当前位置:文档之家› 5_1氦氖激光器的模式分析实验报告

5_1氦氖激光器的模式分析实验报告

5_1氦氖激光器的模式分析实验报告
5_1氦氖激光器的模式分析实验报告

近代物理实验报告指导教师:得分:实验时间:2009 年03 月17 日,第三周,周三,第5-8 节

实验者:班级材料0705 学号200767025 姓名童凌炜

同组者:班级材料0705 学号200767007 姓名车宏龙

实验地点:综合楼501

实验条件:室内温度℃,相对湿度%,室内气压

实验题目:氦氖激光器的模式分析

实验仪器:(注明规格和型号)

扫描干涉仪;高速光电接收器;锯齿波发生器;示波器;

半外腔氦氖激光器及电源;准直用氦氖激光器及电源;准直小孔。

实验目的:

(1) 了解扫描干涉仪原理,掌握其使用方法;

(2) 学习观测激光束横模、纵模的实验方法。

实验原理简述:

1. 激光器模式的形成

激光器由增益介质、谐振腔、激励能源三个基本部分组成。如果用

某种激励的方式,使介质的某一对能级间形成的粒子数反转分布,

由于自发辐射的作用,将有一定频率的光波产生,并在谐振腔内传播,被增益介质增强、放大。形成持续振荡的条件是:光在谐振腔内往返一周的光程差为波长的整数倍,即

q q uL λ=2

满足此条件的光将获得极大的增强。

每一个q 对应纵向一种稳定的电磁场分布λq ,叫一个纵模,q 称为纵模

序数。纵模的频率为

uL

c q q 2=ν 相邻两个纵模的频率间隔为

uL

c q 21=?=?ν 因此可以得知, 缩短腔长的方法是获得单纵模运行激光器的办法之一。

当光经过放电毛细管时,每反馈一次就相当于一次衍射,多次反复衍射,就在横向的同一波腹处形成一个或多个稳定的衍射光斑。每一个衍射光斑对应一种稳定的横向电磁场分布,称为一个横模。模式指激光器内能够发生稳定光振荡的形式,每一个膜,既是纵模,又是横模,纵模描述了激光器输出分立频率

的个数,横模描述了垂直于激光传播方向的平面内光场的分布情况。激光的线宽和相干长度由纵模决定,光束的发散角、光斑的直径和能量的横向分布由横模决定。,一个膜由三个量子数表示,通常记作

TEM mnq 。

横模序数越大,频率越高。不同横模间的频率差为:

??

??????????????--?+?=?2/121,)1)(1(arccos )(12''R L R L n m uL c n m mn πν 相邻横模频率间隔为:

??

??????????????--?=?=?=?+?2/12111)1)(1(arccos 1'R L R L q n m πνν 相邻横模频率间隔与纵模频率间隔的比值是一个分数,分数的大小由激光器的腔长和曲率半径决定,腔长与曲率半径的比值越大,分数值就越大。

另外, 激光器中产生的横模个数,除了与增益有关外,还与放电毛细管的粗细、内部损耗等因素有关。

2. 共焦球面扫描干涉仪

共焦球面干涉仪用压电陶瓷作为扫描元件或用气压进行扫

描。

2.1 共焦球面扫描干涉仪的机构和工作原理

共焦球面扫描干涉仪是一个无源腔,由两块球形凹面反射

镜构成,两块镜的曲率半径和腔长相等(即R 1=R 2=l ,构成共焦腔)。其中一块反射镜固定不动,另一块反射镜固定在可随外电压变化而变化的压电陶瓷环上。如右图所示,由低膨胀系数材料制成的间隔圈,用以保持两球形凹面反射镜R 1、

R 2总处于共焦状态。

当一束波长为λ的光近轴入射到干涉仪内时,在忽略球差的条件下,在共焦腔中经四次反射形成一条闭合路径,光程近似为4l ,如右图所示

编号为1和1’ 的两组透光强分别为:

1222201]sin )12(1)[1(--+-=βR R R T I I

和 121'I R I = β为往返一次所形成的相位差,即

λπβ/22?=ul

当β=kπ(k 为任意整数)时即λk uL =4

此时透射率有最大值, 如下式所表达:

22221max

)1(R T I I T -==

改变腔长l 或介质折射率μ,可以使不同波长的光以最大透射率透射,实现光谱扫描。

实验中在电陶瓷上加一线性电压,当外加电压使腔长变化到某一值时,正好使相邻两次透射光束的光程差是入射光中波长为λa 的这条谱线的整数倍时,

即a a k l λ=4

并且此时只要有一定幅度的电压来改变腔长,就可以使激光器具有的所有不同波长的膜依次相干极大透过,形成扫描。

下图所示的为激光膜谱

2.2 共焦球面扫描干涉仪的主要性能指标

2.2.1 自由光谱范围

自由光谱范围(S.R.)是指扫描干涉仪所能扫出的不重序的最大波长差或频率差。用频率表示为△νS。R 。=c/4l ,为了保证频谱图上不重序,需要使△νS。R 。>△ν。

2.2.2仪器的带宽δν

仪器的带宽δν是指干涉仪透射峰的频率宽度,也是干涉仪能分辨的最小频差。

2.2.3精细常数

精细常数是用来表示扫描干涉仪分辨本领的参数,它的定义是:自由光谱宽度与最小分辨极限的比。 这一比值用公式表达为: δννδλλπ....1R S R S R R F ?=?=-=

3. 激光模式的测量

利用扫描干涉仪可以测定激光器输出模式的频率间隔,△X F 正比于干涉仪的自由光谱区△νS.R.,△X 正比于激光器相邻纵模的频率间隔△νq ,△X 1正比于△νmn,00,由实验测出△X,△X 1的长度,

并可以得到如下表达:

2/12

1100

,)]1)(1arccos[()(1R L R L n m X X q mn --?+?=??=??πνν

并可以可估计横模的阶次。

实验步骤简述:

1. 准直光源和外腔氦氖激光器已经调好,学生勿动。

2. 取下输出镜、扫描干涉仪和接收器。

3. 打开准直光源,检查进入和经反射后的激光束是否都能通过准直小孔。

4. 关闭准直光源,打开半外腔氦氖激光器的电源,调节好后,将输出镜固定,微调。

5. 用卷尺测量激光器的腔长,算出激光器的纵模频率差和1阶横模的频差,根据干涉仪的曲率半径算出

干涉仪的自有光谱范围,再由给定的反射率计算出精细常数F 。

6.将各仪器按照图5-1-8位置摆放好。

7.调整光路使得入射光束和扫描干涉仪的光轴重合。

8.打开锯齿波电源和示波器开关,适当调节锯齿波电源前面板上的幅值和频率按钮,使锯齿波有一定的

幅值和频率。

9.调节干涉仪上的两个方位螺丝,使谱线尽量强,噪声尽量小。

10.调节幅值和频率旋钮,是波形类似图5-1-7.

11.测出△X F,根据计算得到自由光谱范围和所需的x轴增益,测出与自由光谱范围相对应的标尺长度,

并计算二者比值,并确定每小格所代表的频率间隔值。

12.在同一个干涉序k内观测。根据纵模定义并对照频谱特征,确定纵模个数,测量△X,△X1,δx,计

算出纵模频率间隔,并与理论值比较,判断观测是否正确。

13.根据横模的频谱特征,确定在同一干涉序k内有几个不同的横模,

并测出不同的横模频率间隔△ν△m+△n,并与理论值比较。

实验个部件连接方式如下图所示:

原始数据、 数据处理及误差计算:

1. 记录半外激光器的腔长: L=341.0mm

2. 计算:

精细常数 0176.31199.0199

.01=-?=-=ππR R

F

自由光谱范围 △νS.R =c/4l=(3E8m/s)/(4*0.020m)=3.75GHz

以下为半外腔激光器的相关参数理论值计算: 半外腔激光器的纵模频差为GHz m

s m uL c q 439.0341.02/103281

=??==?=?ν 半外腔激光器的横模频差为 GHz m m GHz R L R L q n m 1.01431.01arccos 1439.0)1)(1(arccos 12/12/12111'

=???? ????? ??-?=??

??????????????--?=?=?=?+?ππνν

3. 记录 △XF=40个单位格

△X=5个单位格

△X1=1个单位格

δx =0.75个单位格

以下为半外腔激光器相关参数的实测值计算:

计算 △νS.R /△XF=0.09375GHz 每格

纵模频差 GHz X X SR

F q 46875.01=????=?=?υν

横模频差为GHz X X SR

F n m 09375.01'1=????=?=?+?υν 模的半值宽度δν=δx /△XF*△νS.R =0.0703GHz

根据实验结果推算出来的精细常数为F=△νS.R /δν=53.34

4. 两组结果的对比分析:

由以上数据对比可以看到, 纵模频差和横模频差的实测值与计算的理论值比较接近, 说明实验中的测量方法以及思路能够正确地反映激光的一些特性参数。

而根据测量结果计算得到的精细常数却远远偏离了理论计算值, 估计误差出在半值宽度的读取上。 (当时示波器上的图形晃动较厉害, 影响了读数的精确性)

5. 示波器上所显示的模谱图形:

思考题, 实验感想, 疑问与建议:

1. 什么是激光纵模? 试估算腔长L=250nm , HeNe 激光器发射的63

2.3nm 的激光最大可能有的纵模

数。

光在谐振腔内往返一周的光程差为波长的整数倍时, 激光器内的光就可以被多次放大, 因而这里表示整数倍关系的参数q 必然都对应着对应纵向一种稳定的电磁场分布λq ,叫一个纵模。 已知纵模频差公式为uL

c q 21=?=?ν,可以计算出这个激光器内发射出的激光的纵模频差为△ν=6E8Hz 而线宽

为1500MHz , 可以看出整个线分布内能容下两个频

差宽度, 因而最大可能出现三个纵模。

2. 如何判断实验光路中各元件是否同轴

判断是否同轴的前提是以激光光路作为标准轴。 这样只要将元件放在光路上, 如果该元件能够将激光反射回激光器内, 则说明元件与激光器同轴, 继而可以通过此方法将各元件都调整为同轴。

3. 用扫描干涉仪能测量激光谱线的线宽吗?

可大致得到谱线宽度,如右图所示:

谱线中νq-1,νq+1,在损耗之上,都显示出来,可以通过νq-1,νq+1,νq 三点大值位置,大致画出如途中所示的曲线,可测出激光谱线宽度。

具体方法与本实验中计算纵模频率差的方法类似,量出两谱线 (νq-2,νq+2)的间隔为△X2, 根据关系式

..2R S F X X νν??=??

可算出谱线宽度△ν。

4. 实验感想与体会:

通过本次实验, 我了解了关于HeNe 激光器的工作原理, 激光器的工作特性以及一些特征参数的相关知识。 例如纵模、 横模等概念都是第一次接触, 通过实验了解之后, 对将来的应用和理解有很大的帮助。

另外在实验中发现扫描干涉仪输出的信号很不稳定, 图形在不停的晃动, 不便于正确地读取数据。 估计可能是和光路收到房间内的空气流动以及灰尘干扰有关, 建议在实验仪器上增加防尘罩, 以减少外部干扰造成的抖动, 增加实验结果的准确性。

原始记录及图表粘贴处:(见附页)

5-1 氦氖激光器的模式分析 实验报告

近代物理实验报告 指导教师: 得分: 实验时间: 2009 年 03 月 17 日, 第 三 周, 周 三 , 第 5-8 节 实验者: 班级 材料0705 学号 200767025 姓名 童凌炜 同组者: 班级 材料0705 学号 200767007 姓名 车宏龙 实验地点: 综合楼 501 实验条件: 室内温度 ℃, 相对湿度 %, 室内气压 实验题目: 氦氖激光器的模式分析 实验仪器:(注明规格和型号) 扫描干涉仪;高速光电接收器;锯齿波发生器;示波器; 半外腔氦氖激光器及电源;准直用氦氖激光器及电源;准直小孔。 实验目的: (1) 了解扫描干涉仪原理,掌握其使用方法; (2) 学习观测激光束横模、纵模的实验方法。 实验原理简述: 1. 激光器模式的形成 激光器由增益介质、谐振腔、激励能源三个基本部分组成。如果用某 种激励的方式,使介质的某一对能级间形成的粒子数反转分布,由于 自发辐射的作用,将有一定频率的光波产生,并在谐振腔内传播,被 增益介质增强、放大。形成持续振荡的条件是:光在谐振腔内往返一 周的光程差为波长的整数倍,即 q q uL λ=2 满足此条件的光将获得极大的增强。 每一个q 对应纵向一种稳定的电磁场分布λq ,叫一个纵模,q 称为纵模 序数。纵模的频率为 uL c q q 2=ν 相邻两个纵模的频率间隔为 uL c q 21= ?=?ν 因此可以得知, 缩短腔长的方法是获得单纵模运行激光器的办法之一。

当光经过放电毛细管时,每反馈一次就相当于一次衍射,多次反复衍射,就在横向的同一波腹处形成一个或多个稳定的衍射光斑。每一个衍射光斑对应一种稳定的横向电磁场分布,称为一个横模。模式指激光器内能够发生稳定光振荡的形式,每一个膜,既是纵模,又是横模,纵模描述了激光器输出分立频率的个数,横模描述了垂直于激光传播方向的平面内光场的分布情况。激光的线宽和相干长度由纵模决定,光束的发散角、光斑的直径和能量的横向分布由横模决定。,一个膜由三个量子数表示,通常记作TEM mnq 。 横模序数越大,频率越高。不同横模间的频率差为: ?? ??????????????--?+?=?2/121,)1)(1(arccos )(12''R L R L n m uL c n m mn πν 相邻横模频率间隔为: ?? ??????????????--?=?=?=?+?2/12111)1)(1(arccos 1'R L R L q n m πνν 相邻横模频率间隔与纵模频率间隔的比值是一个分数,分数的大小由激光器的腔长和曲率半径决定,腔长与曲率半径的比值越大,分数值就越大。 另外, 激光器中产生的横模个数,除了与增益有关外,还与放电毛细管的粗细、内部损耗等因素有关。 2. 共焦球面扫描干涉仪 共焦球面干涉仪用压电陶瓷作为扫描元件或用气压进行扫 描。 2.1 共焦球面扫描干涉仪的机构和工作原理 共焦球面扫描干涉仪是一个无源腔,由两块球形凹面反射镜 构成,两块镜的曲率半径和腔长相等(即R 1=R 2=l ,构成共焦 腔)。其中一块反射镜固定不动,另一块反射镜固定在可随 外电压变化而变化的压电陶瓷环上。如右图所示,由低膨胀 系数材料制成的间隔圈,用以保持两球形凹面反射镜R 1、R 2 总处于共焦状态。 当一束波长为λ的光近轴入射到 干涉仪内时,在忽略球差的条件 下,在共焦腔中经四次反射形成 一条闭合路径,光程近似为4l , 如右图所示 编号为1和1’ 的两组透光强分别为: 1222201]sin )12(1)[1(--+-=βR R R T I I 和 121'I R I = β为往返一次所形成的相位差,即

实验一 半导体激光器P-I特性曲线测量

实验一半导体激光器P-I特性曲线测量 一、实验目的: 1.了解半导体光源和光电探测器的物理基础; 2.了解发光二极管(LED)和半导体激光二极管(LD)的发光原理和相关特性; 3.了解PIN光电二极管和雪崩光电二极管(APD)的工作原理和相关特性; 4.掌握有源光电子器件特性参数的测量方法; 二、实验原理: 光纤通信中的有源光电子器件主要涉及光的发送和接收,发光二极管(LED)和半导体激光二极管(LD)是最重要的光发送器件,PIN光电二极管和APD光电二极管则是最重要的光接收器件。 1.发光二极管(LED)和半导体激光二极管(LD): LED是一种直接注入电流的电致发光器件,其半导体晶体内部受激电子从高能级回复到低能级时发射出光子,属自发辐射跃迁。LED为非相干光源,具有较宽的谱宽(30~60nm)和较大的发射角(≈100°),常用于低速、短距离光波系统。 LD通过受激辐射发光,是一种阈值器件。LD不仅能产生高功率(≥10mW)辐射,而且输出光发散角窄,与单模光纤的耦合效率高(约30%—50%),辐射光谱线窄(Δλ=0.1-1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速(>20GHz)直接调制,非常适合于作高速长距离光纤通信系统的光源。 使粒子数反转从而产生光增益是激光器稳定工作的必要条件,对于处于泵浦条件下的原子系统,当满足粒子数反转条件时将会产生占优势的(超过受激吸收)受激辐射。在半导体激光器中,这个条件是通过向P型和N型限制层重掺杂使费密能级间隔在PN结正向偏置下超过带隙实现的。当有源层载流子浓度超过一定值(称为透明值),就实现了粒子数反转,由此在有源区产生了光增益,在半导体内传播的输入信号将得到放大。如果将增益介质放入光学谐振腔中提供反馈,就可以得到稳定的激光输出。 (1) LED和LD的P-I特性与发光效率: 图1是LED和LD的P-I特性曲线。LED是自发辐射光,所以P-I曲线的线性范围较大。 LD有一阈值电流I th ,当I>I th 时才发出激光。在I th 以上,光功率P随I线性增加。 图1:LD和LED的P-I特性曲线 (a) LD的P-I特性曲线 (b) LED的P-I特性曲线

氦氖激光器的调腔实验

氦氖激光器的调腔实验 (北京师范大学物理系) 摘要:本实验分别通过准直法和十字叉丝法来调节谐振腔两端腔镜的位置,使得两个腔镜平行且和毛细管垂直,发射激光,并通过统调法获得最强激光。 理论: 激光器由激励电流、增益介质和谐振腔组成,如图1。对He-Ne激光器而言增益介质就是在两端封有布儒斯特窗的毛细管内按一定的气压充以适当比例的氦氖气体,当氦氖混合气体被电流激励时,与某些谱线对应的上下能级的粒子数发生反转,使介质具有增益。 介质增益与毛细管长度、内径粗细、两种气体的比例、总气压以及放电电流等因素有关。对谐振腔而言腔长要满足频率的驻波条件,谐振腔镜的曲率半径要满足腔的稳定条件。总之腔的损耗必须小于介质的增益,才能建立激光振荡。由于介质的增益具有饱和特性,增益随激光强度增加而减小。初始建立激光振荡时增益大于损耗,随着激光的增强而增益逐渐减小直到增益等于损耗时才有持续稳定的振荡。 图1 激光器原理图 实验内容: 1.清洗镜头 在清洗镜头时候可以通过腔镜的具体情况选择合适的清洗方法,首先应用洗耳球吹去镜头上的灰尘等颗粒物,对于软膜我们采用拖曳的方法,首先将镜头放置在水平的桌面上,取一张镜头纸并将光滑一面放置在镜头上,并且在此之前确保不会用手去接触光滑面,在擦镜纸上接触镜头的部位滴一到两滴丙酮试剂,轻轻拖曳擦镜纸的一端直到整张擦镜纸擦过镜头。

图2 软膜清洗法 对于硬膜,洗耳球吹去镜头上的灰尘等颗粒物之后,将镜头着对折,如图,用止血钳夹住擦镜纸,露出一段,在露出一端上滴一到两滴丙酮,轻甩之后擦 拭镜头,擦拭的过程保证擦拭方向永远朝着一个方向,不来回擦拭。 图3 硬膜清洗法 2.准直法调腔 用具:He-Ne激光器、准直激光器、贴有白纸的立板。 步骤: (1)通过上述方法清洗完镜头和布儒斯特窗后,打开准直激光器; (2)首先调节准直激光器的上下高度和俯仰角度,使得准直激光器打出来的光与毛细管的中心在同一水平线上; (3)将准直激光器固定在谐振腔一端的前段,将激光穿透整个毛细管,此时可以调节准直激光器的横向位移和左右偏移动,直到穿透的光打在对面的白 纸上呈现同心圆环状; (4)装上阴极反射镜,调整反射镜的左右偏转和俯仰,使反射回的激光与出来的激光重合出现在准直激光器镜头上的正中心; (5)装上阳极反射镜,调整反射镜的左右偏转和俯仰,使反射回的激光出现规则的明暗变化;

半导体激光器pi特性测试实验

太原理工大学现代科技学院 课程实验报告 专业班级 学号 姓名 指导教师

实验名称 半导体激光器P-I 特性测试实验 同组人 专业班级 学号 姓名 成绩 一、 实验目的 1. 学习半导体激光器发光原理和光纤通信中激光光源工作原理 2. 了解半导体激光器平均输出光功率与注入驱动电流的关系 3. 掌握半导体激光器P (平均发送光功率)-I (注入电流)曲线的测试方法 二、 实验仪器 1. ZY12OFCom13BG 型光纤通信原理实验箱 1台 2. 光功率计 1台 3. FC/PC-FC/PC 单模光跳线 1根 4. 万用表 1台 5. 连接导线 20根 三、 实验原理 半导体激光二极管(LD )或简称半导体激光器,它通过受激辐射发光,(处于高能级E 2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E 1,这个过程称为光的受激辐射。所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。)是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW )辐射,而且输出光发散角窄(垂直发散角为30~50°,水平发散角为0~30°),与单模光纤的耦合效率高(约30%~50%),辐射光谱线窄(Δλ=0.1~1.0nm ),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz )直接调制,非常适合于作高速长距离光纤通信系统的光源。 P-I 特性是选择半导体激光器的重要依据。在选择时,应选阈值电流I th 尽可能小,I th 对应P 值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,消光比(测试方法见实验四)大, ……………………………………装………………………………………订…………………………………………线………………………………………

光纤激光器简介

目录 第一章、激光基础 第二章、激光器 第三章、光纤的特性 第四章、光纤激光器 第五章、实验室激光器型号及操作安全

第一章激光基础 1.1什么是激光? 激光在我国最初被称为“莱赛”,即英语“Laser”的译音,而“Laser”是“Light amplification by stimulated emission of radiation”的缩写。意为“辐射的受激发射光放大”,大约在1964年,根据钱学森院士的建议,改名为“激光”。激光是通过人工方式,用光或者放电等强能量激发特定的物质而产生的光。 激光的四大特性:高亮度、高单色性、高方向性、高相干性。具有高亮度的激光束经过透镜聚焦后,能在焦点附近产生数千度乃至上万度的高温,这就使其能够加工几乎所有材料。由于激光的单色性极高,从而保证了光束能精确地聚焦到焦点上,得到很高的功率密度。 1.2激光产生的基本理论 1.2.1原子能级和辐射跃迁 按照玻尔的氢原子理论,绕原子核高速旋转的电子具有一系列不连续的轨道,这些轨道称为能级,如图1-1。 图1-1 原子能级图

当电子在不同的能级时,原子系统的能量是不相同的,能量最低的能级称为基态。当电子由于外界的作用从较低的能级跃迁到较高的能级时,原子的能量增 图1-2 电子跃迁图 加,从外界吸收能量。反之,电子从较高能级跃迁到较低能级时,向外界发出能量。在这个过程中,若原子吸收或发出的能量是光能(辐射能),则称此过程为辐射跃迁。发出或吸收的光的频率满足普朗克公式(hv=E2-E1)。 1.2.2受激吸收、自发辐射、和受激辐射 受激吸收:处于低能级上的原子,吸收外来能量后跃迁到高能级,则称之为受激吸收。 自发辐射:由于物质有趋于最低能量的本能,处于高能级上的原子总是要自发跃迁到低能级上去,如果跃迁中发出光子,则这个过程称为自发辐射。

5-1 氦氖激光器的模式分析 实验报告

近代物理实验报告 指导教师: 得分: 实验时间: 2009 年 03 月 17 日, 第 三 周, 周 三 , 第 5-8 节 实验者: 班级 材料0705 学号 200767025 姓名 童凌炜 同组者: 班级 材料0705 学号 200767007 姓名 车宏龙 实验地点: 综合楼 501 实验条件: 室内温度 ℃, 相对湿度 %, 室内气压 实验题目: 氦氖激光器的模式分析 实验仪器:(注明规格和型号) 扫描干涉仪;高速光电接收器;锯齿波发生器;示波器; 半外腔氦氖激光器及电源;准直用氦氖激光器及电源;准直小孔。 实验目的: (1) 了解扫描干涉仪原理,掌握其使用方法; (2) 学习观测激光束横模、纵模的实验方法。 实验原理简述: 1. 激光器模式的形成 激光器由增益介质、谐振腔、激励能源三个基本部分组成。如果用某种激励的方式,使介质的某一对能级间形成的粒子数反转分布,由于自发辐射的作用,将有一定频率的光波产生,并在谐振腔内传播,被增益介质增强、放大。形成持续振荡的条件是:光在谐振腔内往返一周的光程差为波长的整数倍,即 q q uL λ=2 满足此条件的光将获得极大的增强。 每一个q 对应纵向一种稳定的电磁场分布λq ,叫一个纵模,q 称为纵模序数。纵模的频率为 uL c q q 2=ν 相邻两个纵模的频率间隔为 uL c q 21= ?=?ν 因此可以得知, 缩短腔长的方法是获得单纵模运行激光器的办法之一。

当光经过放电毛细管时,每反馈一次就相当于一次衍射,多次反复衍射,就在横向的同一波腹处形成一个或多个稳定的衍射光斑。每一个衍射光斑对应一种稳定的横向电磁场分布,称为一个横模。模式指激光器内能够发生稳定光振荡的形式,每一个膜,既是纵模,又是横模,纵模描述了激光器输出分立频率的个数,横模描述了垂直于激光传播方向的平面内光场的分布情况。激光的线宽和相干长度由纵模决定,光束的发散角、光斑的直径和能量的横向分布由横模决定。,一个膜由三个量子数表示,通常记作TEM mnq 。 横模序数越大,频率越高。不同横模间的频率差为: ?? ??????????????--?+?=?2 /121,)1)(1(arccos )(12' 'R L R L n m uL c n m mn πν 相邻横模频率间隔为: ?? ? ?????????????--?=?=?=?+?2 /12111)1)(1(arccos 1' R L R L q n m πνν 相邻横模频率间隔与纵模频率间隔的比值是一个分数,分数的大小由激光器的腔长和曲率半径决定,腔长 与曲率半径的比值越大,分数值就越大。 另外, 激光器中产生的横模个数,除了与增益有关外,还与放电毛细管的粗细、内部损耗等因素有关。 2. 共焦球面扫描干涉仪 共焦球面干涉仪用压电陶瓷作为扫描元件或用气压进行扫描。 2.1 共焦球面扫描干涉仪的机构和工作原理 共焦球面扫描干涉仪是一个无源腔,由两块球形凹面反射镜构成,两块镜的曲率半径和腔长相等(即R 1=R 2=l ,构成共焦腔)。其中一块反射镜固定不动,另一块反射镜固定在可随外电压变化而变化的压电陶瓷环上。如右图所示,由低膨胀系数材料制成的间隔圈,用以保持两球形凹面反射镜R 1、R 2总处于共焦状态。 当一束波长为λ的光近轴入射到干涉仪内时,在忽略球差的条件下,在共焦腔中经四次反射形成一条闭合路径,光程近似为4l ,如右图所示 编号为1和1’ 的两组透光强分别为: 1 222201]sin )12(1)[1(--+-=βR R R T I I 和 121'I R I = β为往返一次所形成的相位差,即 λπβ/22?=ul

2010最新脉冲光纤激光器说明书(一体机)

脉冲光纤激光器使用说明书

安全信息 在使用该产品之前,请先阅读和了解这份用户手册并熟悉我们为您提供的信息。 这份用户手册提供了重要的产品操作,安全以及其他信息给您以及所有将来的用户作参考。为了确保操作安全和产品的最佳性能,请遵循以下注意和警告事项以及该手册的其他信息去操作。 ●锐科公司脉冲光纤激光器是IV级的激光产品。在打开24VDC电源前,要确保连 接是正确的24VDC的电源并确认正负极,错误连接电源,将会损坏激光器。 ●该激光器在1064nm波长范围内发出超过5W、10W、15W、20W、25W、30W(根 据不同激光器型号)的激光辐射。避免眼睛和皮肤接触到光输出端直接发出或散射出来的辐射。 ●不要打开机器,因为没有可供用户使用的产品零件或配件。所有保养或维修只能在 锐科公司内进行。 ●不要直接观看输出头,在操作该机器时要确保长期配戴激光安全眼镜。 安全标识及位置 上面二个安全标识符号表示有激光辐射,我们把这符号标在产品光纤盒体盖顶上。

目录 1.产品描述 (1) 1.1 产品描述 (1) 1.2实际配置清单 (1) 1.3使用环境要求及注意事项 (1) 1.4技术参数 (2) 2.安装 (3) 2.1 安装尺寸图 (3) 2.2 安装方法 (4) 3.控制接口 (5) 4.操作程序 (6) 4.1 前期检查工作 (6) 4.2 操作步骤 (6) 4.3打标过程中应注意的事项 (6) 5.质保及返修、退货流程 (7) 5.1一般保修 (7) 5.2保修的限定性 (7) 5.3服务和维修 (7)

1.产品描述 1.1 产品描述 锐科脉冲激光器是是为高速和高效的激光打标系统而专门发展的。为工业激光打标机和其它应用提供了一款理想的高功率激光能量源。 脉冲激光器相对于传统的激光器,能够对每瓦的泵浦光转换效率提高10倍以上,低能量消耗的自动设计,适合实验室或室外操作。精巧,可独立放置,可随时使用,能够直接嵌入用户的设备上。 激光器可发出1064nm波长的脉冲激光,通过工业激光器标准接口来控制,激光器需要使用24V直流供电。 1.2实际配置清单 请根据图表1参考所包括的清单。 表1 1.3使用环境要求及注意事项 脉冲激光器需使用24VDC±1V直流电。 1)注意:使用激光器时要将接地线可靠接地。 2)没有内置可供使用的零件,所有维修应由合格的锐科人员来进行,为了防止电击, 请不要损坏标签和揭开盖子,否则产品的任何损坏将不被保修。 3)激光器的输出头是与光缆相连接的,使用时请小心处理输出头,防止灰尘或其它污 染,清洁输出端透镜时请使用专用的镜头纸。激光器没有安装在系统设备上且不 出光的时候,请将光隔离器保护罩盖好以免灰尘污染。

氦氖激光束的模式分析..

氦氖激光束的模式分析 1958年法国人柯勒斯(Connes)根据多光束的干涉原理,提出了一种共焦球面干涉仪。到了60年代,这种共焦系统广泛用作激光器的谐振腔。同时,由于激光科学的发展,迫切需要对激光器的输出光谱特性进行分析。全息照相和激光准直要求的是单横模激光器;激光测长和稳频技术不仅要求激光器具有单横模性质,而且还要求具有单纵模的输出。于是在共焦球面干涉仪的基础上发展了一种球面扫描干涉仪。这种干涉仪以压电陶瓷作扫描元件或用气压进行扫描,其分辨率可达107以上。 共焦腔结构有许多优点。首先由于共焦腔具有高度的模简并特性,所以不需要严格的模匹配,甚至光的行迹有些离轴也无甚影响。同时对反射镜面的倾斜程度也没有过分苛刻的要求,这一点对扫描干涉仪是特别有利的。由于共焦腔衍射损失小而且在反射镜上的光斑尺寸很小,因此可以大大降低对反射面的加工要求,便于批量生产、推广使用。 【实验目的】 1.了解扫描干涉仪原理,掌握其使用方法。 2.学习观测激光束横模、纵模的实验方法。 【实验仪器】 WGL-4 型氦氖激光器模式实验装置 (含氦氖激光器及其电源、扫描干涉仪、高速光电接收器及其电源、锯齿波发生器、示波器。) 【实验原理】 一、激光器模的形成 激光是由受激辐射产生的。在光子作用下,当高能级的粒子向低能级跃迁时,产生一个和入射光子频率,相位及传播方向相同的光子,称为受激辐射。 在热平衡情况下,原子的能量按玻尔兹曼分布。当原子受外界能量激励时(称泵浦),从低能级跃迁到高能级,泵浦方式可能是光激励,碰撞激励,热激励,化学激励等。介质经过泵浦可出现高能级粒子布居数超出低能级的情况,这种违反玻尔兹曼分布的情况称为粒子数反转。在实现粒子数反转的情况下,受激辐射可以大于受激吸收,从而产生光放大。因此,实现粒子数反转是激光产生的基本条件。 He—Ne激光器的工作物质是He 、Ne混合气体,泵浦方式为气体放电。气体放电引起粒子碰撞,碰撞激发He原子,He原子的能量经共振转移交给Ne原子,使Ne 原子的3S2、2S2能级的粒子布居数超过比它低的3P4、2P4能级。3S2—2P4的能级间距所相应的波长为6328?。 激光器的三个基本组成部分是增益介质、谐振腔和激励能源。如果用某种激励方式,在介质的某一对能级间形成粒子数反转分布,由于自发辐射和受激辐射的作用,将有一定频率的光波产生,在腔内传播,并被增益介质逐渐增强、放大,如图1所示。实际上,由于能级总有一定的宽度以及其它因素的影响,增益介质的增益有一个频率 分布,如图1所示,图中) G为光的增益系数。只有频率落在这个范围内的光在介质 ( 中传播时,光强才能获得不同程度的放大。但只有单程放大,还不足以产生激光,要产生激光还需要有谐振腔对其进行光学反馈,使光在多次往返传播中形成稳定、持续

半导体激光器TEC温控实验

半导体激光器TEC温控实验 温度对半导体激光器的特性有很大的影响.为了使半导体激光器输出功率稳定,必须对其温度进行高精度的控制.TEC-10A利用PID模糊控制网络设计了温控系统,控制精度达到0.0625℃,与无PID控制网络相比,极大的提高了系统的瞬态特性,并且试验发现TEC-10A采用带有温控系统的半导体激光器的输出功率稳定性比没有温控系统的输出功率得到显著改善。 TEC-10A使用上位机软件,获得数据如下: 图1 目标温度设定为60度的加热曲线图 TEC-10A模糊自适应PID 算法比传统PID 算法具有更小的温度过冲和更高的控温精度,精度为±0.0625℃,达到稳定的时间小于70s。 TEC-10A的“模糊控制理论”是由美国加利福尼亚大学教授L.A.Zadeh 于1965 年首先提出的,至今只有40 余年的时间,它属于智能控制的范畴。那么到底什么是模糊控制?其实模糊控制是一种被精确定义的特殊的非线性控制,它利用类似人类的启发式知识对系统进行控制。模糊控制的基本原理框图如下图所示。 图2 模糊算法 首先建立模糊规则 根据上面的输入量的模糊化,确定了误差及误差变化的模糊集合,下面将建立模糊规则。模糊控制规则主要有两种形式:一种是经验归纳法,一种是采用数学的推理合成法。经验归纳法是根据操作者对控制经验的整理、加工而形成的控制规则,虽然具有主观臆断,但其中

必须经过对客观事实的合理归纳而形成。下面的表就是根据经验归纳法总结的模糊控制规则表。 下面是一些简单的一维和二维控制形式: “如果A,那么B”(IfAThen B);例如,如果激光器的温度很高,那么快速降温。“如果A,那么B,否则C”(If A Then B Else C);例如,如果激光器温度很低,那么快速加热,否则缓慢加热。 “如果A 且B,那么C”(If A And B Then C)。例,如果激光器温度很高且温度下降很慢,那么快速加热。 在实际操作中第三种形式较常见,“A”为偏差e,“B”为偏差变化量Ec。 TEC-10A的尺寸也是比较小的,如下图所示: 图3 TEC-10A具有较小尺寸 TEC-10A是一款高功率密度的TEC温度控制器,额定工作负载5A,峰值电流可达10A。此温度控制器可以连接专用调试器来进行参数的调节,参数调节完毕并保存后,撤去调试器,此温度控制器仍可以独立工作。可以通过专用RS232调试线和电脑进行通讯,以进行参数设

实验40 用迈克尔逊干涉仪测量氦氖激光器波长

实验40 用迈克尔逊干涉仪测量氦氖激光器波长 一、实验目的 1.了解迈克尔逊干涉仪的结构及调整方法,并用它测光波波长 2.通过实验观察等倾干涉现象 二、实验仪器 氦氖激光器、迈克尔逊干涉仪(250nm)、透镜、毛玻璃等。 迈克尔逊干涉仪外形如图一所示。 其中反射镜M1是固定的,M2可以在导轨上前后移动,以改变光程差。反射镜M2的移动采用蜗轮蜗杆传动系统,转动粗调手轮(2)可以实现粗调。M2移动距离的毫米数可在机体侧面的毫米刻度尺(5)上读得。通过读数窗口,在刻度盘(3)上可读到0.01mm;转动微调手轮(1)可实现微调,微调手轮的分度值为1×10-4mm。可估读到10-5mm。M1、M2背面各有3个螺钉可以用来粗调M1和M2的倾度,倾度的微调是通过调节水平微调(15)和竖直微调螺丝(16)来实现的。 图一图二 三、实验原理 1.仪器基本原理 迈克尔逊干涉仪的光路和结构如图二所示。M1、M2是一对精密磨光的平面反射镜。P1、P2是厚度和折射率都完全相同的一对平行玻璃板,与M1、M2均成45°角。P1的一个表面镀有半反半透膜,使射到其上的光线分为光强度差不多相等的反射光和透射光;P1称为分光板。当光照到P1上时,在半透膜上分成相互垂直的两束光,透射光(1)射到M1,经M1反射后,透过P2,在P1的半透膜上反射后射向E;反射光(2)射到M2,经M2反射后,透过P1射向E。由于光线(2)前后共通过P1三次,而光线(1)只通过P1一次,有了P2,它

们在玻璃中的光程便相等了,于是计算这两束光的光程差时,只需计算两束光在空气中的光程差就可以了,所以P 2称为补偿板。当观察者从E 处向P 1看去时,除直接看到M 2外还看到M 1的像M 1ˊ。于是(1)、(2)两束光如同从M 2与M 1ˊ反射来的,因此迈克尔逊干涉仪中所产生的干涉和M 1′~M 2间“形成”的空气薄膜的干涉等效。 2.干涉条纹的图样 本实验用He-Ne 激光器作为光源(见图三),激光S 射向迈克尔逊干涉仪,点光源经平面镜M 1、M 2反射后,相当于由两个点光源S 1ˊ和S 2ˊ发出的相干光束。S ˊ是S 的等效光源,是经半反射面A 所成的虚像。S 1′是S ′经M 1′所成的虚像。S 2′是S ′经M 2所成的虚像。由图三可知,只要观察屏放在两点光源发出光波的重叠区域内,都能看到干涉现象。如果M 2与M 1′严格平行,且把观察屏放在垂直于S 1′和S 2′的连线上,就能看到一组明暗相间的同心圆干涉环,其圆心位于S 1′S 2′轴线与屏的交点P 0处,从图四可以看出P 0处的光程差ΔL =2d ,屏上其它任意点P ′或P ″的光程差近似为 ?cos 2d L =? (1) 式中?为S 2′射到P ″点的光线与M 2法线之间的夹角。当λ?k d =?cos 2时,为明纹;当 2/)12(cos 2λ?+=?k d 时,为暗纹。 由图四可以看出,以P 0为圆心的圆环是从虚光源发出的倾角相同的光线干涉的结果,因此,称为“等倾干涉条纹”。?=0时光程差最大,即圆心P 0处干涉环级次最高,越向边缘级次越低。当d 增加时,干涉环中心级次将增高,条纹沿半径向外移动,即可看到干涉环从中心“冒”出;反之当d 减小,干涉环向中心“缩”进去。 图三 图四 由明纹条件可知,当干涉环中心为明纹时,ΔL =2d=k λ。此时若移动M 2(改变d),环心处条纹的级次相应改变,当d 每改变λ/2距离,环心就冒出或缩进一条环纹。若M 2移动距离为Δd ,相应冒出或缩进的干涉环条纹数为N ,则有

新外观W连续光纤激光器说明书文件

C1500W-2200W 连续光纤激光器 说明书 武汉锐科光纤激光技术股份有限公司Wuhan Raycus Fiber Laser Technologies Co., Ltd.

目录 1安全信息 (3) 1.1安全标识 (3) 1.2激光安全等级 (3) 1.3光学安全 (4) 1.4电学安全 (4) 1.5其他安全注意事项 (4) 2 产品说明 (5) 2.1产品特性 (5) 2.2实际配置清单 (5) 2.3开箱及检查 (5) 2.4运行环境 (6) 2.5注意事项 (6) 2.6产品性能 (7) 3安装 (8) 3.1安装尺寸图 (8) 3.2安装注意事项 (9) 3.3冷却系统要求 (11) 4产品的使用 (13) 4.1前面板 (13) 4.2后面板 (14) 4.3电源连接 (16) 4.4控制接口定义 (17) 4.5激光器工作模式及控制模式 (20) 4.6控制模式的设置 (21) 4.7超级终端模式 (21)

4.8 RS-232模式 (27) 4.9 AD模式 (30) 4.10红光控制 (33) 5常见故障及处理措施 (33) 5.1故障记录及故障的发生 (33) 5.2故障处理 (34) 6质保及返修、退货流程 (35) 6.1一般保修 (35) 6.2保修的限定性 (35) 6.3技术支持及产品维修 (36)

感谢您选择锐科光纤激光器,本用户手册为您提供了重要的安全、操作、维护及其它方面的信息。故在使用该产品之前,请先仔细阅读本用户手册。为了确保操作安全和产品运行在最佳状态,请遵守以下注意和警告事项以及该手册中的其他信息。 1.1安全标识 警告 注意 1.2激光安全等级 根据欧洲标准EN 60825-1,条款9,该系列激光器属于4类激光仪器。该产品发出波长在1080nm或1080nm附近的激光辐射,且由输出头辐射出的平均光功率为1500W~2200W(取决于机器型号)。直接或间接的暴露于这样的光强度之下会对眼睛或皮肤造成伤害。尽管该辐射不可见,光束仍会对视网膜或眼角膜造成不可恢复的伤害。在激光器运行时必须全程佩戴合适且经过认证的激光防护眼镜。 警告 全防护眼镜是具有激光波长防护选择性。故请用户选择符合产品激 光输出波段的激光安全防护眼镜。即使佩戴了激光安全防护眼镜, 在激光器通电时

氦氖激光器模式分析

模式分析 一.氦-氖(He-Ne)激光器简介 氦氖激光器(或He-Ne激光器)由光学谐振腔(输出镜与全反镜)、工作物质(密封在玻璃管里的氦气、氖气)、激励系统(激光电源)构成。二电极通过毛细管放电激励激光工作物质,在氖原子的一对能级间造成集居数反转,产生受激辐射。由于谐振腔的作用,使受激辐射在腔内来回反射,多次通过激活介质而不断加强。如果单程增益大于单程损耗,即满足激光振荡的阈值条件时,则有稳定的激光输出。内腔式激光器的腔镜封装在激光管两端。 二.氦-氖(He-Ne)激光器的工作原理 氦氖激光器的激光放电管内的气体在涌有一定高的电压及电流(在电场作用下气体放电),放电管中的电子就会由负极以高速向正极运动。在运动中与工作物质内的氦原子进行碰撞,电子的能量传给原子,促使原子的能量提高,基态原子跃迁到高能级的激发态。这时如有基态氖原子与两能级上的氦原子相碰,氦原子的能量传递给氖原子,并从基态跃迁到激发的能级状态,而氦原子回到了基态上。因为放电管上所加的电压,电流连续不断供给,原子不断地发生碰撞。这就产生了激光必须具备的基本条件。在发生受激辐射时,分别发出波长3.39μm,632.8nm,1.53μm三种激光,而这三种激光中除632.8nm为可见光中的红外光外,另二种是红外区的辐射光。因反射镜的反射率不同,只输出一种较长的光波632.8nm的激光。 三.He-Ne激光器结构及谐振腔 He-Ne激光器的结构形式很多,但都是由激光管和激光电源组成。激光管由放电管、电极和光学谐振腔组成。放电管是氦一氖激光器的心脏,它是产生激光的地方。放电管通常由毛细管和贮气室构成。放电管中充入一定比例的氦(He)、氖(Ne)气体,当电极加上高电压后,毛细管中的气体开始放电使氖原子受激,产生粒子数反转。贮气室与毛细管相连,这里不发生气体放电,它的作用是补偿因慢漏气及管内元件放气或吸附气体造成He,Ne气体比例及总气压发生的变化,延长器件的寿命。放电管一般是用GG17玻璃制成。输出功率和波长要求稳定性好的器件可用热胀系数小的石英玻璃制作。He-Ne激光管的阳极一般用钨棒制成,阴极多用电子发射率高和溅射率小的铝及其合金制成。为了增加电子发射面积和减小阴极溅射,一般都把阴极做成圆筒状,然后用钨棒引到管外。He-Ne激光器由于增益低,谐振腔一般用平凹腔,平面镜为输出端,透过率约1%~2%,凹面镜为全反射镜。He-Ne激光管的结构形式是多种多样的,按谐振腔与放电管的放置方式不同可分内腔式、外腔式和半内腔式。 四.氦-氖(He-Ne)激光器的速率方程

激光器说明书

大功率激光器说明书 KEEN-EYES大功率激光器是我公司根据刑侦工作的需要开发研制的专用痕迹提取设备。采用国际最新大功率激光技术。先进的石英光纤传输,具有输出功率大,色谱纯正,操作简单,携带方便等特点。一;技术指标: 1电源电压交流220V。输入功率300瓦。 2可分离式电源盒,直流12V,35安时锂电池组。可连续使用1.5小时。3输出光功率8W;激光颜色,绿色.。 4光缆长度3米。 5可调焦镜头。 二;使用说明: 1钥匙开关拧到1位置,为交流供电。或将主机安装到电池盒上,钥匙开关拧到2位置,为直流供电。 2插上220V电源插头,将光缆拧紧到光缆座上,(光缆座带保护功能,不接光缆没有光输出)。将手柄上调光插头,插入面板上的调光插座。3打开钥匙开关,电源接通后,红色指示灯点亮。主机处于预热过程中。蓝色指示灯亮起表示预热结束。然后按动前面板上的启动按钮,绿色指示灯亮起,激光输出。 4激光器启动时为最大功率输出。旋转面板上,或镜头上的黑色调光旋钮,可以调节输出功率大小,顺时针增大,逆时针减小。数码屏显示为即时功率值。

5旋转镜头外套可以调节光斑大小。及光斑外缘清晰。 6按动电源盒前面按钮可显示电池容量。指示条只剩红色灯亮,表示电量不足应及时充电。 7电池充电应使用本机专配充电器,不可使用其他充电器。充电器接通220V交流电源红色电源指示灯常亮。充电时,充电指示灯红色。充电指示灯变为绿色表示电池已满,充电结束。 8本机配有伸缩式镜头支架,可以固定镜头及调节镜头高度和角度。三;注意事项: 1使用完毕应及时套上光缆及光缆座防护套,避免进入灰尘。 2光缆折弯半径大于15厘米。 3清洁光缆端面应使用无尘棉签,沾无水乙醇,沿一个方向擦拭。 切不可用手指或油渍接触光缆端面。否则会造成光缆报废。 4本激光器输出功率强大,切不可直视镜头或对准人眼,否则可造成永久失明。 四;基本配置: 1主机一台。 2带镜头光缆一根。 3电池盒一个。 4充电器一个。 5伸缩光缆支架一个。 6主机电源线一根。 7充电器电源线一根。

半导体激光器实验报告

半导体激光器实验报告 课程:_____光电子实验_____ 学号: 姓名: 专业:信息工程 南京大学工程管理学院

半导体激光器 一.实验目的 (1)通过实验熟悉半导体激光器的光学特性 (2)掌握半导体激光器耦合、准直等光路的调节 (3)根据半导体激光器的光学特性考察其在光电技术方面的应用 二.实验原理 1.半导体激光器的基本结构 半导体激光器大多数用的是GaAs或Gal-xAlxAs材料。P-n结通常在n 型衬底上生长p型层而形成,在p区和n区都要制作欧姆接触,使激励 电流能够通过,电流使结区附近的有源区产生粒子数反转。 2.半导体激光器的阈值条件 当半导体激光器加正向偏置并导通时,器件不会立刻出现激光震荡,小电流时发射光大都来自自发辐射,随着激励电流的增大,结区大量粒 子数反转,发射更多的光子,当电流超过阈值时,会出现从非受激发射 到受激发射的突变。这是由于激光作用过程的本身具有较高量子效率的 缘故,激光的阈值对应于:由受激发射所增加的激光模光子数(每秒) 正好等于平面散射,吸收激光器的发射所损耗的光子数(每秒)。 3.横模和偏振态 半导体激光器的共振腔具有介质波导的结构,所以在共振腔中传播光以模的形式存在。每个模都由固有的传播常数和横向电场分布,这些 模就构成了激光器中的横模。横模经端面射出后形成辐射场,辐射场的 角分布沿平行于结面方向和垂直于结面方向分别成为侧横场和正横场。 共振腔横向尺寸越小,辐射场发射角越大,由于共振腔平行于结面方向 的宽度大于垂直于结面方向的厚度,所以侧横场小于正横场的发散角。 激光器的GaAs晶面对TE模的反射率大于对TM模的反射率,因而TE模需要的阈值增益低,TE模首先产生受激发射,反过来又抑制了TM 模,另一方面形成半导体激光器共振腔的波导层一般都很薄,这一层越

专业实验 实验四 氦氖多谱线激光器实验讲义(1)

多谱线氦氖激光器 实验 实验讲义 大恒新纪元科技股份有限公司 版权所有不得翻印

多谱线氦氖激光器 在增益管长为1m的外腔式He-Ne激光器中,用腔内插入色散棱镜选择谱线的方法,在可见光区分别使氖原子的九条谱线产生激光振荡。实验要求掌握He-Ne多谱线激光线器的工作原理及腔型结构的特点;学习外腔式激光器及腔内带棱镜激光器的调节方法;测量各条激光谱线的波长;找出各条谱线的最佳放电电流及测量最大输出功率。 一、实验原理 一台激光器除激励电流外主要由两部分组成,一是增益介质;二是谐振腔。对He-Ne激光器而言增益介质就是在两端封有布儒斯特窗的毛细管内按一定的气压充以适当比例的氦氖气体,当氦氖混合气体被电流激励时,与某些谱线对应的上下能级的粒子数发生反转,使介质具有增益。介质增益与毛细管长度、内径粗细、两种气体的比例、总气压以及放电电流等因素有关。对谐振腔而言腔长要满足频率的驻波条件,谐振腔镜的曲率半径要满足腔的稳定条件。总之腔的损耗必须小于介质的增益,才能建立激光振荡。由于介质的增益具有饱和特性,增益随激光强度增加而减小。初始建立激光振荡时增益大于损耗,随着激光的增强而增益逐渐减小直到增益等于损耗时才有持续稳定的振荡。稳定振荡时的增益叫阈值增益,初始的增益叫小信号增益。小信号增益与阈值增益之差越大,腔内的激光强度越强,对小信号增益很低的激光谱线是否能获得激光振荡,关键在于谐振腔的损耗能降低到什么程度。 1、在可见光区激光谱线的小信号增益系数 在氦氖混合气体的增益管中氖原子的3S2能级对2P i(2P i是2P1,2P2,…,2P8,2P10九个能级的简称,3S2-2P9的跃迁是违禁的)九个能级之间能够产生粒子数反转,使介质具有增益,九条谱线的小信号增益系数G0如表1所示。 测量时各谱线的放电电流值不相同;表中相对增益系数是用用光谱相对强度研究氦氖放电管的增益特性的装置测得的,各谱线的放电电流相同。 表1 He-Ne 3S2-2P i谱线的小信号增益系数

锐科1kw连续光纤激光器使用说明书

版本:V0 连续光纤激光器 使用说明书 1000W 武汉锐科光纤激光器技术有限责任公司 WuHan Raycus Fiber Laser Technologies CO., LTD

安全信息 在使用该产品之前,请先阅读和了解这份用户手册并熟悉我们为您提供的信息。这份用户手册提供了重要的产品操作,安全以及其他信息给您以及所有将来的用户作参考。为了确保操作安全和产品的最佳性能,请遵循以下注意和警告事项以及该手册的其他信息去操作。 ●连续光纤激光器是IV级的激光产品。在接入交流电源前,要确保连接是正确的三 相380VAC的电源,错误连接电源,将会损坏激光器。 ●请确保使用带有可靠接地以及过流保护装置的交流电源。使用时务必保证激光器 的可靠接地,以避免可能产生的人身伤害。 ●该激光器在1080nm波长范围内发出超过1000瓦的激光辐射。避免眼睛和皮肤接 触到光输出端直接发出或散射出来的辐射。 ●不要打开激光器,因为没有可供用户使用的产品零件或配件。所有保养或维修只 能在锐科公司内进行。 ●在操作该机器时要确保全程配戴激光安全防护眼镜。即使佩戴了激光安全防护眼 镜,也严禁直接观看输出头。 安全标识及位置 上面二个安全标识符号表示有激光辐射,我们把这符号标在产品光纤盒体盖顶上。

目录 1. 产品描述 (1) 1.1. 产品描述 (1) 1.2 实际配置清单 (1) 1.3 使用环境要求及注意事项 (1) 1.4 性能参数 (2) 2. 安装 (2) 2.1 安装尺寸图 (2) 2.2 安装方法 (4) 2.3 冷却系统要求 (4) 3. 控制接口与操作 (5) 3.1串口操作-超级终端 (8) 3.2外部RS232控制 (15) 3.3外部模拟量控制 (16) 4. 质保及返修、退货流程 (17) 4.1一般保修 (17) 4.2保修的限定性 (17) 4.3服务和维修 (17)

实验一-半导体激光器系列实验

实验一-半导体激光器系列实验

实验一半导体激光器系列 实验

一、实验设备介绍 2.配套仪器的使用 WGD-6光学多道分析器的使用参考WGD-6光学多道分析器的使用说明书。 3.激光器概述 光电子器件和技术是当今和未来高技术的基础,引起世界各国的极大关注。其中半导体激光器的生产和应用发展特别迅猛,它已经成功地用于光通讯和光学唱片系统;还可以作为红外高分辨率光谱仪光源,用于大气测污和同位素分离等;同时半导体激光器可以成为雷达,测距,全息照相和再现、射击模拟器、红外夜视仪、报警器等的光源。半导体激光器,调频器,放大器集成在一起的集成光路将进一步促进光通 - 1 -

讯,光计算机的发展。 激光器一般包括三个部分: (1)激光工作介质 激光的产生必须选择合适的工作介质,可以是气体、液体、固体或半导体。在这种介质中可以实现粒子数反转,以制造获得激光的必要条件。显然亚稳态能级的存在,对实现粒子数反转是非常有利的。现有工作介质近千种,可产生的激光波长包括从真空紫外到远红外,非常广泛。 (2)激励源 为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体系,使处于上能级的粒子数增加。一般可以用气体放电的办法来利用具有动能的电子去激发介质原子,称为电激励;也可用脉冲光源来照射工作介质,称为光激励;还有热激励、化学激励等。各种激励方式被形象化地称为泵浦或抽运。为了不断得到激光输出,必须不断地“泵浦”以维持处于上能级的粒子数比下能级多。 (3)谐振腔 有了合适的工作物质和激励源后,可实现粒子数反转,但这样产生的受激辐射强度很弱,无法实际应用。于是人们就想到了用光学谐振腔进行放大。所谓光学谐振腔,实际是在激光器两端,面对面装上两块反射率很高的镜。一块几乎全反射,一块大部分反射、 - 2 -

氦氖激光器实验论文

共焦球面扫描干涉仪调整及高斯光束变换与测量实验 刘岩1, 贾艳1 (1.东北师范大学,吉林长春 130000) 摘要:本文介绍了氦氖激光器的原理及其相关的基本结构,并系统的做了氦氖激光器系列实验中的共焦球面扫描干涉仪调整实验和高斯光束变换与测量实验。 关键词:氦氖激光器;共焦球面扫描;高斯光束;干涉仪 中图分类号:G3 文献标识码:A 引言 虽然在1917年爱因斯坦就预言了受激辐射的存在,但在一般热平衡情况下,物质的受激辐射总是被收激吸收所掩盖,未能在实验中观察到。直到1960年,第一台红宝石激光器才面世,他标志了激光技术的诞生。激光器由光学谐振腔、工作物质、激励系统构成,相对一般光源,激光有良好的方向性,也就是说,光能量在空间的分布高度集中在光的传播方向上,但它也有一定的发散度。在激光的横截面上,光强是以高斯函数型分布的,故称作高斯光束。同时激光还具有单色性好的特点,也就是说,它可以具有非常窄的谱线宽度。受激辐射后经过谐振腔等多种机制的作用和相互干涉,最后形成一个或者多个离散的、稳定的谱线,这些谱线就是激光的模。在激光生产与应用中,如定向、制导、精密测量、焊接、光通讯等,我们常常需要先知道激光器的构造,同时还要了解激光器的各种参数指标。因此,激光原理与技术综合实验是光电专业学生的必修课程。 1 实验原理 1.1氦氖激光器原理与结构 氦氖激光器(简称He-Ne激光器)由光学谐振腔(输出镜与全反镜)、工作物质(密封在玻璃管里的氦气、氖气)、激励系统(激光电源)构成。对He-Ne 激光器而言增益介质就是在毛细管内按一定的气压充以适当比例的氦氖气体,当氦氖混合气体被电流激励时,与某些谱线对应的上下能级的粒子数发生反转,使介质具有增益。介质增益与毛细管长度、内径粗细、两种气体的比例、总气压以及放电电流等因素有关。对谐振腔而言,腔长要满足频率的驻波条件,谐振腔镜的曲率半径要满足腔的稳定条件。总之腔的损耗必须小于介质的增益,才能建立激光振荡。内腔式He-Ne激光器的腔镜封装在激光管两端,而外腔式He-Ne激光器的激光管、输出镜及全反镜是安装在调节支架上的。调节支架能调节输出镜与全反镜之间平行度,使激光器工作时处于输出镜与全反镜相互平行且与放电管垂直的状态。在激光管的阴极、阳极上串接着镇流电阻,防止激光管在放电时出现闪烁现象。氦氖激光器激励系统采用开关电路的直流电源,体积小,份量轻,可靠性高,可长时间运行。 图1 氦氖激光器原理图 1.2 高斯光束的基本性质 众所周知,电磁场运动的普遍规律可用Maxwell方程组来描述。对于稳态传输光频电磁场可以归结为对光现象起主要作用的电矢量所满足的波动方程。在标量场近似条件下,可以简化为赫姆霍兹方程,高斯光束是赫姆霍兹方程在缓变振幅近似下的一个特解,它可以足够好地描述激光光束的性质。使用高斯光束的复参数表示和ABCD定律能够统一而简洁的处理高斯光束在腔内、外的传输变换问题。在缓变振幅近似下求解赫姆霍兹方程,可以得到高斯光束的一般表达式: () 2 2 2() [] 2() 00 , () r z kr i R z A A r z e e z ω ψ ω ω --- =?(1) 式中,A0为振幅常数;ω(z)定义为场振幅减小到最大值的e-1的r值称为腰斑,它是高斯光束光斑半径的最小值;ω(z)、R(z)、Ψ分别表示了高斯光束的光斑半径、等相面曲率半径、相位因子,是描述高斯光束的三个重要参数,其具体表达式分别为:

相关主题
文本预览
相关文档 最新文档