当前位置:文档之家› 5.3晶体的基本类型

5.3晶体的基本类型

(完整word版)四种晶体类型的比较

物质的熔沸点的高低与构成该物质的晶体类型及晶体内部粒子间的作用力有关,其规律如下: 1、在相同条件下,不同状态的物质的熔、沸点的高低是不同的,一般有:固体>液体>气体。例如:NaBr(固)>Br2>HBr(气)。 2、不同类型晶体的比较规律 一般来说,不同类型晶体的熔沸点的高低顺序为:原子晶体>离子晶体>分子晶体,而金属晶体的熔沸点有高有低。这是由于不同类型晶体的微粒间作用不同,其熔、沸点也不相同。原子晶体间靠共价键结合,一般熔、沸点最高;离子晶体阴、阳离子间靠离子键结合,一般熔、沸点较高;分子晶体分子间靠范德华力结合,一般熔、沸点较低;金属晶体中金属键的键能有大有小,因而金属晶体熔、沸点有高(如W)有低(如Hg)。例如:金刚石>食盐>干冰 3、同种类型晶体的比较规律 A、原子晶体:熔、沸点的高低,取决于共价键的键长和键能,键长越短,键能越大共价键越稳定,物质熔沸点越高,反之越低。如:晶体硅、金刚石和碳化硅三种晶体中,因键长C—C碳化硅>晶体硅。

B 、离子晶体:熔、沸点的高低,取决于离子键的强弱。一般来说,离子半径越小,离子所带电荷越多,离子键就越强,熔、沸点就越高,反之越低。 例如:MgO>CaO ,NaF>NaCl>NaBr>NaI 。 KF >KCl >KBr >KI ,CaO >KCl 。 C 、金属晶体:金属晶体中金属阳离子所带电荷越多,半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低。如:Na <Mg <Al ,Li>Na>K 。 合金的熔沸点一般说比它各组份纯金属的熔沸点低。如铝硅合金<纯铝(或纯硅)。 D 、分子晶体:熔、沸点的高低,取决于分子间作用力的大小。分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高) 如:H 2O >H 2Te >H 2Se >H 2S ,C 2H 5OH >CH 3—O —CH 3。 (1)组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH 4<SiH 4<GeH 4<SnH 4。 (2)组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如熔沸点 CO >N 2,CH 3OH >CH 3—CH 3。 (3)在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。 如:C 17H 35COOH >C 17H 33COOH ;硬脂酸 > 油酸 (4)烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸 点升高,如C 2H 6>CH 4, C 2H 5Cl >CH 3Cl ,CH 3COOH >HCOOH 。 (5)同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。如: CH 3(CH 2)3CH 3 (正)>CH 3CH 2CH(CH 3)2(异)>(CH 3)4C(新)。 芳香烃的异构体有两个取代基时,熔点按对、邻、间位降低沸点按邻、间、对位降低) 针对性训练 一、选择题 1.下列性质中,可以证明某化合物内一定存在离子键的是( ) (A )溶于水 (B )有较高的熔点 (C )水溶液能导电 (D )熔融状态能导电 2.下列物质中,含有极性键的离子化合是( ) (A )CaCl 2 (B )Na 2O 2 (C )NaOH (D )K 2S 3.Cs 是IA 族元素,F 是VIIA 族元素,估计Cs 和F 形成的化合物可能是( ) (A )离子化合物 (B )化学式为CsF 2 (C )室温为固体 (D )室温为气体 4.某物质的晶体中含A 、B 、C 三种元素,其排列方式如图所示(其中前后两面心上的B 原子未能画出),晶体中A 、B 、C 的中原子个数之比依次为( ) (A )1:3:1 (B )2:3:1 (C )2:2:1 (D )1:3:3 6.在NaCl 晶体中与每个Na +距离等同且最近的几个Cl -所围成的空间几何构型为( ) (A )正四面体 (B )正六面体 (C )正八面体 (D )正十二面体 7.如图是氯化铯晶体的晶胞(晶体中最小的重复单元),已知晶体中2个最近的Cs +离子核间距为a cm ,氯化铯的式量为M ,NA 为阿伏加德罗常数,则氯化铯晶体的密度为( ) (A )3 8a N m A ?g·cm -3 (B )A N Ma 83 g·cm -3 (C )3 a N M A ?g·cm -3 (D )A N Ma 3 g·cm -3

高中化学四种晶体类型的比较

四种晶体类型的比较

物质熔沸点高低的比较方法 物质的熔沸点的高低与构成该物质的晶体类型及晶体内部粒子间的作用力有关,其规律如下: 1、在相同条件下,不同状态的物质的熔、沸点的高低是不同的,一般有:固体>液体>气体。例如:NaBr (固)>Br2>HBr(气)。 2、不同类型晶体的比较规律 一般来说,不同类型晶体的熔沸点的高低顺序为:原子晶体>离子晶体>分子晶体,而金属晶体的熔沸点有高有低。这是由于不同类型晶体的微粒间作用不同,其熔、沸点也不相同。原子晶体间靠共价键结合,一般熔、沸点最高;离子晶体阴、阳离子间靠离子键结合,一般熔、沸点较高;分子晶体分子间靠范德华力结合,一般熔、沸点较低;金属晶体中金属键的键能有大有小,因而金属晶体熔、沸点有高(如W)有低(如Hg)。例如:金刚石>食盐>干冰 3、同种类型晶体的比较规律 A、原子晶体:熔、沸点的高低,取决于共价键的键长和键能,原子半径越小,键长越短,键能越大共价键越稳定,物质熔沸点越高,反之越低。如:晶体硅、金刚石和碳化硅三种晶体中,因键长C—C碳化硅>晶体硅。 B、离子晶体:熔、沸点的高低,取决于离子键的强弱。一般来说,①离子所带电荷越多,②离子半径越小,离子键就越强,熔、沸点就越高,反之越低。 例如:MgO>CaO,NaF>NaCl>NaBr>NaI。KF>KCl>KBr>KI,CaO>KCl。 C、金属晶体:金属晶体中①金属价电子数越多,②原子半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低。如:Na<Mg<Al,Li>Na>K。 合金的熔沸点一般说比它各组份纯金属的熔沸点低。如铝硅合金<纯铝(或纯硅)。 D、分子晶体:熔、沸点的高低,取决于分子间作用力的大小。分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高) 如:H2O>H2Te>H2Se>H2S,C2H5OH>CH3—O—CH3。 (1)组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4<GeH4<SnH4。 (2)组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如:熔沸点 CO>N2,CH3OH>CH3—CH3。 (3)在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。 如:C17H35COOH硬脂酸>C17H33COOH油酸。 (4)烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4, C2H5Cl >CH3Cl,CH3COOH>HCOOH。 (5)同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。 如:CH3(CH2)3CH3 (正)>CH3CH2CH(CH3)2(异)>(CH3)4C(新)。 芳香烃的异构体有两个取代基时,熔点按对、邻、间位降低沸点按邻、间、对位降低) 【通过文字判断晶体类型】

几种常见晶体结构分析

几种常见晶体结构分析文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话: E-mail : 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞)中,处于不同位置的微粒在该单元中所占的份额也有所不同,一般的规律是:顶点上的微粒属于该 单元中所占的份额为18,棱上的微粒属于该单元中所占的份额为1 4,面上 的微粒属于该单元中所占的份额为1 2,中心位置上(嚷里边)的微粒才完 全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个Cl -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的Cl -围成的空间构型为正八面体。每个Na +周围与其最近且距离相等的Na +有12个。见图1。 图1 图2 NaCl

晶胞中平均Cl-个数:8×1 8 + 6× 1 2 = 4;晶胞中平均Na+个数:1 + 12×1 4 = 4 因此NaCl的一个晶胞中含有4个NaCl(4个Na+和4个Cl-)。 2.氯化铯晶体中每个Cs+周围有8个Cl-,每个Cl-周围有8个Cs+,与一个Cs+距离最近且相等的Cs+有6个。 晶胞中平均Cs+个数:1;晶胞中平均Cl-个数:8×1 8 = 1。 因此CsCl的一个晶胞中含有1个CsCl(1个Cs+和1个Cl-)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4个C原子紧邻,因而整个晶体中无单 个分子存在。由共价键构成的最小环结构中有6个碳原 子,不在同一个平面上,每个C原子被12个六元环共用,每C—C键共6 个环,因此六元环中的平均C原子数为6× 1 12 = 1 2 ,平均C—C键数为 6×1 6 = 1。 C原子数: C—C键键数= 1:2; C原子数: 六元环数= 1:2。 2.二氧化硅晶体结构与金刚石相似,C被Si代替,C与C之间插 氧,即为SiO 2晶体,则SiO 2 晶体中最小环为12环(6个Si,6个O), 图3 CsCl 晶 图4 金刚石晶

不同类型的晶体教学设计

能说氯化钠的分子式为 “ NaCI'吗? 课题:《不同类型的晶体》教学设计 【教学目标】 知识与技能:1、以不同类型的晶体为例,认识物质的多样性与微观结构有关系。 2、认识不同的物质可以形成不同的晶体,不同类型的晶体结构,构成微 粒不同, 物质性质也不同。 能力与方法: 运用电脑演示三维空间结构,运用列表对比的方法,进行不同类型晶体的比较。 情感、态度 与价值观: 培养学生透过现象看本质的思维方法,培养更高的思维能力,同时通过欣赏不同 晶体及其微 观结构,培养学生的审美能力。 了解不同类型晶体的构成粒子及作用,会判断晶体的类型和物理性质的比较 【教学方法】 【教学过程】 【投影】几种类型晶体的图片,激发学生学习兴趣 【提出问题】 我们不难发现这些物质都有规则的漂亮的几何外形, 知道为什么吗?是否固体都具有规则的几何外形呢? 【学生交流讨论】可能是答出的是内部结构,已经很不错了。 【板书】一、晶体 1、 定义:具有规则几何外形和固定熔沸点的固体 【复习提问】构成晶体的微粒有哪些?他们是通过什么作用力结合成晶体的? 学生思考并回答 【讲述】:因此,根据构成晶体的微粒和微粒间作用方式的不同,我们把晶体分成了不同的 类型。 【板书】 2、 晶体的分类 离子晶体: 分子晶体: 原子晶体: 【提出问题】1、同学们能否举例说明那些物质是由阴阳离子通过离子键结合形成的呢? 2、 同学们能否举例说明那些物质是由分子通过分子间作用力结合形成的呢? 3、 我问前面学过哪些物质是由原子直接通过共价键形成的呢? 【归纳】 r 离子晶体:离子化合物 彳分子晶体:多数非金属氧化物、非金属氢化物、所有的酸、多数非金属单质 I 原子晶体:金刚石 【过渡】我们知道不同类型的晶体,其物理性质(熔沸点、硬度、导电性等)有差异,为什 么呢? 【交流与讨论1】观察氯化钠晶体的结构模型,思考下列问题: ①NaCI 晶体中是否存在单独的 NaCI 分子? 【教学重点】 【教学难点】 理解晶体微观结构和物理性质的联系 观察法、问题讨论法 又有固定的熔沸点,大家 阴阳离子通过离子键结合形成的晶体。 分子通过分子间作用力形成的晶体。 原子通过共价键结合形成的空间网状结构的晶体。

常见的金属晶体结构

第二章作业 2-1 常见的金属晶体结构有哪几种它们的原子排列和晶格常数有什么特点 V、Mg、Zn 各属何种结构答:常见晶体结构有 3 种:⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn -Fe、-Fe、Al、Cu、Ni、Cr、 2---7 为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业 4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好试用多晶体塑性变形的特点予以解释。答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是:(1)强度高:Hall-Petch 公式。晶界越多,越难滑移。(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。 4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂 7~15 天,然后再精加工。试解释这样做的目的及其原因答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7 天,让工件释放应力的时间,轴越粗放的时间越长。 4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)答:W、Sn 的最低再结晶温度分别为: TR(W) =(~×(3410+273)-273 =(1200~1568)(℃)>1000℃ TR(Sn) =(~×(232+273)-273 =(-71~-20)(℃) <25℃ 所以 W 在1000℃时为冷加工,Sn 在室温下为热加工 4-9 用下列三种方法制造齿轮,哪一种比较理想为什么(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。答:齿轮的材料、加工与加工工艺有一定的原则,同时也要根据实际情况具体而定,总的原则是满足使用要求;加工便当;性价比最佳。对齿轮而言,要看是干什么用的齿轮,对于精度要求不高的,使用频率不高,强度也没什么要求的,方法 1、2 都可以,用方法 3 反倒是画蛇添足了。对于精密传动齿轮和高速运转齿轮及对强度和可靠性要求高的齿轮,方法 3 就是合理的。经过锻造的齿坯,金属内部晶粒更加细化,内应力均匀,材料的杂质更少,相对材料的强度也有所提高,经过锻造的毛坯加工的齿轮精度稳定,强度更好。 4-10 用一冷拔钢丝绳吊装一大型工件入炉,并随工件一起加热到1000℃,保温后再次吊装工件时钢丝绳发生断裂,试分析原因答:由于冷拔钢丝在生产过程中受到挤压作用产生了加工硬化使钢丝本身具有一定的强度和硬度,那么再吊重物时才有足够的强度,当将钢丝绳和工件放置在1000℃炉内进行加热和保温后,等于对钢丝绳进行了回复和再结晶处理,所以使钢丝绳的性能大大下降,所以再吊重物时发生断裂。 4-11 在室温下对铅板进行弯折,越弯越硬,而稍隔一段时间再行弯折,铅板又像最初一样柔软这是什么原因答:铅板在室温下的加工属于热加工,加工硬化的同时伴随回复和再结晶过程。越弯越硬是由于位错大量增加而引起的加工硬化造成,而过一段时间又会变软是因为室温对于铅已经是再结晶温度以上,所以伴随着回复和再结晶过程,等轴的没有变形晶粒取代了变形晶粒,硬度和塑性又恢复到了未变形之前。第五章作业 5-3 一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体、共析渗碳体异同答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。二次渗碳体:从 A 中析出的渗碳体称为二次渗碳体。三次渗碳体:从 F 中析出的渗碳体称为三次渗碳体共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:经共析反应生成的渗碳体即珠光体中的渗

晶体的类型及性质

晶体的类型及性质 二. 知识重点: 1. 复习有关化学键的知识 2. 晶体的类型: (1)离子晶体 (2)原子晶体 (3)分子晶体 (4)金属晶体 4. 性质与结构的关系: 形成晶体的作用力强弱直接影响晶体的物理性质。 5. 常见的几种晶体模型:(NaCl 、CsCl 、干冰、金刚石及2SiO 等) 【典型例题】 [例1] 下列物质的熔点由高到低排列,正确的是( ) A. Cs K Na Li >>> B. CsCl RbCl KCl NaCl >>> C. 2222I Br Cl F >>> D. 金刚石>硅>碳化硅 解析: 根据晶体类型判断熔沸点高低的规律为:(一般) 原子晶体>离子晶体>分子晶体 而同类晶体内熔、沸点高低判断规律是: 原子晶体内原子的半径越小,形成共价键的键长短,键能大则键牢固,熔沸点高。 离子晶体内阴、阳离子的半径越小,离子所带电荷越多则形成的离子键越牢固,熔沸点越高。 相同结构的分子形成晶体,相对分子质量越大,分子间作用力越强,熔、沸点越高。

金属晶体的熔沸点高低取决于金属离子的半径和自由电子数,离子半径小,自由电子数多,则熔沸点高。 故应选A 、B 。 答案:A 、B [例2] 下图表示一些晶体中的某些结构,它们分别是NaCl 、CsCl 、干冰、金刚石、石墨结构中的某一种的某一部分。 A B C D E (1)其中代表金刚石的是 (填编号字母,下同),其中每个碳原子最接近且距离相等。金刚石属于 晶体。 (2)其中代表石墨的是 ,其每个正六边形占有的碳原子数平均为 个。 mol 1石墨中碳原子数与所形成的共价键数之比为 。 (3)其中表示NaCl 的是 ,每个+ Na 周围与它最接近且距离相等的+ Na 有 个。 (4)代表CsCl 的是 ,它属于 晶体,每个+ Cs 与 个- Cl 紧邻。 (5)代表干冰的是 ,它属于 晶体,每个2CO 分子与 个2CO 分子紧邻。 (6)上述五种物质熔点由高到低的排列顺序为: 。 解析:解此题首先要记住几种晶体的基本模型。金刚石为D ,石墨为E ,干冰为B , NaCl 为A ,CsCl 为C ,然后根据晶体的组成及空间构型回答后面问题。 值得注意的应为(2)和(3)、(4)、(5)中粒子紧邻的数值关系。 (2)当碳原子通过共用电子对形成六元环时,每一个碳原子被三个环所共用,则形成

几种常见晶体结构分析.

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话::: 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞) 中,处于不同位置的微粒在该单元中所占的份额也有 所不同,一般的规律是:顶点上的微粒属于该单元中 所占的份额为18 ,棱上的微粒属于该单元中所占的份额为14,面上的微粒属于该单元中所占的份额为12 ,中心位置上(嚷里边)的微粒才完全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个C l -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的 Cl -围成的空间构型为正八面体。每个N a +周围与其最近且距离相等的Na + 有12个。见图1。 晶胞中平均Cl -个数:8×18 + 6×12 = 4;晶胞中平均Na +个数:1 + 12×14 = 4 因此NaCl 的一个晶胞中含有4个NaCl (4个Na +和4个Cl -)。 2.氯化铯晶体中每个Cs +周围有8个Cl -,每个Cl -周围有8个Cs +,与 一个Cs +距离最近且相等的Cs +有6个。晶胞中平均Cs +个数:1;晶胞中平 均Cl -个数:8×18 = 1。 因此CsCl 的一个晶胞中含有1个CsCl (1个Cs +和1个Cl -)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4 个C 原子紧邻,因而整个晶体中无单个分子存在。由共价键构成的最小 环结构中有6个碳原子,不在同一个平面上,每个C 原子被12个六元环 共用,每C —C 键共6个环,因此六元环中的平均C 原子数为6× 112 = 12 ,平均C —C 键数为6×16 = 1。 C 原子数: C —C 键键数 = 1:2; C 原子数: 六元环数 = 1:2。 2.二氧化硅晶体结构与金刚石相似,C 被Si 代替,C 与C 之间插氧,即为SiO 2晶体,则SiO 2晶体中最小环为12环(6个Si ,6个O ), 最小环的平均Si 原子个数:6×112 = 12;平均O 原子个数:6×16 = 1。 即Si : O = 1 : 2,用SiO 2表示。 在SiO 2晶体中每个Si 原子周围有4个氧原子,同时每个氧原子结合2个硅原子。一个Si 原子可形 图 1 图 2 NaCl 晶体 图3 CsCl 晶体 图4 金刚石晶体

半导体结晶学-典型晶体结构及电子材料-06

第五章 典型半导体材料及电子材料晶体 结构特点及有关性质 5.1 典型半导体材料晶体结构类型 5.2 半导体材料晶体结构与性能 5.3 电子材料中其他几种典型晶体结构 5.4 固溶体晶体结构 5.5 液晶的结构及特征 5.6 纳米晶体的结构及特征 2013-12-81

5.1.1 金刚石型结构 硅 Si:核外电子数14,电子排布式方式为 1s2 2s22p6 3s23P2 锗Ge:核外电子数32,电子排布式方式为 1s2 2s22p6 3s23p63d104s24p2 在Si原子与Si原子,Ge原子与Ge原子相互作用构成Si、Ge晶体时,由于每个原子核对其外层电子都有较强的吸引力。又是同一种原子相互作用,因此原子之间将选择共价键方式结合。 电负性:X Si= X Ge=1.8,⊿X = 0, ∴形成非极性共价键 2013-12-83

为了形成具有8个外层电子的稳定结构,必然趋于与邻近的四个原子形成四个共价键。由杂化理论可知,一个s轨道和三个p轨道杂化,结果产生四个等同的sp3杂化轨道,电子云的方向刚好指向以原子核为中心的正四面体的四个顶角,四个键在空间处于均衡,每两个键的夹角都是109°28′。如图5.11所示。 图5.1.1 SP3杂化轨道方向 2013-12-84

每个原子都按此正四面体键,彼此以共价键结合在一起,便形成如图5.1.2和图5.1.3所示的三维空间规则排列结构—金刚石性结构。金刚石型结构的晶体具有Oh群的高度对称性。(对称中心在哪里? 答案 ) 2013-12-85

5.1.2 闪锌矿结构 化合物半导体GaAs、InSb、GaP等都属于闪锌矿结构,以GaAs为例介绍其结构特点。 Ga 的原子序数 31,核外电子排布式 1s2 2s22p6 3s23p63d10 4s24p1 As 的原子序数 33,核外电子排布式 1s2 2s22p6 3s23p63d10 4s24p3 电负性:X Ga =1.6,X As=2.0,电负性差⊿X=0.4 <1.5。 ∴形成共价键(极性共价键) 。 2013-12-86

常见典型晶体晶胞结构.doc

典型晶体晶胞结构1.原子晶体 (金刚石 ) 2.分子晶体

3.离子晶体 + Na - Cl

4.金属晶体 堆积模型简单立方钾型镁型铜型典型代表Po Na K Fe Mg Zn Ti Cu Ag Au 配位数 6 8 12 12 晶胞 5.混合型晶体——石墨 1.元素是Cu 的一种氯化物晶体的晶胞结构如图 13 所示,该氯化物的化学 式,它可与浓盐酸发生非氧化还原反应,生成配合物H n WCl 3,反应的化 学方程式为。 2.( 2011 山东高考)CaO 与NaCl 的晶胞同为面心立方结构,已知CaO 晶体密度为ag·cm-3,N A表示阿伏加德罗常数,则CaO 晶胞体积为cm3。 2.( 2011 新课标全国)六方氮化硼BN 在高温高压下,可以转化为立方氮化硼,其结构与金刚石相似,硬度与金刚 石相当,晶苞边长为361.5pm ,立方氮化硼晶胞中含有______各氮原子、 ________各硼原子,立方氮化硼的密度是_______g ·cm-3(只要求列算式,不必计算出数值,阿伏伽德罗常数为N A)。

解析:描述晶体结构的基本单元叫做晶胞,金刚石晶胞是立方体,其中8 个顶点有8 个碳原子, 6 个面各有 6 个碳 原子,立方体内部还有 4 个碳原子,如图所示。所以金刚石的一个晶胞中含有的碳原子数= 8×1/8+6 ×1/2+4=8 ,因此立方氮化硼晶胞中应该含有 4 个 N 和 4 个 B 原子。由于立方氮化硼的一个晶胞中含有 4 个 4 25g 是,立方体的体积是(361.5cm)3,因此立方氮化硼的密度是 N 和 4 个 B 原子,其质量是 1023 6.02 g·cm-3。 3.( 4)元素金( Au )处于周期表中的第六周期,与Cu 同族, Au 原子最外层电子排布式为______;一种铜合金晶体具有立方最密堆积的结构,在晶胞中Cu 原子处于面心, Au 原子处于顶点位置,则该合金中Cu 原子与 Au 原子数量之比为 _______;该晶体中,原子之间的作用力是________; ( 5)上述晶体具有储氢功能,氢原子可进入到由Cu 原子与 Au 原子构成的四面体空隙中。若将Cu原子与Au原子等同看待,该晶体储氢后的晶胞结构为CaF2的结构相似,该晶体储氢后的化学式应为_____。 4.( 2010 山东卷)铅、钡、氧形成的某化合物的晶胞结构是:Pb4+处于立方晶胞顶点,Ba2+处于晶胞中心, O2-处于晶胞棱边中心,该化合物化学式为,每个 Ba2+与个 O2-配位。 5.(4) CaC2晶体的晶胞结构与NaCl晶体的相似(如右图所示),但 CaC2晶体中含有的中哑 铃形 C 22 的存在,使晶胞沿一个方向拉长。CaC 2晶体中1个 Ca 2 周围距离最近的 C 22 数目 为。 6.( 09 江苏卷 21 A )③在 1 个 Cu2O 晶胞中(结构如图所示),所包含的Cu 原子数目 为。

典型的晶体结构

典型的晶体结构 1.铁 铁原子可形成两种体心立方晶胞晶体:910℃以下为α-Fe,高于1400℃时为δ-Fe。在这两种温度之间可形成γ-面心立方晶。这三种晶体相中,只有γ-Fe能溶解少许C。问:1.体心立方晶胞中的面的中心上的空隙是什么对称?如果外来粒子占用这个空隙,则外来粒子与宿主离子最大可能的半径比是多少? 2.在体心立方晶胞中,如果某空隙的坐标为(0,a/2,a/4),它的对称性如何?占据该空隙的外来粒子与宿主离子的最大半径比为多少? 3.假设在转化温度之下,这α-Fe和γ-F两种晶型的最相邻原子的距离是相等的,求γ铁与α铁在转化温度下的密度比。 4.为什么只有γ-Fe才能溶解少许的C? 在体心立方晶胞中,处于中心的原子与处于角上的原子是相接触的,角上的原子相互之间不接触。a=(4/3)r。 ①②③ 1.两个立方晶胞中心相距为a,也等于2r+2r h[如图①],这里r h是空隙“X”的半径,a =2r+2r h=(4/3)r r h/r=0.115(2分) 面对角线(2a)比体心之间的距离要长,因此该空隙形状是一个缩短的八面体,称扭曲八面体。(1分) 2.已知体心上的两个原子(A和B)以及连接两个晶体底面的两个角上原子[图②中C和D]。连接顶部原子的线的中心到连接底部原子的线的中心的距离为a/2;在顶部原子下面的底部原子构成晶胞的一半。空隙“h”位于连线的一半处,这也是由对称性所要求的。所以我们要考虑的直角三角形一个边长为a/2,另一边长为a/4[图③],所以斜边为16 /5a。(1分)r+r h=16 /5a=3/5r r h/r=0.291(2分) 3.密度比=42︰33=1.09(2分) 4.C原子体积较大,不能填充在体心立方的任何空隙中,但可能填充在面心立方结构的八面体空隙中(r h/r=0.414)。(2分) 2.四氧化三铁 科学研究表明,Fe3O4是由Fe2+、Fe3+、O2-通过离子键而组成的复杂离子晶体。O2-的重复排列方式如图b所示,该排列方式中存在着两种类型的由O2-围成的空隙,如1、3、6、7的O2-围成的空隙和3、6、7、8、9、12的O2-围成的空隙,前者为正四面体空隙,后者为正八面体空隙,Fe3O4中有一半的Fe3+填充在正四面体空隙中,另一半Fe3+和Fe2+填充在正八面体空隙中,则Fe3O4晶体中正四面体空隙数与O2-数之比为2:1,其中有12.5%正四面体空隙填有Fe3+,有50%正八面体空隙没有被填充。 Fe3O4中三价铁离子:亚铁离子:O原子=2:1:4 晶胞拥有8个正四面体空隙,4个O2-离子;所以2:1 一半三价铁离子放入正四面体空隙,即一个三价铁离子,所以为1/8=12.5%晶胞实际拥有4个正八面体空隙,其中已经有一个放Fe3+,另外一个Fe2+占据一个正八面体空隙,所以50%的正八面体空隙没有被填充。

四种晶体类型的比较

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 物质的熔沸点的高低与构成该物质的晶体类型及晶体内部粒子间的作用力有关,其规律如下: 1、在相同条件下,不同状态的物质的熔、沸点的高低是不同的,一般有:固体>液体>气体。例如:NaBr(固)>Br2>HBr(气)。

2、不同类型晶体的比较规律 一般来说,不同类型晶体的熔沸点的高低顺序为:原子晶体>离子晶体>分子晶体,而金属晶体的熔沸点有高有低。这是由于不同类型晶体的微粒间作用不同,其熔、沸点也不相同。原子晶体间靠共价键结合,一般熔、沸点最高;离子晶体阴、阳离子间靠离子键结合,一般熔、沸点较高;分子晶体分子间靠范德华力结合,一般熔、沸点较低;金属晶体中金属键的键能有大有小,因而金属晶体熔、沸点有高(如W)有低(如Hg)。例如:金刚石>食盐>干冰 3、同种类型晶体的比较规律 A、原子晶体:熔、沸点的高低,取决于共价键的键长和键能,键长越短,键能越大共价键越稳定,物质熔沸点越高,反之越低。如:晶体硅、金刚石和碳化硅三种晶体中,因键长C—C碳化硅>晶体硅。 B、离子晶体:熔、沸点的高低,取决于离子键的强弱。一般来说,离子半径越小,离子所带电荷越多,离子键就越强,熔、沸点就越高,反之越低。 例如:MgO>CaO,NaF>NaCl>NaBr>NaI。KF>KCl>KBr>KI,CaO>KCl。 C、金属晶体:金属晶体中金属阳离子所带电荷越多,半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低。如:Na<Mg<Al,Li>Na>K。 合金的熔沸点一般说比它各组份纯金属的熔沸点低。如铝硅合金<纯铝(或纯硅)。 D、分子晶体:熔、沸点的高低,取决于分子间作用力的大小。分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高)如:H2O>H2Te>H2Se>H2S,C2H5OH>CH3—O—CH3。 (1)组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4<GeH4<SnH4。 (2)组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如熔沸点CO>N2,CH3OH>CH3—CH3。 (3)在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。 如:C17H35COOH>C17H33COOH;硬脂酸>油酸 (4)烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4,C2H5Cl>CH3Cl,CH3COOH>HCOOH。 (5)同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。 如:CH3(CH2)3CH3(正)>CH3CH2CH(CH3)2(异)>(CH3)4C(新)。 芳香烃的异构体有两个取代基时,熔点按对、邻、间位降低沸点按邻、间、对位降低) 针对性训练 一、选择题 1.下列性质中,可以证明某化合物内一定存在离子键的是() (A)溶于水(B)有较高的熔点(C)水溶液能导电(D)熔融状态能导电 2.下列物质中,含有极性键的离子化合是() (A)CaCl2(B)Na2O2(C)NaOH (D)K2S 3.Cs是IA族元素,F是VIIA族元素,估计Cs和F形成的化合物可能是()(A)离子化合物(B)化学式为CsF2(C)室温为固体(D)室温为气体 4.某物质的晶体中含A、B、C三种元素,其排列方式如图所示(其中前后两面

四种晶体类型的比较完整版

四种晶体类型的比较 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

四种晶体类型的比较 物质熔沸点高低的比较方法 物质的熔沸点的高低与构成该物质的晶体类型及晶体内部粒子间的作用力有关,其规律如下: 1、在相同条件下,不同状态的物质的熔、沸点的高低是不同的,一般有:固体> >HBr(气)。 液体>气体。例如:NaBr(固)>Br 2 2、不同类型晶体的比较规律 一般来说,不同类型晶体的熔沸点的高低顺序为:原子晶体>离子晶体>分子晶体,而金属晶体的熔沸点有高有低。这是由于不同类型晶体的微粒间作用不同,其熔、沸点也不相同。原子晶体间靠共价键结合,一般熔、沸点最高;离子晶体阴、阳离子间靠离子键结合,一般熔、沸点较高;分子晶体分子间靠范德华力结合,一

般熔、沸点较低;金属晶体中金属键的键能有大有小,因而金属晶体熔、沸点有高(如W)有低(如Hg)。例如:金刚石>食盐>干冰 3、同种类型晶体的比较规律 A、原子晶体:熔、沸点的高低,取决于共价键的键长和键能,键长越短,键能越大共价键越稳定,物质熔沸点越高,反之越低。如:晶体硅、金刚石和碳化硅三种晶体中,因键长C—C碳化硅>晶体硅。 B、离子晶体:熔、沸点的高低,取决于离子键的强弱。一般来说,离子半径越小,离子所带电荷越多,离子键就越强,熔、沸点就越高,反之越低。 例如:MgO>CaO,NaF>NaCl>NaBr>NaI。KF>KCl>KBr>KI,CaO>KCl。 C、金属晶体:金属晶体中金属阳离子所带电荷越多,半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低。如:Na<Mg <Al,Li>Na>K。 合金的熔沸点一般说比它各组份纯金属的熔沸点低。如铝硅合金<纯铝(或纯硅)。 D、分子晶体:熔、沸点的高低,取决于分子间作用力的大小。分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高) 如:H 2O>H 2 Te>H 2 Se>H 2 S,C 2 H 5 OH>CH 3 —O—CH 3 。 (1)组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越 强,物质的熔沸点越高。如:CH 4<SiH 4 <GeH 4 <SnH 4 。 (2)组成和结构不相似的物质(相对分子质量相近),分子极性越大, 其熔沸点就越高。如熔沸点 CO>N 2,CH 3 OH>CH 3 —CH 3 。 (3)在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。 如:C 17H 35 COOH>C 17 H 33 COOH;硬脂酸>油酸 (4)烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增 加,熔沸点升高,如C 2H 6 >CH 4 , C 2 H 5 Cl>CH 3 Cl,CH 3 COOH> HCOOH。 (5)同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降 低。如:CH 3(CH 2 ) 3 CH 3 (正)>CH 3 CH 2 CH(CH 3 ) 2 (异)>(CH 3 ) 4 C(新)。 芳香烃的异构体有两个取代基时,熔点按对、邻、间位降低沸点按邻、间、对位降低) 针对性训练 一、选择题 1.下列性质中,可以证明某化合物内一定存在离子键的是() (A)溶于水(B)有较高的熔点(C)水溶液能导电(D)熔融状态能导电 2.下列物质中,含有极性键的离子化合是() (A)CaCl 2(B)Na 2 O 2 (C)NaOH (D)K 2 S 3.Cs是IA族元素,F是VIIA族元素,估计Cs和F形成的化合物可能

3-晶体类型

晶体类型 1.晶体是指离子、分子、原子在空间上呈周期性规则排列的固体。晶体结构的基本单元是晶胞。 NaCl 晶体结构 CO 2晶体结构 SiO 2晶体结构 2.化学键种类有___________、___________、___________; 晶体类型有___________、___________、___________、___________。 (1)离子晶体:离子晶体融化时,破坏___________,故___________越强,晶体的熔、沸点越高。离子键强弱与___________、___________有关,如KF______KCl 。 (2)原子晶体:原子晶体融化时,破坏___________,故___________越强,晶体的熔、沸点越高。共价键强弱与___________有关,如金刚石______晶体硅。 (3)金属晶体:金属晶体融化时,破坏___________,故___________越强,晶体的熔、沸点越高。金属键强弱与___________、___________有关,如Mg______Al 。 (4)分子晶体:分子晶体融化时,破坏___________,故___________越强,晶体的熔、沸点越高。分子间作用力的强弱与分子量和分子间距有关。 a.组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高,如SnH 4>GeH 4>SiH 4>CH 4。 b.同分异构体,支链越多,熔、沸点越低,如CH 3CH 2CH 2CH 2CH 3>(CH 3)2CHCH 2CH 3>C(CH 3)4。 c.含有氢键的物质的熔沸点反常的高,分子间作用力不再是主导因素,如H 2O>H 2Te>H 2Se>H 2S 。 d.相对分子质量接近的分子晶体,分子的极性越大,其熔、沸点越高,如CO>N 2,CH 3OH>CH 3CH 3。 注意:不同类型晶体的熔、沸点的大小比较:原子晶体>离子晶体>金属晶体>分子晶体。

四种晶体性质比较

四种晶体性质比较1.晶体 (1)晶体与非晶体 (2)得到晶体的途径 ①熔融态物质凝固。 ②气态物质冷却不经液态直接_______________。 ③溶质从溶液中析出。 (3)晶胞 ①概念 描述晶体结构的基本单元。

②晶体中晶胞的排列——无隙并置 a.无隙:相邻晶胞之间没有____________。 b.并置:所有晶胞______排列、取向相同。 (4)晶格能 ①定义:气态离子形成1摩离子晶体释放的能量,通常取正值,单位:_________________。 ②影响因素 a.离子所带电荷数:离子所带电荷数越多,晶格能越大。 b.离子的半径:离子的半径________,晶格能越大。 ③与离子晶体性质的关系 晶格能越大,形成的离子晶体越稳定,且熔点越高,硬度___________。2.四种晶体类型的比较

3.晶体熔沸点的比较 (1)不同类型晶体熔、沸点的比较 ①不同类型晶体的熔、沸点高低的一般规律:________________>离子晶体>____________。 ②金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。 (2)同种晶体类型熔、沸点的比较

①原子晶体: 原子半径越小―→键长越短―→键能越大―→ ②离子晶体: a .一般地说,阴、阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,其离子晶体的熔、沸点就越高,如熔点:MgO____MgCl 2______NaCl______CsCl 。 b .衡量离子晶体稳定性的物理量是晶格能。晶格能越大,形成的离子晶体越稳定,熔点越高,硬度越大。 ③分子晶体: a .分子间作用力越大,物质的熔、沸点越高;具有氢键的分子晶体熔、沸点反常地高。如H 2O >H 2Te >H 2Se >H 2S 。 b .组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高,如SnH 4>GeH 4>SiH 4>CH 4。 c .组成和结构不相似的物质(相对分子质量接近),分子的极性越大,其熔、沸点____________,如CO >N 2,CH 3OH >CH 3CH 3。 d .同分异构体,支链越多,熔、沸点越低。 ④金属晶体: 金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点就越高,如熔、沸点:Na <Mg <Al 。 2.在下列物质中:NaCl 、NaOH 、Na 2S 、H 2O 2、Na 2S 2、(NH 4)2S 、CO 2、CCl 4、C 2H 2、SiO 2、SiC 、晶体硅、金刚石。 (1)其中只含有离子键的离子晶体是________;

晶体类型的5种判断方法

晶体类型的5种判断方法 1.依据构成晶体的微粒和微粒间的作用判断 (1)离子晶体的构成微粒是,微粒间的作用是。 (2)原子晶体的构成微粒是,微粒间的作用是。 (3)分子晶体的构成微粒是,微粒间的作用为。 (4)金属晶体的构成微粒是,微粒间的作用是。 2.依据物质的分类判断 (1)金属氧化物(如K2O等)、强碱(NaOH、KOH等)和绝大多数的盐类是晶体。 (2)大多数非金属单质(除金刚石、石墨、晶体硅、晶体硼等)、非金属氢化物、非金属氧化物(除SiO2外)、几乎所有的酸、绝大多数有机物(除有机盐外)是晶体。 (3)常见的原子晶体单质有、、等,常见的原子晶体化合物有、、、等。 (4)金属单质(注:汞在常温为液体)与合金是晶体。 3.依据晶体的熔点判断 (1) 晶体的熔点较高,常在数百至一千摄氏度以上。 (2) 晶体熔点高,常在一千摄氏度至几千摄氏度。 (3) 晶体熔点低,常在数百摄氏度以下至很低温度。 (4) 晶体多数熔点高,但也有相当低的。 4.依据导电性判断 (1 晶体溶于水形成的溶液及熔融状态时能导电。 (2 晶体一般为非导体。 (3) 晶体为非导体,而晶体中的电解质(主要是酸和强极性非金属氢化物)溶于水,使分子内的化学键断裂形成,也能导电。 (4) 晶体是电的良导体。 5.依据硬度和机械性能判断 (1)晶体硬度较大且脆。(2)晶体硬度大。 (3)晶体硬度小且较脆。(4)晶体多数硬度大,但也有较低的,且具有延展性。 注意:(1)常温下为气态或液态的物质,其晶体应属于晶体(Hg除外)。 (2)石墨属于混合型晶体,但因层内原子之间碳碳共价键的键长为1.42×10-10 m,比

相关主题
文本预览
相关文档 最新文档