当前位置:文档之家› 二氧化碳的影响及综合利用讲解--实用.doc

二氧化碳的影响及综合利用讲解--实用.doc

二氧化碳的影响及综合利用讲解--实用.doc
二氧化碳的影响及综合利用讲解--实用.doc

二氧化碳的影响及综合利用

引言 : 近十多年来,在涉及地球环境保护的诸多问题中,最令人

关注的当属大气环境逐渐变暖,即所谓的温室效应。近年来所发生的许多危害,都或多或少被打上了温室效应的烙印,如:严酷的天气类型,变化的生态系统,物种灭绝及生物多样性的丧失,饮用水的减少,海平面上升造成的陆地减少和平均气温上升等。尽管产生全球气候变化的原因是多方面的,但大量研究表明,产生温室效应的主要原因与温室气体( CHG)的大量排放有直接关系。

当前所谓的温室气体主要有 6 种,除二氧化碳外,还包括甲烷,氧化氮,氢氟烃,全氟碳和六氟化硫。这些气体能大量吸收地球表面辐射的热量,从而使地表温度升高而产生温室效应。而现在摆在人们面前的不仅仅是如何减少二氧化碳的排放量,更应该去思考如何利用这部分温室气体进行工业生产,来为世界创造更多的价值。

一、概述 :

碳循环是碳通过大气圈,生物圈,土壤圈,岩石圈和水圈的变化

和传递的总过程。

碳在生物圈的存在形式主要为有机碳;碳在水圈中的存在形式为溶解的有机碳,溶解的无机碳,沉淀的有机碳,沉淀的无机碳和有机碳;碳在岩石圈中的存在形式为有机碳(包括化石燃料)和碳酸盐;碳在土壤圈的存在形式为有机碳;碳在大气圈中的主要存在形式为二氧化碳和甲烷气体。

现在大气中的二氧化碳的浓度为0。000370%。而近年来,人类每年排入大气的二氧化碳为280*10^8t ,是植被和土壤呼吸及海表交换排入大气的 CO2平均自然流通量(总量约为 5500*10^8t )的 5%。大气中 CO2总量的变化由排放和吸收量之间的净平均差额决定,而不是

各流量本身。有数据表明:在过去的42 万年中,二氧化碳的含量在过去的 250 年增长了 31%,其中最近几十年更是以指数形式在增长。而化石燃料的使用对CO2排放的贡献占人类活动总排量的70%~90%。

Rising carbon dioxide concentrations in air in the past decades

二、温室效应:

目前,公认的二氧化碳所引起的温室效应对人类生活环境的几大

影响主要包括:一是极端气象和气候现象频繁发生;二是冰川融化,

海平面上升;三是对动植物种群数目和分布产生影响;四是全球气候变暖导致越来越严重的缺水问题;五是全球全球变暖带来的种种后果将使人类健康问题越来越突出。

1.温室效应的起因

目前在学术界,约有 90%的学者认可温室效应主要起因是由于大

气内温室气体的增加,其中对温室效应贡献最多的是二氧化碳和水蒸

气。燃料的燃烧会产生 CO2 和H2O,产生的 CO2 可溶解在雨水、江河、湖泊和海洋里 , 也可以被植物吸收进行光合作用等。产生和消耗的 CO2 量之间达到平衡 , 使大气层中 CO2 浓度保持一定的范围内。地球大气层中的 CO2和水蒸气等允许部分太阳辐射透过并达到地面 , 使地球表面温度升高。同时 , 由于 CO2和H2O分子可以产生分子偶极矩改变的振动, 故能吸收太阳和地球表面发出波长在 2000纳米以上的长波辐射 , 仅让很少的一部分热辐射散失到宇宙空间。由于大气吸收的辐射热量

多于散失的 , 最终导致地球和外层空间保持某种热量平衡 , 使地球维持

相对稳定的气温 , 这种现象即称为温室效应。

三、治理温室效应的国际国内政策:

温室气体的排放所到来的全球气候上升已经引起了广泛关注。由于意识到治理温室气体的排放仅仅靠个人与企业的力量是远远不够

的,因此政府开始扮演越来越重要的角色。 1992 年 6 月 3 日在巴西143 个国家签署了《联合国气候变化框架公约》,1997 年在日本东京通过的《京都协定书》。《京都协定书》的全称为《联合国气候变化框架公约京都协定书》,其主旨是限制工业二氧化碳及其他温室气体的排放量,从而遏制全球气候变暖的温室效应。《京都协定书》对发达

国家规定了明确的减排义务;至 2010 年,所有发达国家排放的二氧化

碳等 6 种温室气体的数量要比 1990 年减少 5.2%,发展中国家则没有

减排义务。《京都协定书》在规定减排义务的同时,也规定了非常

灵活的履行义务,其中最重要的是基于市场运作的“联合履行” ,“清洁发展机制( CMD)”和“排放交易”等三种机制。其中“联合履行”机制是针对承担减排义务的国家,而鼓励发达国家与发展中国家开展合作项目的“清洁发展( CMD)”机制,不仅能给发展中国家带来大量资金,还能提供全新的减排技术。而在 2009 年 12 月召开的哥本哈根世界气候大会上达成了无约束力协议。但并未达成太多建设性法案和措施。

四、二氧化碳的物理化学性质

二氧化碳俗称碳酸气,又名碳酸酐,分子式为CO2,由两个氧原子与一个碳原子通过共价键连接而成,在标准状况下,二氧化碳是无色,无臭,略有酸性的气体,密度比空气略大,能溶于水,并生成碳酸。液态二氧化碳蒸发时吸收大量的热而凝成固体二氧化碳,俗称干冰。

表一 Carbon dioxide triple point

表二二氧化碳的主要物理性质

性数值性质数值质

分子0.35 表面张力(—9.13 直径~0。51 25C)mN/m

摩尔22.6 升华状态( 0。—

体积101MPa)78。5 临界状态温度, oC

温31.0 升华热, KJ/kg 573. 度 6 6

压7.38 固态密度,1562 力 MPa 2 kg/m3

密467 气态密度, 2.81 度, kg/m3 kg/m3 4 三相点:比热容,

kj/kg*K

温—Cp 0.84 度, oC 56.57 5

压0.51 Cv 0.65 力, MPa 8 1

汽347. 热导率, W/m*K 52.7 化热, kj/kg 86 5

熔195. 折射率 1.00 化热, kj/kg 82 04506

汽235 生成热,kj/mol 393. 化热, kj/kg 7

二氧化碳的化学性质:

一、还原反应

1.高温下,二氧化碳可分解为一氧化碳和氧气:

2CO2? ====? 2CO + O2 -283kJ

2.在二氧化碳中燃烧着的镁,铝和钾等活性金属可以继续保持燃

烧,反应生成金属氧化物,析出游离态碳。

CO2 + 2Mg ==== 2Mg + C

3.其他方法还原。常用的还原剂为氢气 , 在加热和催化剂的作用

下,还可被烃类还原:

CO2 + H2 ==== CO + H2O;

CO2 + CH4 ===2CO +2H2

二、有机合成反应

1.二氧化碳合成尿素 CO(NH2)2:

CO2 + 2NH3 ==== NH2COONH4 ====CO(NH2)

2.另一种方法:

CaCN2 + H2O + CO2 ==== NH2CN + CaCO3

NH2CN + H2O ====CO(NH2)2

1.二氧化碳合成甲醇:

CO2 + 3H2<====>CH3OH + H2O

2.二氧化碳合成甲烷:

CO2 + 4H2 ==== CH4 + 2H2O

3.二氧化碳与苯酚钠的羧化反应:

二氧化碳在有机合成工业中的一个重要反应是

Kolbe-Schmitt反应,如:在反应

温度约为 150℃,压力约 0.5MPa,苯酚钠的羧基化反应制备水杨酸:

生化反应,二氧化碳在地球的生态环境中起着重要的作用。在植物新陈代谢过程中,在光和叶绿素的催化作用下,空气中的二氧化碳和水反应生成糖等有机物,同时放出 O2,即:

6CO2 + 6H2O ==== C6H12O6 + 6O2

而于此同时,动物通过吸收空气中的氧气,在体内发生氧化反应,为动物体提供生存所需的能量,并使大气中的 CO2与 O2的浓度达到一种平衡的状态。

C6H12O6 + 6O2 ==== 6CO2 + 6H2O

五、二氧化碳的捕集与储存:

二氧化碳的捕集与储存(CCS)是指将来自工业副业或其他相关

过程的二氧化碳分离出来,输送到一个储存地点将其储存,使其长期

与大气隔离。 CCS是减排大气温室气体浓度的一种有效措施。

二氧化碳的捕集主要用于较大的二氧化碳点源,包括大型化石燃

料或生物能源设施,主要二氧化碳排放工业企业,天然气生产,合成燃料工厂以及基于化石燃料的制氢工厂。

目前潜在的可用于储存二氧化碳的技术有:地质储存,海洋储存,森林和陆地生态系统储存以及将二氧化碳固化成无机碳酸盐。通过森林和陆地生态系统捕集和储存二氧化碳可导致大气中二氧化碳的净

清除,达到真正的“负排放” 。此外,将二氧化碳应用于工业生产

中也是二氧化碳储存的一种途径,但就目前来看,由于技术水平有限,使得储存量少,对二氧化碳的减排的贡献不大。

目前,可行的二氧化碳储存或处置方式有四种:包括地质(地下)储存,海洋储存,矿石碳化和森林与陆地生态系统储存。其中,地质

储存又可分为石油天然气储层储存,深盐沼池构造储存和不可开采的煤层储存三种。深盐沼池储存又可分为矿坑或岩洞储存,含水层储存。在不可开采的煤层储存二氧化碳还可以提高煤层甲烷回收率,从而取得一定的经济效益。

六、二氧化碳的综合利用:

( 1)物理利用

二氧化碳的物理利用是指在应用过程中,不改变二氧化碳的化学

性质,仅仅作为一种工作介质或助剂,如用做啤酒,碳酸饮料的添加

剂,用做油气田助采剂;作为惰性气体用于气体保护焊接;利用液体,固体二氧化碳的冷量用于食品和果蔬的冷藏,储运,以及利用二氧化

碳在超临界状态下的特殊性能进行萃取,分析等

提高石油采收率:

据统计,到 2004 年,世界石油产量的3%是由注气提高采收率而获得的。其中,加拿大的注气增产量为其石油总产量的20%,美国为10%

二氧化碳驱用于油田,能够提高石油采收率,主要是因为二氧化碳除了具有一般气驱所共有的驱替机理外,还有其特殊的驱替机理,

如二氧化碳在地层内溶于水后,可使水的黏度增加 20%~30%,运移性能提高 2~3 倍;二氧化碳溶于油后,使原油体积膨胀,黏度降低30%~80%,油水界面张力降低,有利于增加采油速度和增加洗油效率。

二氧化碳驱的缺点:不同温度条件下,二氧化碳的溶解浓度不同;二氧化碳溶于油,会产生石蜡及沥青的沉积,二氧化碳会从生产井中泄露;造成油井及井田设备的腐蚀;油田附近缺乏相应的资源,远距离运输存在多方面问题以及使用成本高等问题。正是由于以上不足之

处,限制了该方法在大多数油田的推广。

(2)化学利用;

以二氧化碳为原料可生产许多无机和有机化工产品。据统计,全球每年约有 1.1*10^8 吨的二氧化碳用于化学合成。其中大规模利用二

氧化碳的主要是生产尿素,纯碱和碳酸氢铵,有机碳酸酯以及作为调节合成气中 CO与 H2 比例的添加剂等。

1、C1化工原料

C1华工主要包括了:天然气化工,合成气化工,甲醇化工和二

氧化碳化工等。如何更有效地减少大气中的二氧化碳,并能同时创造出丰厚的利润,一直是人们所真实追求的。由于,石油等化石燃料的

稀缺性,使得人们不得不去寻找其替代资源,而以二氧化碳为主要原

料的化工原料便受到了人们的格外关注。

化学方程式:

CO2 + 3 H2 ====== CH3OH+ H2O H=-49kJ/mol G=3kJ/mol CH4中C原子处于最低还原态,而二氧化碳则处于最高氧化态。

而二氧化碳催化加氢反应要获得成功,廉价的氢源和高选择性催化剂

的获得是两个关键的年个因素。目前,可通过水蒸气转化煤,天然气

或石油可制得氢,将来可通过太阳能电解水来获得廉价的氢。

而在催化剂方面最活跃的是铜基催化剂。在各种催化剂中,铜基催化剂研究得最多,综合性能最好。除金属氧化物自身性质外,其催

化活性还与分散度,助剂以及载体类型有很大关系。通过各种金属氧化物载体对 Cu催化剂活性影响的研究发现,Cu-Zn 系催化剂是合成

甲醇的高效催化剂,而不同载体上的甲醇收率大小的关系为:Cu-ZnO (Al2O3 , SiO2 , TiO2) > Cu-ZnO / ( ZrO2 , Cr2O3 ) >

Cu-ZnO/CeO2。

而随着世界能源的转换和环境保护的需要,进入21 世纪后, C1 化学技术,特别是天然气和二氧化碳的化工利用将会有突破性进展。

三其他可能的化学利用

二氧化碳的化学利用除了以上已较为成熟的利用途径和技术之

外,还有许多研究工作正在积极地进行着,如正在研究如何使二氧化

碳与水反应合成烃,醇燃料。二氧化碳与水是自然界最廉价易得的物质,该技术若能取得成功,将获得巨大的经济利益。目前,对该方法

的研究有两种途径,即催化转化法和微波—等离子还原法。

此外,由丙烷—二氧化碳重整制氢也是一个较新的研究方向。其中氢可再生,且燃烧只生成水,而二氧化碳更是廉价而又丰富。关键的问题是氢气能否充分开发利用,极大程度上取决于能否制出廉价的氢源。

四减少二氧化碳排放的途径

(1)优化能源消费结构

由于目前全球的能源消费结构中水力能,太阳能,风能等清洁能源的技术仍未成熟,所占比例甚低(不足 14%)。因为发展清洁能源是全人类一项长期的战略任务

(2)提高能源利用率和节能

由于人们对化石燃料的依赖度高,在短期内无法根本地改变全球能源结构,故改善能源的利用技术以提高能源利用率具有极大地现实

意义。例如:煤炭的气化,液化,干馏来提高利用率,天然气联合循

环( NGCC), 综合煤气化联合循环( IGCC)等

(3)二氧化碳的回收与利用

(4)二氧化碳的捕集和储存

液体二氧化碳安全技术说明书

液体二氧化碳安全技术说明书 第一部分化学品名称 化学品中文名称:液体二氧化碳 化学品英文名称:liquid Carbon dioxide 第三部分危险性概述 危险性类别:第2. 2类不燃气体 侵入途径:吸入和皮肤接触 健康危害:本身无毒。但空气中浓度超过3%时能出现呼吸困难、头痛眩晕、呕吐等。10%以上时出现视力障碍、痉挛、呼吸加快、血压升高、意识丧失。25%以上时,出现神经抑制、昏睡、痉挛、窒息至死。接触液体二氧化碳可引起冻伤。环境危害:大气中二氧化碳增加产生温室效应 爆炸危险:盛装液体二氧化碳容器遇明火高温,器内压力升高有开裂爆炸危险。 第四部分急救措施 皮肤接触:用水冲洗,就医 眼睛接触:就医 吸入:迅速脱离现场,移至空气新鲜处,呼吸困难时输氧,如呼吸和心跳停止,立即进行人工呼吸和心脏按摩术并及时就医 第五部分消防措施 危险特性:盛装液体二氧化碳的设备与容器遇高温、明火有爆炸危险,流速过快容易产生和积聚静电。 有害燃烧物:无 灭火方法及灭火剂:用水冷却设备或容器,选用适合周围火源的灭火剂 第六部分泄漏应急处理 应急处理:迅速撤离现场保持现场通风。穿戴防护用具进入现场堵漏气瓶泄漏无法堵漏时,将其移至空旷安全处放空。液体二氧化碳泄漏要有防寒护具 第七部分操作处置与储存 操作处置注意事项:密封操作,加强通风,操作人员必须经过专门培训,严守操作规程,持证上岗。充装时按充装系数要求控制充装量严禁超装。接触二氧化碳要穿戴好护具防止冻伤。 储存注意事项:储存于通风库房,远离火种热源,保持容器密封,气瓶应有防倒措施,大于10立方米贮槽不能放在室内。

第八部分接触控制/个体防护 最高允许浓度:中国MAC(mg/m3)18000 监测方法:化学分析 工程控制:生产过程密闭,加强通风。 呼吸系统防护:空气中浓度超标时,人员撤离现场,紧急事态抢救佩戴空气呼吸器或氧气呼吸器。 眼睛防护:戴面罩。 手防护:戴防寒手套。 其它防护:工作现场禁止烟火,工作前避免饮用酒精性饮料。进行就业前和定期体检。 第九部分理化特性 外观与性状:无色无味,不燃气体 熔点:(0C)-56.6相对密度(水=1):0.9295 沸点:(0C)-78.5(升华点)相对蒸气密度(空气=1):1.53 饱和蒸汽压(Kpa):3485.6kpa(0C)临界温度:(0C)31.0 临界压力(Mpa):7.382 溶解性:能熔于水,烃类及大多数有机溶剂。 主要用途:冷却剂、焊接、铸造工业、灭火剂、化工原料 第十部分稳定性和反应性 稳定性:稳定 禁配物:活泼金属 避免接触的条件:明火高热(容器盛装时) 聚合危害:不发生 分解产物:无 第十一部分毒理学资料 急性中毒:二氧化碳没有毒性,但二氧化碳浓度高时就会改变血液的PH值,长时间吸入二氧化碳将引起代谢障碍。当空气中浓度超过3%时能出现呼吸困难、头痛眩晕、呕吐等。浓度超过10%时出现视力障碍、痉挛、呼吸加快、血压升高、意识丧失。浓度超过25%以上时,出现神经抑制、昏睡、痉挛、窒息死亡。 第十二部分生态学资料 生态降解:未查明 非生物降解:无 其它害处:对环境有影响如温室效应。 第十三部分废弃处置 废气物性质:非危险废气物 废气处置方法:排入大气。 第十四部分运输信息 危险货物编号:22019(气) 22020(液)

化学品安全技术说明书[二氧化碳]

第一部分化学品及企业标识 化学品中文名:二氧化碳[压缩的或液化的] 化学品英文名:carbon dioxide,compressed or refrigerated liquid;carbonic anhydride 企业名称:XXXXXXXXX 企业地址: 邮编: 314100 传真: 联系: 电子地址: 企业应急: 国家事故应急咨询:00 产品推荐及限制用途:用于制糖工业、制碱工业、金属焊接及冶炼、植物助长、电子工业,化工清洗,也用于冷饮、灭火及有机合成。无资料。 第二部分危险性概述 紧急情况概述:压缩气体,不支持燃烧,钢瓶容器受热易超压,有爆炸危险。 GHS危险性类别:压力下气体:液化气体(GB20580) 标签要素: 象形图: 警示词:警告。 危险信息:含压力下气体,如受热可爆炸。 防说明: 防措施:远离热源和火源,避免直射,避免野蛮作业,佩戴好安全附件。在运输中钢瓶上要加装安全帽和防震橡皮圈,穿防护服和戴手套。 事故响应:万一发生吸入性事故,将患者移入新鲜空气出并保持安静,如呼吸停止,进行人工呼吸;如呼吸困难,给输氧。建议应急处理人员戴自给正压式呼吸器,穿一般作业工作服。尽可能切断泄漏源。合理通风,加速扩散。 安全储存:远离火种、热源。避免直射,保管在通风良好的场所。 废弃处置:非危险废物。少量可采用自然放空。 主要的物理和化学危险信息:压缩气体,遇热超压可能会引起爆炸,气体大量泄漏可导

致人员窒息。低温液体,身体直接接触易导致冻伤。 健康危害:在低浓度时,对呼吸中枢呈兴奋作用,高浓度时则产生抑制甚至麻痹作用。中毒机制中还兼有缺氧的因素。人进入高浓度二氧化碳环境,在几秒钟迅速昏迷倒下,反射消失、瞳孔扩大或缩小、大小便失禁、呕吐等,更严重者出现呼吸停止及休克,甚至死亡。固态(干冰)和液态二氧化碳在常压下迅速汽化,能造成 -80——-43℃低温,引起皮肤和眼睛严重冻伤。当二氧化碳浓度为3—5%(体积)时,呼吸将加快,有气闷和头痛感;经常接触较高浓度二氧化碳者,可有头晕、头痛、失眠、易兴奋、无力等神经功能紊乱等症状,但在生产中是否存在慢性中毒国外均未见病历报道。 环境危害:对环境可能无害。详情参见第十二部分。 第三部份成分/组成信息 物质/混合物浓度CAS No. 物质≥99.5%124-38-9 第四部份急救措施 皮肤接触:接触二氧化碳可引起冻伤,用水冲洗患处缓解症状,就医。 眼接触:二氧化碳溅入眼中,翻开眼睑,用水冲洗,立即就医。 吸入:迅速脱离现场至空气新鲜处,呼吸困难时给输氧。呼吸停止时,立即进行人工呼吸。如有条件给高压氧治疗。 食入:无相关资料。 第五部分消防措施 特别危险性:二氧化碳本身不燃烧,并是很好的灭火剂,但盛装二氧化碳的容器与设备遇明火、高温可使器压力急剧升高直至爆炸。应用水冷却火场中的容器。大量泄漏有窒息性。 灭火方法和灭火剂:无意义。 灭火注意事项及措施:无意义。 第六部分泄漏应急处理 作业人员防护措施,防护装备和应急处置程序:大量泄漏时应急处理人员戴自给式呼吸器,穿工作服。迅速撤离泄漏污染区人员至上风处,并隔离直至气体散尽。切断气源,通风对流,稀释扩散。液体泄漏时,须穿戴防护用具进入现场,保证现场通风。让泄漏液体自行挥发。 环境保护措施: 泄漏化学品的收容、清除方法及所使用的处理材料:合理通风,加速扩散。漏气容器要

二氧化碳回收操作规程完整

双多化工 3万吨/年二氧化碳回收装置工艺技术操作规程

双多化工 二O一二年八月 目录 第一章项目简介........................................................................................................ 1 第一节项目名称:......................................................... 1第二节项目地址:......................................................... 1 第二章装置简介........................................................................................................ 1 第一节装置规模........................................................... 1第二节工艺技术........................................................... 1第三节主要设备........................................................... 2第四节二氧化碳的性质..................................................... 3 第三章工艺过程介绍................................................................................................ 3 第一节压缩吸附部分....................................................... 3第二节精馏贮存部分....................................................... 5第三节冷冻液化部分....................................................... 5 第四章装置的操作.................................................................................................... 5 第一节首次开车准备....................................................... 5 1、1管路系统的准备工作.................................................................................................... 5 1、2机泵、控制系统的单体试车........................................................................................ 7第二节正常开车步骤....................................................... 8 2、1压缩吸附部分................................................................................................................ 8 2、2 精馏部分....................................................................................................................... 8 2、3 冷冻部分....................................................................................................................... 9第五章装置的正常运行........................................................................................ 10 第一节压缩吸附部分.................................................... 10 1、1第一冷却器................................................................................................................ 10 1、2干燥床的操作及再生................................................................................................ 10 1、3 吸附床的操作及再生............................................................................................... 11

二氧化硫处理方法

一、二氧化硫气体的来源 SO2是目前大气污染物中危害的一种,我国年排放量达1520万t,排在世界第三位,造成了环境污染和硫资源浪费。 在黄金生产过程中,SO2气体主要来源于高硫原矿。在焙烧黄铁矿、金精矿及炼金所产生的中含有SO2气体。 二、二氧化硫的净化与回收 (一)高浓度二氧化硫气体 此类二氧化硫中含SO2浓度在 3.5%(体积含量百分比:VSO2/V 空气)以上称为高浓度SO2烟气。采用接触法生产硫酸,免于外排大气中造成污染,同时烟气变成产品,既有经济效益,又净化了空气。 (二)低浓度二氧化硫气体的处理 1、低浓度的含SO2烟气,采用高空排放的措施(通常采用50m左右的高烟囱)。但在阴雨、气压低的天气情况下,SO2气体将危害地面的庄稼和果树、蔬菜,特别是蔬菜和豆类尤为敏感。因此,需要处理。 2、石灰石—石灰法 用石灰净化以除去SO2是*有效的传统方法。在某些情况下,当要去除的SO2浓度很低时,使用氢氧化钠或碳酸钠是很有效的。 虽然石灰净化能符合大气规定,但是,存在SO2与石灰反应产生的石膏固体废料的处理问题。产生的石膏,其中可能有其他有害元素,如砷、镉、铅、汞等。 SO2的排放量规定在美国的各州之间有很大差别。下式是美国内华达州用于计算容许的硫排放量公式(因为内华达州发现有大量难浸出金矿): E=0.292×P0.904 式中:E—容许的硫(S)排放量,kg/h; P—矿料中总硫(S)排放量,kg/h。 应当指出,上式是表示硫的排放量;为得到容许的SO2排放量,上式E还必须乘以2。此外,料中的硫是表示总硫,包括硫化物中硫和其他的硫化合物。 如果上述表示硫排放量的公式表明,每年有相当于250t的SO2排放出来,那么焙烧操作将受到漫长的和昂贵“点排放”的审查。因此,希望将SO2的排放量保持在250t以下。 如果焙烧产生的SO2数量很大,则需要高效率的净化系统,以确保SO2的排放量低于250t。为获得这样高净化效率,或者技术上不可行,或者很昂贵。当然,如果减少中的SO2数量,那么只需要较低的净化效率。如上所述,任何在焙烧时与CaO或MgO反应而被固定SO2的数量,都将减少进入废气中的SO2的数量。因此,按焙烧方案进行试验时,估价和提高SO2的固定是很重要的。 3、活性炭干法回收 长沙矿山研究院通过实验认为用活性炭干法回收SO2,不仅技术上可行,而且还有一定的经济效益。 三、钠碱吸收法处理与回收二氧化硫 钠碱吸收法采用Na2CO3或NaOH来吸收烟气中的SO2,并可获得较高浓度SO2气体和Na2SO4。 碱性吸收剂具有更多优点:(1)吸收剂在洗涤过程中不挥发;(2)具有较高的溶解度;(3)不存在吸收系统中结垢、堵塞问题;(4)吸收能力高。

二氧化碳处理技术王洋

二氧化碳处理技术 王洋32420132204724 自人类进入工业社会以来,煤炭、石油等化石燃料的大量使用造成了严重的环境问题。其中最为严峻的就是全球气候变暖问题。也叫做温室效应,目前,人类在能源系统中产生大量二氧化碳并直接排放是导致该现象的主要原因。同其他环境问题相比,二氧化碳的排放影响空间大且作用时间长,因此解决起来非常困难。大气中的二氧化碳含量已由工业革命前的2.80×10-4(体积分数,下同)上升到目前的3.56×10-4。如果不采取措施控制二氧化碳的排放,预计到2020年,大气中二氧化碳含量将达到6.60×10-4。一方面,如何降低二氧化碳排放量,变废为宝,实现其分离回收与综合利用是摆在广大环境科技工作者面前的重要课题。另一方面,二氧化碳作为地球上最丰富的碳资源,可转化为巨大的可再生资源。 现阶段,二氧化碳的资源化研究已引起人们的密切关注,且其开发前景非常广阔。二氧化碳的处理技术一般分可为从大气中分离固定和从燃放气中分离回收两大类。现阶段,从大气中分离固定二氧化碳技术主要有生物法,而从燃放气中分离回收二氧化碳技术主要有物理法、化学法和物理-化学法等。 1.1从大气中分离固定二氧化碳 如今,大气中的二氧化碳已经达到了较高的浓度,设法将其从大气中分离出来并加以固定,是当前不容忽视的研究课题。大气中游离的二氧化碳主要通过陆地、海洋生态环境中的植物、自养微生物等的光合作用或化能作用来实现分离和固定。固定大气中二氧化碳的生物主要是植物和自养微生物。人们往往将注意力放在植物的光合作用上。地球上存在各种各样的生态系统,尤其是在植物不能生长的特殊环境中,自养微生物固定二氧化碳的优势便发挥出来了,二氧化碳的微生物固定是一支决不能忽视的力量。二氧化碳是不活泼分子,化学性质较为稳定,过去人们一直认为它是燃烧过程的最终产物。高效固定二氧化碳的微生物(生物催化剂),可在温和条件下实现向有机碳的转化,微生物在固定二氧化碳的同时,可获得许多高营养、高附加值的产品。温室气体二氧化碳的微生物固定在环境、资源及能源等方面将发挥极其重要的作用。海洋对吸收二氧化碳存在着巨大的潜力。日本有关学者已筛选出能在很高的二氧化碳含量下繁殖的海藻,并计划在其太平洋海岸进行大面积人工繁殖试验,旨在吸收该地区工业化后排放的二氧化碳。美国还利用盐碱地里的盐生植物吸收二氧化碳,并在墨西哥进行试植。 1.2从燃放气中分离处理二氧化碳 1.2.1物理法 物理法分离处理二氧化碳技术主要有:物理吸收法、膜分离法、变压(变温)吸附法、海洋深层储存法和陆地蓄水层(或废油、气井)储存法等。 1)物理吸收法:通过交替改变二氧化碳与吸收剂(有机溶剂)之间的操作压力和操作温度以实现二氧化碳的吸收和解析,从而达到分离处理二氧化碳的目的。在整个过程中不发生化学反应,因而所需的能量消耗相对较少。一般讲来,有机溶剂吸收二氧化碳的能力随着压力增加和温度下降而增大,反之则减小。 物理吸收法其关键在于确定优良的吸收剂。对吸收剂的要求是:对二氧化碳的溶解度大、选择性好、沸点高、无腐蚀、无毒性、化 学性能稳定。常见吸收剂有丙烯酸酯、N-甲基-2-D吡咯烷酮、甲醇、乙醇、聚乙二醇及噻吩烷等高沸点有机溶剂,以减少溶液损耗和蒸气外泄。 2)膜分离法:膜分离法是利用一些聚合材料,如醋酸纤维和聚酰亚胺等制成的薄膜对不同气体具有不同的渗透率这一特性来分离气体,其中包括分离膜和吸收膜两种类型。其推动力是膜两边的压差。工业上用于二氧化碳分离的膜材质主要有醋酸纤维、乙基纤维素、巨苯醚及聚

二氧化碳安全技术说明书标准版

二氧化碳安全技术说明书 第一部分化学品及企业标识 化学品中文名称:二氧化碳化学品英文名称:Carbon dioxide 企业名称: 企业地址: 邮编: 传真: 电子邮件地址: 企业应急咨询电话: 产品推荐用途及限制用途:金属焊接及冶炼、植物助长、电子工业等。 第二部分危险性概述 紧急情况概述:不燃气体。若遇高热,容器内压增大,有开裂和爆炸的危险。 GHS 危险性类别:根据化学品分类、警示标签和警示性说明规范系列标准(参阅第十五部分),该产品属于高压气体,类别压缩气体。 标签要素和象形图: 警示词:警告 危险信息:内装高压气体,遇热可能爆炸。 禁配物:水、碱性物质。 防范说明: 预防措施:远离火种、热源。密闭操作,提供良好的自然通风条件。得到专门指导后操作。防止气体泄漏到工作场所空气中。远离易燃、可燃物。避免高浓度吸入,高浓度接触时可佩戴空气呼吸器。

事故响应:如果吸入,迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。呼吸、心跳停止,立即进行心肺复苏术。就医。 安全储存:保持容器密闭。储存于阴凉、通风的库房。 废弃处置:废气直接排入大气。 物理化学危险:内装高压气体,若遇高热,容器内压增大,有开裂和爆炸的危险。 健康危害:在低浓度时,对呼吸中枢呈兴奋作用, 高浓度时则产生抑制甚至麻痹作用。中毒机制中还兼有缺氧的因素。急性中毒,轻度中毒出现头晕、头痛、疲乏、恶心等,脱离接触后较快恢复。人进入高浓度二氧化碳环境,在几秒钟内迅速昏迷倒下,反射消失、瞳孔扩大或缩小、大小便失禁、呕吐等,更严重者出现呼吸、心跳停止及休克,甚至死亡。慢性影响经常接触较高浓度的二氧化碳者,可有头晕、头痛、失眠、易兴奋、无力等神经功能紊乱等。但在生产中是否存在慢性中毒国内外均未见病例报道。 环境危害:该物质大量排放时对环境有影响 第三部分成分/组成信息 混合物□ 化学品名称:二氧化碳 有害物成分浓度 CAS No 二氧化碳≥ 99.0% 124-38-9 第四部分急救措施 皮肤接触:不会通过该途径受到伤害。 眼睛接触:不会通过该途径受到伤害。 吸入:迅速脱离现场至空气新鲜处,保持呼吸系统畅通。如呼吸困难给输氧;如呼吸停止立即进行人工呼吸,就医。 食入:无意义。 对保护施救者的忠告:无资料。 对医生的特别提示:无资料。

二氧化碳的性质教学设计

二氧化碳的性质教学设计 景慧慧05211066 一、教学设计思路 故事引入 提出问题 实验探究 知识归纳 综合运用 运用多种教学手段使学生在科学探索的过程中学习新知识,同时培养学生的科学素养和探究精神,培养学生运用所学知识解决实际问题的能力,培养学生关注生活、关注环境的情感。 二、教案 课题:二氧化碳的性质 教学目标 知识与技能: 1.掌握二氧化碳的有关性质及相关方程式的书写; 2.了解二氧化碳的有关用途; 3.了解并关注温室效应。 4.通过探究二氧化碳性质的实验,培养学生的观察和思维能力。 过程与方法: 通过对二氧化碳的性质、用途等有关知识的探究学习,使学生通过教师的帮助和自身的努力领悟知识要点,通过设计并完成实验,使学生初步认识科学探究的基本过程,并进行初步的探究活动。通过相互交流、探究式的学习方式,使学生产生科学探究的兴趣,从而产生学习化学的强烈愿望。 情感态度和价值观: 1.通过对二氧化碳有关知识的讨论学习,使学生能够全面认识和评价自然界中的物质,体会到人只有了解自然,才能更好地利用自然。 2.形成勤于思考、严谨求实、善于合作、勇于创新和实践的科学态度。 3.让学生了解温室效应对人类可能产生的危害,树立关注社会、环境,热爱自然的情感意识。 重点和难点 二氧化碳的化学性质;二氧化碳与水和石灰反应的原理. 教学方法:主要采用探究实验分析法,把部分教材演示实验改为学生实验,让学生亲自参与。 仪器和药品:自制简易天平、试管、导气管、酒精灯、试管夹、火柴、木条、饮料瓶;集满二氧化碳的集气瓶、蒸馏水、紫色石蕊试液、澄清石灰水、

1.CO2的密度与空气相比 (A)比空气大(B)比空气小(C)与空气相等(D)无法判断 2.CO2 在水中的溶解性是 (A)难溶于水(B)能溶于水(C)微溶于水(D)易溶于水 3.下列操作中只发生物理变化的是 (A) 将CO2通入水中(B)将CO2 通入澄清石灰水中 (C)将CO2倾倒入放着燃着蜡烛的烧杯中(D)将CO2加压降温压缩成干冰。 附2:课堂练习二 4.二氧化碳的水溶液,能使紫色石蕊液变成 (A)红色(B)紫色(C)蓝色(D)无色 5.常温下,二氧化碳跟水发生的化学反应属于 (A)化合反应(B)分解反应(C)置换反应(D)氧化反应 6.下列性质中,与二氧化碳灭火无关的是 (A)它能溶于水(B)一般情况下,它不能燃烧 (C)它的密度比空气大(D)一般情况下,它不支持燃烧 布置作业: 1.课后习题 2. 二氧化碳的功与过 3. 思考:日常生活中,为了装饰我们的房子,我们给墙壁刷石灰水,当石灰水变干时墙壁会被一白色的物质覆盖,变得很白。在这过程中,为了使效果更好,人们常在房中放一盆炭火,这是为什么呢?你能利用你所学到的知识解释吗?

低压二氧化碳使用说明书介绍

一、概述 根据《蒙特利尔议定书》要求,我国将于2005年禁止使用哈龙类型灭火剂,淘汰卤代烷自动灭火系统已成必然趋势。二氧化碳灭火剂具有清洁、成本低、灭火性能稳定、绝缘性好、无污染等优点,其ODP值为零;GWP值为1,其环保性能大大优于卤代烷灭火剂1211和1301。上述优点,使得二氧化碳灭火系统成为替代哈龙的主要灭火系统之一。 低压二氧化碳自动灭火系统是一项基于高压二氧化碳自动灭火系统原理开发,而性能更加优越的灭火设施。该系统具有功能完善,自动性能好,工作可靠、准确等优点。其主要部件有灭火剂贮存装置(其中包括安全阀,液位仪,测压装置,制冷机等附件),主阀,选择阀,电磁阀,装置控制柜,喷嘴,管道及管道附件等。 该系统能扑灭A类表面及深位火灾、B类可燃液体火灾及C类气体火灾和带电电气设备火灾,但不适用于扑灭D类火灾。适用于浸渍槽、溶化槽、轧机、印刷机、纺织机、发电机组、煤粉仓、发电机油浸槽、变压器、液压设备、烘干设备、除尘设备、炊事炉灶、喷漆生产线、电器老化间、计算机房、数据储存间、纸库、棉花库、食品库、皮毛储存库以及船舶的机舱和货舱等场所的消防保护。该系统在技术上处于国际先进水平,是国际上二十世纪九十年代发展起来的新型自动灭火系统。 综上所述,低压二氧化碳自动灭火系统以其灭火效率高,成本低,无污染,适用范围广等优点将会日益受到社会的青睐。 我公司生产的ZED型系列低压二氧化碳自动灭火系统,符合GB19572-2004标准,其产品型号为: ZED□□□□X□X□ 保护区数 储罐数 二氧化碳灭火剂重量(kg) 低压二氧化碳自动灭火系统 如:ZED3000X1X2,表示灭火剂储存装置为一台3吨储罐,用于保护2个保护区的低压二氧化碳自动灭火系统。 有关产品的运输、安装、调试等操作过程中的安全注意事项请严格遵守后面各有关章节的规定

啤酒厂CO2回收量和使用量的计算教学文稿

啤酒厂C O2回收量和使用量的计算

啤酒厂CO2的回收量和使用量的计算 KHS中国广东轻工机械二厂有限公司汤文发 CO2是啤酒发酵中的主要产物,近代啤酒技术中CO2又是必不可少的重要原料,CO2的合理回收利用对于改进酿造工艺,提高啤酒质量起着重要作用。因此,啤酒厂回收发酵产生的CO2经过过滤、洗涤、压缩等一系列的处理最后使用到啤酒的过滤和包装过程中,这样既能减排又能变废为宝。在此就啤酒厂CO2的回收量和使用量的计算方法介绍如下与同行参考。 1、发酵过程中CO2产生总量 啤酒发酵过程中,可发酵糖在酵母作用下转化为酒精、CO2及副产物。正常发酵情况下,可发酵糖中约98%左右可完全发酵产生CO2。根据巴林(Balling)氏的研究,在完全发酵时,存在下列关系: 浸出物酒精 + CO2 + 酵母 2.0665 1.0 0.9565 0.11 由上式可推出发酵满罐至下酒时CO2产生总量:: G =(麦汁浓度-下酒真浓)*98%*酒液总量*0.9565/2.0665 (1) 2、CO2实际回收量 设麦汁原浓14%,主酵温度 12℃,罐压 0.08-0.1Mpa,下酒外浓3.2%,外观发酵度75%,真正发酵度60%,酒精含量4.25%,真浓5.5%,CO2纯度达到99%、原浓为12..1 %时开始回收,按以上条件为例计算发酵过程中每KL麦汁实际回收的CO2量。 CO2理论收量= 产生总量-回收前溢出量-发酵液中溶解量 (2)

由1式可得:CO2产生总量=(14%-5.5%)*1000*1.056*98%*0.9565/2.0665=40.72.kg (3) 回收前溢出量=(14%-12.1%)*1000*1.056*98%*0.9565/2.0665=9.10kg (4) 假设发酵液中CO2含量为6.0g/L,发酵液中溶解量=0.60%*1000=6.00kg (5) 由(3)、(4)、(5)代入(2)式可得: CO2理论回收量=40.72-9.10-6.00=25.62kg,即每KL麦汁可产生CO2理论回收量为 25.62kg/kl,但实际上CO2 回收量受各种环节及操作水平的影响,回收率约为0.74-0.84之间,也就是每kl 14度麦汁实际回收可供使用的最大量约为21.50kg/kl。 3、生产过程中CO2的使用量 A、制取碳酸水 碳酸水中CO2含量以0.55%计,生产1KL10°P啤酒,需14度啤酒723 L和287 L碳酸水,则需添加CO2的量为 287*0.55/100=1.579kg,即KL啤酒耗CO2为 1.579kg/kl B、发酵罐滤酒背压 CO2背压以0.1 MPa计,需要的CO2的总量为根据气体状态方程,相同体积下,0.1 MPa 表压所需CO2的量为标准状态下所需CO2量的两倍,设发酵罐的全容为380KL,有效容积为300KL,即2×380 kL×1.97kg/m3 =1497.2kg,折合千升啤酒为4.99kg/ kl。 C、清酒罐滤酒背压

二氧化碳的资源化利用

二氧化碳的资源化利用 【摘要】二氧化碳作为化石燃料燃烧的副产物,直接排放会对大气造成污染,形成温室效应。目前,全球回收的二氧化碳约40%用于生产化学品、35%用于油田三次采油、10%用于制冷、5%用于碳酸饮料、10%用于机械保护焊接、金属铸造加工、农业施肥等领域,但全球利用二氧化碳生产化学品总的利用量不到2亿吨。为了解决能源紧张、消除污染,大力开发二氧化碳资源的化学利用,具有重要的现实意义和广阔的应用前景[1]。 【前言】胡锦涛同志2009年9月22日在联合国气候变化峰会开幕式上发表讲话,中国争取到2020年单位GDP二氧化碳排放比2005年有显著下降。2007年2月2日,政府间气候变化专门委员会(IPCC)发布《全球气候变化第四次评估报告》,该报告明确指出:人类活动要为全球暖化现象负90%的责任,全球暖化现象主要归因于人类使用化石燃料,排放了大量的二氧化碳等温室气体,造成了温室效应[2] 。近年来,随着工业的快速发展,绿色植被减少,越来越多的化石燃料的燃烧导致大气中二氧化碳含量逐年增加。目前二氧化碳在食品、化学合成、机械、农业、商业、运输、石油开采、国防、消防等众多领域中均有广泛的应用。烟气中二氧化碳的资源化研究正成为当前各国所需要迫切解决的热点问题。 随着人类社会的不断发展,人们对自然资源的依赖程度逐渐增大,其消耗速度也在不断增长。其中,化石能源作为人来赖以生存的最重要的一次能源之一,近年来的全球消耗量正在以惊人的速度增长,从某种意义上可以说,正是化石资源所提供的能量在驱使着人类历史的巨轮缓缓前进。然而,不断增长的能源消费也对环境带来了诸多的负面影响,其中CO2的排放问题越来越受到政府、公众、企业界以及学术界的关注,2009年12 月7 日在丹麦首都哥本哈根召开的《联合国气候变化框架公约》第十五次缔约方会议最终在以中美两方为代表的两大阵营的激烈碰撞中草草收场,仅仅形成了一个无实质性无约束力的《哥本哈根协议》。这一结果一方面充分显示了目前减少CO2 排放的重要性和迫切性,同时也反映出了“减排”已不仅仅是一个环境热点,而是已经成为了一个威胁人类生存和发展的,达到国际关系高度的复杂问题。 我国作为发展中国家,并没有强制性的减排指标。然而,如果继续使用现有落后的技术,CO2排放问题势必成为阻碍我国经济可持续发展的主要瓶颈之一,也必将严重影响到我国的国际形象。近年来,我国政府在温室气体减排问题方面出台了一系列政策、法规,提出了量化的减排指标,加速淘汰落后产品。正如温家宝总理在哥本哈根气候变化会议领导人会议上的讲话所提到的:“我们的减排目标将作为约束性指标纳入国民经济和社会发展的中长期规划,保证承诺的执行受到法律和舆论的监督。我们将进一步完善国内统计、监测、考核办法,改进减排信息的披露方式,增加透明度,积极开展国际交流、对话与合作。”[3]由此可见,党中央和国家政府对温室气体减排问题给予了高度的重视,而发展新型高效的减排技术已经成为了当前我国乃至全世界需要迫切解决的科学技术问题之一。 当前,减排的主要路线首先是从源头上减排,即通过调整产业、经济、能源结构,鼓励低排放、低能耗企业的建设,对高能耗的企业实行技术改造;大力发展节能技术,提高能源利用率;寻找新能源;增强公民意识,改变生活方式等:其次,对迫不得已排放的CO2通过回收分离、捕获贮存、资源化利用等技术减少或消除其排放[4]。其捕获分离C02技术如下:1.吸收法 包括物理吸收和化学吸收。物理吸收是指利用那些对CO2具有较大溶解度的有机溶剂做吸收剂,通过对CO2的加压让其溶解到该溶剂内,再通过减压让CO2释放出来,通过这样的交替方式完成CO2的捕获分离。 2.吸附法[5]

液体二氧化碳安全技术说明书

危险化学品安全技术说明书 修订日期:2015年1月8日 SDS编号:CSDS-SY001 产品名称:液体二氧化碳版本:QB0408-14-001 第一部分化学品及企业标识 化学品中文名:液体二氧化碳 化学品英文名:Carbon dioxide 企业名称: 企业地址: 邮编:传真: 联系: 电子地址: 企业应急咨询: 产品推荐及限制用途:主要用于制造碳酸钠,及生产充碳酸气的饮料。用干冰冷冻水果或肉类,不但温度低,而且无污染。二氧化碳又是有效的灭火剂,用于不能用水来扑灭的火灾,如油、电、金属钠引起的火灾。液态二氧化碳已成为高效无污染的萃取剂,所用的工艺称为超临界萃取,多用于食品等工业。 第二部分危险性概述 紧急情况概述:长时间过量吸入会引起昏迷,反射消失,瞳孔散大或缩小,大小便失禁,呕吐、呼吸停止,休克死亡。皮肤、眼睛接触干冰或液体二氧化碳会引起冻伤。 GHS危险性类别:加压气体特异性靶器官毒性-一次接触,类别3 标签要素: 象形图: 警示词:警告 危险信息:含压力下气体,如受热可爆炸; 含压力下气体,如受热可爆炸; 可能引起呼吸道刺激,可能引起昏昏欲睡或眩晕; 防说明: 远离热源/明火/热表面,禁止吸烟。 保持容器密闭。 采取防止静电措施,容器和接收设备接地/连接。

使用防爆电器/通风/照明等设备,只能使用不产生火花的工具。 得到专门指导后操作,在阅读并了解所有安全预防措施之前,切勿操作。 按要求使用个体防护装备。 操作液体二氧化碳装置时使用棉手套,防止冻伤。 操作液体二氧化碳设备时可使用防护眼镜防止飞溅冻伤眼睛。 避免接触眼睛、皮肤,避免吸入。 操作现场不得进食、饮水或吸烟。 【事故响应】 火灾时,使用泡沫灭火器,对火场中钢瓶用大量水降温,防止爆炸,并迅速将其转移至安全的空旷处。 如吸入立即转移至空气新鲜通风处,重者立即就医。 如皮肤、眼睛接触液体二氧化碳,用自来水冲洗,就医。 【安全储存】 在阴凉、通风处储存,保持容器密闭。 储存场所应保持通风和防止曝晒,库温不宜超过35℃。 使用时对气瓶应有防止倾倒的措施。 【废弃处置】 少量废气可直接排入大气中。 物理化学危险:产品系灭火剂,为防止外来火灾对压缩气体包装钢瓶造成的危险,可就近配备泡沫式灭火器。 健康危害:长时间过量吸入会引起昏迷,反射消失,瞳孔散大或缩小,大小便失禁,呕吐、呼吸停止,休克死亡。皮肤、眼睛接触干冰或液体二氧化碳会引起冻伤。 环境危害:大量二氧化碳排放大气能破坏地球臭氧层,少量二氧化碳废气可直接排放。 第三部分成分/组成信息 第四部分急救措施 急救: 皮肤接触:皮肤接触,用自来水冲洗,就医。 眼睛接触:眼睛接触,用自来水冲洗,就医。 吸入:立即转移至空气新鲜通风处,重者立即就医。 食入:无资料。 第五部分消防措施

二氧化硫污染的处理方法

二氧化硫污染的治理方法 化工与能源学院 化学工程与工艺X班 XXX 20100380XXX

摘要:大气污染会对人类和其它生物的健康造成危害,本世纪以来,不断发生的公害, 使人们认识到保护大气不受污染的重要性。二氧化硫是大气主要污染物之一,是衡量大气污染程度重要标志。目前我国是世界上二氧化硫排放量最大的国家,我国城市大气污染严重,对社会环境产生很大压力。本文分析了二氧化硫的来源和危害,综述了二氧化硫废气的各种治理方法。之处选择脱硫方法需要具体情况具体分析,应选择脱硫效率高,省投资,运转费低,长期运转稳定可靠,不产生二次污染的方法。 关键词:二氧化硫; 污染现状; 治理方法 1 SO2的来源 大气中的二氧化硫主要是由含硫燃料燃烧和生产工艺过程中采用含硫原料所产生的。原油、煤以及铁、铜、铅、锌、铝矿石等许多原料中都含有硫。煤和油等含硫燃料的燃烧、原油的炼制、金属矿石的冶炼等过程中,燃料和工业原料中的硫与氧结合,生成二氧化硫气体,排放到大气中,达到一定的量时,就会产生二氧化硫污染。 2 SO2的危害 对人体健康的危害 2.1 SO 2 SO2是一种无色具有强烈刺激性气味的气体,易溶于人体的体液和其他黏性液中,长期的影响会导致多种疾病,如:上呼吸道感染、慢性支气管炎、肺气肿等,危害人类健康。SO2在氧化剂、光的作用下,会生成使人致病、甚至增加病人死亡率,据有关研究表明,当硫酸盐年浓度在10μg/m3 左右时,每减少10%的浓度能使死亡率降低0.5%。 2.2 SO 对植物的危害 2 研究表明,在高浓度的SO2的影响下,植物产生急性危害,叶片表面产生坏死斑,或直接使植物叶片枯萎脱落;在低浓度SO2的影响下,植物的生长机能受到影响,造成产量下降,品质变坏。其主要伤害有: 因H+降低细胞PH产生的伤害,因SO2导致细胞PH下降会引起气孔关闭,使叶绿素变成脱镁叶绿素等。 因SO32-和HSO3-的直接作用产生的伤害,可能与二硫化物反应切断双硫键;与辅酶反应,可使硫胺素分解为嘧啶和噻唑;与嘧啶化合物反应,使mRNA钝化。 因SO32-和HSO3-而产生的间接毒害作用,与代谢中间产物醛或酮起反应;形成自由基产生危害。 据1983年对我国13个省市25个工厂企业的统计,因SO2造成的受害面积达2.33 万公顷,粮食减少1.85万吨,蔬菜减少500 吨,危害相当严重。 对金属的腐蚀 2.3 SO 2 大气中的SO2对金属的腐蚀主要是对钢结构的腐蚀。据统计,发达国家每年因金属腐蚀而带来的直接经济损失占国民经济总产值的2%~4%。由

最新版二氧化碳安全技术说明书(2017)

化学品安全技术说明书 修订日期:2017年06月15日 SDS编号:LGHH-011 产品名称:二氧化碳气体版本:LG-MSDS-2017 第一部分化学品及企业标识 化学品中文名称:二氧化碳 化学品英文名称:Carbon dioxide 企业名称: XXXXXX化工有限公司 地址:河北省XXXXXXX 邮编: 057XXX 传真:0310-4577XXXX 联系电话:00310-8XXXXXX 电子邮件地址:XXXXXXX3@https://www.doczj.com/doc/6413999475.html, 企业应急咨询电话:0310-XXXXXX 产品推荐及限制用途:用于制糖工业、制碱工业、制铅白等,也用于冷饮、灭火及有机合成。 第二部分危险性概述 紧急情况概述:性质稳定,不燃烧,也不助燃。在低浓度时,对呼吸中枢呈兴奋作用,高浓度时则产生抑制甚至麻痹作用。中毒机制中还兼有缺氧的因素。对环境有影响。 GHS危险性类别:根据化学品分类、警示标签和警示说明规范系列标准(参阅第十五部分),该产品属于压力下气体,类别特异性靶器官毒性-一次接触类别3。 标签要素: 象形图: 警示词:警告

危险信息:内装高压气体,如加热可爆炸;可能引起呼吸道刺激,可能引起 昏昏欲睡或眩晕。 防范说明: 预防措施:远回避热源;禁止在靠近热源或明火处使用或贮存;贮存于密封 的容器中;置于阴凉处;在运输中钢瓶上要加装安全帽和防震橡 皮圈;穿防护服和戴手套。 事故响应:万一泄露,撤离危险区,咨询专家; 万一发生吸入性事故,将患者移至新鲜空气处并保持安静;如呼 吸停止,进行人工呼吸,如果呼吸困难,供给氧气; 皮肤接触:若有冻伤,就医; 眼睛接触:若有冻伤,就医。 安全储存:避免阳光直射,置于阴凉处,禁止在靠近热源或明火处使用或贮 存;贮存于密封的容器中。 废弃处置:本品或其容器依当地法规处置。 物理化学危害:压缩气体,不支持燃烧,钢瓶容器受热易超压,有爆炸危险。 健康危害:在低浓度时,对呼吸中枢呈兴奋作用,高浓度时则产生抑制甚至麻痹作用。 中毒机制中还兼有缺氧的因素。 急性中毒:人进入高浓度二氧化碳环境,在几秒钟内迅速昏迷倒下,反射消 失、瞳孔扩大或缩小、大小便失禁、呕吐等,更严重者出现呼吸停止及休克, 甚至死亡。固态(干冰)和液态二氧化碳在常压下迅速汽化,能造成-80— —-43℃低温,引起皮肤和眼睛严重冻伤。 慢性影响:当CO2浓度为3—5%(体积)时,呼吸将加快,有气闷和头痛 感;经常接触较高浓度二氧化碳者,可有头晕、头痛、失眠、易兴奋、无力 等神经功能紊乱等症状,但在生产中是否存在慢性中毒国内外均未见病历报 道。 环境危害:对大气可造成污染。 第三部分成分/组成信息 √物质混合物 危险组分浓度或浓度范围CAS No.

二氧化碳的影响及综合利用

二氧化碳的影响及综合利用 引言:近十多年来,在涉及地球环境保护的诸多问题中,最令人关注的当属大气环境逐渐变暖,即所谓的温室效应。近年来所发生的许多危害,都或多或少被打上了温室效应的烙印,如:严酷的天气类型,变化的生态系统,物种灭绝及生物多样性的丧失,饮用水的减少,海平面上升造成的陆地减少和平均气温上升等。尽管产生全球气候变化的原因是多方面的,但大量研究表明,产生温室效应的主要原因与温室气体(CHG)的大量排放有直接关系。 当前所谓的温室气体主要有6种,除二氧化碳外,还包括甲烷,氧化氮,氢氟烃,全氟碳和六氟化硫。这些气体能大量吸收地球表面辐射的热量,从而使地表温度升高而产生温室效应。而现在摆在人们面前的不仅仅是如何减少二氧化碳的排放量,更应该去思考如何利用这部分温室气体进行工业生产,来为世界创造更多的价值。 一、概述: 碳循环是碳通过大气圈,生物圈,土壤圈,岩石圈和水圈的变化和传递的总过程。 碳在生物圈的存在形式主要为有机碳;碳在水圈中的存在形式为溶解的有机碳,溶解的无机碳,沉淀的有机碳,沉淀的无机碳和有机碳;碳在岩石圈中的存在形式为有机碳(包括化石燃料)和碳酸盐;碳在土壤圈的存在形式为有机碳;碳在大气圈中的主要存在形式为二氧化碳和甲烷气体。

现在大气中的二氧化碳的浓度为0。000370%。而近年来,人类每年排入大气的二氧化碳为280*10^8t,是植被和土壤呼吸及海表交换排入大气的CO2平均自然流通量(总量约为5500*10^8t)的5%。大气中CO2总量的变化由排放和吸收量之间的净平均差额决定,而不是各流量本身。有数据表明:在过去的42万年中,二氧化碳的含量在过去的250年增长了31%,其中最近几十年更是以指数形式在增长。而化石燃料的使用对CO2排放的贡献占人类活动总排量的70%~90%。 Rising carbon dioxide concentrations in air in the past decades 二、温室效应: 目前,公认的二氧化碳所引起的温室效应对人类生活环境的几大影响主要包括:一是极端气象和气候现象频繁发生;二是冰川融化,海平面上升;三是对动植物种群数目和分布产生影响;四是全球气候变暖导致越来越严重的缺水问题;五是全球全球变暖带来的种种后果将使人类健康问题越来越突出。 1.温室效应的起因

二氧化碳的分离回收技术与综合利用

知识介绍 二氧化碳的分离回收技术与综合利用 夏明珠 严莲荷 雷 武 王风云 朱 彬 赵小蕾 (南京理工大学水处理研究所,210094) 石油、煤、天然气等化石燃料的大量使用,排出大量的CO 2废物,使大气中CO 2的含量逐年增加,造成严重的环境污染,引起全球的“温室效应”,带来一系列的负面影响。如何降低CO 2的排放量,变废为宝,实现其分离回收与综合利用,将成为21世纪最为重要的能源与环境问题之一。 图1 物理吸收法工艺流程 1 二氧化碳的分离回收技术 工业上CO 2的分离回收技术种类很多,归纳起 来,大致分为以下几种。1.1 吸收法工业上采用的气体吸收法,可分为物理吸收法和化学吸收法。1.1.1 物理吸收法 物理吸收法是在加压下用有机溶剂对酸性气体进行吸收来分离脱除酸气成分,并不发生化学反应,溶剂的再生通过降压实现,因此所需再生能量相当少。该法关键是确定优良的吸收剂。所选的吸收剂必须对CO 2的溶解度大、选择性好、沸点高、无腐蚀、无毒性、性能稳定[1]。典型的物理吸收法有Shell 公司的环丁砜法,No rton 公司的聚乙二醇二甲醚法、 Lurgi 公司的甲醇法[2] ,另外,还有N -甲基吡咯烷酮法、粉末溶剂法(所用溶剂为碳酸丙烯酯),三乙醇胺 也可作为物理溶剂使用。典型的物理吸收工艺流程见图1[3] 。图1中,原料气从吸收塔底部进入,与塔顶喷下的吸收剂逆流接触,净化气由塔顶引出。吸收气 体后的富液经闪蒸器减压释放出闪蒸气(最高压力下闪蒸出来的气体大部分是溶解的非酸性气体),经低压闪蒸后的半富液送入再生塔顶部即降至常压,并放出大量CO 2,即为所需的分离回收的CO 2,可用于生产液体CO 2或干冰。其余未解吸的CO 2与再生塔底部送来的空气或惰性气体逆流接触,靠汽提使溶剂再生后送往吸收塔顶部。 1.1.2 化学吸收法 化学吸收法是使原料气和化学溶剂在吸收塔内发生化学反应,CO 2被吸收至溶剂中成为富液,富液进入脱析塔加热分解出CO 2从而达到分离回收CO 2的目的。所用化学溶剂一般是K 2CO 3水溶液或乙醇胺类的水溶液。热K 2CO 3法常见方法有苯菲尔德法(吸收溶剂中K 2CO 3质量分数为25%~30%,二乙醇胺1%~6%,加适量五氧化二钒作催化吸收剂和防图2 化学吸收法工艺流程 腐蚀剂)、砷碱法(Vetro Cokes 法,K 2CO 3质量分数23%,As 2O 312%,或用氨基乙酸和V 2O 5来代替As 2O 3)、卡苏尔法(Carso l 法,K 2CO 3、胺、V 2O 5)、改良热碳酸钾法(Cata Carb 法,K 2CO 3、乙醇胺盐、V 2O 5)。 以乙醇胺类作吸收剂的方法有M EA 法(所用溶剂为一乙醇胺)、DEA 法(二乙醇胺)、M DEA 法(甲基二乙醇胺)、联合碳化公司的乙醇胺法(同时添加两种防腐蚀剂)、道化学公司的2-烷氧基乙胺法(内添加防腐蚀剂)以及劳尔夫-巴逊斯法(所用溶剂为二乙醇胺)[1]。化学吸收工艺流程见图2[4]。化学吸收法的关键是控制好吸收塔和解析塔的温度与压 · 46·1999年第19卷第5期 现代化工 DOI:10.16606/https://www.doczj.com/doc/6413999475.html, k i .i ssn 0253-4320.1999.05.016

相关主题
文本预览
相关文档 最新文档