当前位置:文档之家› 八年级数学三角形辅助线大全(精简、全面)

八年级数学三角形辅助线大全(精简、全面)

八年级数学三角形辅助线大全(精简、全面)
八年级数学三角形辅助线大全(精简、全面)

三角形作辅助性方法大全

1.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.

例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC

证法(一):延长BD 交AC 于E ,

∵∠BDC 是△EDC 的外角,

∴∠BDC >∠DEC

同理:∠DEC >∠BAC

∴∠BDC >∠BAC

证法(二):连结AD ,并延长交BC 于F ∵∠BDF 是△ABD 的外角,

∴∠BDF >∠BAD

同理∠CDF >∠CAD

∴∠BDF +∠CDF >∠BAD +∠CAD

即:∠BDC >∠BAC

2.有角平分线时常在角两边截取相等的线段,构造全等三角形.

例:已知,如图,AD 为△ABC 的中线且∠1 = ∠2,∠3 = ∠4,

求证:BE +CF >EF

证明:在DA 上截取DN = DB ,连结NE 、NF ,则DN = DC

在△BDE 和△NDE 中,

DN = DB ∠1 = ∠2

ED = ED ∴△BDE ≌△NDE

∴BE = NE

同理可证:CF = NF

在△EFN 中,EN +FN >EF

∴BE +CF >EF

3. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.

例:已知,如图,AD 为△ABC 的中线,且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF 证明:延长ED 到M ,使DM = DE ,连结CM 、FM

△BDE 和△CDM 中,

BD = CD

∠1 = ∠5

ED = MD

∴△BDE ≌△CDM

∴CM = BE

又∵∠1 = ∠2,∠3 = ∠4

∠1+∠2+∠3 + ∠4 = 180o

4321N

F E C B A

∴∠3 +∠2 = 90o

即∠EDF = 90o

∴∠FDM = ∠EDF = 90o

△EDF 和△MDF 中 ED = MD ∠FDM = ∠EDF

DF = DF ∴△EDF ≌△MDF

∴EF = MF

∵在△CMF 中,CF +CM >MF

BE +CF >EF

(此题也可加倍FD ,证法同上)

4. 在三角形中有中线时,常加倍延长中线构造全等三角形.

例:已知,如图,AD 为△ABC 的中线,求证:AB +AC >2AD

证明:延长AD 至E ,使DE = AD ,连结BE

∵AD 为△ABC 的中线

∴BD = CD

在△ACD 和△EBD 中

BD = CD

∠1 = ∠2

AD = ED ∴△ACD ≌△EBD

∵△ABE 中有AB +BE >AE

∴AB +AC >2AD

5.截长补短作辅助线的方法

截长法:在较长的线段上截取一条线段等于较短线段;

补短法:延长较短线段和较长线段相等.

这两种方法统称截长补短法.

当已知或求证中涉及到线段a 、b 、c 、d 有下列情况之一时用此种方法:

①a >b

②a ±b = c

③a ±b = c ±d

例:已知,如图,在△ABC 中,AB >AC ,∠1 = ∠2,P 为AD 上任一点,

求证:AB -AC >PB -PC

证明:⑴截长法:在AB 上截取AN = AC ,连结PN

在△APN 和△APC 中,

AN = AC

∠1 = ∠2

AP = AP

∴△APN ≌△APC

∴PC = PN ∵△BPN 中有PB -PC <BN M A B C D E F

12345

∴PB-PC<AB-AC

⑵补短法:延长AC至M,使AM = AB,连结PM

在△ABP和△AMP中

AB = AM

∠1 = ∠2

AP = AP

∴△ABP≌△AMP

∴PB = PM

又∵在△PCM中有CM >PM-PC

∴AB-AC>PB-PC

练习:1.已知,在△ABC中,∠B = 60o,AD、CE是△ABC的角平分线,并且它们交于点O 求证:AC = AE+CD

2.已知,如图,AB∥CD∠1 = ∠2 ,∠3 = ∠4.

求证:BC = AB+CD

6.证明两条线段相等的步骤:

①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。

②若图中没有全等三角形,可以把求证线段用和它相等的线段代换,再证它们所

在的三角形全等.

③如果没有相等的线段代换,可设法作辅助线构造全等三角形.

例:如图,已知,BE、CD相交于F,∠B = ∠C,∠1 = ∠2,求证:DF = EF

证明:∵∠ADF =∠B+∠3

∠AEF = ∠C+∠4

又∵∠3 = ∠4

∠B = ∠C

∴∠ADF = ∠AEF

在△ADF和△AEF中

∠ADF = ∠AEF

∠1 = ∠2

AF = AF

∴△ADF≌△AEF

∴DF = EF

7.在一个图形中,有多个垂直关系时,常用同角(等角)的余角相等来证明两个角相等. 例:已知,如图Rt△ABC中,AB = AC,∠BAC = 90o,过A作任一条直线AN,作BD⊥AN 于D,CE⊥AN于E,求证:DE = BD-CE

证明:∵∠BAC = 90o, BD⊥AN

∴∠1+∠2 = 90o∠1+∠3 = 90o

∴∠2 = ∠3

∵BD⊥AN CE⊥AN

∴∠BDA =∠AEC = 90o

在△ABD和△CAE中,

∠BDA =∠AEC

∠2 = ∠3

AB = AC

∴△ABD≌△CAE

∴BD = AE且AD = CE

∴AE-AD = BD-CE

∴DE = BD-CE

8.三角形一边的两端点到这边的中线所在的直线的距离相等.

例:AD为△ABC的中线,且CF⊥AD于F,BE⊥AD的延长线于E 求证:BE = CF

证明:(略)

9.条件不足时延长已知边构造三角形.

例:已知AC = BD,AD⊥AC于A,BCBD于B

求证:AD = BC

证明:分别延长DA、CB交于点E

∵AD⊥AC BC⊥BD

∴∠CAE = ∠DBE = 90o

在△DBE和△CAE中

∠DBE =∠CAE

BD = AC

∠E =∠E

∴△DBE≌△CAE

∴ED = EC,EB = EA

∴ED-EA = EC-EB

∴AD = BC

10.连接四边形的对角线,把四边形问题转化成三角形来解决问题. 例:已知,如图,AB∥CD,AD∥BC

求证:AB = CD

证明:连结AC(或BD)

∵AB∥CD,AD∥BC

∴∠1 = ∠2

在△ABC和△CDA中,

∠1 = ∠2

AC = CA

∠3 = ∠4

∴△ABC≌△CDA

∴AB = CD

练习:已知,如图,AB = DC,AD = BC,DE = BF,

求证:BE = DF

11.有和角平分线垂直的线段时,通常把这条线段延长。可归结为“角分垂等腰归”.

例:已知,如图,在Rt△ABC中,AB = AC,∠BAC = 90o,∠1 = ∠2 ,CE⊥BD的延长线于E

求证:BD = 2CE

证明:分别延长BA、CE交于F

∵BE⊥CF

∴∠BEF =∠BEC = 90o

在△BEF和△BEC中

∠1 = ∠2

BE = BE

∠BEF =∠BEC

∴△BEF≌△BEC

∴CE = FE =CF

∵∠BAC = 90o , BE⊥CF

∴∠BAC = ∠CAF = 90o

∠1+∠BDA = 90o

∠1+∠BFC = 90o

∠BDA = ∠BFC

在△ABD和△ACF中

∠BAC = ∠CAF

∠BDA = ∠BFC

AB = AC

∴△ABD≌△ACF

∴BD = CF

∴BD = 2CE

练习:已知,如图,∠ACB = 3∠B,∠1 =∠2,CD⊥AD于D,

求证:AB-AC = 2CD

12.当证题有困难时,可结合已知条件,把图形中的某两点连接起来构造全等三角形.

例:已知,如图,AC、BD相交于O,且AB = DC,AC = BD,

求证:∠A = ∠D

证明:(连结BC,过程略)

13.当证题缺少线段相等的条件时,可取某条线段中点,为证题提供条件.

例:已知,如图,AB = DC,∠A = ∠D

求证:∠ABC = ∠DCB

证明:分别取AD、BC中点N、M,

连结NB、NM、NC(过程略)

14.有角平分线时,常过角平分线上的点向角两边做垂线,利用角平分

线上的点到角两边距离相等证题.

例:已知,如图,∠1 = ∠2 ,P为BN上一点,且PD⊥BC于D,AB+BC = 2BD,求证:∠BAP+∠BCP = 180o

证明:过P作PE⊥BA于E

∵PD⊥BC,∠1 = ∠2

∴PE = PD

在Rt△BPE和Rt△BPD中

BP = BP

PE = PD

∴Rt△BPE≌Rt△BPD

∴BE = BD

∵AB+BC = 2BD,BC = CD+BD,AB = BE-AE

∴AE = CD

∵PE⊥BE,PD⊥BC

∠PEB =∠PDC = 90o

在△PEA和△PDC中

PE = PD

∠PEB =∠PDC

AE =CD

∴△PEA≌△PDC

∴∠PCB = ∠EAP

∵∠BAP+∠EAP = 180o

∴∠BAP+∠BCP = 180o

练习:1.已知,如图,PA、PC分别是△ABC外角∠MAC与∠NCA的平分线,它们交于P,PD⊥BM于M,PF⊥BN于F,求证:BP为∠MBN的平分线

2. 已知,如图,在△ABC中,∠ABC =100o,∠ACB = 20o,CE是∠ACB的平分线,

D是AC上一点,若∠CBD = 20o,求∠CED的度数。

15.有等腰三角形时常用的辅助线

⑴作顶角的平分线,底边中线,底边高线

例:已知,如图,AB = AC,BD⊥AC于D,

求证:∠BAC = 2∠DBC

证明:(方法一)作∠BAC的平分线AE,交BC于E,则∠1 = ∠2 = ∠BAC

又∵AB = AC

∴AE⊥BC

∴∠2+∠ACB = 90o

∵BD⊥AC

∴∠DBC+∠ACB = 90o

∴∠2 = ∠DBC

∴∠BAC = 2∠DBC

(方法二)过A作AE⊥BC于E(过程略)

(方法三)取BC中点E,连结AE(过程略)

⑵有底边中点时,常作底边中线

例:已知,如图,△ABC中,AB = AC,D为BC中点,DE⊥AB于E,DF⊥AC于F,求证:DE = DF

证明:连结AD.

∵D为BC中点,

∴BD = CD

又∵AB =AC

∴AD平分∠BAC

∵DE⊥AB,DF⊥AC

∴DE = DF

⑶将腰延长一倍,构造直角三角形解题

例:已知,如图,△ABC中,AB = AC,在BA延长线和AC上各取一点E、F,使AE = AF,求证:EF⊥BC

证明:延长BE到N,使AN = AB,连结CN,则AB = AN = AC

∴∠B = ∠ACB, ∠ACN = ∠ANC

∵∠B+∠ACB+∠ACN+∠ANC = 180o

∴2∠BCA+2∠ACN = 180o

∴∠BCA+∠ACN = 90o

即∠BCN = 90o

∴NC⊥BC

∵AE = AF

∴∠AEF = ∠AFE

又∵∠BAC = ∠AEF +∠AFE

∠BAC = ∠ACN +∠ANC

∴∠BAC =2∠AEF = 2∠ANC

∴∠AEF = ∠ANC

∴EF∥NC

∴EF⊥BC

⑷常过一腰上的某一已知点做另一腰的平行线

例:已知,如图,在△ABC中,AB = AC,D在AB上,E在AC延长线上,且BD = CE,连结DE交BC于F

求证:DF = EF

证明:(证法一)过D作DN∥AE,交BC于N,则∠DNB = ∠ACB,∠NDE = ∠E,∵AB = AC,

∴∠B = ∠ACB

∴∠B =∠DNB

∴BD = DN

又∵BD = CE

∴DN = EC

在△DNF和△ECF中

∠1 = ∠2

∠NDF =∠E

DN = EC

∴△DNF≌△ECF

∴DF = EF

(证法二)过E作EM∥AB交BC延长线于M,则∠EMB =∠B(过程略)

⑸常过一腰上的某一已知点做底的平行线

例:已知,如图,△ABC中,AB =AC,E在AC上,D在BA延长线上,且AD = AE,连结DE

求证:DE⊥BC

证明:(证法一)过点E作EF∥BC交AB于F,则

∠AFE =∠B

∠AEF =∠C

∵AB = AC

∴∠B =∠C

∴∠AFE =∠AEF

∵AD = AE

∴∠AED =∠ADE

又∵∠AFE+∠AEF+∠AED+∠ADE = 180o

∴2∠AEF+2∠AED = 90o

即∠FED = 90o

∴DE⊥FE

又∵EF∥BC

∴DE⊥BC

(证法二)过点D作DN∥BC交CA的延长线于N,(过程略)

(证法三)过点A作AM∥BC交DE于M,(过程略)

⑹常将等腰三角形转化成特殊的等腰三角形------等边三角形

例:已知,如图,△ABC中,AB = AC,∠BAC = 80o,P为形内一点,若∠PBC = 10o ∠PCB = 30o求∠PAB的度数.

解法一:以AB为一边作等边三角形,连结CE

则∠BAE =∠ABE = 60o

AE = AB = BE

∵AB = AC

∴AE = AC ∠ABC =∠ACB

∴∠AEC =∠ACE

∵∠EAC =∠BAC-∠BAE

= 80o-60o = 20o

∴∠ACE = (180o-∠EAC)= 80o

∵∠ACB= (180o-∠BAC)= 50o

∴∠BCE =∠ACE-∠ACB

= 80o-50o = 30o

∵∠PCB = 30o

∴∠PCB = ∠BCE

∵∠ABC =∠ACB = 50o, ∠ABE = 60o

∴∠EBC =∠ABE-∠ABC = 60o-50o =10o

∵∠PBC = 10o

∴∠PBC = ∠EBC

在△PBC和△EBC中

∠PBC = ∠EBC

BC = BC

∠PCB = ∠BCE

∴△PBC≌△EBC

∴BP = BE

∵AB = BE

∴AB = BP

∴∠BAP =∠BPA

∵∠ABP =∠ABC-∠PBC = 50o-10o = 40o

∴∠PAB = (180o-∠ABP)= 70o

解法二:以AC为一边作等边三角形,证法同一。

解法三:以BC为一边作等边三角形△BCE,连结AE,则EB = EC = BC,∠BEC =∠EBC = 60o

∵EB = EC

∴E在BC的中垂线上

同理A在BC的中垂线上

∴EA所在的直线是BC的中垂线

∴EA⊥BC

∠AEB = ∠BEC = 30o =∠PCB

由解法一知:∠ABC = 50o

∴∠ABE = ∠EBC-∠ABC = 10o =∠PBC

∵∠ABE =∠PBC,BE = BC,∠AEB =∠PCB

∴△ABE≌△PBC

∴AB = BP

∴∠BAP =∠BPA

∵∠ABP =∠ABC-∠PBC = 50o-10o = 40o

∴∠PAB = (180o-∠ABP) = (180o-40o)= 70o

16.有二倍角时常用的辅助线

⑴构造等腰三角形使二倍角是等腰三角形的顶角的外角

例:已知,如图,在△ABC中,∠1 = ∠2,∠ABC = 2∠C,

求证:AB+BD = AC

证明:延长AB到E,使BE = BD,连结DE

则∠BED = ∠BDE

∵∠ABD =∠E+∠BDE

∴∠ABC =2∠E

∵∠ABC = 2∠C

∴∠E = ∠C

在△AED和△ACD中

∠E = ∠C

∠1 = ∠2

AD = AD

∴△AED≌△ACD

∴AC = AE

∵AE = AB+BE

∴AC = AB+BE

即AB+BD = AC

⑵平分二倍角

例:已知,如图,在△ABC中,BD⊥AC于D,∠BAC = 2∠DBC 求证:∠ABC = ∠ACB

证明:作∠BAC的平分线AE交BC于E,则∠BAE = ∠CAE = ∠DBC ∵BD⊥AC

∴∠CBD +∠C = 90o

∴∠CAE+∠C= 90o

∵∠AEC= 180o-∠CAE-∠C= 90o

∴AE⊥BC

∴∠ABC+∠BAE = 90o

∵∠CAE+∠C= 90o

∠BAE = ∠CAE

∴∠ABC = ∠ACB

⑶加倍小角

例:已知,如图,在△ABC中,BD⊥AC于D,∠BAC = 2∠DBC

求证:∠ABC = ∠ACB

证明:作∠FBD =∠DBC,BF交AC于F(过程略)

17.有垂直平分线时常把垂直平分线上的点与线段两端点连结起来. 例:已知,如图,△ABC中,AB = AC,∠BAC = 120o,EF为AB的垂直平分线,EF交BC于F,交AB于E

求证:BF =FC

证明:连结AF,则AF = BF

∴∠B =∠FAB

∵AB = AC

∴∠B =∠C

∵∠BAC = 120o

∴∠B =∠C∠BAC =(180o-∠BAC) = 30o

∴∠FAB = 30o

∴∠FAC =∠BAC-∠FAB = 120o-30o =90o

又∵∠C = 30o

∴AF = FC

∴BF =FC

练习:已知,如图,在△ABC中,∠CAB的平分线AD与BC的垂直平分线DE交于点D,DM⊥AB于M,DN⊥AC延长线于N

求证:BM = CN

18. 有垂直时常构造垂直平分线.

例:已知,如图,在△ABC中,∠B =2∠C,AD⊥BC于D

求证:CD = AB+BD

证明:(一)在CD上截取DE = DB,连结AE,则AB = AE

∴∠B =∠AEB

∵∠B = 2∠C

∴∠AEB = 2∠C

又∵∠AEB = ∠C+∠EAC

∴∠C =∠EAC

∴AE = CE

又∵CD = DE+CE

∴CD = BD+AB

(二)延长CB到F,使DF = DC,连

结AF则AF =AC(过程略)

(三)

19.有中点时常构造垂直平分线.

例:已知,如图,在△ABC中,BC = 2AB, ∠ABC = 2∠C,BD = CD 求证:△ABC为直角三角形

证明:过D作DE⊥BC,交AC于E,连结BE,则BE = CE,

∴∠C =∠EBC

∵∠ABC = 2∠C

∴∠ABE =∠EBC

∵BC = 2AB,BD = CD

∴BD = AB

在△ABE和△DBE中

AB = BD

∠ABE =∠EBC

BE = BE

∴△ABE≌△DBE

∴∠BAE = ∠BDE

∵∠BDE = 90o

∴∠BAE = 90o

即△ABC为直角三角形

20.当涉及到线段平方的关系式时常构造直角三角形,利用勾股定理证题. 例:已知,如图,在△ABC中,∠A = 90o,DE为BC的垂直平分线求证:BE2-AE2 = AC2

证明:连结CE,则BE = CE

∵∠A = 90o

∴AE2+AC2 = EC2

∴AE2+AC2= BE2

∴BE2-AE2 = AC2

练习:已知,如图,在△ABC中,∠BAC = 90o,AB = AC,P为BC上一点求证:PB2+PC2= 2PA2

21.条件中出现特殊角时常作高把特殊角放在直角三角形中.

例:已知,如图,在△ABC中,∠B = 45o,∠C = 30o,AB =,求AC的长.

解:过A作AD⊥BC于D

∴∠B+∠BAD = 90o,

∵∠B = 45o,∠B = ∠BAD = 45o,

∴AD = BD

∵AB2 = AD2+BD2,AB =

∴AD = 1

∵∠C = 30o,AD⊥BC

∴AC = 2AD = 2

专题:全等三角形常见辅助线做法及典型例题

《全等三角形》辅助线做法总结 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 一、截长补短法(和,差,倍,分) 截长法:在长线段上截取与两条线段中的一条相等的一段,证明剩余的线段与另一段相等(截取----全等----等量代换) 补短法:延长其中一短线段使之与长线段相等,再证明延长段与另一短线段相等(延长----全等----等量代换) 例如:1,已知,如图,在△ABC中,∠C=2∠B,∠1=∠2。求证:AB=AC+CD。 2,已知:如图,AC∥BD,AE和BE分别平分∠CAB和∠DBA,CD过点E.求证:(1)AE⊥BE;(2)AB=AC+BD. 二、图中含有已知线段的两个图形显然不全等(或图形不完整)时,添加公共边(或一其中 一个图形为基础,添加线段)构建图形。(公共边,公共角,对顶角,延长,平行)例如:已知:如图,AC、BD相交于O点,且AB=DC,AC=BD,求证:∠A=∠D。 三、延长已知边构造三角形 例如:如图6:已知AC=BD,AD⊥AC于A ,BC⊥BD于B,求证:AD=BC D C B A 1 10 图 O A B C D E O

四、遇到角平分线,可自角平分线上的某个点向角的两边作垂线(“对折”全等) 例如:已知,如图,AC 平分∠BAD ,CD=CB ,AB>AD 。求证:∠B+∠ADC=180。 五、遇到中线,延长中线,使延长段与原中线等长(“旋转”全等) 例如:1如图,AD 为 △ABC 的中线,求证:AB +AC >2AD 。(三角形一边上的中线小 于其他两边之和的一半) 2,已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 。 3,如图,已知:AD 是△ABC 的中线,且CD=AB ,AE 是△ABD 的中线,求证:AC=2AE. E C B D A 六、遇到垂直平分线,常作垂直平分线上一点到线段两端的连线(可逆 :遇到两组线段相等, 可试着连接垂直平分线上的点) 例如:在△ABC 中,∠ACB=90,AC=BC,D 为△ABC 外一点,且AD=BD,DE ⊥AC 交AC 的延长 线于E,求证:DE=AE+BC 。 七、遇到等腰三角形,可作底边上的高,或延长加倍法(“三线合一”“对折”) A D B C C A E B D

2017中考全等三角形专题(8种辅助线的作法)

全等三角形问题中常见得辅助线得作法【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折瞧,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试瞧。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 1、等腰三角形“三线合一”法:遇到等腰三角形,可作底边上得高,利用“三线合一”得性质解题 2、倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3、角平分线在三种添辅助线 4、垂直平分线联结线段两端 5、用“截长法”或“补短法”: 遇到有二条线段长之与等于第三条线段得长, 6、图形补全法:有一个角为60度或120度得把该角添线后构成等边三角形 7、角度数为30、60度得作垂线法:遇到三角形中得一个角为30度或60度,可以从角一边上一点向角得另一边作垂线,目得就是构成30-60-90得特殊直角三角形,然后计算边得长度与角得度数,这样可以得到在数值上相等得二条边或二个角。从而为证明全等三角形创造边、角之间得相等条件。 8、计算数值法:遇到等腰直角三角形,正方形时,或30-60-90得特殊直角三角形,或40-60-80得特殊直角三角形,常计算边得长度与角得度数,这样可以得到在数值上相等得二条边或二个角,从而为证明全等三角形创造边、角之间得相等条件。 常见辅助线得作法有以下几种:最主要得就是构造全等三角形,构造二条边之间得相等,二个角之间得相等。 1)遇到等腰三角形,可作底边上得高,利用“三线合一”得性质解题,思维模式就是全等变 换中得“对折”法构造全等三角形. 2)遇到三角形得中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用得思 维模式就是全等变换中得“旋转”法构造全等三角形. 3)遇到角平分线在三种添辅助线得方法,(1)可以自角平分线上得某一点向角得两边作垂

三角形常见的辅助线

全等三角形问题中常见的辅助线的作法 常见辅助线的作法有以下几种: 1. 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折” 2. 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 3. 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线, 利用的思维模式是三角形全等变换中的“对折” ,所考知识点常常 是角平分线的性质定理或逆定理. 4. 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 5. 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用 三角形全等的有关性质加以说明?这种作法,适合于证明线段的和、差、倍、分等类的题目 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、倍长中线(线段)造全等 应用:1、(09崇文二模)以ABC 的两边AB 、AC 为腰分别向外作等腰Rt^ABD 和等腰Rt^ACE , ? BAD = ? CAE = 90 (1)如图① 当 ABC 为直角三角形时,AM 与 DE 的位置关系是 线段AM 与DE 的数量关系是 (2)将图①中的等腰Rt'ABD 绕点A 沿逆时针方向旋转 二(0<二<90)后,如图②所示,(1 )问中得到的两个结论是否发生改 变?并说明理由. 连接DE ,M 、N 分别是 BC 、DE 的中点?探究: AM 与DE 的位置关系及数量关系. 例1、已知, 例2、如图, 例3、如图,

全等三角形中常见辅助线的添加方法

全等三角形中常见辅助线的添加方法举例 一. 有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。 例:如图1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 。 二、有以线段中点为端点的线段时,常延长加倍 此线段,构造全等三角形。 例::如图2:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 三、有三角形中线时,常延长加倍中线,构造 全等三角形。 例:如图3:AD 为 △ABC 的中线,求证:AB +AC >2AD 。 图3 练习:已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图4, 求证EF =2AD 。 A B C D E F N 1 图1234 2 图A B C D E F M 123 4A B C D E A B C D E F 4 图

四、截长补短法作辅助线。 例如:已知如图5:在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任一点。 求证:AB -AC >PB -PC 。 五、延长已知边构造三角形: 例如:如图6:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC 六、有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图8:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE 7 七、连接已知点,构造全等三角形。 例如:已知:如图9;AC 、BD 相交于O 点,且AB =DC ,AC =BD ,求证:∠A =∠D 。 八、取线段中点构造全等三有形。 例如:如图10:AB =DC ,∠A =∠D 求证:∠ABC =∠DCB 。 A B C D N M P 5图12A B C D E 6 图O D B A 110 图O 10图D C B A M N

三角形辅助线的作法总结

三角形辅助线的作法总 结 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

三角形---作辅助线 知识点一:利用转化倍角,构造等腰三角形 当一个三角形中出现一个角是另一个角的2倍时,我们就可以通过转化倍角寻找到等腰三角形. 如图①中,若∠ABC=2∠C,如果作BD平分∠ABC,则△DBC是等腰三角形; 如图②中,若∠ABC=2∠C,如果延长线CB到D,使BD=BA,连结AD,则△ADC是等腰三角形; 如图③中,若∠B=2∠ACB,如果以C为角的顶点,CA为角的一边,在形外作∠ACD=∠ACB,交BA的延长线于点D,则△DBC是等腰三角形. 1、如图,△ABC中,AB=AC,BD⊥AC交AC于D. 求证:∠DBC= 1 2 ∠BAC. 2、如图,△ABC中,∠ACB=2∠B,BC=2AC. 求证:∠A=90°. 知识点二:利用角平分线+平行线,构造等腰三角形 当一个三角形中出现角平分线和平行线时,我们就可以寻找到等腰三角形. 如图①中,若AD平分∠BAC,AD∥EC,则△ACE是等腰三角形; 如图②中,AD平分∠BAC,DE∥AC,则△ADE是等腰三角形; 如图③中,AD平分∠BAC,CE∥AB,则△ACE是等腰三角形; 如图④中,AD平分∠BAC,EF∥AD,则△AGE 3AB EF⊥ 线于点. 4AD F AC. 求证:EF∥AB. 知识点三:利用角平分线+垂线,构造等腰三角形 中, 若AD平分∠BAC,AD⊥DC,则△AEC是等腰三角形. 5、如图2,已知等腰Rt△ABC中,AB=AC,∠BAC=90°,BF BD交BF的延长线于D。求证: BF=2CD. 知识点四:截长补短法 6、如图,已知:正方形ABCD中,∠BAC的平分线交BC于E, 求证:AB+BE=AC. 知识点五:倍长中线法 中在一个三角形内。 7、如图(7)AD是△ABC的中线,BE交AC于E,交AD于F,且 求证:AC=BF D C B A B ① D B ② C B D B C B A B C B C D A ①② B C D A ③ B C D A

全等三角形辅助线经典做法习题

全等三角形证明方法中辅助线做法 一、截长补短 通过添加辅助线利用截长补短,从而达到改变线段之间的长短,达到构造全等三角形的条件 1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD. 分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD. 证明:在AC上截取AF=AE,连接OF. ∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60° ∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°. 显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60° 在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC ∴△DOC≌△FOC,CF=CD ∴AC=AF+CF=AE+CD. 2.如图,在△ABC中,AD平分∠BAC,∠C=2∠B,试判断AB,AC,CD三者之间的数量关系,并说明理由.

3.如图,在△ABC 中,∠A=60°,BD ,CE 分别平分∠ABC 和∠ACB,BD ,CE 交于点O,试判断BE,CD,BC 的数量关系,并加以证明. 4.如图,AD ∥BC,DC ⊥AD,AE 平分∠BAD,E 是DC 的中点.问:AD,BC,AB 之间有何关系?并说明理由. 5.(德州中考)问题背景: 如图1:在四边形ABCD 中,AB=AD ,∠BAD=120°,∠B=∠ADC=90°.E ,F 分别是BC ,CD 上的点.且∠EAF=60°.探究图中线段BE ,EF ,FD 之间的数量关系. (1)小王同学探究此问题的方法是,延长FD 到点G.使DG=BE.连接AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是; (2)如图2,若在四边形ABCD 中,AB=AD ,∠B+∠D=180°.E ,F 分别是BC ,CD 上的点,且∠EAF=2 1 ∠BAD ,上述结论是否仍然成立,并说明理由.

全等三角形常用辅助线做法

五种辅助线助你证全等 姚全刚 在证明三角形全等时有时需添加辅助线,对学习几何证明不久的学生而言往往是难点.下面介绍证明全等时常见的五种辅助线,供同学们学习时参考. 一、截长补短 一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等. 例1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD. 分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD. 证明:在AC上截取AF=AE,连接OF. ∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60° ∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°. 显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60° 在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC ∴△DOC≌△FOC,CF=CD ∴AC=AF+CF=AE+CD. 截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。

例2:如图甲,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。求证:CD=AD+BC。 思路分析: 1)题意分析:本题考查全等三角形常见辅助线的知识:截长法或补短法。 2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。 解答过程: 证明:在CD上截取CF=BC,如图乙 ∴△FCE≌△BCE(SAS), ∴∠2=∠1。 又∵AD∥BC,

三角形常见的辅助线Word版

D C B A E D F C B A 全等三角形问题中常见的辅助线的作法 常见辅助线的作法有以下几种: 1.遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”. 2.遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”. 3.遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理. 4.过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 5.截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、倍长中线(线段)造全等 例1、已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________. 例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小. 例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE. A

应用:1、(09崇文二模)以 ABC ?的两边AB、AC为腰分别向外作等腰Rt ABD ?和等腰Rt ACE ?,90, BAD CAE ∠=∠=? 连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系. (1)如图①当 ABC ?为直角三角形时,AM与DE的位置关系是 , 线段AM与DE的数量关系是; (2)将图①中的等腰Rt ABD ?绕点A沿逆时针方向旋转?θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由. 二、截长补短 1、如图,ABC ?中,AB=2AC,AD平分BAC ∠,且AD=BD,求证:CD⊥AC C D B A

全等三角形中常用辅助线(经典)

三角形中的常用辅助线 课程解读 一、学习目标: 归纳、掌握三角形中的常见辅助线 二、重点、难点: 1、全等三角形的常见辅助线的添加方法。 2、掌握全等三角形的辅助线的添加方法并提高解决实际问题的能力。 三、考点分析: 全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。判断三角形全等的公理有SAS、ASA、AAS、SSS和HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。 典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。

全等三角形中辅助线的添加解析

全等三角形中辅助线的添加 一.教学内容:全等三角形的常见辅助线的添加方法、基本图形的性质的掌握及熟练应用。 二.知识要点: 1、添加辅助线的方法和语言表述 (1)作线段:连接……; (2)作平行线:过点……作……∥……; (3)作垂线(作高):过点……作……⊥……,垂足为……; (4)作中线:取……中点……,连接……; (5)延长并截取线段:延长……使……等于……; (6)截取等长线段:在……上截取……,使……等于……; (7)作角平分线:作……平分……;作角……等于已知角……; (8)作一个角等于已知角:作角……等于……。 2、全等三角形中的基本图形的构造与运用 常用的辅助线的添加方法: (1)倍长中线(或类中线)法:若遇到三角形的中线或类中线(与中点有关的线段),通常考虑倍长中线或类中线,构造全等三角形。 (2)截长补短法:若遇到证明线段的和差倍分关系时,通常考虑截长补短法,构造全等三角形。①截长:在较长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;②补短:将一条较短线段延长,延长部分等于另一条较短线段,然后证明新线段等于较长线段;或延长一条较短线段等于较长线段,然后证明延长部分等于另一条较短线段。 (3)一线三等角问题(“K”字图、弦图、三垂图):两个全等的直角三角形的斜边恰好是一个等腰直角三角形的直角边。 (4)角平分线、中垂线法:以角平分线、中垂线为对称轴利用”轴对称性“构造全等三角形。 (5)角含半角、等腰三角形的(绕顶点、绕斜边中点)旋转重合法:用旋转构造三角形全等。 (6)构造特殊三角形:主要是30°、60°、90°、等腰直角三角形(用平移、对称和弦图也可以构造)和等边三角形的特殊三角形来构造全等三角形。 三、基本模型: (1) △ABC中AD是BC边中线 方式1:延长AD到E,使DE=AD,连接BE

初中几何常见辅助线作法50种

初中常见辅助线作法 任何几何题目都需分析题目条件和结论找到解题思路,本讲从常见的条件和结论出发说明50种辅助线作法,分三角形部分、四边形部分、解直角三角形部分、圆。每种辅助线作法均配备了例题和练习。 三角形部分 1.在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某 边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题. 例:如图,已知D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE . 证法(一):将DE 向两边延长,分别交AB 、AC 于M 、N 在△AMN 中, AM + AN >MD +DE +NE ① 在△BDM 中,MB +MD >BD ② 在△CEN 中,CN +NE >CE ③ ①+②+③得 AM +AN +MB +MD +CN +NE >MD +DE +NE +BD +CE ∴AB +AC >BD +DE +CE 证法(二)延长BD 交AC 于F ,延长CE 交BF 于G , 在△ABF 和△GFC 和△GDE 中有, ①AB +AF >BD +DG +GF ②GF +FC >GE +CE ③DG +GE >DE ∴①+②+③有 AB +AF +GF +FC +DG +GE >BD +DG +GF +GE +CE +DE ∴AB +AC >BD +DE +CE 注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证 有关的量)移到同一个或几个三角形中去然后再证题. 练习:已知:如图P 为△ABC 内任一点, 求证: 1 2 (AB +BC +AC )<P A +PB +PC <AB +BC +AC 2.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来, 可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题. 例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC 证法(一):延长BD 交AC 于E , F G N M E D C B A

八年级数学《全等三角形》证明题中常见的辅助线的作法

D C B A E D F C B A 八年级数学《全等三角形》证明题中常见的辅助线的作法常见辅助线的作法有以下几种: 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”. 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”. 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、倍长中线(线段)造全等 例1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________. 例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF 与EF的大小. 例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE. 应用:

E D C B A D C B A P Q C B A 1、(09崇文二模)以ABC ?的两边AB 、AC 为腰分别向外作等腰Rt ABD ?和等腰 Rt ACE ?,90,BAD CAE ∠=∠=?连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与 DE 的位置关系及数量关系. (1)如图① 当ABC ?为直角三角形时,AM 与DE 的位置关系是 , 线段AM 与DE 的数量关系是 ; (2)将图①中的等腰Rt ABD ?绕点A 沿逆时针方向旋转?θ(0<θ<90)后,如图②所 示,(1)问中得到的两个结论是否发生改变?并说明理由. 二、截长补短 1、如图,ABC ?中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC 2、如图,AC ∥BD ,EA,EB 分别平分∠CAB,∠DBA ,CD 过点E ,求证;AB =AC+BD 3、如图,已知在ABC V 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC , CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分 线。求 证:BQ+AQ=AB+BP 4、如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠, 求证: 0180=∠+∠C A 5、如图在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上 任意一点,求证;AB-AC >PB-PC 应用: 三、平移变换 例1 AD 为△ABC 的角平分线,直线MN ⊥AD 于A.E 为MN 上一点,△ABC 周长记为A P , △EBC 周长记为B P .求证B P >A P . 例2 如图,在△ABC 的边上取两点D 、E ,且BD=CE ,

三角形辅助线的作法总结

三角形---作辅助线 知识点一:利用转化倍角,构造等腰三角形 当一个三角形中出现一个角是另一个角的2倍时,我们就可以通过转化倍角寻找到等腰三角形. 如图①中,若∠ABC=2∠C,如果作BD平分∠ABC,则△DBC是等腰三角形; 如图②中,若∠ABC=2∠C,如果延长线CB到D,使BD=BA,连结AD,则△ADC是等腰三角形; 如图③中,若∠B=2∠ACB,如果以C为角的顶点,CA为角的一边,在形外作∠ACD=∠ACB,交BA的延长线于点D,则△DBC是等腰三角形. 1、如图,△ABC中,AB=AC,BD⊥AC交AC于D.求证:∠DBC= 1 2 ∠BAC. 2、如图,△ABC中,∠ACB=2∠B,BC=2AC.求证:∠A=90°. 知识点二:利用角平分线+平行线,构造等腰三角形 当一个三角形中出现角平分线和平行线时,我们就可以寻找到等腰三角形. 如图①中,若AD平分∠BAC,AD∥EC,则△ACE是等腰三角形; 如图②中,AD平分∠BAC,DE∥AC,则△ADE是等腰三角形; 如图③中,AD平分∠BAC,CE∥AB,则△ACE是等腰三角形; 如图④中,AD平分∠BAC,EF∥AD,则△AGE D C B A ① D ② C D C ④ F C D A B C B C D A ①② B C D A ③ B C D A

3、如图,△ABC 中,AB =AC ,在AC 上取点P ,过点P 作EF ⊥BC ,交BA 的延长线于点E ,垂足为点F .求证:.AE =AP . 4、如图,△ABC 中,AD 平分∠BAC ,E 、F 分别在BD 、AD 上,且DE =CD ,EF =AC . 求证:EF ∥AB . 知识点三:利用角平分线+垂线,构造等腰三角形 当一个三角形中出现角平分线和垂线时,我们就可以寻找到等腰三角形.如图1中, 若AD 平分∠BAC ,AD ⊥DC ,则△AEC 是等腰三角形. 5、如图2,已知等腰Rt △ABC 中,AB =AC ,∠BAC =90°,BF 平分∠ABC ,CD ⊥BD 交BF 的延长线于D 。求证: BF =2CD . 知识点四:截长补短法 6、如图,已知:正方形ABCD 中,∠BAC 的平分线交BC 于E , 求证:AB+BE=AC . F C D E B A F B A C P E E 图1 A B C D 图2 B F D C A D

三角形中的常用辅助线方法总结

数学:三角形中的常用辅助线 典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。 思路分析: 1)题意分析:本题考查等腰三角形的三线合一定理的应用 2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和等腰三角形的三线合一定理结合起来。 解答过程: 证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中, ∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°, ∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。 又∠1+∠F=∠3+∠F=90°,故∠1=∠3。 在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°, ∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。

三角形和四边形中常见的辅助线的作法和类型(绝对经典)

D C B A E D F C B A 三角形和四边形中常见的辅助线的作法和类型(绝对 经典) 一、倍长中线(线段)造全等 例1、(“希望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________. 例2、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小. 例3、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE. E D C B A 二、截长补短 1、如图,ABC ?中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC C D B A

C C B A 2、如图,AD ∥BC,EB,EA 分别平分∠CBA,∠DAB ,CD 过点E ,求证;AB =AD+BC 注意:三角形中位线与梯形中位线 3、如图,已知在ABC V 内,0 60BAC ∠=,0 40C ∠=,P ,Q 分别在BC ,CA 上,并且AP , BQ 分别是BAC ∠,ABC ∠的角平分线。求证:BQ+AQ=AB+BP 4、如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠, 求证: 0 180=∠+∠C A

P 21 C B A 5、如图在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任意一点,求证;AB-AC >PB-PC 三、平移变换 例1 AD 为△ABC 的角平分线,直线MN ⊥AD 于A.E 为MN 上一点,△ABC 周长记为A P ,△EBC 周长记为B P .求证B P >A P . 例2 如图,在△ABC 的边上取两点D 、E ,且BD=CE ,求证:AB+AC>AD+AE.

全等三角形常用辅助线做法

全等三角形常用辅助线做 法 This manuscript was revised on November 28, 2020

五种辅助线助你证全等 姚全刚 在证明三角形全等时有时需添加辅助线,对学习几何证明不久的学生而言往往是难点.下面介绍证明全等时常见的五种辅助线,供同学们学习时参考. 一、截长补短 一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等. 例1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD. 分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD. 证明:在AC上截取AF=AE,连接OF. ∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60° ∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°. 显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60° 在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC ∴△DOC≌△FOC, CF=CD ∴AC=AF+CF=AE+CD. 截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。 例2:如图甲,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。 求证:CD=AD+BC。 思路分析: 1)题意分析:本题考查全等三角形常见辅助线的知识:截长法或补短法。 2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在CD 上截取CF=CB,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。 解答过程: 证明:在CD上截取CF=BC,如图乙 ∴△FCE≌△BCE(SAS), ∴∠2=∠1。 又∵AD∥BC, ∴∠ADC+∠BCD=180°, ∴∠DCE+∠CDE=90°, ∴∠2+∠3=90°,∠1+∠4=90°, ∴∠3=∠4。 在△FDE与△ADE中, ∴△FDE≌△ADE(ASA), ∴DF=DA,

辅助线做法勾股定理

全等三角形》问题中常见的辅助线的作法(含答案) 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 【常见辅助线的作法有以下几种】 1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。 4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。 5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。 6、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。 例3、如图,ABC ?中,AC DC BD ==,E 是DC 的中点,求证:AD 平分BAE ∠. 证 例2、如图,BD AC //,EA ,EB 分别平分CAB ∠,DBA ∠, CD 过点E ,求证:BD AC AB += 证明:在AB 上截取AC AF =,连接EF ∴ ∴ E C A B D F E A B C

三角形辅助线的作法总结

三角形---作辅助线 知识点一:利用转化倍角,构造等腰三角形 当一个三角形中出现一个角就是另一个角的2倍时,我们就可以通过转化倍角寻找到等腰三角形、 如图①中,若∠ABC=2∠C,如果作BD平分∠ABC,则△DBC就是等腰三角形; 如图②中,若∠ABC=2∠C,如果延长线CB到D,使BD=BA,连结AD,则△ADC 就是等腰三角形; 如图③中,若∠B=2∠ACB,如果以C为角的顶点,CA为角的一边,在形外作∠ACD=∠ACB,交BA的延长线于点D,则△DBC就是等腰三角形、 1、如图,△ABC中,AB=AC,BD⊥AC交AC于D、求证:∠ DBC= 1 2 ∠BAC、 2、如图,△ABC中,∠ACB=2∠B ,BC=2AC、求证:∠A=90°、 知识点二:利用角平分线+平行线,构造等腰三角形当一个三角形中出现角平分线与平行线时,我们就可以寻找到等腰三角形、 如图①中,若AD平分∠BAC,AD∥EC,则△ACE就是等腰三角形; 如图②中,AD平分∠BAC,DE∥AC,则△ADE就是等腰三角形; 如图③中,AD平分∠BAC,CE∥AB,则△ACE就是等腰三角形; 如图④中,AD平分∠BAC,EF∥AD,则△AGE 3、如图P,BC, E,、 4、如图,且 求证:EF 知识点三:利用角平分线+垂线, 当一个三角形中出现角平分线与垂线时, 中, 若AD平分∠BAC,AD⊥DC,则△AEC就是等腰三角形、 5、如图2,已知等腰Rt△ABC中,AB=AC,∠BAC=90°,BF平分∠ BF的延长线于D。求证: BF=2CD、 知识点四:截长补短法 6、如图,已知:正方形ABCD中,∠BAC的平分线交BC于E, 求证:AB+BE=AC. 知识点五:倍长中线法 D C B A ① D ② C D C A B C B C D A ①② B C D A ③ B C D A

(word完整版)三角形常见辅助线做法总结,推荐文档

数学专题一一三角形中的常用辅助线 典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,△ ABC是等腰直角三角形,/ BAC=90,BD平分/ ABC交AC于点D, CE垂直于BD,交BD的延长线于点E。求证:BD=2CE (2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 例2:如图,已知△ ABC中, AD是/BAC的平分线,AD又是BC边上的中线求证:△ ABC是等腰三角形。

li (3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利 用的思维模式是三角形全等变换中的 “对折”,所考知识点常常是角平分线的性 质定理或逆定理。 例 3:已知,如图,AC 平分/ BAD CD=CB AB>AD 求证:/ B+Z ADC=180。 ① 关于角平行线的问题,常用两种辅助线; (4) 过图形上某一点作特定的平行线,构造全等三角形,利用的思维模式 是全等变换中的“平移”或“翻转折叠” 例4:如图,△ ABC 中,AB=AC E 是AB 上一点,F 是AC 延长线上一点,连 EF 交BC 于D,若EB=CF 求证:DE=DF B

《全等三角形》常见的辅助线作法----例题精讲

《全等三角形》问题中常见的辅助线的作法 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 【常见辅助线的作法有以下几种】 1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等 变换中的“旋转”。 3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形 全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。 4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。 5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长, 是之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、 差、倍、分等类的题目。 6、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来, 利用三角形面积的知识解答。 一、倍长中线(线段)造全等 (一)例题讲解 例1、(“希望杯”试题)已知,如图ABC ?中,5=AB ,3=AC ,求中线AD 的取值范围。 分析:本题的关键是如何把AB ,AC,AD 三条线段转化到同一个三角形当中。 解:延长AD到E ,使DA DE =,连接BE 又∵CD BD =,CDA BDE ∠=∠ ∴()SAS CDA BDE ???,3==AC BE ∵BE AB AE BE AB +- (三角形三边关系定理) 即822 AD ∴41 AD 经验总结:见中线,延长加倍。 例2、如图,ABC ?中,E 、F分别在A B、AC 上,DF DE ⊥,D是中点,试比较CF BE +与EF 的大小。 证明:延长FD 到点G,使DF DG =,连接BG 、EG ∵CD BD =,DG FD =,CDF BDG ∠=∠ ∴CDF BDG ??? E C A B D A

初中几何常见辅助线作法口诀

初中几何常见辅助线作法口诀 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。四边形 平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。 圆 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。虚心勤学加苦练,成绩上升成直线。 作法图形

平移腰,转化为三角形、平行四边形。 A B C D E 平移对角线。转化为三角形、平行四边形。 A B C D E 延长两腰,转化为三角形。 A B C D E 作高,转化为直角三角形和矩形。 A B C D E F 中位线与腰中点连线。 A B C D E F

相关主题
文本预览
相关文档 最新文档