当前位置:文档之家› 阻抗匹配中圆图

阻抗匹配中圆图

阻抗匹配中圆图
阻抗匹配中圆图

阻抗匹配与史密斯(Smith)圆图:

基本原理

本文利用史密斯圆图作为RF阻抗匹配的设计指南。文中给出了反射系数、阻抗和导纳的作图范例,并用作图法设计了一个频率为60MHz的匹配网络。

实践证明:史密斯圆图仍然是计算传输线阻抗的基本工具。

在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。

在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。

有很多种阻抗匹配的方法,包括:

?计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹

配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的

数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。

另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能

预装在计算机上。

?手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的

计算公式、并且被处理的数据多为复数。

?经验:只有在RF领域工作过多年的人才能使用这种方法。总之,它只

适合于资深的专家。

?史密斯圆图:本文要重点讨论的内容。

本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。

图1. 阻抗和史密斯圆图基础

基础知识

在介绍史密斯圆图的使用之前,最好回顾一下RF环境下(大于100MHz) IC 连线的电磁波传播现象。这对RS-485传输线、PA和天线之间的连接、LNA和下变频器/混频器之间的连接等应用都是有效的。

大家都知道,要使信号源传送到负载的功率最大,信号源阻抗必须等于负载的共轭阻抗,即:

R s + jX s = R L - jX L

图2. 表达式R s + jX s = R L - jX L的等效图

在这个条件下,从信号源到负载传输的能量最大。另外,为有效传输功率,满足这个条件可以避免能量从负载反射到信号源,尤其是在诸如视频传输、RF 或微波网络的高频应用环境更是如此。

史密斯圆图

史密斯圆图是由很多圆周交织在一起的一个图。正确的使用它,可以在不作任何计算的前提下得到一个表面上看非常复杂的系统的匹配阻抗,唯一需要作的就是沿着圆周线读取并跟踪数据。

史密斯圆图是反射系数(伽马,以符号表示)的极座标图。反射系数也可以从数学上定义为单端口散射参数,即s11。

史密斯圆图是通过验证阻抗匹配的负载产生的。这里我们不直接考虑阻抗,而是用反射系数L ,反射系数可以反映负载的特性(如导纳、增益、跨导),在处理RF 频率的问题时,L 更加有用。

我们知道反射系数定义为反射波电压与入射波电压之比:

图3. 负载阻抗

负载反射信号的强度取决于信号源阻抗与负载阻抗的失配程度。反射系数的表达式定义为:

i r O

L O L inc refl

L j Z Z Z Z V V Γ+Γ=+?==Γ. (equ 2.1) 由于阻抗是复数,反射系数也是复数。

为了减少未知参数的数量,可以固化一个经常出现并且在应用中经常使用的参数。这里Zo (特性阻抗)通常为常数并且是实数,是常用的归一化标准值,如50、75、100和600。于是我们可以定义归一化的负载阻抗:

z= Z L /Z O = (R+jX)/Z O

= r+jx (equ 2.2) 据此,将反射系数的公式重新写为:

1

.1.11/)(/)(.++?+=+?=+?=+?=Γ+Γ=Γx j r x j r z z Z Z Z Z Z Z Z Z Z Z j O O L O O L O L O L i t L (equ 2.3) 从上式我们可以看到负载阻抗与其反射系数间的直接关系。但是这个关系式是一个复数,所以并不实用。我们可以把史密斯圆图当作上述方程的图形表示。

为了建立圆图,方程必需重新整理以符合标准几何图形的形式(如圆或射线)。

首先,由方程2.3求解出;

i r i r L L j x j r z Γ+Γ?Γ+Γ+=Γ?Γ+=

+=1111. (equ 2.4) 并且

222

2211i

r r i r r Γ+Γ?Γ+Γ?Γ+= (equ 2.5) 令等式2.4的实部和虚部相等,得到两个独立的关系式:

2222211i r r i

r r Γ+Γ?Γ+Γ?Γ+= (equ 2.6)

22212i r r i

x Γ+Γ?Γ+Γ= (equ 2.7)

重新整理等式2.6,经过等式2.8至2.13得到最终的方程2.14。这个方程是在复平面(r,

i)上、圆的参数方程(x-a)2 + (y-b)2 = R2,它以(r/r+1, 0)为圆心,半径为1/1+r.

2222

1..

2.i r i r r r r r r Γ?Γ?=Γ+Γ?Γ+ (equ 2.8)

r r r r i i r r r ?=Γ+Γ+Γ?Γ+Γ1..2.2222 (equ 2.9)

r r r r i r r ?=Γ++Γ?Γ+1).1(.2)1(22 (equ 2.10) r r r r i r r +?=Γ+Γ+?

Γ111222 (equ 2.11) r

r r r r r r r r i r r +?=+?Γ+++Γ++Γ11)1()1(12222222 (equ 2.12) 22222)

1(1)1(11)1(r r r r r r r i r +=+++?=Γ++Γ (equ 2.13) 222)

1(1)1(r r r i r +=Γ++Γ (equ 2.14) 更多细节参见图4a 。

图4a. 圆周上的点表示具有相同实部的阻抗。例如,R =1的圆,以(0.5, 0)为圆心,半径为0.5。它包含了代表反射零点的原点(0, 0) (负载与特性阻抗相匹配)。以(0,0)为圆心、半径为1的圆代表负载短路。负载开路时,圆退化为一个点(以1,0为圆心,半径为零)。与此对应的是最大的反射系数1,即所有的入射波都被反射回来。

在作史密斯圆图时,有一些需要注意的问题。下面是最重要的几个方面:

? 所有的圆周只有一个相同的,唯一的交点(1, 0)。

? 代表0、也就是没有电阻(r = 0)的圆是最大的圆。

? 无限大的电阻对应的圆退化为一个点(1, 0)

? 实际中没有负的电阻,如果出现负阻值,有可能产生振荡。

? 选择一个对应于新电阻值的圆周就等于选择了一个新的电阻。

作图

经过等式2.15至2.18的变换,2.7式可以推导出另一个参数方程,方程2.19。

同样,2.19也是在复平面(r, i)上的圆的参数方程(x-a)2 + (y-b)2 = R2,它的圆心为(1, 1/x),半径1/x。

更多细节参见图4b。

图4b. 圆周上的点表示具有相同虚部x的阻抗。例如,x=1的圆以(1, 1)为圆心,半径为1。所有的圆(x为常数)都包括点(1, 0)。与实部圆周不同的是,x既可以是正数也可以是负数。这说明复平面下半部是其上半部的镜像。所有圆的圆心都在一条经过横轴上1点的垂直线上。

完成圆图

为了完成史密斯圆图,我们将两簇圆周放在一起。可以发现一簇圆周的所有圆会与另一簇圆周的所有圆相交。若已知阻抗为r + jx,只需要找到对应于r和x 的两个圆周的交点就可以得到相应的反射系数。

可互换性

上述过程是可逆的,如果已知反射系数,可以找到两个圆周的交点从而读取相应的r和x的值。过程如下:

?确定阻抗在史密斯圆图上的对应点

?找到与此阻抗对应的反射系数()

?已知特性阻抗和,找出阻抗

?将阻抗转换为导纳

?找出等效的阻抗

?找出与反射系数对应的元件值(尤其是匹配网络的元件,见图7)

推论

因为史密斯圆图是一种基于图形的解法,所得结果的精确度直接依赖于图形的精度。下面是一个用史密斯圆图表示的RF应用实例:

例:已知特性阻抗为50,负载阻抗如下:

Z1 = 100 + j50Z2 = 75 -j100Z3 = j200Z4 = 150

Z5 = (开路) Z6 = 0 (短路) Z7 = 50Z8 = 184 -j900

对上面的值进行归一化并标示在圆图中(见图5):

z1 = 2 + j z2 = 1.5 -j2 z3 = j4 z4 = 3

z5 = 8 z6 = 0 z7 = 1 z8 = 3.68 -j18S

图5. 史密斯圆图上的点

现在可以通过图5的圆图直接解出反射系数。画出阻抗点(等阻抗圆和等电抗圆的交点),只要读出它们在直角坐标水平轴和垂直轴上的投影,就得到了反射系数的实部r和虚部i (见图6)。

该范例中可能存在八种情况,在图6所示史密斯圆图上可以直接得到对应的反射系数:

= 0.4 + 0.2j 2 = 0.51 - 0.4j 3 = 0.875 + 0.48j4 = 0.5

1

= 1 6 = -1 7 = 0 8 = 0.96 - 0.1j

5

图6. 从X-Y轴直接读出反射系数的实部和虚部

用导纳表示

史密斯圆图是用阻抗(电阻和电抗)建立的。一旦作出了史密斯圆图,就可以用它分析串联和并联情况下的参数。可以添加新的串联元件,确定新增元件的影响只需沿着圆周移动到它们相应的数值即可。然而,增加并联元件时分析过程就不是这么简单了,需要考虑其它的参数。通常,利用导纳更容易处理并联元件。

我们知道,根据定义Y = 1/Z,Z = 1/Y。导纳的单位是姆欧或者-1 (早些时候导纳的单位是西门子或S)。并且,如果Z是复数,则Y也一定是复数。

所以Y = G + jB (2.20),其中G叫作元件的“电导”,B称“电纳”。在演算的时候应该小心谨慎,按照似乎合乎逻辑的假设,可以得出:G = 1/R及B = 1/X,然而实际情况并非如此,这样计算会导致结果错误。

用导纳表示时,第一件要做的事是归一化,y = Y/Yo,得出y = g + jb。但是如何计算反射系数呢?通过下面的式子进行推导:

结果是G的表达式符号与z相反,并有(y) = -(z).

如果知道z,就能通过将的符号取反找到一个与(0,0)的距离相等但在反方向的点。围绕原点旋转180°可以得到同样的结果。(见图7).

图7. 180°度旋转后的结果

当然,表面上看新的点好像是一个不同的阻抗,实际上Z和1/Z表示的是同一个元件。(在史密斯圆图上,不同的值对应不同的点并具有不同的反射系数,依次类推)出现这种情况的原因是我们的图形本身是一个阻抗图,而新的点代表的是一个导纳。因此在圆图上读出的数值单位是姆欧。

尽管用这种方法就可以进行转换,但是在解决很多并联元件电路的问题时仍不适用。

导纳圆图

在前面的讨论中,我们看到阻抗圆图上的每一个点都可以通过以复平面原点为中心旋转180°后得到与之对应的导纳点。于是,将整个阻抗圆图旋转180°就得到了导纳圆图。这种方法十分方便,它使我们不用建立一个新图。所有圆周的交点(等电导圆和等电纳圆)自然出现在点(-1, 0)。使用导纳圆图,使得添加并联元件变得很容易。在数学上,导纳圆图由下面的公式构造:

解这个方程

接下来,令方程3.3的实部和虚部相等,我们得到两个新的独立的关系:

从等式3.4,我们可以推导出下面的式子:

它也是复平面(r, i)上圆的参数方程(x-a)2 + (y-b)2 = R2 (方程3.12),以(-g/g+1, 0)为圆心,半径为1/(1+g)。

从等式3.5,我们可以推导出下面的式子:

同样得到(x-a)2 + (y-b)2 = R2型的参数方程(方程3.17)。

求解等效阻抗

当解决同时存在串联和并联元件的混合电路时,可以使用同一个史密斯圆图,在需要进行从z到y或从y到z的转换时将图形旋转。

考虑图8所示网络(其中的元件以Zo=50进行了归一化)。串联电抗(x)对电感元件而言为正数,对电容元件而言为负数。而电纳(b)对电容元件而言为正数,对电感元件而言为负数。

图8. 一个多元件电路

这个电路需要进行简化(见图9)。从最右边开始,有一个电阻和一个电感,数值都是1,我们可以在r=1的圆周和I=1的圆周的交点处得到一个串联等效点,即点A。下一个元件是并联元件,我们转到导纳圆图(将整个平面旋转180°),此时需要将前面的那个点变成导纳,记为A'。现在我们将平面旋转180°,于是我们在导纳模式下加入并联元件,沿着电导圆逆时针方向(负值)移动距离0.3,得到点B。然后又是一个串联元件。现在我们再回到阻抗圆图。

图9. 将图8网络中的元件拆开进行分析

在返回阻抗圆图之前,还必需把刚才的点转换成阻抗(此前是导纳),变换之后得到的点记为B',用上述方法,将圆图旋转180°回到阻抗模式。沿着电阻圆周移动距离1.4得到点C就增加了一个串联元件,注意是逆时针移动(负值)。进行同样的操作可增加下一个元件(进行平面旋转变换到导纳),沿着等电导圆顺时针方向(因为是正值)移动指定的距离(1.1)。这个点记为D。最后,我们回到阻抗模式增加最后一个元件(串联电感)。于是我们得到所需的值,z,位于0.2电阻圆和0.5电抗圆的交点。至此,得出z=0.2 + j0.5。如果系统的特性阻抗是50,有Z = 10 + j25(见图10)。

图10. 在史密斯圆图上画出的网络元件

逐步进行阻抗匹配

史密斯圆图的另一个用处是进行阻抗匹配。这和找出一个已知网络的等效阻抗是相反的过程。此时,两端(通常是信号源和负载)阻抗是固定的,如图12所示。我们的目标是在两者之间插入一个设计好的网络已达到合适的阻抗匹配。

图11. 阻抗已知而元件未知的典型电路

初看起来好像并不比找到等效阻抗复杂。但是问题在于有无限种元件的组合都可以使匹配网络具有类似的效果,而且还需考虑其它因素(比如滤波器的结构类型、品质因数和有限的可选元件)。

实现这一目标的方法是在史密斯圆图上不断增加串联和并联元件、直到得到我们想要的阻抗。从图形上看,就是找到一条途径来连接史密斯圆图上的点。同样,说明这种方法的最好办法是给出一个实例。

我们的目标是在60MHz工作频率下匹配源阻抗(ZS)和负载阻抗(ZL) (见图12)。网络结构已经确定为低通,L型(也可以把问题看作是如何使负载转变成数值等于ZS的阻抗,即ZS复共轭)。下面是解的过程:

图12. 图11的网络,将其对应的点画在史密斯圆图上

要做的第一件事是将各阻抗值归一化。如果没有给出特性阻抗,选择一个与负载/信号源的数值在同一量级的阻抗值。假设 Zo为50。于是zS = 0.5 -j0.3, z*S = 0.5 + j0.3, ZL = 2 -j0.5。

下一步,在图上标出这两个点,A代表zL,D代表Z*S

然后判别与负载连接的第一个元件(并联电容),先把zL转化为导纳,得到点A'。

确定连接电容C后下一个点出现在圆弧上的位置。由于不知道C的值,所以我们不知道具体的位置,然而我们确实知道移动的方向。并联的电容应该在导纳圆图上沿顺时针方向移动、直到找到对应的数值,得到点B (导纳)。下一个元件是串联元件,所以必需把B转换到阻抗平面上去,得到B'。B'必需和D位于同一个电阻圆上。从图形上看,从A'到D只有一条路径,但是如果要经过中间的B点(也就是B'),就需要经过多次的尝试和检验。在找到点B和B'后,我们就能够测量A'到B和B'到D的弧长,前者就是C的归一化电纳值,后者为L的归一化电抗值。A'到B的弧长为b = 0.78,则B = 0.78 x Yo = 0.0156姆欧。因为 C = B,所以 C = B/ =B/(2 f) = 0.0156/(2 607) = 41.4pF。B到D的弧长为x = 1.2,于是X = 1.2 × Zo = 60.由L = X, 得L = X/ =X/(2 f) = 60/(2 607) = 159nH。

图13. MAX2472典型工作电路

第二个例子是MAX2472的输出匹配电路,匹配于50?负载阻抗(zL),工作品率为900MHz (图14所示)。该网络采用与MAX2472数据资料相同的配置结构,上图给出了匹配网络,包括一个并联电感和串联电容,以下给出了匹配网络元件值的查找过程。

图14. 图13所示网络在史密斯圆a图上的相应工作点

首先将S22散射参数转换成等效的归一化源阻抗。MAX2472的Z0为50?,S22 = 0.81/-29.4°转换成zS = 1.4 - j3.2, zL = 1和zL* = 1。

下一步,在圆图上定位两个点,zS标记为A,zL*标记为D。因为与信号源连接的是第一个元件是并联电感,将源阻抗转换成导纳,得到点A’。

确定连接电感LMATCH后下一个点所在的圆弧,由于不知道LMATCH的数值,因此不能确定圆弧终止的位置。但是,我们了解连接LMATCH并将其转换成阻抗后,源阻抗应该位于r = 1的圆周上。由此,串联电容后得到的阻抗应该为z = 1 + j0。以原点为中心,在r = 1的圆上旋转180°,反射系数圆和等电纳圆的交点结合A’点可以得到B (导纳)。B点对应的阻抗为B’点。

找到B和B'后,可以测量圆弧A'B以及圆弧B'D的长度,第一个测量值可以得到LMATCH。电纳的归一化值,第二个测量值得到CMATCH电抗的归一化值。圆弧A'B的测量值为b = -0.575,B = -0.575 × Y0 = 0.0115S。因为1/ωL = B,则LMATCH = 1/Bω = 1/(B2πf) = 1/(0.01156 × 2 × π × 900 × 106) = 15.38nH,近似为15nH。圆弧B'D的测量值为× = -2.81,X = -2.81 × Z0 =

-140.5?。因为-1/ωC = X,则CMATCH = -1/Xω = -1/(X2πf) = -1/(-140.5 × 2 × π× 900 × 106) = 1.259pF,近似为1pF。这些计算值没有考虑寄生电感和寄生电

容,所得到的数值接近与数据资料中给出的数值:LMATCH = 12nH和CMATCH = 1pF。

总结

在拥有功能强大的软件和高速、高性能计算机的今天,人们会怀疑在解决电路基本问题的时候是否还需要这样一种基础和初级的方法。

实际上,一个真正的工程师不仅应该拥有理论知识,更应该具有利用各种资源解决问题的能力。在程序中加入几个数字然后得出结果的确是件容易的事情,当问题的解十分复杂、并且不唯一时,让计算机作这样的工作尤其方便。然而,如果能够理解计算机的工作平台所使用的基本理论和原理,知道它们的由来,这样的工程师或设计者就能够成为更加全面和值得信赖的专家,得到的结果也更加可靠。

射频阻抗匹配与史密斯_Smith_圆图:基本原理详解

阻抗匹配与史密斯(Smith)圆图:基本原理
在处理 RF 系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下, 需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、 功率放大器输出(RFOUT)与天线之间的匹配、 LNA/VCO 输出与混频器输入 之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹 以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的 RF 测试、并进行适当调谐。 需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括
?
计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的 格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途 制造的,否则电路仿真软件不可能预装在计算机上。
? ? ?
手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 经验: 只有在 RF 领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 史密斯圆图:本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹 配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的 影响以及进行稳定性分析。
图 1. 阻抗和史密斯圆图基础
基础知识
在介绍史密斯圆图的使用之前,最好回顾一下 RF 环境下(大于 100MHz) IC 连线的电磁波传播现象。这对 RS-485 传输线、PA 和天线之间 的连接、LNA 和下变频器/混频器之间的连接等应用都是有效的。

阻抗图谱(doc)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 阻抗图谱(doc) 金属支撑固体氧化物燃料电池阻抗谱动态分析应以及电极材 料微结构的退化, 并有望实现 SOFC 的快速启动和关闭[2, 3]. 金 属支撑 SOFC 因具有成金属支撑固体氧化物燃料电池 阻抗谱动态分析黄秋安 1, 2 汪秉文 1 徐玲 芳 2 王亮 1 (1 华中科技大学控制科学与工程系, 湖北武汉 430074; 2 湖北大学物理学与电子技术学院, 湖北武汉430062) 摘要: 采用悬浮等离子喷涂工艺制造金属支撑固体氧化 物燃料电池(SOFC) , 阴极为 SSCo-SDC (质量分数比为75%∶ 25%) , 电解质为 SDC, 阳极为 NiO-SDC (质量分数比为70%∶ 30%) , 支撑 体为多孔Hastelloy X 合金. 在450~600℃下, 对极化电阻、欧 姆电阻、本体电阻与界面接触电阻分别进行了静态分析, 分析结果 显示接触电阻对欧姆极化损失的影响较大. 电池经受 3 次慢速热 循环(3℃/min)和 12 次快速热循环(60℃/ min) , 并记录600℃时 动态阻抗谱和开路电压. 基于对欧姆电阻和极化电阻的动态分析, 给出了金属支撑 SOFC 可能的降解机理. 动态分析结果也显示, 金 属支撑体的抗氧化性在金属支撑 SOFC 稳定性中发挥重要作用. 关键词: 固体氧化物燃料电池; 电化学阻抗谱; 热循环; 动态分析; 降解机理固体氧化物燃料电池(solid oxide fuel cell, SOFC) 被视作 21 世纪最有潜力的绿色发电系统[1] ,然而, 高成本、短寿命和低稳定性仍严重制约着其发展. 降低 SOFC 操作温度 1 / 5

阻抗匹配与史密斯(Smith)圆图_基本原理

阻抗匹配与史密斯(Smith)圆图: 基本原理 本文利用史密斯圆图作为RF阻抗匹配的设计指南。文中给出了反射系数、阻抗和导纳的作图范例,并用作图法设计了一个频率为60MHz 的匹配网络。 实践证明:史密斯圆图仍然是计算传输线阻抗的基本工具。 在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。 在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。 有很多种阻抗匹配的方法,包括: 计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。

手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 经验: 只有在RF领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 史密斯圆图: 本文要重点讨论的内容。 本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。 图1. 阻抗和史密斯圆图基础 基础知识 在介绍史密斯圆图的使用之前,最好回顾一下RF环境下(大于100MHz) IC连线的电磁波传播现象。这对RS-485传输线、PA和天线之间的连接、LNA和下变频器/混频器之间的连接等应用都是有

阻抗匹配与史密斯圆图:基本原理

阻抗匹配与史密斯圆图:基本原理 摘要:本文是关于使用史密斯圆图进行射频阻抗匹配计算的教程。本文还提供了一些示例以描绘如何计算反射系数、阻抗、导纳等参数。本文还提供了一个样例,使用图形方法计算工作在900MHz下的MAX2472的匹配网络。 经过实践证明,史密斯圆图仍然是用于判定传输线路阻抗的基本工具。 当处理射频应用的实际实现时,总会碰到一些噩梦般的任务。其中之一就是需要匹配各个互连模块之间的不同的阻抗。通常,这些包括天线到低噪声放大器(LNA),功率放大器输出(RFOUT)到天线,以及LNA/VCO输出到混频器输入。对于信号与能量从“源”到“负载”的正确传输来说,匹配任务是必需的。 在高频率的射频电路中,寄生元素(例如导线电感、层间电容、导体电阻等等)对匹配网络有着显著,但无法预料的影响。在几十兆赫兹频率以上的电路中,理论上的计算与仿真常常是不足够的。在射频实验室测量现场,伴随着调谐工作,必须仔细考虑才能决定合适的最终取值。必须使用计算值以便于建立结构类型与目标元件的取值。 有很多方法可用于计算阻抗匹配,包括: ●计算机仿真:原理复杂但是使用简单,仿真器一般用于区别设计功能,而不是进行阻抗 匹配。设计者必须熟悉需要键入的多重数据输入,以及这些数据输入的正确格式。他们同样需要专门的知识,以便于在大量的结果数据中找到有用的数据。另外,除非计算机被用于进行电路仿真这样的工作,电路仿真软件就不会预安装在计算机上。 ●手动计算:由于计算方程的长度(“上公里的”),以及要进行计算的数字的复杂性,这 种方式被普遍认为是非常单调乏味的。 ●经验直觉:只有当一个人在射频领域中工作过很多年以后,才能取得这样的能力。简而 言之,这种方法只适用于非常资深的专家。 ●史密斯圆图:本文所专注的内容。 本文的主要目标就是回顾史密斯圆图的构造与背景,并且总结如何使用史密斯圆图的实践方式。本文提出的主题包括了参数的实际说明,例如找到匹配网络元件的取值。当然,我们使用史密斯圆图不仅仅只能进行最大功率传输的匹配。史密斯圆图同样能够帮助设计者计算出最佳的噪声系数,确保质量因素的影响,以及评估稳定性分析等等。

阻抗匹配中Smith圆图的巧妙使用

阻抗匹配与史密斯(Smith)圆图: 基本原理
本文利用史密斯圆图作为 RF 阻抗匹配的设计指南。 文中给出了 反射系数、 阻抗和导纳的作图范例, 并用作图法设计了一个频率 为 60MHz 的匹配网络。 实践证明:史密斯圆图仍然是计算传输线阻抗的基本工具。
在处理 RF 系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级 联电路的不同阻抗进行匹配就是其中之一。一般情况下, 需要进行匹配的电路包 括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间 的匹配、LNA/VCO 输出与混频器输入之间的匹配。匹配的目的是为了保证信号 或能量有效地从“信号源”传送到“负载”。 在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配 网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真 已经远远不能满足要求,为了得到适当的最终结果, 还必须考虑在实验室中进行 的 RF 测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标 元件值。 有很多种阻抗匹配的方法,包括:
?
? ? ?
计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配, 所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。 设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外, 除 非计算机是专门为这个用途制造的, 否则电路仿真软件不可能预装在计算 机上。 手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计 算公式、并且被处理的数据多为复数。 经验: 只有在 RF 领域工作过多年的人才能使用这种方法。总之,它只适 合于资深的专家。 史密斯圆图: 本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识, 并且总结它在实际中的应 用方法。 讨论的主题包括参数的实际范例, 比如找出匹配网络元件的数值。 当然, 史密斯圆图不仅能够为我们找出最大功率传输的匹配网络, 还能帮助设计者优化 噪声系数,确定品质因数的影响以及进行稳定性分析。
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.doczj.com/doc/688364087.html,

阻抗匹配与史密斯(Smith)圆图 基本原理

阻抗匹配与史密斯(Smith)圆图:基本原理 本文利用史密斯圆图作为RF阻抗匹配的设计指南。文中给出了反射系数、阻抗和导纳的 作图范例,并用作图法设计了一个频率为60MHz的匹配网络。 实践证明:史密斯圆图仍然是计算传输线阻抗的基本工具。 在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。 在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。 有很多种阻抗匹配的方法,包括: ?计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。 另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。 ?手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 ?经验:只有在RF领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 ?史密斯圆图:本文要重点讨论的内容。 本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。 图1.阻抗和史密斯圆图基础

史密斯圆图基本原理

阻抗匹配与史密斯(Smith)圆图:基本原理 摘要:本文利用史密斯圆图作为RF阻抗匹配的设计指南。文中给出了反射系数、阻抗和导纳的作图范例,并给出了MAX2474工作在900MHz时匹配网络的作图范例。 事实证明,史密斯圆图仍然是确定传输线阻抗的基本工作。 在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。 在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。 有很多种阻抗匹配的方法,包括 计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。 手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 经验:只有在RF领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 史密斯圆图:本文要重点讨论的内容。 本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。 图1. 阻抗和史密斯圆图基础

阻抗匹配中圆图

阻抗匹配与史密斯(Smith)圆图: 基本原理 本文利用史密斯圆图作为RF阻抗匹配的设计指南。文中给出了反射系数、阻抗和导纳的作图范例,并用作图法设计了一个频率为60MHz的匹配网络。 实践证明:史密斯圆图仍然是计算传输线阻抗的基本工具。 在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。 在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。 有很多种阻抗匹配的方法,包括: ?计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹 配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的 数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。 另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能 预装在计算机上。 ?手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的 计算公式、并且被处理的数据多为复数。 ?经验:只有在RF领域工作过多年的人才能使用这种方法。总之,它只 适合于资深的专家。 ?史密斯圆图:本文要重点讨论的内容。 本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。

阻抗匹配与史密斯(Smith)圆图基本原理

阻抗匹配与史密斯(Smith)圆图基本原理 发表日期:2007年5月8日出处:https://www.doczj.com/doc/688364087.html, 【编辑录入:飞奔】 本文利用史密斯圆图作为RF阻抗匹配的设计指南。文中给出了反射系数、阻抗和导纳的作图范例,并用作图法设计了一个频率为60MHz的匹配网络。 实践证明:史密斯圆图仍然是计算传输线阻抗的基本工具。 在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹 配、LNA/VCO输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。 在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。 有很多种阻抗匹配的方法,包括: 计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。 手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 经验: 只有在RF领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 史密斯圆图: 本文要重点讨论的内容。 本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。

ADS-Smith圆图 阻抗匹配调试

ADS-Smith圆图阻抗匹配调试经验总结 1.前言: 随着无线通信的发展,越来越多的芯片都集成了WiFi、蓝牙,甚至WiFi+蓝牙功能。无线通信距离的远近在很大程度上取决于天线和射频匹配电路性能。本文主要基于ADS和Smith圆图工具对实际产品的射频匹配电路进行总结和经验分享。 匹配知识简介 阻抗匹配的目的就是实现功率的最大传输。关于阻抗匹配的知识在很多书中都有介绍。若找不到书籍资源,可以找我。下图是很多无线产品中用到的天线+匹配电路。如何利用ADS 和Smith圆图工具进行阻抗匹配是一个关键的问题。 1.矢量网络分析仪测量天线 用矢量网络分析仪测量天线阻抗,S11、VSWR等参数。保存为S1P文件。注意:S1P文件保存后用Smith圆图工具打开,检查是否正确。这一步很关键,关系到后面ADS的使用。下图是Smith圆图工具,可网上下载,也可以找我要。

正确的格式:频率+S11实部+S11虚部。 错误的格式:频率+ S11 + S11 Angle

当然,用Smith圆图工具也能进行阻抗匹配。只要知道相应的规则,就很容易进行串联并联器件。之所以用ADS,是因为ADS中有Tuning功能,可以手调器件参数。好玩!!! 1.ADS中新建工程。 S1P设置中选中你刚刚测试天线的S1P文件。由于我的只需要并联一个电感,所有只设置了一个电感。实际可以根据匹配的规则进行初步放置器件。

如下图,就是点击Tuning 按钮后,进行手调参数,可以快速看到S11 的变化。 注:砍掉L1后,点击仿真,可以看到用ADS打开测试的数据,S11,Smith圆图等。 1.如何串联并联器件? 这一步很关键,根据测试结果。如何进行匹配呢?下面是规则大招。

Smith圆图在天线阻抗匹配上的应用

Smith圆图在天线阻抗匹配上的应用 天线性能的好坏直接决定了所发射信号的强弱,在调试天线时,阻抗匹配、电压驻波比对天线的性能影响很大,在调试阻抗以及驻波比时,利用Smith圆图能够简单方便的提供帮助。通过Smith圆图,我们能够迅速的得出在传输线上任意一点阻抗、电压反射系数、驻波比等数据。 图1-1Smith圆图 如图1-1所示,Smith圆图中包括电阻圆(图中红色的,从右半边开始发散的圆)和电导圆(图中绿色的,从左半圆发散开的圆),和电阻电导圆垂直相交的半圆则称为电抗圆,其中,中轴线以上的电抗圆为正电抗圆(表现为感性),中轴线以下的为负电抗圆(表现为容性)。 一、利用Smith圆图进行阻抗匹配 1、使用并联短截线的阻抗匹配 我们可以通过改变短路的短截线的长度与它在传输线上的位置来进行传输网络的匹配,当达到匹配时,连接点的输入阻抗应正好等于线路的特征阻抗。 图2-1并联短截线的阻抗匹配

假设传输线特征阻抗的导纳为Yin,无损耗传输线离负载d处的输入导纳Yd=Yin+jB(归一化导纳即为1+jb),输入导纳为Ystub=-jB的短截线接在M点,以使负载和传输线匹配。在Smith圆图上的操作步骤: 1.做出负载的阻抗点A,反向延长求出其导纳点B; 2.将点B沿顺时针方向(朝着源端)转动,与r=1的圆交于点C和D; 3.点D所在的电抗圆和圆周交点为F; 4.分别读出各点对应的长度,B(aλ),C(bλ),F(kλ); 5.可以得出:负载至短截线连接点的最小距离d=bλ-aλ,短截线的长度S=kλ-0.25λ。 图2-2Smith圆图联短截线的阻抗匹配 2、使用L-C电路的阻抗匹配 在RF电路设计中,还经常用L-C电路来达到阻抗匹配的目的,通常的可以有如下8种匹配模型可供选择: 图2-3L-C阻抗匹配电路 这些模型可根据不同的情况合理选择,如果在低通情况下可选择串联电感的形式,而在高通时则要选择串联电容的形式。

阻抗圆图综述

阻抗圆图综述 史密斯图(阻抗圆图)是一种在甚高频和超高频电路设计时有效地选择计算匹配阻抗的工具。通过简洁的作图,代替了复杂的复数计算,使得复阻抗的匹配计算简单明了,易学易会,是高频领域工程师的有效工具。在国外的无线电设计领域,史密斯图已获得了广泛的应用。 阻抗圆图由等电阻(Ri)圆系、等电抗Xi圆系和|Γ|圆系构成。其中Ri和Xi分别是 归一化输入阻抗的实部和虚部,。 |Γ|是反射系数Γ的模。为避免图上线条太多,|Γ|圆系一般不画出。 史密斯圆图的用途是多方面的:根据归一化负载阻抗ZL/ZC,可求得反射系数Γ,在Γ=|Γ|∠θ已知的情况下可得到ZL/ZC。当ZL/ZC、归一化长度(1/λ)巳知时可查出Zin/ZC。在Zin/ZC和归一化长度已知时可得到ZL/ZC,而当Zin/ZC和ZL/ZC已知时可求出这段传输线的长度。在驻波比及第一个电压最小点到传输线终端的距离已知时,利用此图可以查出的ZL/ZC数值。 导纳圆圈由等电导(Gi)圆系、等电纳(Bi)圆系和|Γ|圆系构成。其中,Gi及Bi 分别为归一化输入导纳Yin/YC的实部和虚部。 导纳圆图与阻抗圆图的形式一样,只是阻抗圆图中的Ri、Xi由Gi、Bi替代。常用于并联电路的计算。史密斯图表的基本在于以下的算式 当中的Γ代表其线路的反射系数(reflection coefficient),即S参数(S-parameter)里的S11,ZL是归一负载值,即ZL / Z0。当中,ZL是线路本身的负载值,Z0是传输线的特征阻抗(本征阻抗)值,通常会使用50Ω。 图表中的圆形线代表电阻抗力的实数值,即电阻值,中间的横线与向上和向下散出的线则代表电阻抗力的虚数值,即由电容或电感在高频下所产生的阻力,当中向上的是正数,向下的是负数。图表最中间的点(1+j0)代表一个已匹配的电阻数值,同时其反射系数的值会是零。图表的边缘代表其反射系数的长度是1,即100%反射。在图边的数字代表反射系数的角度(0-180度)和波长(由零至半个波长)。 阻抗圆图的意义: 1.阻抗圆的上半圆内,x>0,其电抗为感抗,下半圆内,x<0,其电抗为容抗。 2.阻抗圆图的实轴x = 0,实轴上每一点对应的阻抗都是纯电阻,称为纯电阻线。 3.的圆,r = 0,其上对应的阻抗都是纯电抗,称为纯电抗圆。 4.实轴左端点,即左实轴与的圆的交点,z=0,代表阻抗短路点,而右实轴与的圆的交 点,即右端点,z = ,代表开路点。圆图中心z=1,,= 1,称为阻抗匹配点。 5.等R线:其轨迹为一族圆,圆心坐标为( ),半径为1/(r+1)。 6.等X线:其轨迹为一族圆,圆心坐标为(1,1/x),半径为1/x。[1] 注意事项:

如何用史密斯圆图进行阻抗匹配

如何用史密斯圆图进行阻抗匹配!! ---------------------------------------------------------------------------------------------- 史密斯圆图红色的代表阻抗圆,蓝色的代表导纳圆!! 先以红色线为例! 圆中间水平线是纯阻抗线,如果有点落在该直线上,表示的是纯电阻!! 例如一个100欧的电阻,就在中间那条线上用红色标2.0的地方;15欧的电阻就落在中间红色标0.3的点上! 水平线上方是感抗线,下方是容抗线;落在线上方的点,用电路表示,就是一个电阻串联一个电感,落在线下方的点,是一个电阻串联一个电容。 图上的圆表示等阻抗线,落在圆上的点阻抗都相等,向上的弧线表示等感抗线,向下的弧线表示等容抗线!!

可以看出是感是容,是高是低 接着讲蓝色线。 因为导纳是阻抗的倒数,所以,很多概念都很相似。 中间的是电导线,图上的圆表示等电导圆,向上的是等电纳线,向下的是等电抗线!用该图进行阻抗匹配计算的基本原则是: 是感要补容,是容要加感,是高阻要想办法往低走,是低阻要想办法抬高。 无论在任何位置,均要向50欧(中点)靠拢。 进行匹配时候,在等阻抗圆以及等电导圆上进行换算。下图表示的是变化趋势!

以图上B点为例,如何进行阻抗匹配!! B点所在位置为40+50j,先顺着等电导圆,运动到B1点,再顺着等阻抗圆,运行到终点(50欧)。按照上贴的运动规律,电路先并电容,再串电容。由此完成阻抗匹配。匹配方法讲完了,具体数值可通过RFSIM99计算!! 再说点,S参数与SMITCH圆图的关系!! 高频三极管,特别是上GHz的,一般都会列出一堆S参数。 以下以C3355 400MHz时候S11参数为例,说明S参数 和圆图的关系。 频率|S11| 相位 400M 0.054 -77.0 根据S参数的定义可知,S11反射系数为0.054,也就是 输入功率为1,则反射功率约为0.003。由于SMITCH图 是反射系数的极坐标,因此,可用公式表示,

用史密斯圆图阻抗匹配的方法论证

精心整理 精心整理 YibinUniversity 电磁场与电磁波设计报告 题目用史密斯圆图进行阻抗匹配的论证与示例 学院物理与电子工程学院 专业电子信息科学与技术 班级2013级2班 学号 姓名陈吉 2015年12月30日 用史密斯圆图进行阻抗匹配的论证与示例 摘要 史密斯圆图是用来分析传输线匹配问题的有效工具,他具有概念明晰、求解直观、精度较高等特点,被广泛应用于射频工程中。史密斯圆图是在反射系散平面上标绘有归一化输入阻抗(或导纳)等值圆族的计算图。是一款用于电机与电子工程学的图表,主要用于传输线的阻抗匹配上。该图由三个圆系构成,用以在传输线和某些波导问题中利用图解法求解,以避免繁琐的运算。一条传输线的电阻抗力会随其长度而改变,要设计一套匹配的线路,需要通过不少繁复的计算程

精心整理 序,史密斯圆图的特点便是省略一些计算程序。 关键字:史密斯圆图;传输线;射频 引言 在史密斯圆图中反射系数和阻抗一一对应;史密斯圆图包含两部分,一部分是阻抗史密斯圆图(Z-Smithchart ),它由等反射系数圆和阻抗圆图构成;另外一部分是导纳Smith 圆图(Y-Smithchart ),它由等反射系数圆和导纳圆图构成;它们共同构成YZ-Smithchart 。阻抗圆图又由电阻和电抗两部分构成,导纳圆图由电导和电纳构成。 1.反射函数Γ(z ) 传输线上任意一点的反射函数Γ(z )可表达为 其中,为归一化输入阻抗。Γ(z )为一复数,它可以表示为极坐标形式,也可以表示成直角坐标形式。当表示为极坐标形式时,对于无耗传输线,有,式中为终端反射系数的幅角;是z 处反射系数的幅角。当z 增加时,即由终端向电源方 向移动时,减小,相当于顺时针转动;反之,由电源向负载移动时,增大,相当 于逆时针转动。沿传输线每移动,反射系数经历一周。 2.归一化电阻圆及电抗圆 对于任一个确定的负载阻抗的归一化值,都能在圆图中找到一个与之相对应的点,这一点从极坐标的关系来看,也就代表了。它是传输线端接这一负载时计算的起点。当Γ(z )表示成直角坐标系形式时,,传输线上任意一点的归一化阻抗为: 令,则可以得到以下方程: 这两个方程是以归一化电阻r 和归一化电抗x 为参数的两组圆方程。第一式为归一化电阻圆,第二式为归一化电抗圆。归一化电阻圆如图2-1所示。归一化电抗圆如图2-2所示。 (z ΓφΓφφφ/λ

最新阻抗圆图综述

1 阻抗圆图综述 2 史密斯圆图是用来分析传输线匹配问题的有效方法。它具有概念明晰、求解3 直观、精度较高等特点,被广泛应用于射频工程中。 4 史密斯圆图是由很多圆周交织在一起的一个图。如图1a所示。正确的使用它,5 可以在不作任何计算的前提下得到一个表面上看非常复杂的系统的匹配阻抗,6 唯一需要作的就是沿着圆周线读取并跟踪数据。 7 1.阻抗圆图 8 9 图1a归一化电阻圆图图1b 归一化电抗圆图 10 图1a. 圆周上的点表示具有相同实部的阻抗。例如,r = 1的圆,以(0.5, 0) 11 为圆心,半径为0.5。它包含了代表反射零点的原点(0, 0) (负载与特性阻抗相12 匹配)。以(0, 0)为圆心、半径为1的圆代表负载短路。负载开路时,圆退化13 为一个点(以1, 0为圆心,半径为零)。与此对应的是最大的反射系数1,即所14 有的入射波都被反射回来。 15 图4b. 圆周上的点表示具有相同虚部x的阻抗。例如,× = 1的圆以(1, 1) 16 为圆心,半径为1。所有的圆(x为常数)都包括点(1, 0)。与实部圆周不同的是,17 x既可以是正数也可以是负数。这说明复平面下半部是其上半部的镜像。所有圆18 的圆心都在一条经过横轴上1点的垂直线上。 19 从阻抗原图上我们可知:

20 (1).在阻抗圆的上半圆内的电抗x>0呈感性,下半圆的电抗x<0呈容性。 21 (2).实轴上的点代表纯电阻点,左半轴上的点为电压波节点,其上的刻度22 即代表rmin又代表行波系数K,右半轴的点为波腹点,其上的刻度即代表rmax 23 又代表驻波比p。 24 (3).圆图旋转一周为y/2。 25 (4). |Γ|=1的圆周上的点代表纯电抗点。 26 (5).实轴左端点为短路点,右端点为开路点,中心处有z=1+j0,是匹配点。 27 (6).在传输线上由负载向电源方向移动时,在圆周上应该顺时针旋转;反28 之,由电源向负载方向移动时,应逆时针旋转。 29 2.导纳圆图:在前面的讨论中,我们看到阻抗圆图上的每一个点都可以通过30 以Γ复平面原点为中心旋转180°后得到与之对应的导纳点。于是,将整个阻31 抗圆图旋转180°就得到了导纳圆图。这种方法十分方便,它使我们不用建立一32 个新图。所有圆周的交点(等电导圆和等电纳圆)自然出现在点(-1, 0)。使用导33 纳圆图,使得添加并联元件变得很容易。 34

如何用史密斯圆图进行阻抗匹配

如何用史密斯圆图进行阻抗匹配 史密斯圆图简介史密夫图表(Smith chart,又称史密斯圆图)是在反射系散平面上标绘有归一化输入阻抗(或导纳)等值圆族的计算图。是一款用于电机与电子工程学的图表,主要用于传输线的阻抗匹配上。该图由三个圆系构成,用以在传输线和某些波导问题中利用图解法求解,以避免繁琐的运算。一条传输线(transmission line)的电阻抗力(impedance)会随其长度而改变,要设计一套匹配(matching)的线路,需要通过不少繁复的计算程序,史密夫图表的特点便是省略一些计算程序。 阻抗匹配简介阻抗匹配(impedance matching)信号源内阻与所接传输线的特性阻抗大小相等且相位相同,或传输线的特性阻抗与所接负载阻抗的大小相等且相位相同,分别称为传输线的输入端或输出端处于阻抗匹配状态,简称为阻抗匹配。否则,便称为阻抗失配。有时也直接叫做匹配或失配。 如何用史密斯圆图进行阻抗匹配史密斯圆图红色的代表阻抗圆,蓝色的代表导纳圆!先以红色线为例! 圆中间水平线是纯阻抗线,如果有点落在该直线上,表示的是纯电阻! 例如一个100欧的电阻,就在中间那条线上用红色标2.0的地方;15欧的电阻就落在中间红色标0.3的点上! 水平线上方是感抗线,下方是容抗线;落在线上方的点,用电路表示,就是一个电阻串联一个电感,落在线下方的点,是一个电阻串联一个电容。 图上的圆表示等阻抗线,落在圆上的点阻抗都相等,向上的弧线表示等感抗线,向下的弧线表示等容抗线! 可以看出是感是容,是高是低接着讲蓝色线。 因为导纳是阻抗的倒数,所以,很多概念都很相似。 中间的是电导线,图上的圆表示等电导圆,向上的是等电纳线,向下的是等电抗线!用

11微波技术复习(答案史密斯圆图版).

微波技术与天线复习提纲(2011级) 一、思考题 1. 什么是微波?微波有什么特点? 答:微波是电磁波谱中介于超短波与红外线之间的波段,频率范围从300MHZ到3000GHZ,波长从0.1mm到1m; 微波的特点:似光性、穿透性、宽频带特性、热效应特性、散射特性、抗低频干扰特性、视距传播性、分布参数的不确定性、电磁兼容和电磁环境污染。 2. 试解释一下长线的物理概念,说明以长线为基础的传输线理论的主要物理现 象有哪些?一般是采用哪些物理量来描述? 答:长线是指传输线的几何长度与工作波长相比拟的的传输线; 以长线为基础的物理现象:传输线的反射和衰落; 主要描述的物理量有:输入阻抗、反射系数、传输系数和驻波系数。 3. 均匀传输线如何建立等效电路,等效电路中各个等效元件如何定义? 4. 均匀传输线方程通解的含义 5. 如何求得传输线方程的解?

6. 试解释传输线的工作特性参数(特性阻抗、传播常数、相速和波长) 答:传输线的工作特性参数主要有特征阻抗Z 0,传输常数错误!未找到引用源。, 相速及波长。 1)特征阻抗即传输线上入射波电压与入射波电流的比值或反射波电压与反射波 电流比值的负值,其表达式为0Z = 它仅由自身的分布参数决定而与负载及信号源无关; 2)传输常数j γαβ=+是描述传输线上导行波的衰减和相移的参数,其中,α和β 分别称为衰减常数和相移常数,其一般的表达式为γ3)传输线上电压、电流入射波(或反射波)的等相位面沿传播方向传播的速度称为相速,即p v ω β=; 4)传输线上电磁波的波长λ与自由空间波长0λ 的关系2πλβ= =。 7. 传输线状态参量输入阻抗、反射系数、驻波比是如何定义的,有何特点,并 分析三者之间的关系 答:输入阻抗:传输线上任一点的阻抗Z i n 定义为该点的电压和电流之比, 与导波系统的状态特性无关,10001tan ()tan in Z jZ z Z z Z Z jZ z ββ+=+ 反射系数:传输线上任意一点反射波电压与入射波电压的比值称为传输线在该点的反射系数,对于无耗传输线,它的表达式为2(2)10110 ()||j z j z Z Z z e Z Z βφβ---Γ==Γ+ 驻波比:传输线上波腹点电压振幅与波节点电压振幅的比值为电压驻波比,也称为驻波系数。 反射系数与输入阻抗的关系:当传输线的特性阻抗一定时,输入阻抗与反射系数一一对应,因此,输入阻抗可通过反射系数的测量来确定;当10Z Z =时,1Γ=0,此时传输线上任一点的反射系数都等于0,称之为负载匹配。 驻波比与反射系数的关系:111||1|| ρ+Γ=-Γ,驻波比的取值范围是1ρ≤<∞;当传输线上无反射时,驻波比为1,当传输线全反射时,驻波比趋于无穷大。显然,驻波比反映了传输线上驻波的程度,即驻波比越大,传输线的驻波就越严重。

阻抗圆图总结

阻抗圆图总结 利用归一化阻抗与反射系数的关系绘制,包括三个圆族:等||Γ圆、等r 圆和等x 圆。画在反射系数Γ平面上,只显画出等r 圆和等x 圆,而不显画等||Γ圆。 图中任意一点可读出||Γ、?、r 和x 四个量,已知任意两个量,可从图中读出另外两个量。 1. 等||Γ圆(绿色虚线) 当终端负载l Z 一定是,l Γ确定,沿线的反射系数2()j d l d e β?Γ=Γ,模不变,等||Γ圆上旋转。 圆心为坐标原点(0,0),半径为||Γ a. 当||0Γ=时,退化为原点,即匹配点A 当||1Γ=是,为单位圆,对应全反射情况,阻抗为纯电抗 b. ()j l d e ?Γ=Γ,2l d ??β=? 相位线为过原点的射线(紫色虚线),读书标注在单位圆外(包括一个角度读数和两个电长度读数) 旋转角度←??? →一一对应沿线的经过的电长度

2. 等r 圆(红色实线) 2221()(11r r r ′′′Γ+Γ=++-,圆心(,0)1 r r +,半径11r + 圆心在实轴上,并且与B (1,0)相切 a. 当0r =时,圆心(0,0),半径1,最外层的单位圆,也称纯电抗圆 b. r 增大,圆心沿实轴向右远离原点 当r 增大到r =∞时,圆心移至B 点,半径变为0,对应开路点 3. 等x 圆(蓝色实线) 22211()()()x x ′′′Γ+Γ=-1-,圆心1(1,)x ,半径1x 由于有效部分限于1Γ≤单位圆内,圆外部分不画出 a. 当0x =时,圆心(0,)±∞,半径∞,退化为实轴,即纯电阻线 b. 当x =±∞时,圆心(1,0),半径为0,退化为B 点,即开路点 4. 实轴左端点C 代表短路点,是圆0r =且0x =两个圆的交点,该点1Γ=?, 实轴右端点B 代表开路点,是圆r =∞且x =±∞两个圆的交点,该点1Γ= 中心点A 代表匹配点,该点1r =,0x =,0Γ= 5. 既然实轴为纯电阻,则轴上各点有0x =,这些点对应于线上电压电流同相位,故它们对应电 压波腹/波节点。 电阻值1r >的位置对应波腹点,并且图中读数对应驻波比r S = 电阻值1r <的位置对应波节点,图中读数对应行波系数1r K S == 6. 圆图最外圈有电刻度(即电长度/d λ),通常选实轴左端点C 为起算点,旋转一周为0.5。 圈外刻度按顺时针方向增加,箭头标出“向电源方向” 圈外刻度按逆时针方向增加,箭头标出“向负载方向” 这是因为2l d ??β=?,随着d 增大,所研究点向信号源方向移动,则?减小,故沿顺时针旋转;反之,当d 减小时,所研究点向负载方向移动,则?增大,故沿逆时针旋转。 7.

阻抗匹配与史密斯(Smith)圆图:基本原理

Advanced Design System 简称ADS它 是由Agilent公司出品的一款电路仿真软件,随着射频微波产品的广泛应用,从事电路设计开发的人也越来越多,所以掌握应用一种辅助设计软件对我们的工 作将会是事半功倍的一件好事。现在我也对自己学习ADS的经验拿出来与大家分享一下,以便大家更加了解ADS也让大家更快的认识ADS. 首先我 要强调的是理论知识,如果没有一个基本的基础知识,运用ADS那不过只是纸上谈兵罢了!就简单的说威尔金森功分器,3dB电桥,LANGE,filter 等,如果你不了解它们的一些理论知识,光有ADS你首先是无从下手的,其次就算你设计出了电路但你不知道结果是该如何。甚至就算你作出来了并且结果也很好 但是却没法在实际中实现。所以再学习ADS 之前我建议大家补习自己的理论知识。 再说ADS 的学习,有好多人再所求ADS的教材其实我觉得最好的教材还在于ADS本身,就是HELP文件和它自带的designguide,我就是从 designguide里学习了如放大器大信号,小信号等放大器本身相关的一些性能的电路仿真!在designguide里还有如滤波器,振荡器,PLL 等电路的examples,通过这些例子你会全面的了解ADS的功能还有它代给我们的便捷。但这需要你耐下性子去看。 简单的谈了一下ADS的学习,自己也是琢磨的一些经验可能也有不足的地方,在以后的日子我也会通过一些简单的例子带大家更深的了解ADS。 最后再提一句ADS不是万能的,我不希望大家太依赖与它,毕竟实践才是检验真理的唯一标准。 阻抗匹配与史密斯(Smith)圆图:基本原理 摘要:本文利用史密斯圆图作为RF阻抗匹配的设计指南。文中给出了反射系数、阻抗和导纳的作图范例,并给出了MAX2474工作在900MHz时匹配网络的作图范例。 事实证明,史密斯圆图仍然是确定传输线阻抗的基本工作。 在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。 在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。 有很多种阻抗匹配的方法,包括 ?计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。 ?手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。

相关主题
文本预览
相关文档 最新文档