当前位置:文档之家› 管网水质化学稳定性的评价指标分析

管网水质化学稳定性的评价指标分析

管网水质化学稳定性的评价指标分析

时 代 农 机

TIMES?AGRICULTURAL?MACHINERY

第 45 卷第 4 期2018 年 4 月 Apr.2018 Vol.45 No.4

2018年第4期

38

管网水质化学稳定性的评价指标分析

赵程伟

摘 要:文章针对当前管网水质化学稳定性的现状,阐述了水质化学稳定性的定义,管网水质化学稳定性的评价体系。

所谓化学稳定性的改变就是指管网水在输配水过程中,水中各种化合物之间或者化合物与管道内壁之间发生反应,使得管网水水质恶化和管道内壁结垢或腐蚀。管网水的化学稳定性较好,在水工业中被定义为既不溶解也不沉积CaCO3。

给水管网的化学稳定性能在较长时间内表现的较为稳定,但水流状态和离子浓度的改变会引起稳定性的波动,特别是水中的腐蚀性离子。因此,完善供水管网的水质化学稳定性评价体系,对控制管网的腐蚀、保护管网和提高管网水质具有重大意义。关键词:管网水质;指标分析;化学稳定性

(四川大学?建筑与环境学院,四川?成都?610000)

作者简介:赵程伟,研究方向:土木工程。

1 管网水质化学稳定性的评价

给水化学稳定性的判定指数通常被分成两类:基于碳酸钙溶解平衡理论的指数和基于其它水质参数的指数。1.1 基于碳酸钙溶解平衡的指数1.1.1 Langelier饱和指数

饱和指数LSI?由Langelier 提出,其计算方法为:LSI=pH-pHs,其中pHs?称作饱和pH?值,指在CaCO 3?饱和平衡时的pH?值。其判定方法为:当LSI<0?时,CaCO 3?未饱和,有腐蚀趋势;LSI>0?时,CaCO 3?过饱和,有结垢趋势;LSI=0?时,既无结垢也无腐蚀趋势。

该指数认为在某一水温下水体达到碳酸钙饱和状态时,pHs?是一个定值。这样就可以根据pHs?判断水中CaCO 3?的溶解平衡,还能通过LSI?值来调整实际pH?值来控制水质稳定。但该理论没有考虑到水中悬浮杂质和腐蚀产物对结晶的诱导作用,也没有考虑到天然阻垢剂对结晶成长的阻碍和分散作用。

1.1.2 Ryznar稳定指数

稳定指数RSI?由Ryznar 在LSI?的基础上,根据大量实际工程资料与实验数据提出的半经验公式。其定义为:RSI=2pHs-pH,其判定方法为:RSI?值为4.0?~?5.0,水质严重结垢;5.0~6.0?时,轻度结垢;6.0~7.0?时,基本稳定;7.0~7.5时,轻度腐蚀;7.5~9.0?时,严重腐蚀;9.0?以上,极严重腐蚀。该指数的判定结果与实际较吻合,但存在与LSI?同样的局限性。

1.1.3 CCPP碳酸钙沉淀势

CCPP 由Rossum?提出,能定量的算出待测水中应该沉淀或溶解多少CaCO 3?才能使水体达到化学稳定。CCPP?主要考虑的是碳酸钙溶解和沉淀这两个过程,其他对碳酸钙平衡影响较小的离子不予考虑(如Mg +,SO 42-?等)。CCPP?有以碱度和钙离子数量两种计算方式,使用钙离子的计算方式为:

CCPP=100([Ca 2+]i-[Ca 2+]eg),其中,CCPP?的单位为mg/L,[Ca 2+]?的单位为mol/L,i?和eq?分别代表待测水原有和碳酸钙平衡后的钙离子浓度。其判定方法为:CCPP?值<-10?时,水体严重腐蚀;-10~-5?时,中度腐蚀;-5~0?时,

轻微腐蚀;0~4时,基本不结垢或者轻微结垢;4~10?时,轻微结垢;10~15?时,较严重结垢;>15?时,严重结垢。1.2 基于其他参数的稳定指数

拉森比率LR。水体的腐蚀性强弱主要取决于水体中腐蚀离子(氯离子和硫酸根)的多少,但不管是原水还是管网水,水体中仍然存在着天然的缓蚀成分。Larson?和Skold 在分析了大量数据后发现,HCO 3-?有着缓解腐蚀的作用,并提出了拉森比率,其表达式为LR=[Cl -]+2[SO 42-]/[HCO 3-]。Larson 认为?LR 应小于?0.2?以降低水的腐蚀性。

2 结语

在建立适合某地区的水质稳定性评价体系时,要根据水质和管材使用选择合适的评价指标;LSI、RSI 可对原水的性质起到定性的预示作用,LR?计算简便,评价结果与实际水体的吻合率较高,通常三者联用。另外,使用以上指数判定出的水质稳定性并不代表着腐蚀或者结垢现象不会

发生,即铁质管材在结垢性较强的水中仍会腐蚀。

参 考 文 献

[1]方伟.城市供水系统化学稳定性及其控制方法研究[D].湖南: 湖南大学,2007,2-11.

[2]LangelierW.F..The Analytical Control of Anti-Corrosion Water Treatment.American Water Works Association,1936,28(10): 1500-1505.

[3]RyznarJ.W..A new Index for Determining Amount of Calcium Carbonate Scale Formed by a Water. American Water Works Association,1944,36(4):472-477.

[4]Merrill D.T.,SanksR.L..Corrosion Control by Deposition of CaCO3 Films :A partical Approach for Plant Operators.American Water Works Association,1977,69(11):592-597.

[5]许仕荣,赵伟,王长平,等.碳酸钙沉淀势理论计算模型及其 应用[J].给水排水,2012,38(5)157-160.

水质中常用的指标有哪些

水质中常用的指标有哪些? 1、有机化学指标溶解氧(Dissolved oxygen简称DO)指溶解在水中的分子态氧(O2),简称DO)。水中溶解氧的含量与大气压、水温及含盐量等因素有关。大气压力下降、水温升高、含盐量增加,都会导致溶解氧含量减 低。一般清洁的河流,DO可接近其温度的饱和值,当有大量藻类繁殖时,溶解氧可能过饱和;当水体受到有机物质、无机还原物质污染时,会使溶解氧含 量降低,甚至趋于零,此时厌氧细菌繁殖活跃,水质恶化。水中溶解氧低于3~4mg/L时,许多鱼类呼吸困难,窒息死亡。溶解氧是表示水污染状态的重 要指标之一。化学需氧量(Chemical oxygen demand 简称COD)化学需氧量是指以重铬酸钾(K2Cr2O7)或高锰酸钾(KMnO4)为氧化剂,氧化水中的还原性物质所消耗氧化剂的量,结果折算成氧的量(以mg/L计)。水中还原性物质包括有机物和亚硝酸盐、硫化物、亚铁盐等无机物。化学需氧量反应了水中受还原性物质污染的程度。基于水体被有机物污染是很普遍的现象,该指标也作为有机物相对含量的综合指标之一,在与水质有关的各种法令中均采用它作为控制项目。注:我国颁布的环境地面水质标准(1988年)中,规定了以酸性重铬酸钾法测得的COD值称为化学需氧量,(简称CODCr),而将高锰酸钾法测得的COD值称为高锰酸盐指数,(简称CODMn)。高锰酸盐指数,耗氧量(CODMn)高锰酸盐指数,又称为耗氧量,是反映水体中有机及无机可氧化物质污染的常用指标。定义为:在一定条件下,用高锰酸钾氧化水样中的某些有机物及无机还原性物质,由消耗的高锰酸钾量计算相当的氧量。它反映了水中悬浮和溶解的可被高锰酸钾氧化的那一部分无机物和有机物的量。高锰酸盐指数在以往的水质监测分析中,亦有被称为化学需氧量的高锰酸钾法。但是,由于这种方法在规定条件下,水中有机物只能部分被氧化,并不是理论上的需氧量,也不是反映水体中总有机物含量的尺度,因此,用高锰酸盐

水环境质量评价方法分析

水环境质量评价方法分析 1 水环境质量评价 水环境质量评价就是通过一定的数理方法和其他手段,对水环境素质的优劣进行定量描述(或将量质变换为评语)的过程。水环境质量评价必须以监测资料为基础,经过数理统计得出统计量(特征数值)及环境的各种代表值,然后依据水环境质量评价方法及水环境质量分级分类标准进行环境质量评价。 2 水环境质量评价的作用及分类 水环境质量评价是进行环境管理的重要手段之一。通过水环境质量评价可以了解环境质量的过去、现在和将来发展趋势及其变化规律,制定综合防治措施与方案;可以了解和掌握影响本地区环境质量的主要污染因子和主要污染源,从而有针对性地制定改善环境质量的污染源治理方案和综合防治规划与计划;可以为制定国家或地方的环境标准、法规、条例细则等提供科学依据;可以进行环境质量的预断预报,编制新建、改建、扩建和挖潜、革新、改造等工程技术项目的环境影响报告书和防治方案,为选址、设计和生产布局提供科学依据,还可用以总结本地区的环保工作,鉴定防治措施的效果、写出年度环境质量报告书,进行不同地区间环境质量的比较,交流情报资料,进行全国环境质量统计,促进环保科研技术的发展以及是否以牺牲水环境质量和人民健康而换取经济发展高速度的损益分析等。 按不同的分类方法,大致上可将水环境质量评价分为以下几种类型:1)按照时间可分为回顾评价、现状评价和预断评价;2)按照区域类型可分为城市、区域或流域、景区等;3)按照环境的专业用途又可分为饮用水、灌溉水、渔业用水等质量评价。 3.水环境质量评价内容 3.1评价方法分析 1.单因子评价法 现行的《地表水环境质量标准》(GB3838-2002)中明确规定:“地表水环境质量评价应根据应实现的水域功能类别,选取相应类别标准,进行单因子评价”。单因子评价法的实质是评价过程采用变权来处理评价因子,对污染最重因子赋以100%权重。因此,该方法未考虑水质评价全部因子的贡献,水质监测信息未充分利用。与其他方法相比,其水质评价结果是差的,表现为过保护。有时会由于过于严格的要求把水域使用功能评价得偏低各评价参数之间互不联系,不能全面反映水体污染的综合情况但该方法评价过程简单,无需复杂计算。 以金沙江流域铁路桥断面为例,按单因子方法,其评价等级为Ⅳ类,定级项目为石油类,但其他7项污染因子均好于Ⅰ类水质标准。再如新濉河大屈断面,按单因子方法,其评价等级为劣Ⅴ类,定级项目为氨氮,CODMn也超标(Ⅳ类),BOD5、石油类、挥发酚、汞、铅这5个项目均好于Ⅰ类水质标准,DO好于Ⅱ类水质标准。按4种分级评分法评价,铁路桥断面均评价为Ⅰ类,大屈断面则评价为Ⅲ类(灰色关联)、Ⅴ类(模糊综合)、Ⅰ类(物元可拓)、Ⅱ类(标识指数)。比较各种方法评价结果,如果按单因子评价法,将这两个断面评价为Ⅳ类和劣Ⅴ类结果偏严。因此,当仅有1项指标污染较重时,分级评分法较为合适;当有2项以上指标污染较重时,物元分析法评价结果偏松,标识指数法和灰关联分析法 2.污染指数评价法 污染指数评价法是用水体各监测项目的监测结果与其评价标准之比作为该项目的污染分指数,然后通过各种数学手段将各项目的分指数综合而得到该水体的污染指数,以此代表水体的污染程度。对分指数的处理不同,使水质评价污染指数存在着不同的形式,包括简单叠加指数、算术平均值指数、均方根指数、最大值指数、内梅罗指数等。 111简单叠加指数 选定若干评价参数, 将各参数的实际浓度Ci和其相应地评价标准浓度( Coi) 相比,求出各参

化学上的“活泼性”和“稳定性”

化学上的“活泼性”和“稳定性” 化学上常涉及“活泼性”和“稳定性”这两个非常重要的概念,例如:“金属(或非金属)的活泼性”;“气态氢化物的稳定性”、“酸的稳定性”等等。在必修课的学习中我们没有进行仔细区分,但是选修3关于共价键参数中给了一系列键能数据,特别是卤素单质的键能数据,不追究还真就糊涂了。 通常而言,很活泼的物质稳定性就差,很稳定的物质活泼性就差。但是“活泼性”和“稳定性”两者所研究的对象往往是有所区别的。“活泼性”通常是指物质的得或失电子的过程,例如:“碱金属是活泼的金属”,“卤素是活泼的非金属”。而稳定性又分为两种情况:一是化学稳定性,;二是热稳定性。化学稳定性通常是指物质因水解、氧化(或还原)而是否变质的化学过程。热稳定性是指物质在常温下或受热时是否分解的化学过程。以下就是一些物质热稳定性的判断规律: 1.一般而言单质的热稳定性与构成单质的化学键牢固程度正相关;而化学键牢固程度又与键能正相关。 具体来说:单质稳定是指分子内原子间的键能大,化学键不易断裂;活泼性是指分子发生化学反应的容易与否。不过单质的稳定性很少单独使用,而单质参与反应的过程实际分两个步骤,一是吸收键断裂所需的能量,将分子分解为原子(体现键能——稳定性),二是将不同原子重新结合形成新物质(体现非金属性)。由于一般反应中供应的能量都很大,很少存在能量不够一个分子反应的情况,当所供应的能量都足够的时候,毫无疑问由非金属性强弱决定反应的容易与否。例如:对于卤素来说,虽然其键能递减(除F2,因为F半径很小,斥力很大则使得键能反常减小),分子越来越不稳定,断裂成原子越来越容易。但是由于卤素原子吸引电子的能力减弱,反应就越难,最终表现为化学性质越不活泼,与非金属性减弱相一致,而与稳定性无关。因此,氟氯溴碘单质反应剧烈程度下降。相反,对于N2,由于三键的存在,键能很大,一般不能满足断键的条件,即使氮电负性较大也不发生反应,所以N2的稳定性决定了不活泼性。 2.气态氢化物的热稳定性:元素的非金属性越强,键能越大,形成的气态氢化物就越稳定(最有规律也最常用)。同主族的非金属元素,从上到下,随核电荷数的增加,非金属性逐渐减弱,气态氢化物的稳定性逐渐减弱;同周期的非金属元素,从左到右,随核电荷数的增加,非金属性逐渐增强,气态氢化物的稳定性逐渐增强。 3.氢氧化物的热稳定性:金属性越强,碱的热稳定性越强(碱性越强,热稳定性越强)。 4.含氧酸的热稳定性:绝大多数含氧酸的热稳定性差,受热脱水生成对应的酸酐。一般地: ①常温下酸酐是稳定的气态氧化物,则对应的含氧酸往往极不稳定,常温下可发生分解。 ②常温下酸酐是稳定的固态氧化物,则对应的含氧酸较稳定,加热时才分解。 ③某些含氧酸分解是发生氧化还原反应,得不到对应的酸酐。例如硝酸、次氯酸。 5.含氧酸盐的热稳定性: ①酸不稳定,对应的盐也不稳定;酸较稳定,对应的盐也较稳定。例如硫酸盐和磷酸盐比较稳定。 ②同一种酸的盐,热稳定性顺序是正盐>酸式盐>酸。 ③同一酸根的盐的热稳定性顺序是碱金属盐>过渡金属盐>铵盐。 ④同一成酸元素,高价含氧酸比低价含氧酸稳定,相应含氧酸盐的稳定性顺序也是如此。

环境海洋学化学部分答案综述

一.名词解释 1.常量元素:即海水的主要的成分。除组成水的H和O外,溶解组分的含量大于1mg/kg的仅有11种,包括Na+、Mg2+、Ca2+、K+和Sr2+五种阳离子,Cl-、SO42-、CO32-(HCO3-)、Br-和F-五种阴离子,以及H3BO3分子。这些成分占海水中总盐分的99.9%,所以称主要成分。 2.营养元素:主要是与海洋生物生长有关的一些元素,通常是指N、P和Si。 3.主要成分恒比定律:尽管各大洋各海区海水的含盐量可能不同,但海水主要溶解成分的含量间有恒定的比值,这就是海水主要成分的恒比定律,也称为Marcet-Dittmar恒比定律。 4.元素的保守性:海水中物质的浓度只能被物理过程(蒸发和降水稀释)而不被生物和化学过程所改变。 5.海水的碱度:在温度为20℃时,1L海水中弱酸阴离子全部被释放时所需要氢离子的毫摩尔数 6.碳酸碱度:由CO32-和HCO3-所形成的碱度 7.硼酸碱度:由B(OH)4-所形成的碱度 8.海洋低氧现象:对水生生物的生理或行为,如生长速率、繁殖能力、多样性、死亡等产生有害影响的氧环境。通常把溶解氧浓度不大于2mg/L作为缺氧判断临界值。 9.悬浮颗粒物:简称“悬浮物”,亦称“悬浮体”、“悬浮固体”或“悬浮胶体”,是能在海水中悬浮相当长时间的固体颗粒,包括有机和无机两大部分。 10.硝酸盐的还原作用:NO3-被细菌作用还原为NO2-,并进一步转化为NH3或NH4+的过程 11.反硝化作用:NO3-在某些脱氮细菌的作用下,还原为N2或NO2的过程 12.海洋生物固氮作用:通过海-气界面交换进入海水中的溶解N2,在海洋中某些细菌和蓝藻的作用下还原为NH3、NH4+或有机氮化合物的过程。 13.Redfield比值:海洋漂游生物对营养盐的吸收一般按照C:N:P=106:16:1进行,这一比例关系常被称为Redfield比值。 14.营养盐限制:营养盐比例不平衡会导致浮游植物生长受制于某一相对不足的营养盐,通常被称为营养盐限制。 15.氮限制海区:一个海区含氮营养盐含量相对不足,导致浮游植物生长受制于氮营养盐。 16.磷限制海区:一个海区含磷营养盐含量相对不足,导致浮游植物生长受制于磷营养盐。

最新水质分析中的常用指标

1 水质分析中的常用指标 2 1、有机化学指标 3 4 溶解氧 (Dissolved oxygen简称DO) 5 指溶解在水中的分子态氧(O2),简称DO)。水中溶解氧的含量与大气压、水6 温及含盐量等因素有关。大气压力下降、水温升高、含盐量增加,都会导致溶7 解氧含量减低。 8 一般清洁的河流,DO可接近其温度的饱和值,当有大量藻类繁殖时,溶解9 氧可能过饱和;当水体受到有机物质、无机还原物质污染时,会使溶解氧含量降10 低,甚至趋于零,此时厌氧细菌繁殖活跃,水质恶化。水中溶解氧低于3~4mg/L 11 时,许多鱼类呼吸困难,窒息死亡。溶解氧是表示水污染状态的重要指标之一。 12 化学需氧量(Chemical oxygen demand 简称COD) 13 化学需氧量是指以重铬酸钾(K2Cr2O7)或高锰酸钾(KMnO4)为氧化剂,氧化14 水中的还原性物质所消耗氧化剂的量,结果折算成氧的量(以mg/L计)。水中15 还原性物质包括有机物和亚xiao 酸盐、硫化物、亚铁盐等无机物。化学需氧量16 反应了水中受还原性物质污染的程度。基于水体被有机物污染是很普遍的现象,17 该指标也作为有机物相对含量的综合指标之一,在与水质有关的各种法令中均18 采用它作为控制项目。 19 注:我国颁布的环境地面水质标准(1988年)中,规定了以酸性重铬酸钾法20 测得的COD值称为化学需氧量,(简称CODCr),而将高锰酸钾法测得的COD值21 称为高锰酸盐指数,(简称CODMn)。 22 高锰酸盐指数,耗氧量(CODMn)

23 高锰酸盐指数,又称为耗氧量,是反映水体中有机及无机可氧化物质污染24 的常用指标。定义为:在一定条件下,用高锰酸钾氧化水样中的某些有机物及25 无机还原性物质,由消耗的高锰酸钾量计算相当的氧量。它反映了水中悬浮和26 溶解的可被高锰酸钾氧化的那一部分无机物和有机物的量。 27 高锰酸盐指数在以往的水质监测分析中,亦有被称为化学需氧量的高锰28 酸钾法。但是,由于这种方法在规定条件下,水中有机物只能部分被氧化,并29 不是理论上的需氧量,也不是反映水体中总有机物含量的尺度,因此,用高锰酸30 盐指数这一术语作为水质的一项指标,以有别于重铬酸钾法的化学需氧量,更31 符合于客观实际。 32 CODcr一般为CODMn的2到5倍,我们在实际工作中得到的数据基本上都在33 这个范围 34 生化需氧量(Biochemical oxygen demand简称BOD) 35 生化需氧量是指在有溶解氧的条件下,好氧微生物在分解水中有机物的生36 物化学氧化过程中所消耗的溶解氧量。同时亦包括如硫化物、亚铁等还原性无37 机物质氧化所消耗的氧量,但这部分通常占很小比例。 38 有机物在微生物作用下好氧分解大体上分为两个阶段。 39 1)含碳物质氧化阶段,主要是含碳有机物氧化为二氧化碳和水; 40 2)硝化阶段,主要是含氮有机化合物在硝化菌的作用下分解为亚xiao 酸盐41 和xiao 酸盐。约在5-7日后才显著进行。故目前常用的20℃五天培养法(BOD5 42 法)测定BOD值一般不包括硝化阶段。 43 BOD是反映水体被有机物污染程度的综合指标,也是研究废水的可生化降解44 性和生化处理效果,以及生化处理废水工艺设计和动力学研究中的重要参数。

层次分析法在水环境质量评价的方法

X学院 毕业论文 中文题目:层次分析法在水环境质量评价的 应用 学生姓名X 系别X 专业班级X 指导教师X 成绩评定 2011 年6月

目录 1 引言 (1) 2 水环境评价国内外研究现状及发展趋势 (1) 2.1 水环境质量评价国内外研究现状 (1) 2.2 水环境质量评价发展趋势 (4) 3 水环境质量评价应用 (5) 3.1 玄武湖水质概况 (5) 3.2 层次分析法简介及基本步骤 (5) 3.3 玄武湖质量评价计算 (5) 3.3.1 西北湖质量评价计算 (6) 3.3.2 东南湖质量评价计算 (9) 3.3.3 东北湖质量评价计算 (11) 3.3.4 西南湖质量评价计算 (13) 3.4 计算结果 (15) 4 结论 (15) 参考文献 (17) 致谢 (18) 附表 (19)

摘要 玄武湖是南京城区内最大的湖泊,分为西北,东南,西南和东北四个湖区。随着人口的不断增长,大量的生活污水被排入湖中,使得湖水逐年水质污染严重,近年来大有加重趋势。水质将变浑发臭,严重影响了城市环境和市民身体健康。因此,对玄武湖整治是势在必行的。本次研究是根据玄武湖实测水质指标资料,应用层次分析法,通过建立层次分析模型体系,经计算最终得出各指标权重,从而对玄武湖四个湖区水资源质量状况进行相关分析与评价,并提出保护水资源措施,为更好的开发和利用水资源提供参考。此次研究结果表明,湖水中BOD5超标严重,应采取针对性治理。 关键词:玄武湖;层次分析法;权重;水环境评价

层次分析法在玄武湖水环境评价的应用 X 1 引言 玄武湖位于南京城东北,为全国五大城市湖泊之一。湖泊总面积4.42 km,其中湖水面积3.912 km。从80年代开始,玄武湖流域 km,湖中陆地面积0.492 人口迅速增加,大量的生活污水排入湖内,使湖水中的有机物,营养盐的负荷不断增加。2003年的水质监测报告表明:玄武湖水质的总氮超标率为8.3%。另一项针对玄武湖底层泥巴的调查实验表明,表面上一汪清水的玄武湖,底层的那些淤泥重金属含量,已经超过了南京城市的土壤的重金属含量[1]。本研究的目的是运用层次分析法来研究玄武湖水环境问题,通过分析计算确定其污染程度及主要污染物,并对玄武湖水质进行相关评价,以期为提高和改善玄武湖的水环境提供有效途径和理论依据。水环境评价能为决策者提供有效的辅助决策信息,对于水环境保护和实现可持续发展具有重要意义。其研究成果将大大提高玄武湖水环境管理与决策的水平,对于更好地利用和保护水资源、控制水污染,都具有重要的现实意义和深远的历史意义。 2 国内外研究现状及发展趋势 2.1 国内外水环境评价研究现状 国内外环境质量评价方法多种多样,但目前国内还没有制定出统一的评价方法标准供环保工作者使用[2]。其中水环境质量评价方法较多如:布朗水质指数、普拉特水质指数、罗斯水质指数、内梅罗水质指数、综合污染指数、模糊数学法和地图叠加法等,最后一种方法是国内目前普遍采用的方法,简单且实用。以上种种评价方法都要首先确定断面单项指标代表值,大多用平均值作为代表值,而内梅罗水质指数法则既考虑到平均值,同时考虑端值对评价结果的影响,但评价工作中有很多具体问题不易解决,很少采用。其他方法还牵涉到标准问题或评价指标的权重问题,也很少采用[3]。 水质评价方法有两大类,一类是以水质的物理化学参数的实测值为依据的评价方法;另一类是以水生物种群与水质的关系为依据的生物学评价方法。较多采用的是物理化学参数评价方法,其中又分:①单项参数评价法即用某一参数的实测浓度代表值与水质标准对比,判断水质的优劣或适用程度。②多项参数综合评价法即把选用的若干参数综合成一个概括的指数来评价水质,又称指数评价法。

实验十二阿司匹林水溶液的稳定性预测

药剂学实验 目录 一、基本知识与技能 一)药剂学实验任务 二)药物剂型的分类 三)药剂学实验室常用仪器简介 二、验证性实验 实验一溶液型液体药剂的制备 实验二乳浊型液体药剂的制备及油类所需HLB值的测定实验三混悬型液体制剂的制备及稳定性观察 实验四氯霉素眼药水的制备 实验五双氯酚酸钠缓释片的制备及一般质量评估 实验六双氯酚酸钠缓释片主药含量及释放度的测定 实验七软膏剂的制备及不同类型软膏基质体外释药实验实验八凝胶剂的制备 实验九阿司匹林水溶液的稳定性预测 实验十栓剂的制备 实验十一鱼肝油微型胶囊的制备 实验十二脂质体的制备 三、设计性实验 实验一包合物的制备 实验二不同软膏基质的制备及对药物释放的影响 实验三固体分散体的制备 四、综合性实验 实验一对乙酰氨基酚片剂的制备 实验二对乙酰水杨酸肠溶片的制备 实验三盐酸普鲁卡因注射剂的制备

基本知识与技能 一、药剂学实验任务 药剂学是研究药物处方组成、配制理论、生产技术以及质量控制等内容的综合性应用技术科学。随着医学、药学及相邻学科的发展,药剂学的内容有很大的发展。 药剂学实验是一门应用及实验性很强的学科,因此药剂学实验是学习药剂学重要的一环。本着强调基础理论、基本知识和基本技能的宗旨,通过典型制剂的处方设计、工艺操作/质量评定等实验内容,使进入专业课程学习的药学各专业本科生,能够进一步掌握主要剂型的理论知识、处方设计原理、制备方法;掌握主要剂型的质量控制、影响因素及考核方法;熟悉不同剂型在体外释药及动物经皮吸收实验方法及其速度常数测定;了解常用制剂机械。培养学生独立进行试验,分析问题和解决问题的能力,为学生将来参加制剂新品种、新剂型、新工艺、新技术的研究与开发等打下坚实基础,为将来从事制剂研究与生产提供一个实践基础 二、药物剂型的分类 (一)按物质形态分类 1.液体剂型通常是将药物溶解或分散在一定的溶媒中而制成。如:芳香水剂、溶液剂、注射剂、合剂、 洗剂、搽剂等。 2.固体剂型通常将药物和一定的辅料经过粉碎、过筛、混合、成型而制成,一般需要特殊的设备。如:散剂、丸剂、片剂、膜剂等。 3.半固体剂型将药物和一定的基质经熔化或研匀混合制成。如:软膏剂、糊剂、凝胶剂等。 4.气体剂型将药物溶解或分散在常压下沸点低于大气压的医用抛射剂(propellants)压入特殊的给药装置 制成,称为气雾剂。 (二)按分散系统分类 1.真溶液型药物以分子或离子状态分散在一定的分散介质中,形成均匀分散体系。如:芳香水剂、溶液剂、糖浆剂、甘油剂、醑剂和注射剂等。 2.胶体溶液型以高分子分散在一定的分散介质中形成的均匀分散体系,也称为高分子溶液。如:胶浆剂、火棉胶剂和涂膜剂等。 3.乳剂型油类药物或药物的油溶液以微小液滴状态分散在分散介质中形成的非均匀分散体系。如:口服乳剂、静脉注射脂肪乳剂、部分软膏剂、部分搽剂等。 4.混悬型固体药物以微粒状态分散在分散介质中形成的非均匀分散体系。如:合剂、混悬剂等。 5.气体分散型液体或固体药物以微滴或微粒状态分散在气体分散介质中形成的分散体系。如:气雾剂。 (三)按给药途径分类 按照给药途径分类,剂型通常可分成两大类,即经胃肠道给药剂型和非经胃肠道给药剂型。 1.经胃肠道给药剂型药物制剂经口服给药,经胃肠道吸收发挥作。如:口服溶液剂、乳剂、混悬剂、散剂、颗粒剂、胶囊剂、片剂等。

地表水环境质量评价办法(试行)

附件: 地表水环境质量评价办法 (试 行) 二○一一年三月 —3—

目 录 一、基本规定 (6) (一)评价指标 (6) 1.水质评价指标 (6) 2.营养状态评价指标 (6) (二)数据统计 (6) 1.周、旬、月评价 (6) 2.季度评价 (6) 3.年度评价 (6) 二、评价方法 (7) (一)河流水质评价方法 (7) 1.断面水质评价 (7) 2.河流、流域(水系)水质评价 (7) 3.主要污染指标的确定 (8) (二)湖泊、水库评价方法 (9) 1.水质评价 (9) 2.营养状态评价 (10) (三)全国及区域水质评价 (11) 三、水质变化趋势分析方法 (12) (一)基本要求 (12) (二)不同时段定量比较 (12) —4—

(三)水质变化趋势分析 (13) 1.不同时段水质变化趋势评价 (13) 2.多时段的变化趋势评价 (14) 附录一:污染变化趋势的定量分析方法 (15) 附录二:术语和定义 (17) —5—

为客观反映地表水环境质量状况及其变化趋势,依据《地表水环境质量标准》(GB3838-2002)和有关技术规范,制定本办法。本办法主要用于评价全国地表水环境质量状况,地表水环境功能区达标评价按功能区划分的有关要求进行。 一、基本规定 (一)评价指标 1.水质评价指标 地表水水质评价指标为:《地表水环境质量标准》(GB3838-2002)表1中除水温、总氮、粪大肠菌群以外的21项指标。水温、总氮、粪大肠菌群作为参考指标单独评价(河流总氮除外)。 2.营养状态评价指标 湖泊、水库营养状态评价指标为:叶绿素a(chla)、总磷(TP)、总氮(TN)、透明度(SD)和高锰酸盐指数(COD Mn)共5项。 (二)数据统计 1.周、旬、月评价 可采用一次监测数据评价;有多次监测数据时,应采用多次监测结果的算术平均值进行评价。 2.季度评价 一般应采用2次以上(含2次)监测数据的算术平均值进行评价。 3.年度评价 国控断面(点位)每月监测一次,全国地表水环境质量年度评—6—

物质结构与化学稳定性综述

物质结构与化学稳定性综述 摘要:物质的化学稳定性是一个关乎其制备、使用、存放等问题的重要性质,在化学实验室中,我们经常需要了解物质的化学稳定性。从物质结构角度来说明物质的化学稳定性,才是对该物质性质的最本质解释。本文汇总简述了从不同层次分析的物质结构与化学稳定性的关系的理论。 关键词:物质结构,化学稳定性 1 前言:物质稳定性的概念 化学稳定性的定义是物质在物理、化学因素作用下保持原有化学性质的能力。从分析这些问题时所用到的化学理论来看,物质的化学稳定性有热力学稳定性与动力学稳定性之分。热力学稳定性是指在某体系中,该物质没有任何可想象的化学反应能自发地进行。化学动力学稳定性是指在某体系中,该物质至少有一个可想象的化学反应能自发地发生,只是这个反应在以无法观测到的、极慢的速度在进行着,从而可以被宏观地认为这个化学反应并没有发生。因为一个反应可以按许多历程进行,过渡态的寿命又很短,所以化学动力学研究的广度及深度与热力学稳定性相比大有不足,关于动力学稳定性的理论还很不完善。因此通常的化学物质稳定性研究,都仅限于物质的热力学稳定性。 因为其作用因素的多变性,物质的化学稳定性有针对性,必须明确、统一作用条件这个概念才有意义。同时物质的化学稳定性难以定量计量,是一个相对的概念,但可间接地通过热力学指标指示其强弱。 要从本质解释物质的稳定性,则需要研究物质的结构。一方面物质结构导致的物质能量高低体可以较好地反映物质的稳定性:能量高的结构不稳定,能量低的结构稳定;另一方面特殊的物质结构也可以解释热力学难以解释的物质对特定物质的异常的稳定或不稳定性。下文将简述从不同微观层次分析的物质结构与化学稳定性的关系的理论。 2 原子层面的结构与稳定性 2.1 核外电子排布情况 核外电子排布大多遵循如下规律: 1、泡利不相容原理:每个轨道最多只能容纳两个电子,且自旋相反配对; 2、能量最低原理:电子尽可能占据能量最低的轨道; 3、Hund规则:简并轨道(能级相同的轨道)只有被电子逐一自旋平行地占据后,才能容纳第二个电子; 4.等价轨道在全充满、半充满或全空的状态是比较稳定的。 因此有些单质的化学稳定性(即化学惰性或不活泼性)是可以用原子核外电子的排布情况来解释的。 如He、Ne、Ar、Kr这样的稀有气体,它们的最外层电子结构为ns2np6(氦为 1s2),最外电子层的电子已“满”(即已达成八隅体状态),是最稳定的结构。因此,通常条件下它们不与其它元素作用,化学性质极不活泼。 此外达到全充满、半充满或全空状态的离子具有强稳定性,易于失去或得到电子以达到全充满、半充满或全空状态的单质具有强不稳定性,也是可以预见的。譬如Na、K、Rb、Cs 等碱金属,最外层电子结构为ns1,易于失去一个电子形成全空(或低一级全充满)的稳定结构,因此其单质暴烈的反应性(不稳定性)是可以预见的,同理其一价阳离子的强稳定性也是易于得知的。 2.2 6s2惰性电子对效应

地表水环境质量评价办法(DOC 19页)

地表水环境质量评价办法(DOC 19页)

附件: 地表水环境质量评价办法 (试行)

(二)湖泊、水库评价方法 (9) 1.水质评价 (9) 2.营养状态评价………………………………………………………………… 10 (三)全国及区域水质评价……………………………………………………… 1 1 三、水质变化趋势分析方法………………………………………………………… 1 2 (一)基本要求 (12) (二)不同时段定量比较………………………………………………………… 1 2 (三)水质变化趋势分析………………………………………………………… 1 3 1.不同时段水质变化趋势评价……………………………………………… 1 3 2.多时段的变化趋势评价 (14) 附录一:污染变化趋势的定量分析方法 (15) 附录二:术语和定义 (17)

为客观反映地表水环境质量状况及其变化趋势,依据《地表水环境质量标准》(GB3838-2002)和有关技术规范,制定本办法。本办法主要用于评价全国地表水环境质量状况,地表水环境功能区达标评价按功能区划分的有关要求进行。 一、基本规定 (一)评价指标 1.水质评价指标 地表水水质评价指标为:《地表水环境质量标准》(GB3838-2002)表1中除水温、总氮、粪大肠菌群以外的21项指标。水温、总氮、粪大肠菌群作为参考指标单独评价(河流总氮除外)。(湖泊水质?) 2.营养状态评价指标 湖泊、水库营养状态评价指标为:叶绿素a(chla)、总磷(TP)、总氮(TN)、透明度(SD)和高锰酸盐指数(COD Mn)共5项。 (二)数据统计 1.周、旬、月评价 可采用一次监测数据评价;有多次监测数据时,应采用多次监

水污染常规分析指标

水污染常规分析指标是什么? 水污染常规分析指标主要有: (1)臭味,是判断水质优劣的感官指标之一,清洁水是无臭的,受到污染后才产生臭味。 (2)水温,是水体一项物理指标。水体水温升高.表明受到新污染源的污染。 (3)浑浊度.地面水浑浊主要是泥土、有机物、微生物等物质造成的。浑浊度升高表明水体受到胶体物质污染。我国规定饮用水的浑浊度不得超过5度。 (4)pH值,是水中氢离子活度的负对数,pH值为7表示水为中性,大于7 的水呈碱性,小于7的水呈酸性。清洁天然水的pH值为6.5—8.5,PH值异常,表示水体受到酸碱性的污染。 (5)电导率,是测定水中盐类含量的一个相对指标。溶解在水中的各种盐类都是以离子状态存在的,因此具有导电性,所以导电率的大小反映出水中可溶性盐类含量的多少。 (6)溶解性固体.主要是溶于水中的盐类,也包括溶于水中的有机物、能穿透过滤器的胶体和微生物,因此溶解性固体的大小反映上述物质溶于水中的多少。 (7)悬浮性固体,包括不溶于水的淤泥、粘土、有机物、微生物等细微物质。悬浮物的直径一般在2mm以下。它是造成水质浑浊的主要来源,是衡量水体污染程度的指标之一。 (8)总氮,是水中台有机氯、氨氮、亚硝酸盐氮和硝酸盐氯的总量,简称总氮,主要反映水体受污染的程度。 (9)总有机碳(TCO).是指溶解于水中的有机物总量,折合成碳计算。总有机碳含量是反映废水中有机物总量,是水体污染程度的重要指标。

(10)溶解氧(DO),是评价水体自净能力的指标。溶解氧含量较高,表示水体自净能力强;反之表示水体中污染物不易被氧化分解,此时厌氧性菌类就会大量繁殖,使水质变臭。 (11)生化需氧量或生化耗氧量(一般指五日生化学需氧量)BOD,水中有机物在微生物作用下,进行生物氧化,从而消耗了水中的氧。因此生化需氧量的大小能反映水体中有机物质含量的多少、说明水体受有机物污染的程度。 (12)化学需氧量(COD),是指用化学氧化剂氧化水中需氧污染物质时所消耗的氧量,主要反映水体受有机物污染的程度。COD数值越大,说明水体受污染越严重。 (13)细菌总数,反映水体受到生物性污染的程度。细菌总数增多表示水体的污染状况恶化。 (14)大肠菌群,是表示水体受人畜粪便污染的程度。大肠菌群越高,水体污染越重。我国生活饮用水水质卫生标准规定大肠菌指数每升水不得大于3个。 什么叫化学需氧量(COD)? 所谓化学需氧量(COD),是在一定的条件下,采用一定的强氧化剂处理水样时,所消耗的氧化剂量。它是表示水中还原性物质多少的一个指标。水中的还原性物质有各种有机物、亚硝酸盐、硫化物、亚铁盐等。但主要的是有机物。因此,化学需氧量(COD)又往往作为衡量水中有机物质含量多少的指标。化学需氧量越大,说明水体受有机物的污染越严重。化学需氧量(COD)的测定,随着测定水样中还原性物质以及测定方法的不同,其测定值也有不同。目前应用最普遍的是酸性高锰酸钾氧化法与重铬酸钾氧化法。高锰酸钾(KMnO4)法,氧化率较低,但比较简便,在测定水样中有机物含量的相对比较值时,可以采用。重铬酸钾(K2Cr2O7)法,氧化率高,再现性好,适用于测定水样中有机物的总量。有机物对工业水系统的危害很大。含有大量的有机物的水在通过除盐系统时会污染离子交换树脂,特别容易污染阴离子交换树脂,使树脂交换能力降低。有机物在经过预处理时(混凝、澄清和过滤),约可减少50%,但在除盐系统中

矩阵方法评定服务质量

运用矩阵方法进行服务质量评定 蒋曙东上海市质协用户评价中心 内 容 本文作者在多年开展服务性行业顾客满意度指数测量的实践过程中,基于顾客满意度优先改进矩阵(影响力-评价值)的方法原理,针对服务质量的改进分析提出了服务质量诊断矩阵,在综合考虑顾客满意度水平和服务质量稳定性的基础上,合理评定服务质量,并进一步明确顾客满意度优先改进的重点方向。关 键 词:顾客满意 顾客满意度测量 服务质量 服务质量评定 随着市场竞争的日趋加剧,企业尤其是服务性行业愈来愈认识到提供顾客满意的服务的重要性。服务性行业更需要借助顾客满意度测量来了解顾客的满意程度、把握顾客需求、了解企业服务的薄弱环节,为服务质量的持续改进提供科学依据。根据上海市质协用户评价中心提供的数据显示,2001年以第三方的身份进行的服务性行业、企业委托项目已占测评项目总数的38.9%[1]。目前这个比例仍呈上升趋势。 一、通过顾客满意度评定服务质量的常用方法 服务性行业可以根据顾客对服务质量相关过程和相关结果的主观感受评价,掌握服务质量的业绩水平,并将测量结果中评价相对较差的方面视作薄弱环节,并作为改进的方向。 随着社会主义市场经济的深入发展,服务性行业的管理部门已经转向宏观监管的功能,其管理模式如下图1所示。一些服务性行业管理部门运用顾客满意度测量的手段,定期掌握和分析行业服务质量顾客满意度的动态数据,作为其评定企业绩效的依据之一。 图1 服务性行业管理模式 在上海质量管理科学研究院的帮助下,上海市出租汽车行业于1999年建立了如下图2所示的顾客满意度测量框架,作为行业管理的主要手段之一。多年的实践证明顾客满意度测量已成为了上海市出租汽车行业的新的管理模式。通过长期有效的顾客满意度跟踪测量,上海市出租汽车行业取到如下一些成效:

最新水质分析中的常用指标

水质分析中的常用指标 1、有机化学指标 溶解氧(Dissolved oxygen简称DO) 指溶解在水中的分子态氧(O2),简称DO)。水中溶解氧的含量与大气压、水温及含盐量等因素有关。大气压力下降、水 温升高、含盐量增加,都会导致溶解氧含量减低。 一般清洁的河流,DO可接近其温度的饱和值,当有大量藻类繁殖时,溶解氧可能过饱和;当水体受到有机物质、无机还原物质污染时,会使溶解氧含量降低,甚至趋于零,此时厌氧细菌繁殖活跃,水质恶化。水中溶解氧低于3~4mg/L时,许多鱼类呼吸困难,窒息死亡。溶解氧是表示水污染状态的重要指标之一。 化学需氧量(Chemical oxygen demand 简称COD) 化学需氧量是指以重铬酸钾(K2Cr2O7)或高锰酸钾(KMnO4)为氧化剂,氧化水中的还原性物质所消耗氧化剂的量,结果折算成氧的量(以mg/L计)。水中还原性物质包括有机物和亚xiao 酸盐、硫化物、亚铁盐等无机物。化学需氧量反应了水中受还原性物质污染的程度。基于水体被有机物污染是很普遍的现象,该指标也作为有机物相对含量的综合指标之 一,在与水质有关的各种法令中均采用它作为控制项目。 注:我国颁布的环境地面水质标准(1988年)中,规定了以酸性重铬酸钾法测得的COD值称为化学需氧量,(简称CODCr),而将高锰酸钾法测得的COD值称为高锰酸盐指数,(简称CODMn)。 高锰酸盐指数,耗氧量(CODMn) 高锰酸盐指数,又称为耗氧量,是反映水体中有机及无机可氧化物质污染的常用指标。定义为:在一定条件下,用高锰酸钾氧化水样中的某些有机物及无机还原性物质,由消耗的高锰酸钾量计算相当的氧量。它反映了水中悬浮和溶解 的可被高锰酸钾氧化的那一部分无机物和有机物的量。 高锰酸盐指数在以往的水质监测分析中,亦有被称为化学需氧量的高锰酸钾法。但是,由于这种方法在规定条件下,水中有机物只能部分被氧化,并不是理论上的需氧量,也不是反映水体中总有机物含量的尺度,因此,用高锰酸盐指数这一术语作为水质的一项指标,以有别于重铬酸钾法的化学需氧量,更符合于客观实际。 CODcr一般为CODMn的2到5倍,我们在实际工作中得到的数据基本上都在这个范围 生化需氧量(Biochemical oxygen demand简称BOD) 生化需氧量是指在有溶解氧的条件下,好氧微生物在分解水中有机物的生物化学氧化过程中所消耗的溶解氧量。同时亦包括如硫化物、亚铁等还原性无机物质氧化所消耗的氧量,但这部分通常占很小比例。 有机物在微生物作用下好氧分解大体上分为两个阶段。 1)含碳物质氧化阶段,主要是含碳有机物氧化为二氧化碳和水; 2)硝化阶段,主要是含氮有机化合物在硝化菌的作用下分解为亚xiao 酸盐和xiao 酸盐。约在5-7日后才显著进行。故 目前常用的20℃五天培养法(BOD5法)测定BOD值一般不包括硝化阶段。 BOD是反映水体被有机物污染程度的综合指标,也是研究废水的可生化降解性和生化处理效果,以及生化处理废水工艺 设计和动力学研究中的重要参数。 总磷(Total Phosphorus简称TP) 总磷为控制水体富营养化主要指标。以水中可被强氧化物质氧化转变成磷酸盐的各种形态磷的总量计。磷是植物生长的营养元素,也是生命必不可少的。如果水中的磷超过临界浓度后,就会刺激水生植物的生长,以至发生“藻花”,造成水 体的富营养化。 磷是由若干不同途径进入水体的,如排放含磷化合物的废水,农田的地表径流,以及畜牧场等。近年来,由于含磷洗涤 剂和其他日用含磷物质的使用,也增加了磷的排放量。 氨氮(Ammonia nitrogen简称NH3-N) 水中的氨氮是指以游离氨NH3(也称非离子氨)和离子氨NH4+形式存在的氮。对地面水,常要求测定非离子氨。两者的组成比决定于水的pH值和温度,当pH值偏高时,游离氨的比例较高,反之,则氨盐的比例较高。 水中氨氮主要来源于生活污水中含氮有机物受微生物作用的分解产物,焦化、合成氨等工业废水,以及农田排水等。氨氮含量较高时,对鱼类呈现毒害作用,对人体也有不同程度的危害。

管网水质化学稳定性的评价指标分析

时 代 农 机 TIMES?AGRICULTURAL?MACHINERY 第 45 卷第 4 期2018 年 4 月 Apr.2018 Vol.45 No.4 2018年第4期 38 管网水质化学稳定性的评价指标分析 赵程伟 摘 要:文章针对当前管网水质化学稳定性的现状,阐述了水质化学稳定性的定义,管网水质化学稳定性的评价体系。 所谓化学稳定性的改变就是指管网水在输配水过程中,水中各种化合物之间或者化合物与管道内壁之间发生反应,使得管网水水质恶化和管道内壁结垢或腐蚀。管网水的化学稳定性较好,在水工业中被定义为既不溶解也不沉积CaCO3。 给水管网的化学稳定性能在较长时间内表现的较为稳定,但水流状态和离子浓度的改变会引起稳定性的波动,特别是水中的腐蚀性离子。因此,完善供水管网的水质化学稳定性评价体系,对控制管网的腐蚀、保护管网和提高管网水质具有重大意义。关键词:管网水质;指标分析;化学稳定性 (四川大学?建筑与环境学院,四川?成都?610000) 作者简介:赵程伟,研究方向:土木工程。 1 管网水质化学稳定性的评价 给水化学稳定性的判定指数通常被分成两类:基于碳酸钙溶解平衡理论的指数和基于其它水质参数的指数。1.1 基于碳酸钙溶解平衡的指数1.1.1 Langelier饱和指数 饱和指数LSI?由Langelier 提出,其计算方法为:LSI=pH-pHs,其中pHs?称作饱和pH?值,指在CaCO 3?饱和平衡时的pH?值。其判定方法为:当LSI<0?时,CaCO 3?未饱和,有腐蚀趋势;LSI>0?时,CaCO 3?过饱和,有结垢趋势;LSI=0?时,既无结垢也无腐蚀趋势。 该指数认为在某一水温下水体达到碳酸钙饱和状态时,pHs?是一个定值。这样就可以根据pHs?判断水中CaCO 3?的溶解平衡,还能通过LSI?值来调整实际pH?值来控制水质稳定。但该理论没有考虑到水中悬浮杂质和腐蚀产物对结晶的诱导作用,也没有考虑到天然阻垢剂对结晶成长的阻碍和分散作用。 1.1.2 Ryznar稳定指数 稳定指数RSI?由Ryznar 在LSI?的基础上,根据大量实际工程资料与实验数据提出的半经验公式。其定义为:RSI=2pHs-pH,其判定方法为:RSI?值为4.0?~?5.0,水质严重结垢;5.0~6.0?时,轻度结垢;6.0~7.0?时,基本稳定;7.0~7.5时,轻度腐蚀;7.5~9.0?时,严重腐蚀;9.0?以上,极严重腐蚀。该指数的判定结果与实际较吻合,但存在与LSI?同样的局限性。 1.1.3 CCPP碳酸钙沉淀势 CCPP 由Rossum?提出,能定量的算出待测水中应该沉淀或溶解多少CaCO 3?才能使水体达到化学稳定。CCPP?主要考虑的是碳酸钙溶解和沉淀这两个过程,其他对碳酸钙平衡影响较小的离子不予考虑(如Mg +,SO 42-?等)。CCPP?有以碱度和钙离子数量两种计算方式,使用钙离子的计算方式为: CCPP=100([Ca 2+]i-[Ca 2+]eg),其中,CCPP?的单位为mg/L,[Ca 2+]?的单位为mol/L,i?和eq?分别代表待测水原有和碳酸钙平衡后的钙离子浓度。其判定方法为:CCPP?值<-10?时,水体严重腐蚀;-10~-5?时,中度腐蚀;-5~0?时, 轻微腐蚀;0~4时,基本不结垢或者轻微结垢;4~10?时,轻微结垢;10~15?时,较严重结垢;>15?时,严重结垢。1.2 基于其他参数的稳定指数 拉森比率LR。水体的腐蚀性强弱主要取决于水体中腐蚀离子(氯离子和硫酸根)的多少,但不管是原水还是管网水,水体中仍然存在着天然的缓蚀成分。Larson?和Skold 在分析了大量数据后发现,HCO 3-?有着缓解腐蚀的作用,并提出了拉森比率,其表达式为LR=[Cl -]+2[SO 42-]/[HCO 3-]。Larson 认为?LR 应小于?0.2?以降低水的腐蚀性。 2 结语 在建立适合某地区的水质稳定性评价体系时,要根据水质和管材使用选择合适的评价指标;LSI、RSI 可对原水的性质起到定性的预示作用,LR?计算简便,评价结果与实际水体的吻合率较高,通常三者联用。另外,使用以上指数判定出的水质稳定性并不代表着腐蚀或者结垢现象不会 发生,即铁质管材在结垢性较强的水中仍会腐蚀。 参 考 文 献 [1]方伟.城市供水系统化学稳定性及其控制方法研究[D].湖南: 湖南大学,2007,2-11. [2]LangelierW.F..The Analytical Control of Anti-Corrosion Water Treatment.American Water Works Association,1936,28(10): 1500-1505. [3]RyznarJ.W..A new Index for Determining Amount of Calcium Carbonate Scale Formed by a Water. American Water Works Association,1944,36(4):472-477. [4]Merrill D.T.,SanksR.L..Corrosion Control by Deposition of CaCO3 Films :A partical Approach for Plant Operators.American Water Works Association,1977,69(11):592-597. [5]许仕荣,赵伟,王长平,等.碳酸钙沉淀势理论计算模型及其 应用[J].给水排水,2012,38(5)157-160.

基础及水质指标

第一章水质概述 第一节常用化学名词概述 一、化学基本概念 (一)物质的量、摩尔质量 由于分子、原子太微小,用它们计量不方便,需要使用一个适当的物理量——物质的量进行计算。 物质的量是反映某系统中物质基本单元多少的物理量。或者说,物质B的物质的量n B是用系统中所含基本单元B的粒子数N B来确定(或衡量)的一个物理量。物质B的物质的n B与物质B的基本单元B的粒子数N B的关系如下式所示 nB=N B/L(L:阿伏加德罗常数,为6.0231023mol-1) 国际上规定物质的量的单位名称叫做“摩尔”,它也是我国现行的法定基本计量单位之一,单位符号为mol。 摩尔质量在计算及使用上比较方便,它是物质的量的一个导出量,是表达物质的量与质量的关系的。摩尔质量(M B)的定义为质量(m)除以物质的量(n B),即M B=m/n B。摩尔质量的单位是Kg/mol,化学分析中常用的单位为g/mol。例如: H2SO4的摩尔质量:M(H2SO4)=98g/mol 或 者M(1/2 H2SO4)=49 g/mol 注意:在法定计量单位中,用到物质的量浓度或摩尔质量时,必须指明基本单元,否则所说的摩尔就没有明确的意义了。 (二)酸和碱 根据酸碱质子理论,凡是能给出质子(H+)的物质就是酸;凡是能接受质子的物质就是碱。一种酸给出质子后,其剩余的部分就是碱;同理,一种碱接受质子后,其生成物便为酸。它们之间的关系可表示如下 HA(酸) ==== H+ +A- (一色)(另一色)

可见,酸和碱是不能彼此分开的,而是处于一种相互依存的关系中。酸和碱的这种依存关系称为共轭关系。即HA是A-的共轭酸,A-是HA 的共轭碱。 同时,该理论认为,酸碱反应的实质是质子的转移。例如HCl在水中的解离是由于作为溶剂的水起着碱的作用,而NH3.H2O在水中的解离是由于作为溶剂的水起着酸的作用。所以,我们认为,这些反应,都是酸碱反应,只不过在不同场合,H2O扮演着不同的角色。 在实际中,常用酸碱滴定法来测定未知物质的浓度,该法常借助于酸碱指示剂的颜色变化来指示滴定的终点。酸碱指示剂是结构复杂的有机酸或有机碱,因其酸式和共轭碱式具有不同的结构,因而呈现不同的颜色。当溶液pH值改变时,指示剂或给出质子由酸式变为共轭碱式,或接受质子由碱式变为共轭酸式,由于结构的变化而引起颜色的改变。表2-1是常用的指示剂及其变色范围。 表2-1 常用的酸碱指示剂 目前大多数电厂常用的酸主要是盐酸(HCl),作为离子交换树脂的再生剂及设备的清洗剂。盐酸(HCl)和硫酸(H2SO4)也是化学试验中常用的药剂,它们都有腐蚀性,浓盐

相关主题
文本预览
相关文档 最新文档