九年级数学下册27.2.1相似三角形的判定第4课时两角分别相等的两个三角形相似教案新人教版
- 格式:doc
- 大小:1.08 MB
- 文档页数:3
27.2.1 相似三角形的判定古之学者必严其师,师严然后道尊。
欧阳修铁山学校何逸春第4课时两角分别相等的两个三角形相似1.理解“两角分别相等的两个三角形相似”的含义,能分清条件和结论,并能用文字、图形和符号语言表示;(重点)2.会运用“两角分别相等的两个三角形相似”判定两个三角形相似,并解决简单的问题.(难点)一、情境导入与同伴合作,一人画△ABC,另一人画△A′B′C′,使得∠A和∠A′都等于给定的∠α,∠B和∠B′都等于给定的∠β,比较你们画的两个三角形,∠C与∠C′相等吗?对应边的比ABA′B′,ACA′C′,BCB′C′相等吗?这样的两个三角形相似吗?和同学们交流.二、合作探究探究点:两角分别相等的两个三角形相似【类型一】利用判定定理证明两个三角形相似如图,在等边△ABC中,D为BC边上一点,E为AB边上一点,且∠ADE =60°.(1)求证:△ABD∽△DCE;(2)若BD=3,CE=2,求△ABC的边长.解析:(1)由题有∠B=∠C=60°,利用三角形外角的知识得出∠BAD=∠CDE,即可证明△ABD∽△DCE;(2)根据△ABD∽△DCE,列出比例式,即可求出△ABC的边长.(1)证明:在△ABD中,∠ADC=∠B+∠BAD,又∠ADC=∠ADE+∠EDC,而∠B=∠ADE=60°,∴∠BAD=∠CDE.在△ABD和△DCE中,∠BAD=∠CDE,∠B =∠C=60°,∴△ABD∽△DCE;(2)解:设AB=x,则DC=x-3,由△ABD∽△DCE,∴ABDC=BDDE,∴xx-3=32,∴x=9.即等边△ABC的边长为9.方法总结:本题主要是利用“两角分别相等的两个三角形相似”,解答此题的关键是利用三角形的外角的知识得出角相等.变式训练:见《学练优》课时练习“课堂达标训练”第5题【类型二】添加条件证明三角形相似如图,在△ABC中,D为AB边上的一点,要使△ABC∽△AED成立,还需要添加一个条件为____________.解析:∵∠ABC=∠AED,∠A=∠A,∴△ABC∽△AED,故添加条件∠ABC=∠AED即可求得△ABC∽△AED.同理可得∠ADE=∠C或∠AED=∠B或ADAC=可以得出△ABC∽△AED.故答案为∠ADE=∠C或∠AED=∠B或ADAC=AEAB.方法总结:熟练掌握相似三角形的各种判定方法是解题关键.变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型三】相似三角形与圆的综合应用如图,AB为⊙O的直径,C为⊙O上一点,CD⊥AB于点D,交AE于点G,弦E 交AB 于点F ,求证:AC 2=AG ·AE .解析:延长CG ,交⊙O 于点M ,连接AM ,根据圆周角定理,可证明∠ACG =∠E ,根据相似三角形的判定定理,可证明△CAG ∽△EAC ,根据相似三角形对应边成比例,可得出结论.证明:延长CG ,交⊙O 于点M ,连接AM ,∵AB ⊥CM ,∴AC ︵=AM ︵,∴∠ACG =∠E ,又∵∠CAG =∠EAC ,∴△CAG ∽△EAC ,∴AC AE =AG AC,∴AC 2=AG ·AE . 方法总结:相似三角形与圆的知识综合时,往往要用到圆的一些性质寻角的等量关系证明三角形相似.变式训练:见《学练优》本课时练习“课后巩固提升”第3题【类型四】 相似三角形与四边形知识的综合如图,在▱ABCD 中,过点B 作BE ⊥CD ,垂足为E ,连接AE ,F 为AE上一点,且∠BFE =∠C .若AB =8,BE =6,AD =7,求BF 的长.解析:可通过证明∠BAF =∠AED ,∠AFB =∠D ,证得△ABF ∽△EAD ,可得出关于AB ,AE ,AD ,BF 的比例关系.已知AD ,AB 的长,只需求出AE 的长即可.可在直角三角形ABE 中用勾股定理求出AE 的长,进而求出BF 的长.解:在平行四边形ABCD 中,∵AB ∥CD ,∴∠BAF =∠AED .∵∠AFB +∠BFE =180°,∠D +∠C =180°,∠BFE =∠C ,∴∠AFB =∠D ,∴△ABF ∽△EAD .∵BE ⊥CD ,AB ∥CD ,∴BE ⊥AB ,∴∠ABE =90°,∴AE =AB 2+BE 2=82+62=10.∵△ABF ∽△EAD ,∴BF AD =AB AE ,∴BF 7=810,∴BF =5.6. 方法总结:相似三角形与四边形知识综合时,往往要用到平行四边形的一些性质寻找角的等量关系证明三角形相似.变式训练:见《学练优》本课时练习“课后巩固提升”第7题【类型五】 相似三角形与二次函数的综合如图,在△ABC 中,∠C =90°,BC =5m ,AB =10m.M 点在线段CA 上,从C 向A 运动,速度为1m/s ;同时N 点在线段AB 上,从A 向B 运动,速度为2m/s.运动时间为t s.(1)当t 为何值时,△AMN 的面积为6m2?(2)当t 为何值时,△AMN 的面积最大?并求出这个最大值.解析:(1)作NH ⊥AC 于H ,证得△ANH ∽△ABC ,从而得到比例式,然后用t 表示出NH ,根据△AMN 的面积为6m2,得到关于t 的方程求得t 值即可;(2)根据三角形的面积计算得到有关t 的二次函数求最值即可.解:(1)在Rt △ABC 中,∵AB 2=BC 2+AC 2,∴AC =53m.如图,作NH ⊥AC 于H ,∴∠NHA =∠C =90°,∵∠A 是公共角,∴△NHA ∽△BCA ,∴AN AB =NH BC ,即2t 10=NH5,∴NH =t ,∴S △AMN = 12t (53-t )=6,解得t 1=3,t 2=43(舍去),故当t 为3秒时,△AMN 的面积为6m2.(2)S △AMN =12t (53-t )=-12(t 2-53t +754)+752=-12(t -532)2+752,∴当t =532时,S 最大值=752m2. 方法总结:解题的关键是根据证得的相似三角形得到比例式,从而解决问题.三、板书设计 1.三角形相似的判定定理:两角分别相等的两个三角形相似;2.应用判定定理解决简单的问题.在探究式教学中教师是学生学习的组织者、引导者、合作者、共同研究者,教学过程中鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新.备课时应多考虑学生学法的突破,教学时只在关键处点拨,在不足时补充.与学生平等地交流,创设民主、和谐的学习氛围.【素材积累】1、成都,是一个微笑的城市,宁静而美丽。
27.2.1 相似三角形的判定第4课时两角分别相等的两个三角形相似学习目标:1. 探索两角分别相等的两个三角形相似的判定定理.2. 掌握利用两角来判定两个三角形相似的方法,并能进行相关计算. (重点、难点)3. 掌握判定两个直角三角形相似的方法,并能进行相关计算.一、知识链接学校举办活动,需要三个内角分别为90°,60°,30°的形状相同、大小不同的三角纸板若干. 小明手上的测量工具只有一个量角器,他该怎么做呢?一、要点探究探究点1:两角分别相等的两个三角形相似操作与同伴合作,一人画△ABC,另一人画△A′B′C′,使∠A=∠A′=40°,∠B=∠B′=55°,探究下列问题:问题1 度量AB,BC,AC,A′B′,B′C′,A′C′的长,并计算出它们的比值. 你有什么发现?问题2 试证明:△ABC∽△A′B′C′.证明:在△A′B′C′的边A′B′(或A′B′的延长线)上,截取A′D=AB,过点D 作DE // B′C′,交A′C′于点E,【补全证明过程】【要点归纳】由此得到利用两组角判定两个三角形相似的定理:两角分别相等的两个三角形相似.符号语言:∵∠A=∠A',∠B=∠B',∴△ABC ∽△A'B'C'.【典例精析】如图,在△ABC 和△DEF 中,∠A=40°,∠B=80°,∠E=80 °,∠F=60 °.求证:△ABC ∽△DEF.【针对训练】如图,在△ABC 和△A'B'C' 中,若∠A=50°,∠B=75°,∠A' = 50°,当∠C'= 时,△ABC ∽△A'B'C'.如图,弦AB 和CD 相交于⊙O 内一点P,求证:PA ·PB=PC ·PD.证明:连接AC,DB.∵∠A 和∠D 都是弧CB 所对的圆周角,∴∠A= __ ___,同理∠C= _______,∴△PAC ∽△PDB,∴,即PA ·PB = PC ·PD.【针对训练】如图,⊙O 的弦AB,CD 交于点P,若PA=3,PB = 8,PC = 4,则PD =.【分析】此图中,没有完整的三角形出现,根据题目给的四条边,可以知道,它们属于△BCP和△ADP因此连接AD、BC,根据圆周角的性质得到解题所需角度,进而求解探究点2:判定两个直角三角形相似如图,在 Rt△ABC 中,∠C = 90°,AB = 10,AC = 8. E 是 AC 上一点,AE = 5,ED⊥AB,垂足为D. 求AD的长.【要点归纳】由此得到一个判定直角三角形相似的方法:有一个锐角相等的两个直角三角形相似.思考 对于两个直角三角形,我们还可以用 “HL ”判定它们全等.那么,满足斜边和一直角边成比例的两个直角三角形相似吗?证明 如图,在 Rt △ABC 和 Rt △A ′B ′C ′ 中,∠C=90°,∠C ′=90°,CA ACB A AB ''=''. 求证:Rt △ABC ∽ Rt △A ′B ′C ′.【要点归纳】由此得到另一个判定直角三角形相似的方法:斜边和一直角边成比例的两个直角三角形相似.如图,∠ACB =∠ADC = 90°,AD = 2,CD =2,当 AB 的长为 时,△ACB 与△ADC 相似.【分析】观察得到AB 和AC 分别是斜边,但两条直角边的对应关系并没有确定,因此需要分类讨论【针对训练】在 Rt △ABC 和 Rt △A ′B ′C ′ 中,∠C=∠C ′=90°,依据下列各组条件判定这两个三角形是否相似.(1) ∠A=35°,∠B ′=55°: ;(2) AC=3,BC=4,A ′C ′=6,B ′C ′=8: ;(3) AB=10,AC=8,A ′B ′=25,B ′C ′=15: .二、课堂小结1. 如图,已知 AB ∥DE ,∠AFC =∠E ,则图中相似三角形共有( )A. 1对B. 2对C. 3对D. 4对第1题图 第2题图 第3题图 第4题图2. 如图,△ABC 中,AE 交 BC 于点 D ,∠C=∠E ,AD : DE=3 : 5,AE=8,BD=4,则DC 的长等于 ( ) A.415 B.512 C.320 D.417 3. 如图,点 D 在 AB 上,当∠ =∠ (或∠ = ∠ ) 时,△ACD ∽△ABC ;4. 如图,在 Rt △ABC 中, ∠ABC = 90°,BD ⊥AC 于点D. 若 AB=6,AD=2,则 BD= ,AC= ,BC= .5.如图,△ABC 中,DE ∥BC ,EF ∥AB ,求证:△ADE ∽△EFC.6. 如图,△ABC 的高 AD ,BE 交于点 F .求证:DF EF BF AF .7. 如图,∠1=∠2=∠3,求证:△ABC ∽△ADE .参考答案合作探究一、要点探究探究点1:两角分别相等的两个三角形相似问题2 解:则有△A ′DE ∽△A ′B ′C ′,∠A ′DE =∠B ′.∵∠B=∠B ′,∴∠A ′DE=∠B.又∵ A ′D=AB ,∠A=∠A ′,∴△A ′DE ≌△ABC (ASA ),∴△ABC ∽△A ′B ′C ′. 【典例精析】证明:∵ 在△ ABC 中,∠A=40 ° ,∠B=80 ° ,∴ ∠C=180 °-∠A -∠B=60 °.∵ 在△DEF 中,∠E=80 °,∠F=60 °.∴ ∠B=∠E ,∠C=∠F.∴ △ABC ∽△DEF.【针对训练】 55°∠D ∠BPB PC PD PA = 【针对训练】6探究点2:判定两个直角三角形相似解:∵ ED ⊥AB ,∴∠EDA=90 ° .又∠C=90 °,∠A=∠A ,∴ △AED ∽△ABC. ∴AB AE AC AD = .∴41058=⨯=⋅=AB AE AC AD . 证明 证明:设C A AC B A AB ''=''= k ,则AB=kA ′B ′,AC=kA ′C ′. 由勾股定理,得22AC AB BC -=,22C A B A C B ''-''=''.∴ k C B C B k C B C A k B A k C B AC AB C B BC =''''=''''-''=''-=''222222 ∴ Rt △ABC ∽ Rt △A ′B ′C ′.3 或3 2解析:∵∠ADC = 90°,AD = 2,CD =2,∴()6222222=+=+=CD AD AC .要使这两个直角三角形相似,有两种情况:(1) 当 Rt △ABC ∽ Rt △ACD 时,有 AC : AD =AB : AC , 即6: 2 =AB :6,解得 AB=3; (2) 当 Rt △ACB ∽ Rt △CDA 时,有 AC : CD =AB : AC , 即6:2=AB :6,解得 AB=32.∴ 当 AB 的长为 3 或3 2时,这两个直角三角形相似.【针对训练】(1) 相似 (2)相似 (3) 相似当堂检测1. C2. A3. ACD B ADC ACB4. 42 18 1225.证明: ∵ DE ∥BC ,EF ∥AB ,∴∠AED =∠C ,∠A =∠FEC. ∴ △ADE ∽△EFC.6. 证明: ∵ △ABC 的高AD 、BE 交于点F ,∴ ∠FEA=∠FDB=90°,∠AFE =∠BFD (对顶角相等).∴ △FEA ∽ △ FDB ,∴DFEF BF AF . 7. 证明:∵∠BAC= ∠1+ ∠DAC ,∠DAE= ∠3+ ∠DAC ,∠1=∠3,∴ ∠BAC=∠DAE.∵ ∠C=180°-∠2-∠DOC ,∠E=180°-∠3-∠AOE ,∠DOC =∠AOE (对顶角相等), ∴ ∠C= ∠E.∴ △ABC ∽△ADE.学生励志寄语: 人生,想要闯出一片广阔的天地,就要你们努力去为自己的目标奋斗、勤奋刻苦、充满自信的过好每一天,雏鹰总会凌空翱翔。
《相似三角形的判定》说课稿各位评委老师:大家好!我今天说课的内容是《相似三角形的判定》,下面我将从说教材、说学生、说教学方法、说教学过程、板书设计五个大板块来给大家阐述我的教学思路和教学设计。
一、说教材首先进入我的第一个大板块“说教材”。
我把说教材这个板块分为三个小环节来进行,它们分别是教材分析、教学目标、教学重难点。
1、教材分析本节课《相似三角形的判定》是选自新人教版九年级下册第二十七章第二节第二课时的内容。
是在学习了第一节相似多边形的概念、第一课时平行线分线段成比例的定理及推论后,研究相似三角形的定义以及三角形一边的平行线的判定定理。
本节课是判定三角形相似的起始课,是本章的重点之一。
一方面,该定理是前面知识的延伸和全等三角形性质的拓展;另一方面,不仅可以直接用来证明有关三角形相似的问题,而且还是证明其他三种判定定理的主要根据,所以把它叫做相似三角形判定定理的“预备定理”。
因此,这节课在本章中有着举足轻重的地位。
2、教学目标根据教学大纲的要求和贯彻全面发展的教育方针,我制定了如下的教学目标:(1)知识与技能:理解相似三角形的定义,掌握相似三角形判定定理的“预备定理”。
(2)过程与方法:让学生经历观察---探索----猜想----验证----运用----巩固的过程,渗透类比的思想方法,培养学生探究新知识、提高分析问题和解决问题的能力。
(3)情感态度和价值观:通过实物演示和电化教学手段,把抽象问题直观化,激发学生学习的求知欲,通过主动探究、合作交流,在学习活动中体验获得成功的喜悦。
3、教学重难点为了达到以上的教学目标,我制定了以下的教学重难点:教学重点:相似三角形的定义,判定两个三角形相似的预备定理。
教学难点:探究两个三角形相似的预备定理的过程。
二、说学生说完了教材,我想跟大家分析一下我所授课的学生所具有的特点,也就是学情分析。
老师们,我们都知道九年级的学生接受能力相比七八年级强,想得到老师的鼓励。
27.2.1 相似三角形的判定
第4课时 两角分别相等的两个三角形相似
1.理解“两角分别相等的两个三角形相似”的含义,能分清条件和结论,并能用文字、图形和符号语言表示;(重点)
2.会运用“两角分别相等的两个三角形相似”判定两个三角形相似,并解决简单的问题.(难点)
一、情境导入 与同伴合作,一人画△ABC ,另一人画△A ′B ′C ′,使得∠A 和∠A ′都等于给定的∠α,∠B 和∠B ′都等于给定的∠β,比较你们画的两个三角形,∠C 与∠C ′相等吗?对应边的比
AB A ′B ′,AC A ′C ′,BC
B ′
C ′
相等吗?这样的两个三角形相似吗?和同学们交流. 二、合作探究
探究点:两角分别相等的两个三角形相似
【类型一】 利用判定定理证明两个三角形相似
如图,在等边△ABC 中,D 为BC 边上一点,E 为AB 边上一点,且∠ADE =60°.
(1)求证:△ABD ∽△DCE ;
(2)若BD =3,CE =2,求△ABC 的边长.
解析:(1)由题有∠B =∠C =60°,利用三角形外角的知识得出∠BAD =∠CDE ,即可证明△ABD ∽△DCE ;(2)根据△ABD ∽△DCE ,列出比例式,即可求出△ABC 的边长.
(1)证明:在△ABD 中,∠ADC =∠B +∠BAD ,又∠ADC =∠ADE +∠EDC ,而∠B =∠ADE =60°,∴∠BAD =∠CDE .在△ABD 和△DCE 中,∠BAD =∠CDE ,∠B =∠C =60°,∴△ABD ∽△DCE ;
(2)解:设AB =x ,则DC =x -3,由△ABD ∽△DCE ,∴AB DC =BD DE ,∴
x
x -3=3
2
,∴x =9.即等边△ABC 的边长为9.
方法总结:本题主要是利用“两角分别相等的两个三角形相似”,解答此题的关键是利用三角形的外角的知识得出角相等.
变式训练:见《学练优》本课时练习“课堂达标训练” 第5题 【类型二】 添加条件证明三角形相似
如图,在△ABC 中,D 为AB 边上的一点,要使△ABC ∽△AED 成立,还需要添加一
个条件为____________.
解析:∵∠ABC =∠AED ,∠A =∠A ,∴△ABC ∽△AED ,故添加条件∠ABC =∠AED 即可求得△ABC ∽△AED .同理可得∠ADE =∠C 或∠AED =∠B 或AD AC =AE
AB
可以得出△ABC ∽△AED .故答案为∠ADE =∠C 或∠AED =∠B 或AD AC =AE AB
.
方法总结:熟练掌握相似三角形的各种判定方法是解题关键. 变式训练:见《学练优》本课时练习“课堂达标训练” 第3题 【类型三】 相似三角形与圆的综合应用
如图,AB 为⊙O 的直径,C 为⊙O 上一点,CD ⊥AB 于点D ,交AE 于点G ,弦CE 交
AB 于点F ,求证:AC 2=AG ·AE .
解析:延长CG ,交⊙O 于点M ,连接AM ,根据圆周角定理,可证明∠ACG =∠E ,根据相似三角形的判定定理,可证明△CAG ∽△EAC ,根据相似三角形对应边成比例,可得出结论.
证明:延长CG ,交⊙O 于点M ,连接AM ,∵AB ⊥CM ,∴AC ︵=AM ︵
,∴∠ACG =∠E ,又∵∠CAG =∠EAC ,∴△CAG ∽△EAC ,∴AC AE =
AG AC
,∴AC 2
=AG ·AE .
方法总结:相似三角形与圆的知识综合时,往往要用到圆的一些性质寻找角的等量关系证明三角形相似.
变式训练:见《学练优》本课时练习“课后巩固提升”第3题 【类型四】 相似三角形与四边形知识的综合
如图,在▱ABCD 中,过点B 作BE ⊥CD ,垂足为E ,连接AE ,F 为AE 上一点,且∠BFE
=∠C .若AB =8,BE =6,AD =7,求BF 的长.
解析:可通过证明∠BAF =∠AED ,∠AFB =∠D ,证得△ABF ∽△EAD ,可得出关于AB ,AE ,AD ,BF 的比例关系.已知AD ,AB 的长,只需求出AE 的长即可.可在直角三角形ABE 中用勾股定理求出AE 的长,进而求出BF 的长.
解:在平行四边形ABCD 中,∵AB ∥CD ,∴∠BAF =∠AED .∵∠AFB +∠BFE =180°,∠D +∠C =180°,∠BFE =∠C ,∴∠AFB =∠D ,∴△ABF ∽△EAD .∵BE ⊥CD ,AB ∥CD ,∴BE ⊥
AB ,∴∠ABE =90°,∴AE =AB 2+BE 2=82+62=10.∵△ABF ∽△EAD ,∴BF AD =AB AE ,∴BF
7
=
8
10
,∴BF =5.6. 方法总结:相似三角形与四边形知识综合时,往往要用到平行四边形的一些性质寻找角的等量关系证明三角形相似.
变式训练:见《学练优》本课时练习“课后巩固提升”第7题 【类型五】 相似三角形与二次函数的综合
如图,在△ABC 中,∠C =90°,BC =5m ,AB =10m.M 点在线段CA 上,从C 向A 运
动,速度为1m/s ;同时N 点在线段AB 上,从A 向B 运动,速度为2m/s.运动时间为t s.
(1)当t 为何值时,△AMN 的面积为6m 2?
(2)当t 为何值时,△AMN 的面积最大?并求出这个最大值.
解析:(1)作NH ⊥AC 于H ,证得△ANH ∽△ABC ,从而得到比例式,然后用t 表示出NH ,
根据△AMN 的面积为6m 2
,得到关于t 的方程求得t 值即可;(2)根据三角形的面积计算得到有关t 的二次函数求最值即可.
解:(1)在Rt △ABC 中,∵AB 2
=BC 2
+AC 2,∴AC =53m.如图,作NH ⊥AC 于H ,∴∠NHA
=∠C =90°,∵∠A 是公共角,∴△NHA ∽△BCA ,∴AN AB =NH BC ,即2t 10=NH
5,∴NH =t ,∴S △AMN
= 12
t (53-t )=6,解得t 1=3,t 2=43(舍去),故当t 为3秒时,△AMN 的面积为6m 2
.
(2)S △AMN =12t (53-t )=-12(t 2-53t +754)+752=-12(t -532)2+752,∴当t =
53
2时,S 最大值=752
m 2
.
方法总结:解题的关键是根据证得的相似三角形得到比例式,从而解决问题. 三、板书设计
1.三角形相似的判定定理:
两角分别相等的两个三角形相似; 2.应用判定定理解决简单的问题.
在探究式教学中教师是学生学习的组织者、引导者、合作者、共同研究者,教学过程中鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新.备课时应多考虑学生学法的突破,教学时只在关键处点拨,在不足时补充.与学生平等地交流,创设民主、和谐的学习氛围.。