解释。德国物理学家维恩和英国物理学家瑞利分别提出了辐射强度按波长分布的理论公式。结果导致理论与实验规律不符,甚至得出了非常荒谬的结论,当时被称为“紫外灾难”。(瑞利--金斯线,) 3、能量子: 1900年,德国物理学家普朗克提出能量量子化假说:辐射黑体分子、原子的振动可看作谐振子,这些谐振子可以发射和吸收辐射能。但是这些谐振子只能处于某些分立的状态,在这些状态中,谐振子的能量并不象经典物理学所允许的可具有任意值。相应的能量是某一最小能量ε(称为能量子)的整数倍,即:ε, 1ε,2ε,3ε,... n ε,n 为正整数,称为量子数。对于频率为ν的谐振子最小能量为: 0 1 2 3 4 6 (μ e 实验结果

高中物理3-5第十七章 波粒二象性 学案

17、1能量量子化:物理学的新纪元 【学习目标】 1、了解什么是热辐射及热辐射的特性,了解黑体与黑体辐射 2、了解黑体辐射的实验规律,了解黑体热辐射的强度与波长的关系 3、了解能量子的概念 【自主学习】 一、黑体与黑体辐射 一、黑体与黑体辐射 1.热辐射:周围的一切物体都在辐射电磁波.这种辐射与物体的_____有关,所以叫做热辐射.2.黑体:某种物体能够______吸收入射的各种波长的电磁波而不发生反射,这种物体就是绝对黑体,简称黑体. 二、黑体辐射的实验规律 1.一般材料的物体,辐射的电磁波除与______有关外,还与材料的种类及表面状况有关.2.黑体辐射电磁波的强度按波长的分布只与黑体的温度有关.随着温度的升高,一方面,各种波长的辐射强度都有________.另一方面,辐射强度的极大值向波长较____的方向移动. 三、能量子 1.定义:普朗克认为,带电微粒辐射或者吸收能量时,只能辐射或吸收某个最小能量值的________.即:能的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做________. 2.能量子大小:ε=hν,其中ν是电磁波的频率,h称为普朗克常量.h=_______________J·s,(一般取h=6.63×10-34 J·s) 3.能量的量子化:在微观世界中能量是量子化的,或者说微观粒子的能量是分立的.这种现象叫能量的量子化. 【基础巩固】 1、关于黑体辐射的实验规律叙述正确的有( ) A.随着温度的升高,各种波长的辐射强度都有增加 B.随着温度的升高,辐射强度的极大值向波长较短的方向移动 C.黑体热辐射的强度与波长无关 D.黑体辐射无任何实验 2、黑体辐射的实验规律如图所示,由图可知( ) A.随温度升高,各种波长的辐射强度都有增加 B.随温度降低,各种波长的辐射强度都有增加 C.随温度升高,辐射强度的极大值向波长较短的方向移动 D.随温度降低,辐射强度的极大值向波长较长的方向移动 3、能引起人的眼睛视觉效应的最小能量为10—18J,已知可见光的平均波长约为60 μm,普朗克常量丸:6.63 x10—34J·s,则进人人眼的光子数至少为( ) A.1个B.3个 C .30个D.300个 3、某广播电台发射功率为10kW,在空气中波长为187.5 m的电磁波,试求: (1)该电台每秒钟从天线发射多少个光子? (2)若发射的光子四面八方视为均匀的,求在离天线2.5km处,直径为2m的环状天线每秒接收的光子个数以及接收功率?

高中物理必修二52导学案

高中物理必修二5.2《平抛运动》导学案 【学习目标】1.知道什么是抛体运动。 2、理解平抛运动是两个直线运动的合成。 3.掌握平抛运动的规律,并能用来解决简单的问题。 【重点】1、平抛运动的研究方法——可以用两个简单的直线运动来等效替代。 2、平抛运动的规律。 【难点】平抛运动的规律及用规律解决简单的问题。 【学案导学】复习 一.匀变速直线运动的运动学基本公式 速度公式:位移公式:导出公式: 1.物体做曲线运动的条件 3. 在曲线运动中,合运动与分运动及各个分运动之间有什么关系? ①运动的:分运动的规律叠加起来与合运动的规律在效果上是完全相同的。 ②运动的:一个物体可以同时参与几种不同的运动,各个运动互相独立进行,互不 影响。 ③运动的:各分运动总是同时开始,同时进行,同时结束,合运动与分运动时间相 同。 二、新知学习(一)抛体运动 1.定义:以一定的将物体抛出,在空气阻力可以忽略的情况下,物体所做的运动。 2.特点:物体只受作用,其加速度,所以抛体运动是个运动。 3. 分类:(1)初速度沿水平方向的,叫做 (2)初速度沿竖直方向的,叫做 (3)初速度方向是斜向上或斜向下方,叫做 (二)、平抛运动的研究 1、平抛运动的特点 初速度沿方向,只受力作用,轨迹为线 2、平抛运动的研究方法(化曲为直——运动的合成与分解) 水平方向和竖直方向分别做什么运动? 由于物体受到的重力是竖直方向,它在水平方向的分力是所以物体在水平方向的加速度是那么物体在水平方向做运动;重力在竖直方向的分力为所以加速度为那么物体在竖直方向做运动 平抛运动就是水平方向的运动和竖直方向的运动合成。 训练题1.关于平抛运动的描述正确的是() A.平抛运动的速度在时刻变化B. 平抛运动的加速度在时刻变化 C. 平抛运动是匀变速运动 D. 平抛运动的速度不可能竖直向下 (三)平抛运动的求解方法 1、抛体的位置物体在任一时刻的位置坐标的求解。 以抛出点为坐标原点,水平方向为x轴(正方向和初速度v0的方向相同),竖直方向为y轴,正方向向下,则物体在任意时刻t的位置坐标为 ? ? ? = = y x 2、抛体的位移 位移的大小= s 合位移s的方向与水平方向夹角为= β tan 3、抛体的速度 水平分速度为Vx= 竖直分速度为Vy= t秒末的合速度= t v t v的方向= θ tan 课外思考:能否用v=v0+gt求A点的速度? 又能否用v2-v02=2gS求A点的位移? 知识小结:对抛体运动的理解 1、物体做抛体运动的条件:(1)______________________(2)______________________ 2、抛体运动的特点(1)理想化特点:物理上提出的抛体运动是一种________模型,即把物体看成质点,抛出后只考虑_________的作用,忽略_________。 (2)匀变速特点:抛体运动的加速度________,始终等于_________,这是抛体运动的共同特点,其中加速度与速度方向不共线的抛体运动是一种_______________运动。 (3)速度变化的特点:做抛体运动的物体在任意相等的时间内速度的变化量________,均为_________ = ?v,方向___________。 3、平抛运动的理解(1)条件:①_________________,②__________________。 (2)性质:加速度为g的_______________运动。 (3)处理思路:将平抛运动分解为水平方向的_____________和竖直方向上的_________________。 例题1 一个物体以l0 m/s的速度从10 m的水平高度抛出,落地时速度与地面的夹角θ是多少(不计空气阻力)?

相关主题
文本预览
相关文档 最新文档