当前位置:文档之家› 比热容的测量

比热容的测量

比热容的测量
比热容的测量

固体比热容的测量

固体比热容的测量 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

固体比热容的测量 一、实验目的 1、掌握基本的量热方法——混合法; 2、测定金属的比热容; 3、学习一种修正散热的方法。 二、实验仪器 量热器、温度计( 0C 和 0C 各一支)、物理天平、待测金属粒、冰、停表、加热器、量筒等。 三、实验原理 1、 混合法测比热容 依据热平衡原理,温度不同的物体混合后,热量将由高温物体传给低温物体,如果在混合过程中和外界无热量交换,最后达到均匀稳定的平衡温度。根据能量守恒定律,高温物体放出的热量就应等于低温物体吸收的热量,即: 本实验即根据热平衡原理用混合法测定固体的比热。设量热器(包括搅拌器和温度计插入水中部分)的热容为C ,实验时,量热器内先盛以质量为0m ,温度为1t 的冷水,之后,把加热到温度为2t 质量为m 的待测金属块投入量热器中,经过热交换后,水量热器与金属块达到共同的末温θ,依热平衡方程有: ))(()(1002t C c m t mc -+=-θθ (1) 即 ) ())((2100θθ--+=t m t C c m c (2) 量热器的热容C 可以根据其质量和比热容算出。设量热器筒和搅拌器由相同的物质制成,其质量为1m ,比热容为1c ,则

(3) = + C' c m C 1 1 式中C'为温度计插入水中部分的热容。C'的值可由下式求出: C表示C'以J·0C-1为单位时的数值,而式中V为温度计插入水中部分的体积。{}10-?'C J {}3 V表示V以cm3为单位时的数值。 cm 2、系统误差的修正 上述讨论是在假定量热器与外界没有热交换时的结论。实际上只要有温度差异就必然会有热交换存在,因此实验结果总是存在系统误差,有时甚至很大,以至无法得到正确结果。所以,校正系统误差是量热学实验中很突出的问题。为此可采取如下措施:1)要尽量减少与外界的热量交换,使系统近似孤立体系。此外,量热器不要放在电炉旁和太阳光下,实验也不要在空气流通太快的地方进行。 2)采取补偿措施,就是在被测物体放入量热器之前,先使量热器与水的初始温度低于室温,但避免在两热器外生成凝结水滴。先估算,使初始温度与室温的温差与混合后末温高出室温的温度大体相等。这样混合前量热器从外界吸热与混合后向外界放热大体相等,极大地降低了系统误差。 3)缩短操作时间,将被测物体从沸水中取出,然后倒入量热器筒中并盖好的整个过程,动作要快而不乱,减少热量的损失。 4)严防有水附着在量热筒外面,以免水蒸发时带走过多的热量。 5)沸点的校正。在实验中,我们是取水的沸点为被测物体加热后的温度,但压强不同,水的沸点也有所不同。为此需用大气压强计测出当时的气压,再由气压与沸点的关系通过查表查出沸点的温度。 采取以上措施后,散热的影响仍难以完全避免。被测物体放入量热器后,水温达到最高温度前,整个系统还会向外散热。所以理论上的末温是无法得到的。这就需要通过

冷却法测金属比热容(P76) + 故障判断(P80)

在冷却法测金属比热容实验中,有公式?Q/?t =c1m 1?T1/?t,其中?Q/?t与?T1/?t 的含义是指: 答案1:热量损失;温度下降速率 答案2:热量损失;在温度T1时的温度下降速率 答案3:单位时间内的热量损失;温度下降速率 答案4:单位时间内的热量损失;在温度T1时的温度下降速率 正确答案为:4 如测量次数≥5次,总的不确定度为_____,如测量次数<5次,总的不确定度为_____,其中S x、Δx为_____不确定度。 答案1: 答案2: 答案3: 答案4: 正确答案为:4 在冷却法测金属比热容实验中,温度指示选择转换旋钮的“设定温度”档可用来设定 __________所需加热的温度,而当旋钮旋至“加热盘温度”档时,可用来_____________。答案1:加热盘;设定金属盘加热温度 答案2:加热盘;显示加热盘温度变化 答案3:金属盘;设定金属盘加热温度 答案4:金属盘;显示加热盘温度变化 正确答案为:2 在冷却法测金属比热容实验中,为了计算标准铜盘(或待测铝盘)在50℃的斜率,应采用下面哪一种方法: 答案1:在冷却曲线上任意选择两个点求斜率 答案2:在冷却曲线上在50℃附近选择两个点求斜率 答案3:在冷却曲线上在45℃—55℃之间选择两个点求斜率 答案4:在冷却曲线上在50℃处作曲线的切线,在切线上选择两个点求斜率 正确答案为:4

答案1:α1=α2;T10=T20 答案2:m1=m2;T10=T20 答案3:T10=T20;n1=n2 答案4:α1=α2;n1=n2 正确答案为:4 在冷却法测金属比热容实验中,有公式?Q/?t =c1m 1?T1/?t,其中?Q/?t与?T1/?t的含义是指: 答案1:热量损失;温度下降速率 答案2:热量损失;在温度T1时的温度下降速率 答案3:单位时间内的热量损失;温度下降速率 答案4:单位时间内的热量损失;在温度T1时的温度下降速率 正确答案为:4 在冷却法测金属比热容实验中,该实验仪器______用来测量室温,此时须把温度指示选择转换旋钮拔向__________________。 答案1:可以;“散热盘温度”档 答案2:可以;空档 答案3:不可以;空档 答案4:可以;“加热盘温度”档 正确答案为:1 在冷却法测金属比热容实验中,下列哪一项不属于本实验对金属样品的要求? 答案1:金属样品的直径应较大 答案2:金属样品的厚度应较小 答案3:金属样品的导热性能应较好 答案4:金属样品的表面状况应大致相同

固体比热容的测量

固体比热容的测量 一、 实验目的 1、 掌握基本的量热方法——混合法; 2、 测定金属的比热容; 3、 学习一种修正散热的方法。 二、 实验仪器 量热器、温度计(0、00-50、00 0C 与0、0-100、0 0C 各一支)、物理天平、待测金属粒、冰、停表、加热器、量筒等。 三、 实验原理 1、 混合法测比热容 依据热平衡原理,温度不同的物体混合后,热量将由高温物体传给低温物体,如果在混合过程中与外界无热量交换,最后达到均匀稳定的平衡温度。根据能量守恒定律,高温物体放出的热量就应等于低温物体吸收的热量,即: 本实验即根据热平衡原理用混合法测定固体的比热。设量热器(包括搅拌器与温度计插入水中部分)的热容为C,实验时,量热器内先盛以质量为0m ,温度为1t 的冷水,之后,把加热到温度为2t 质量为m 的待测金属块投入量热器中,经过热交换后,水量热器与金属块达到共同的末温θ,依热平衡方程有: ))(()(1002t C c m t mc -+=-θθ (1) 即 ) ())((2100θθ--+=t m t C c m c (2) 量热器的热容C 可以根据其质量与比热容算出。设量热器筒与搅拌器由相同的物质制成,其质量为1m ,比热容为1c ,则 C c m C '+=11 (3) 式中C '为温度计插入水中部分的热容。C '的值可由下式求出:

{}{ }3109.1cm C J V C ='-? 式中V 为温度计插入水中部分的体积。{}10-?'C J C 表示C '以J ·0 C -1为单位时的数值,而{}3cm V 表示V 以cm 3为单位时的数值。 2、 系统误差的修正 上述讨论就是在假定量热器与外界没有热交换时的结论。实际上只要有温度差异就必然会有热交换存在,因此实验结果总就是存在系统误差,有时甚至很大,以至无法得到正确结果。所以,校正系统误差就是量热学实验中很突出的问题。为此可采取如下措施: 1)要尽量减少与外界的热量交换,使系统近似孤立体系。此外,量热器不要放在电炉旁与太阳光下,实验也不要在空气流通太快的地方进行。 2)采取补偿措施,就就是在被测物体放入量热器之前,先使量热器与水的初始温度低于室温,但避免在两热器外生成凝结水滴。先估算,使初始温度与室温的温差与混合后末温高出室温的温度大体相等。这样混合前量热器从外界吸热与混合后向外界放热大体相等,极大地降低了系统误差。 3)缩短操作时间,将被测物体从沸水中取出,然后倒入量热器筒中并盖好的整个过程,动作要快而不乱,减少热量的损失。 4)严防有水附着在量热筒外面,以免水蒸发时带走过多的热量。 5)沸点的校正。在实验中,我们就是取水的沸点为被测物体加热后的温度,但压强不同,水的沸点也有所不同。为此需用大气压强计测出当时的气压,再由气压与沸点的关系通过查表查出沸点的温度。 采取以上措施后,散热的影响仍难以完全避免。被测物体放入量热器后,水温达到最高温度前,整个系统还会向外散热。所以理论上的末温就是无法得到的。这就需要通过实验的方法进行修正:在被测物体放入量热器前4-5min 就开始测度量热器中水的温度,每隔1min 读一次。当被测物体放入后,温度迅速上升,此时应每隔0、5min 测读一次。直到升温停止后,温度由最高温度均匀下降时,恢复每分钟记一次温度,直到第15min 截止。由实验数据作出温度与时间的关系t T -曲线,如图1所示。

常用固体 液体物质比热容

常用液体、固体比重-比热表 名称相态比重15.6至21℃比热15.6时kJ/Kg℃乙酸100% 液 1.05 2.01 乙酸10% 液 1.01 4.02 丙酮100% 液0.78 2.15 醇含乙醇95% 液0.81 2.51 醇含乙醇90% 液0.82 2.72 铝固 2.64 0.96 氨100% 液0.61 4.61 氨26% 液0.9 4.19 Aroclor 液 1.44 1.17 石棉板固0.88 0.8 沥青液 1 1.76 固体沥青固 1.1-1.5 0.92-1.67 苯液0.84 1.72 砖墙固 1.0-2.0 0.92 盐水-氯化钙25% 液 1.23 2.89 盐水-氯化钠25% 液 1.19 3.29 干粘土固 1.9-2.4 0.94 煤固 1.2-1.8 1.09-1.55(4℃)煤焦油固 1.2 1.47 固体焦固 1.0-1.4 1.11 铜固8.82 0.42 软木固0.25 2.01 棉固 1.5 1.34 棉籽油液0.95 1.97 导热姆 A 液0.99 2.64 导热姆 C 液 1.1 1.747-2.72 乙二酸液 1.11 2.43 脂肪酸-软脂液0.85 2.73 脂肪酸-硬脂液0.84 2.3 鲜鱼固 3.14-3.43 鲜水果固 3.35-3.68 汽油液0.73 2.22 耐热玻璃固 2.25 0.84 玻璃棉固0.072 0.66

胶,2份水1份干胶液 1.09 3.73 甘油100%(丙三醇)液 1.26 2.43 蜂蜜液 1.42 盐酸31.55%(氯化)液 1.15 2.51 盐酸10%(氯化)液 1.05 3.14 冰固0.9 2.09 冰淇淋固 2.93 猪油固0.92 2.68 铅固11.34 0.13 皮革固0.86-1.02 1.51 亚麻油液0.93 1.84 氧化镁85% 液0.208 1.13 枫树浆液/ 2.01 鲜猪肉固/ 3.27 牛奶液 1.03 3.77-3.89 镍固8.9 0.46 硝酸95% 液 1.05 2.09 硝酸60% 液 1.37 2.68 硝酸10% 液 1.05 3.77 1#燃油(煤油)液0.81 1.97 2#燃油液0.86 1.84 3#燃油液0.88 1.8 4#燃油液0.9 1.76 5#燃油液0.93 1.72 6#燃油液0.95 1.67 API中部原油液0.85 1.84 API汽油液0.88 1.76 纸固 1.7-1.15 1.88 石蜡固0.86-0.91 2.6 熔融石蜡液0.9 2.89 酚(碳酸)液 1.07 2.34 磷酸20% 液 1.11 3.56 磷酸10% 液 1.05 3.89 邻苯二酸酐液 1.53 0.97 硫化橡胶固 1.10 1.74 SAE-SW(8#机油)液0.88 /

金属比热容测定

热学实验论文 。混合法测定金属的比热容 物质比热容的测量属于量热学范围,由于量热实验的误差一般较大,所以要做好量热实验必须仔细分析产生各种误差的原因,并采取相应措施设法减小误差。 测定固体或液体的比热容,在温度变化不太大时常用混合量热法、冷却法、电流量热器法。本实验用混合法测定金属的比热容。 一、实验目的 1. 学习热学实验的基本知识,掌握用混合法测定金属的比热容的方法; 2. 学习一种修正系统散热的方法。 二、仪器及用具 量热器,水银温度计,物理天平,待测金属粒,停表,量筒,烧杯及电加热器等。 三、实验原理 1. 用热平衡原理侧比热容 在一个与环境没有热交换的孤立系统中,质量为m 的物体,当它的温度由最初平衡态0θ变化到新的平衡态i θ时,所吸收(或放出)的热量Q 为 )(0θθ-=i mc Q (1) 式中mc 称为该物体的热容,c 称为物体的比热容,单位为J/(kg·K )。 用混合法测定固体比热容的原理是热平衡原理。把不同温度的物体混合在一起时,高温物体向低温物体传递热量,如果与外界没有任何热交换,则他们最终达到均匀、稳定的平衡温度,这时称系统达到了热平衡。高温物体放出的热量1Q 与低温物体吸收的热量2Q 相等,即 1Q =2Q (2) 本实验的高温部分由量热器内筒、搅拌器、水银温度计和热水等组成,而处于室温的金属粒为系统的低温部分。设量热器内筒和搅拌器(二者为同种材料制成)的质量为1m ,比热容为1c ;热水质量为2m ,比热容为2c ;水银温度计的质量为3m ,比热容为3c ,它们的共同

温度为1θ。待测金属粒的质量为M ,比热容为c ,温度与室温0θ相同。将适量金属粒倒入量热器内筒中,经过搅拌后,系统达到热平衡时的温度为2θ。假设系统与外界没有任何热交换,则根据式(2)可知,实验系统的热平衡方程为 )())((022*******θθθθ-=-++Mc c m c m c m (3) 式中33c m 为温度计的热容,其值用1.92V(J/K)表示,这里的V 表示温度计浸入水中部分的 体积,单位用3cm 。于是,式(3)可写成 )())(92.1(02212211θθθθ-=-++Mc V c m c m 则金属粒的比热容c 为 )() )(92.1(02212211θθθθ--++=M V c m c m c (4) 式中M 、1m 、2m 均可由天平称衡;V 可用量筒采用排水法测出;1c 、2c 查书后附录二或由实验室给出,0θ为室温。若能知道1θ和2θ的值,便可计算出金属粒的比热容c 。下面通过修正系统散热误差的方法求出1θ和2θ的值。 2. 系统散热误差的修正(面积补偿法) 在热学实验中,系统不可能完全绝热,必然存在着散热现象,因此,必须对系统的散热进行修正。修正散热的方法之一就是对温度进行修正,其方法是通过作图用外推法求出实验系统的高温部分(量热器内筒、热水、搅拌器、水银温度计等)混合前的温度1θ以及混合后系统达到热平衡时的温度2θ。图2-25所示的是实验系统的温度随时间变化的曲线。图 中AB 段是未投入金属粒前系统的散热温度变化曲线; B 点对应的时刻为金属粒投入热水中的时刻。B C 段是金属粒投入量热器热水中以后,系统进行热交换过程的散热曲线;C D 段是系统内热交换达到热平衡后的散热温度变化曲线。在BC 段实际上同时进行着两个过程,一是由于系统向空气散热而导致热水温度下降,二是由于金属粒投入后的吸热效应而使热水温度下降。现在就来考虑在有热量损失的情况下,应用面积补偿法,求出由于投入金属粒而使水温降低的实际数值。其具体做法是:在曲线上过对应于室温0θ的点G 作垂直横轴的直线,然后延长AB 到 E ,延长DC 到 F ,使BE G 面积等于GFC 面积,这样在BEGFC 和BGC 这两条图线各自相应的过程中所损失的热量是相等的,因而可将原来的BGC 过程等

(fb212型气体比热容比的测定)实验讲义

(FB212型气体比热容比测定仪)实验讲义 气体比热容比的测定 比热容是物质的重要参量,在研究物质结构、确定相变、鉴定物质纯度等方面起着重要 的作用。本实验将介绍一种较新颖的测量气体比热容的方法。 【实验目的】 测定空气分子的定压比热容与定容比热容之比γ值。 【实验原理】 气体的定压比热容P C 与定容比热容V C 之比 V P C /C =γ,在热力学过程特别是绝热过程中是一个 很重要的参数,测定的方法有好多种。这里介绍一种较新颖的方法,通过测定物体在特定容器中的振动周期来计算γ值。实验基本装置如图1所示,振动物体小球D 的直径比玻璃諧振腔E 直径仅小mm 02.0~01.0 。它能在此精密的玻璃諧振腔E 中上下移动,在储气瓶A 的壁上有一充气孔B ,并插入一根细管,通过它各种气体可 以注入到储气瓶A 中。 钢球D 的质量为m ,半径为 r (直径为d ),当瓶子内压力P 满足下面条件时,钢球 D 处于力平衡状态,这时2 L m g P P r π?=+ ?,式中L P 为大气压强 。为了补偿由于空气阻尼引起振动物体D 振幅的衰减,通过B 管不断注入一个小气压的气流,在精密玻璃諧振腔E 的中央开设有一个小孔C 。当振动物体A 处于小孔下方的半个振动周期时,注入气体使储气瓶A 内压力增大,引起物体D 向上移动,而当物体D 处于小孔上方的半个振动周期时,容器内的气体将通过小孔流出,使储气瓶A 内压力减小从而使物体D 下沉。以后重复上述过程,只要适当控制注入气体的流量,物体D 能在玻璃諧振腔E 的小孔C 上下作简谐振动,振动周 期可利用光电计时装置来测得。 若物体偏离平衡位置一个较小距离dx ,则容器内的压力变化dp ,物体的运动方程为:

实验五 固体比热容的测量(电热法)

实验五 固体比热容的测量(电热法) 金属是重要的固态物质,本文对固体物质比热容的测量重点介绍了金属比热容的测量,金属比热容是金属物质的重要特性,本文重点介绍电热法测量固体比热容。 【实验目的】 1、掌握基本的量热方法——用量热器测热量法。 2、学习用电热法测固体的比热容。 【实验仪器】 热学综合实验平台、量热器、待测钢球、测温探头 【实验原理】 固体比热容指单位质量的热容量,也是特定粒子电子、原子、分子等结构及其运动特性的宏观表现。测量固体物质比热容对于了解固体物质性质,物质内部结构等都具有重要的意义,常用于测量固体物质比热容的方法有动态法、混合法、冷却法等。 金属是重要的固态物质,本书对固体物质比热容的测量重点介绍了金属比热容的测量,金属比热容是金属物质的重要特性,本实验重点介绍电热法测量固体比热容。 在量热器中加入质量为m 的待测物,并加入质量为0m 的水,如果加在加热器两端的电压为U ,通过电阻的电流为I ,通电时间为t ,则电流作功为: UIt A = (5-1) 如果这些功全部转化为热能,使量热器系统的温度从1T ℃升高至2T ℃,则下式成立 ()()1201100T T c c m c m mc UIt -+++=ω (5-2) c 为待测物的比热容,0c 为水的比热热容,1m 为量热器内筒的质量,1c 为量热器内筒的比热容, 2m 为铜电极和铜搅拌器总质量,2c 为铜比热容。 由(5-2)式得 ()[]m c c m c m T T UIt c //0110012ω----= (5-3) 为了尽可能使系统与外界交换的热量达到最小,在实验的操作过程中就应注意以下几点: 1、不应当直接用手去把握量热筒的任何部分,不应当在阳光直接照射下进行实验。

一气体定压比热容测定

工程热力学实验 指导书 哈尔滨理工大学 热能与动力工程实验室

实验一 气体定压比热容测定实验 一.实验目的 1. 了解气体比热测定装置的基本原理和构思。 2. 熟悉本实验中测温、测压、测热、测流量的方法。 3. 掌握由基本数据计算出比热值和比热公式的方法。 4. 分析本实验产生误差的原因及减小误差的可能途径。 二.实验原理 引用热力学第一定律解析式,对可逆过程有: pdv du q +=δ 和 vdp dh q -=δ 定压时0=dp p p T h dT vdp dh dT q c ??? ????=??? ??-=??? ??=δ 此式直接由p c 的定义导出,故适用于一切工质。 在没有对外界作功的气体的等压流动过程中: p Q m dh δ1= 则气体的定压比热容可以表示为: ()122 1t t m Q c p t t pm -= kJ/kg ?℃ 式中:m ——气体的质量流量,kg/s ; p Q ——气体在等压流动过程中的吸热量,kJ/s 。 由于气体的实际定压比热是随温度的升高而增大,它是温度的复杂函数。实验表明,理想气体的比热与温度之间的函数关系甚为复杂,但总可表达为: +++=2et bt a c p 式中a 、b 、e 等是与气体性质有关的常数。在离开室温不很远的温度范围内,空气的定压比热容与温度的关系可近似认为是线形的,假定在0-300℃之间,空气真实定压比热与温度之间进似地有线性关系: bt a c p += 则温度由1t 至2t 的过程中所需要的热量可表示为:

()dt bt a q t t ?+=2 1 由1t 加热到2t 的平均定压比热容则可表示为: ()2211 22121t t b a t t dt bt a c t t t t pm ++=-+=? 若以(t 1+t 2)/2为横坐标,21t t pm c 为纵坐标(如下图所示),则可根据不同温度范 围的平均比热确定截距a 和斜率b,从而得出比热随温度变化的计算式bt a +。 大气是含有水蒸气的湿空气。当湿空气气流由温度1t 加热到2t 时,其中水蒸气的吸热量可用式下式计算: ()dt t m Q t t w w ?+=2 10001172.0844.1 式中:w m ——气流中水蒸气质量,kg/s 。 则干空气的平均定压比热容由下式确定: ()()1212)(')(21t t m m Q Q t t m m Q c w w p w p t t pm ---=--= 式中:'p Q ——为湿空气气流的吸热量。 三.实验设备

常用液体固体比热对照表

常用液体、固体比重-比热表

几种常见物质的比热容:

物质化学符号模型相 态 比热容量(基本)J/ (kg ·K) 比热容量(25℃)J/ (kg ·K) 氢 H 2 气 14000 14300 氦 He 1 气 5190 5193.2 氨 NH3 4 气 2055 2050 氖 Ne 1 气 1030 1030.1 锂 Li 1 固 3580 3582 乙醇CH3CH2O H 9 液2460 2440 汽油混混液 2200 2220 石蜡CnH2n+2 62 至12 2 固2200 2500 甲烷 CH4 5 气 2160 2156 油混混液 2000 2000 软木塞混混固 2000 2000 乙烷 C2H6 8 气 1730 1729 尼龙混混固 1700 1720 乙炔 C2H2 4 气 1500 1511 聚苯乙烯 CH2 3 固 1300 1300 硫化氢 H2S 3 气 1100 1105 氮 N 2 气 1040 1042 空气(室温)混混气 1030 1012 空气(海平面、干燥、0℃)混混气 1005 1035 氧 O 2 气 920 918 二氧化碳 CO2 3 气 840 839 一氧化碳 CO 2 气 1040 1042 铝 Al 1 固 900 897 石绵混混固 840 847

陶瓷混混固 840 837 氟 F 2 气 820 823.9 砖混混固 750 750 石墨 C 1 固 720 710 四氟甲烷CF4 5 气660 659.1 二氧化硫 SO2 3 气 600 620 玻璃混混固 600 84 氯 Cl2 2 气 520 520 钻石 C 1 固 502 509.1 钢混混固 450 450 铁 Fe 1 固 450 444 黄铜Cu,Zn 混固 380 377 铜 Cu 1 固 385 386 银 Ag 1 固 235 233 汞Hg 1 液139 140 铂Pt 1 固135 135 金 Au 1 固 129 126 铅 Pb 1 固 125 128 水蒸气(水) H2O 3 气 1850 1850 水 H2O 3 液 4200 4186 冰(水)H2O 3 固 2060 2050 (- 10℃)

金属比热容测量实验中误差的来源探讨和修正

金属比热容测量实验中误差的来源探讨和修正 Prepared on 24 November 2020

天津师范大学本科毕业论文(设计) 题目:金属比热容测量实验中误差的来源探讨和修正 学院:物理与电子信息学院 学生姓名:于永洋 学号:07506015 专业:物理学 年级:2007级 完成日期:2011年5月 指导教师:曹猛

测量金属比热容实验中误差的来源探讨和修正 于永洋 (天津师范大学物理与电子信息学院) 摘要:金属比热容的测量是大学物理中的一个经典实验,但由于在实验过程中受外界环境影响因素较大,造成测量结果往往有一定偏差。本研究分析了混合法测量金属比热容实验中可能产生实验误差的各种因素,对误差对结果的影响进行分析,并提出改进的实验方法用以减小误差的影响。 关键词:误差、比热容、混合法 Error to explore and fixed in metal specific heat capacity measurement YU YONGYANG (College of Physics and Electronic Information Science, Tianjin Normal University) Abstract:Specific Heat capacity measuring in metal is the classic college physics experiment.Certain deiation often measurement results because of the experimental process by external environment factors. This study analyzes various factors of the error by the cooling method and hybrid method.Analysing the influence of the error of the results and some improvements to the experimental method to lower the error influence. Keywords:error, specific heat capacity, hybrid method 目录 引言 (1) 一、研究背景 (1)

冷却法测量金属比热容

冷却法测量金属比热容 一 实验目的 1 掌握用冷却法测定金属的比热容,测量金属在室温至200℃温度时的比热容。 2 了解金属的冷却速率与环境之间的温差关系,以及进行测量的实验条件。 二 实验原理 单位质量的物质,其温度升高或降低1K (1℃)所需的热量,叫做该物质的比热容,其值随温度而变化。根据牛顿冷却定律,用冷却法测定金属的比热容是量热学常用方法之一。若已知标准样品在不同温度的比热容,通过作冷却曲线可测量各种金属在不同温度时的比热容。本实验以铜为标准样品,测定铁、铝样品在100℃或200℃时的比热容。 冷却法测定金属的比热容测量仪装置 (实验装置由加热仪和测试仪组成。加热仪的加热装置可通过调节手轮自由升降。被测样品安放在有较大容量的防风圆筒即样品室内的底座上,测温热电偶放置于被测样品内的小孔中。当加热装置向下移动到底后,对被测样品进行加热;样品需要降温时则将加热装置移上。仪器内设有自动控制限温装置,防止因长期不切断加热电源而引起温度不断升高。) 将质量为1M 的金属样品加热后,放到较低温度的介质(例如室温的空气)中,样品将会逐渐冷却。其单位时间的热量损失(t Q ??/)与温度下降的速率成正比,于是得到 下述关系式: t M C t Q ??=??1 1 1θ (1)

式中1C 为该金属样品在温度1θ时的比热容,t ??1θ为金属样品在1θ的温度下降速率, 根据冷却定律有: m s a t Q ) (0111θθ-=?? (2) 式中1a 为热交换系数1S 为该样品外表面的面积,m 为常数,1θ为金属样品的温度, θ 为周围介质的温度。由式(1)和(2),可得 m s a t M C ) (01111 1 1θθθ-=?? (3) 同理对质量为2M ,比热容为2C 的另一种金属样品,可有同样的表达式: m s a t M C ) (02222 2 2θθθ-=?? (4) 由(3)和(4)式,可得: m m s a s a t M C t M C )()(1011102221 12 2 2θθθθθθ--=???? (5) 所以 m s a t M s a t M C C m ) (01112 2 ) (1 2 02221 1 θθθθθθ-??=-?? (6) 如果两样品的形状尺寸都相同,即2 1 s s =;两样品的表面状况也相同(如涂层、色 泽等),而周围介质(空气)的性质当然也不变,则有2 1a a =。于是当周围介质温度不 变(即室温0θ恒定而样品又处于相同温度θ θθ=-21 )时,上式可以简化为: 1 22 11 2 ??? ????? ?? ????=t M t M C C θθ (7) 如果已知标准金属样品的比热容1C 质量1M ;待测样品的质量2M 及两样品在温度θ时冷却速率之比,就可以求出待测的金属材料的比热容2C 。

实验8冷却法测金属比热容

实验八 冷却法测量金属的比热容 用冷却法测定金属或液体的比热容是量热学中常用的方法之一。若已知标准样品在不同温度的比热容,通过作冷却曲线可测得各种金属在不同温度时的比热容。热电偶数字显示测温技术是当前生产实际中常用的测试方法,它比一般的温度计测温方法有着测量围广,计值精度高,可以自动补偿热电偶的非线性因素等优点。 本实验以铜样品为标准样品,而测定铁、铝样品在100℃或200℃时的比热容。通过实验了解金属的冷却速率和它与环境之间温差的关系,以及进行测量的实验条件。 【实验目的】 1.掌握用冷却法测定金属的比热容,测量铁、铝金属样品在100℃或200℃温度时的比热容。 2.了解金属的冷却速率与环境之间的温差关系,以及进行测量的实验条件。 【实验仪器】 DH4603型冷却法金属比热容测量仪、待测量金属材料样品(铜、铁、铝)等 【实验原理】 单位质量的物质,其温度升高1K (或1℃)所需的热量称为该物质的比热容,其值随温度而变化。将质量为1M 的金属样品加热后,放到较低温度的介质(例如室温的空气)中,样品将会逐渐冷却。其单位时间的热量损失(/Q t ??)与温度下降的速率成正比,于是得到下述关系式: 111Q c M t t θ??=?? (8-1) 式中1c 为该金属样品在温度1θ时的比热容,1 t θ??为金属样品在1θ的温度下降速率,根据冷却定律有: 1110()m Q S t αθθ?=-? (8-2) 式中1α为热交换系数,1S 为该样品外表面的面积,m 为常数,1θ为金属样品的温度,0θ为周围介质的温度。由式(8-1)和(8-2),可得 1 11 1110()m c M S t θαθθ?=-? (8-3)

实验冷却法测定金属比热容

实验 冷却法测定金属比热容 专业___________________ 学号___________________ 姓名___________________ 一、预习要点 1. 了解冷却定律以及冷却法测量金属比热容的实验原理和计算方法; 2. 熟悉掌握金属比热容测量仪的使用方法及测量结构示意图; 3. 在课前写好预习报告,上课时务必将预习报告和原始数据表格一并带来,否则扣分。 二、实验内容 1. 用天平称出(铜、铁、铝)三种实验样品的质量,填入表1上方;三种实验样品可根据质量大小区分(Cu m >Fe m >Al m ); 2. 打开电源,注意调零数字电压表,并连接各仪器导线; 3. 测量铁和铝在100℃时的比热容: (1) 将铜样品套在容器内的热电偶上,调节支架上的旋钮,下降实验架,使电烙铁套于样品上,开启加热开关;用铜—康铜热电偶测量实验样品的温度,当电压表读数超过5.00mV 时,断开加热开关,上升加热支架;让样品继续安放在与外界基本隔绝的防风容器内自然冷却(容器必须盖上盖子); (2) 冷却过程中,观察比热容测量仪中的电压值,当电压表显示为4.37mV 时(此时样品温度为102 ℃),迅速按下时间指示下方的“起动/停止”按钮;一段时间后,当电压表显示为4.18mV 时(此时样品温度为98 ℃),再次迅速按下 “起动/停止”按钮;记录此时仪器上显示的时间,即为样品降温所需要的时间1t ?; (3) 重复以上步骤(1)、(2),再次测量铜样品的降温时间2t ?、3t ?,填入表1; (4) 重复以上步骤(1)、(2)、(3),测量铁和铝样品的降温时间1t ?、2t ?、3t ?,填入表1; 4. 测量金属的冷却规律: (1) 选取两种样品,重复第3点中第(1)步; (2) 冷却过程中,当电压表显示为4.37mV 时,迅速按下 “起动/停止”按钮;每隔5秒,记录电压表的读数V ,填入表2; 三、实验注意事项 1. 加热装置向下移动时,动作要慢,应注意要使被测样品垂直放置,以使加热装置能完全套入被测样品。 2. 样品冷却时,电压表的读数跳变会比较大(比如:4.39mV 直接跳到4.36mV ),要注意把握,记录数据时动作要敏捷,以免错过合适的测量点,以减少误差。 3. 降温测量时,间隔测量时间较短,应迅速、准确,以减小人为计时误差。 4. 加热后样品烫手,勿用手触摸以免烫伤手指,使用镊子夹取样品。

@金属比热容的测量

金属比热容的测量 【实验目的】 1.学会用铜-康铜热电偶测量物体的温度, 2.掌握用冷却法测定金属的比热容,并测量铁和铝不同温度下的比热容。 【实验原理】 单位质量的物质,其温度升高或降低1K (1℃)所需的热量,叫做该物质的比热容,它是温度的函数,一般情况下,金属的比热容随温度升高而增加,在低温时增加较快,在高温时增加较慢。根据牛顿冷却定律,用冷却法测定金属的比热容是量热学常用方法之一。 将质量为M 1的金属样品加热后,放到较低温度的介质(例如:室温的空气)中,样品将会逐渐冷却。其单位时间的热量损失(t Q ??)与温度下降的速率成正比,于是得到下述关 系式: t M C t Q ??=??111θ (1) (1)式中C 1为该金属样品在温度1θ时的比热容, t ??1θ为金属样品在1θ时的温度下降速率。根据冷却定律有: m s a t Q )(0111θθ-=?? (2) (2)式中a 1为热交换系数,s 1为该样品外表面的面积,m 为常数,1θ为金属样品的温度,0θ为周围介质的温度。由式(1)和(2),可得: m s a t M C )(0111111θθθ-=?? (3) 同理,对质量为M 2,比热容为C 2的另一种金属样品,可有同样的表达式: m s a t M C )(022222 2θθθ-=?? (4) 由上式(3)和(4),可得: m m s a s a t M C t M C )()(01110222111222θθθθθθ--=???? 所以:

m m s a t M s a t M C C )()(011122022211 12θθθθθθ-??-??= 如果两样品的形状尺寸都相同,即s 1=s 2;两样品的表面状况也相同(如涂层、色泽等),而周围介质(空气)的性质当然也不变,则有a 1=a 2。于是当周围介质温度不变(即室温0θ恒定而样品又处于相同温度1θ=θθ=2)时,上式可以简化为: 221112)()(t M t M C C ????=θθ (5) 如果已知标准金属样品的比热容C 1质量M 1;待测样品的质量M 2及两样品在温度θ时冷却速率之比,就可以求出待测的金属材料的比热容C 2。 已知铜在100℃时比热容为C cu = 0.0940cal /(g .K )。 【实验仪器】 FD-JSBR 型冷却法金属比热容测量仪、铜铁铝实验样品、盛有冰水混合物的保温杯、镊子、秒表。 FD-JSBR 型冷却法金属比热容测量仪由加热仪和测试仪组成。加热仪的热源A 是75 瓦电烙铁改制而成,利用底盘支撑固定并通过调节手轮自由升降;实验样品B 是直径5mm ,长30mm 的小圆柱,其底部钻一深孔便于安放热电偶,放置在有较大容量的防风容器E 即样品室内的热电偶支架D 上;测温铜-康铜热电偶 C(其热电势约为0.042mV /0C )放置于被测样品 B 内的小孔中。当加热装置 A 向下移动到底后,可对被测样品B 进行加热;样品需要降温时则将加热装置A 移上。装置内设有自动控制限温装置,防止因长期不切断加热电源而引起温度不断升高。 热电偶的冷端置于冰水混合物G 中,带有测量扁叉的一端接到三位半数字电压表F 的“输入”端。热电势差的二次仪表由高灵敏、高精度、低漂移的放大器放大加上满量程为 20mV

大学物理实验教案8-固体比热容的测量

实验名称: 固体比热容的测量 实验目的: 1、进一步熟悉量热方法及散热修正。 2、用混合法测定金属的比热容。 3、熟练掌握混合法的操作技巧,以减少量热器的散热。 实验仪器: 量热器 电子天平 温度计(0.1℃、50℃和1℃、100℃各一支) 停表 电水壶 小量筒 铝圆柱 实验原理: 根据热平衡原理,用混合法测定铝圆柱的比热。 质量m 、温度2t 的铝圆柱投入量热器的水中,设量热器及搅拌器质量为1m ,(比热容铜 31110.38510c J kg C --=???),水的质量为 0m (比热容取3 1 10 4.18710c J kg C --=???) ,温度计修正热容为1.9V (V 取3cm ),则 200111()( 1.9)()mc t m c m c V t θθ-=++- 即 001112( 1.9)() () m c m c V t c m t θθ++-= - 对1t 、θ须作散热修正,投物前5、6分钟开始测水温(30s 测一次),记下 投物前的时刻与温度,水温达到最高点后继续测5、6分钟,前图为温度——时间曲线。 吸热面积BOE S ;散热面积COF S 。当B O E S =COF S ,实验不受散热影响。应控制水温低于室温2~3度,可先粗测,后细测。 实验内容:

1.用天平分别测出量热器内筒和搅拌器的质量1m 、以及被测物铝圆柱的质量m 。 2.将量热器的内筒注入一定质量的水(适当加一点冰水),要求保证金属块放入后能完全被水浸没。称量出量热器内筒及水的总质量。计算出水的质量0m 。 3. 盖好胶木盖,用搅拌器上下轻轻搅拌,当从温度计上读出量热器及水的温度比室温低3~4度时,开始每隔30〞记录一次温度。 4.将铝块放入电水壶用水煮沸,确切测量出铝块的温度1t (与水温相同)。 5. 当量热器及水的温度比室温低2~3度时将铝属块迅速取出放入量热器的内筒中,盖好胶木盖,用搅拌器上下轻轻搅拌。同时每隔30〞记录一次温度t 。持续5~10分钟。 6.取出温度计处理温度计浸在水中的体积。 7. 绘制τ-t 图,求出混合前的初温1t 和混合温度θ。计算被测物的比热容及其标准不确定度。 实验数据处理 铝圆柱 质量59.73m g = 温度 299.5t =℃ 量热器 质量170.40m g = 比热容 31110.38510c J kg K --=??? 水 质量0204.42m g = 比热容 3110 4.18710c J kg K --=??? 室温 t =_24.75_℃ 温度计插入水中部分的体积 31.9V cm = 初温 t 1=22.21℃ 混合温度 26.52θ=℃ 铝的比热容为:

气体比热容比的测定实验报告及数据

气体比热容比的测定实验报告及数据课气体比热容比的测定 1、学习测定空气比热容比的方法。题 教学目 2、熟练掌握物理天平和螺旋测微器的使用方的 法。 3、熟练掌握直接测量值和间接测量值不确定度 重难 1、物理天平的调节和使用。的计算。 点 2、各物理量不确定度的计算。 教学方讲授、演示、提问、讨论、操作相结合。 学 3学时。法 时 一、前言 气体的定压比热容和定体比热容的比值称为比热容比。气体的值在许多热力学过程特别是绝热过程中是一个很重要的参数。由气体动理论可知,理想气体的值为: (1) 式中为气体分子的自由度,对于单原子分子 ;对于双原子刚性分子, ;对于多原子刚性分子,。实验中气体的比热容比常通过绝热膨胀法、绝热压缩法等方法来测定。本实验将采用一种比较新颖的方法,即通过测定小球在储气瓶玻璃管中的振动周期来计算空气的值。 二、实验仪器 FB212型气体比热容比测定仪、支撑架、小型气泵、TW-1型物理天平、0-25mm 外径千分尺等。

三、实验原理 如图1所示,钢球A位于精密细玻璃管B中,其直径仅仅比玻璃管直径小 0.01-0.02mm,使之能在玻璃管中上下移动,瓶上有一小孔C,可以通过导管将 待测气体注入到玻璃瓶中。 图1 设小球质量为m,半径为r,当瓶内气压P满足下式时,小球处于平衡位置: (2) 设小球从平衡位置出发,向上产生微小正位移x,则瓶内气体的体积有一 微小增量: (3) 与此同时瓶内气体压强将降低一微小值,此时小球所受合外力为: (4) 小球在玻璃管中运动时,瓶内气体将进行一准静态绝热过程,有绝热方程: (5) 两边微分,得 (6) 将(3)、(4)两式代入(6)式,得: (7) 由牛顿第二定律,可得小球的运动方程为: (8) 可知小球在玻璃管中作简谐振动,其振动周期为: (9) 最后得气体的值为: (10)

冷却法测金属的比热容(实验报告)

冷却法测量金属的比热容 【实验目的】 (1) 测量固体的比热容。 (2)了解固体的冷却速率与环境之间的温差关系,以及进行测量的实验条件。 【实验仪器】 本实验装置是金属比热容测量仪;实验样品是直径5mm 、长30mm 的小圆柱,其底部深孔中安放铜—康同热电偶。 【实验原理】 单位质量的物质,其温度升高1K (或1℃)所需的热量叫该物质的比热容,其值随温度而变化, 将质量为1M 的金属样品加热后,放到较低温度的介质(例如室温的空气)中,样品将会逐渐冷却,其单位时间的热量损失(Q t ??)应与温度下降速率成正比,由此到下述关系式: 111 Q C M t t θ???? = ????? ① 式中1C 为该金属样品在温度1θ时的比热容,1 t θ??? ????为金属样品在温度1θ时的 温度下降速率,根据冷却定律有: 1110()m Q a S t θθ?=-? ② 式中,1a 为热交换系数,1S 为该样品外表面的面积,m 为常数,1θ为为金属样品的温度,0θ为周围介质的温度。由式①和②,可得:

1 11 1110()m C M a S t θθθ?=-? ③ 同理,对质量为2M ,比热容为2C 的另一种金属样品,有: 2 22 2220()m C M S t θαθθ?=-? ④ 由式③和式④,可得: m m s a s a t M C t M C )()(0111022211 12 22θθθθθθ--=???? m m s a t M s a t M C C ) ()(01112202221112θθθθθθ -??-??= 如果两样品的形状尺寸都相同,即12S S =;两样品的表面状况也相同(如涂层、色泽等),而周围介质(空气)的性质当然也不变,则有12a a =。于是当周围介质温度不变(即室温0θ恒定,而样品又处于相同温度1θ=θθ=2)时,上式可以简化为: 2 21 11 2)()( t M t M C C ????=θθ 如果已知标准金属样品的比热容1C ,质量1M ,待测样品的质量2M 及两样品 在温度θ时冷却速率之比1??? ????t θ和2??? ????t θ,就可求得待测金属的比热容2 C 。 已知铜在100℃时的比热容为:1393().Cu C J kg C -=? 【实验内容】 1.测量铁和铝在100℃时的比热容。 步骤: (1)选取长度、直径、表面光洁度尽可能相同的三种金属样品(铜、铁、铝)用物理天平或电子天平秤出它们的质量0M 。再根据Cu M >Fe M >Al M 这一

相关主题
文本预览
相关文档 最新文档