当前位置:文档之家› 色谱分析谱图

色谱分析谱图

色谱分析谱图
色谱分析谱图

A5000气相色谱工作站分析报告

样品信息:

样品名称: 乙酸乙酯、甲苯盲样样品编号:

样品来源: 省职防院邮寄采样人:

稀释倍数: 0.0 样品量: 0.0

含量单位: 取样时间:

仪器条件:

仪器名称: 气相色谱仪柱子型号: FFAP

检测器: FID

积分参数:

最小值: 10.00 漂移: 0.02 mV/min

噪声: 0.05 mV 最小峰宽: 2.00 S

相对窗宽: 5% 计算方式: 峰面积

色谱条件:

柱箱温度: 50 (℃)程序升温载气流速: 30 (ml/min)

检测器温度: 130 (℃)空气流速: 300 (ml/min)

气化室温度: 200 (℃)氢气流速: 30 (ml/min)

谱图:

分析结果:

定量方法:外标法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳 3.91 9726895 366254 9726895 BB

2 乙酸乙酯0.00 0 0 0.000000 BB

3 甲苯0.00 0 0 0.000000 BB 谱图:

分析结果:

定量方法:归一法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳 3.87 9287219 363551 9287219 BB

2 乙酸乙酯 5.40 67436 4449 25.265 BB

3 甲苯8.2

4 63476 13403 8.777 B B 谱图:

分析结果:

定量方法:外标法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳 3.88 9515607 362744 9515607 BB

2 乙酸乙酯 5.42 68086 4510 25.508 B B

3 甲苯8.25 58293 13600 8.061 BB 谱图:

分析结果:

定量方法:外标法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳 3.88 9231735 354067 9231735 BB

2 乙酸乙酯 5.41 67415 4556 25.256 B B

3 甲苯8.25 59548 13601 8.235 BB 谱图:

分析结果:

定量方法:外标法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳 3.91 1.1335E+7 363080 11334770 BB

2 乙酸乙酯 5.41 161006 9221 60.320 BB

3 甲苯8.27 147725 33843 20.428 B B 谱图:

分析结果:

定量方法:外标法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳 3.90 1.1056E+7 364034 11055760 BB

2 乙酸乙酯 5.40 160789 8769 60.2

3 B B

3 甲苯8.27 146202 3323

4 20.21 B B 谱图:

分析结果:

定量方法:外标法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳 3.88 8989353 351401 8989353 BB

2 乙酸乙酯 5.41 161070.9.8922 60.345 B B

3 甲苯8.25 122863 27216 16.989 B B 谱图:

分析结果:

定量方法:外标法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳 3.88 9234715 360550 9234715 BB

2 乙酸乙酯 5.40 272778 18234 102.195 B B

3 甲苯8.25 235682 53306 32.591 B B 谱图:

分析结果:

定量方法:外标法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳 3.87 9192527 359978 9192527 BB

2 乙酸乙酯 5.39 271461 18298 101.702 B B

3 甲苯8.2

4 233828 52983 32.334 B B 谱图:

分析结果:

定量方法:外标法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳0.00 0 0 0.000000 B B

2 乙酸乙酯 5.42 271950 17111 101.885 BB

3 甲苯8.25 23278

4 52368 32.190 B B 谱图:

分析结果:

定量方法:外标法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳 3.88 8980761 357096 8980761 BB

2 乙酸乙酯 5.41 557666 36925 208.928 B B

3 甲苯8.25 459905 102841 63.597 B B 谱图:

分析结果:

定量方法:外标法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳 3.88 9257930 358904 9257930 BB

2 乙酸乙酯 5.41 543109 36191 203.47

3 B B

3 甲苯8.25 468460 10566

4 64.780 B B 谱图:

分析结果:

定量方法:外标法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳 3.88 9039039 350848 9039039 BB

2 乙酸乙酯 5.41 537282 36252 201.290 B B

3 甲苯8.26 444659 100493 61.489 B B 谱图:

分析结果:

定量方法:外标法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳 3.89 9187863 35807

2 918786

3 BB

2 乙酸乙酯 5.42 1094976 73262 410.229 BB

3 甲苯8.26 935996 211357 129.433 B B 谱图:

分析结果:

定量方法:外标法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳 3.88 9101211 356793 9101211 BB

2 乙酸乙酯 5.41 1103481 72746 413.415 BB

3 甲苯8.26 937846 20789

4 129.689 B B 谱图:

分析结果:

定量方法:外标法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳 3.89 8854206 349428 8854206 BB

2 乙酸乙酯 5.42 1088598 7204

3 407.839 B B

3 甲苯8.28 932931 205413 129.009 BB 谱图:

分析结果:

定量方法:外标法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳 3.88 9158493 35753

2 915849

3 BB

2 乙酸乙酯 5.41 2175935 146211 815.206 B B

3 甲苯8.26 1752813 384123 242.386 BB 谱图:

分析结果:

定量方法:外标法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳 3.89 895473

2 356000 8954732 BB

2 乙酸乙酯 5.41 2188606149371 819.95

3 BB

3 甲苯8.26 1813612 397117 250.793 BB 谱图:

分析结果:

定量方法:外标法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳 3.88 8797629 349644 8797629 BB

2 乙酸乙酯 5.42 2159619 143849 809.094 B B

3 甲苯8.28 1868172 407368 258.338 B B 谱图:

分析结果:

定量方法:外标法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳 3.88 9053573 356516 9053573 BB

2 乙酸乙酯 5.41 4408569 296029 1651.654 BB

3 甲苯8.28 3636198 744526 502.828 BB 谱图:

分析结果:

定量方法:外标法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳 3.88 8865490 356147 8865490 BB

2 乙酸乙酯 5.41 4396994 288667 1647.318 B B

3 甲苯8.30 361608

4 735422 500.046 B B 谱图:

分析结果:

定量方法:外标法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳 3.87 9008417 35522

2 9008417 BB

2 乙酸乙酯 5.41 4398715 294421 1647.96

3 BB

3 甲苯8.28 3559447 734385 492.21

4 B B 谱图:

分析结果:

定量方法: 外标法 序号

组分名

保留时间 峰面积 峰高

含量 峰型 1 二硫化碳

3.91 9815124 369548 9815124 BB 2 乙酸乙酯 5.44 468712 33314 175.59 B B 3

甲苯

0.00

0 0

0.000000 B B

谱图:

分析结果:

定量方法: 外标法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳 3.91 999356

2 36855

3 9993562 BB

2 乙酸乙酯0.00 0 0 0.000000 B B

3 甲苯8.28 472586 10546

4 65.34 B B 谱图:

分析结果:

定量方法:外标法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳 3.91 9865467 366678 9865467 BB

2 乙酸乙酯0.00 0 0 0.000000 B B

3 甲苯8.30 1445212 321677 199.83 B B 质量检测:质控样反测结果在质控范围之内,符合质控要求。

谱图:

分析结果:

定量方法:外标法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳 3.93 9732377 36749

2 9732377 BB

2 乙酸乙酯 5.45 1365420 96466 511.55 BV

3 甲苯8.31 1628676 36236

4 225.22 B B 谱图:

分析结果:

定量方法:外标法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳 3.9

2 9956316 37042

3 9956316 BB

2 乙酸乙酯 5.44 1424275 94901 533.60 B B

3 甲苯8.29 1672137 366969 231.23 BB 谱图:

分析结果:

定量方法:外标法

序号组分名保留时间峰面积峰高含量峰型

1 二硫化碳 3.93 9826906 36863

2 9826906 BB

2 乙酸乙酯 5.45 134**** ****

3 504.0

4 BB

3 甲苯8.31 1648490 363711 227.96 BB 结论:

校正曲线:

---校正曲线 - 组分 : "乙酸乙酯" ---

浓度: 25.7031 51.4063 102.8125 205.6250 411.2500 822.5000 1645.000

峰面积: 67646 160955 272063 546019 1095685 2174720 4401426 曲线方程:Y = 2669.182786 X +0.0000

相关系数: : 1.0000

---校正曲线 - 组分 : "甲苯" ---

浓度: 7.8125 15.6250 31.2500 62.5000 125.0000 250.0000 500.0000 峰面积: 60439 138930 234098 457675 935591 1811532 3603910 曲线方程:Y = 7231.491574 X +0.0000

相关系数: : 1.0000

气相色谱仪原理(图文详解)

气相色谱仪原理(图文详解) 什么是气相色谱 本章介绍气相色谱的功能和用途,以及色谱仪的基本结构。 气相色谱(GC)是一种把混合物分离成单个组分的实验技术。它被用来对样品组分进行鉴定和定量测定: 基子时间的差别进行分离 和物理分离(比如蒸馏和类似的技术)不同,气相色谱(GC)是基于时间差别的分离技术。 将气化的混合物或气体通过含有某种物质的管,基于管中物质对不同化合物的保留性能不同而得到分离。这样,就是基于时间的差别对化合物进行分离。样品经过检测器以后,被记录的就是色谱图(图1),每一个峰代表最初混合样品中不同的组分。 峰出现的时间称为保留时间,可以用来对每个组分进行定性,而峰的大小(峰高或峰面积)则是组分含量大小的度量。 图1典型色谱图

系统 一个气相色谱系统包括 可控而纯净的载气源.它能将样品带入GC系统进样口,它同时还作为液体样品的气化室色谱柱,实现随时间的分离 检测器,当组分通过时,检测器电信号的输出值改变,从而对组分做出响应 某种数据处理装置图2是对此作出的一个总结。 样品 载气源一^ 进样口一^ 色谱柱一^ 检测器一_ 数据处理」 图2色谱系统 气源 载气必须是纯净的。污染物可能与样品或色谱柱反应,产生假峰进入检测器使基线噪音增大等。推荐使用配备有水分、烃类化合物和氧气捕集阱的高纯载气。见图

钢瓶阀 若使用气体发生器而不是气体钢瓶时,应对每一台GC都装配净化器,并且使气源尽可能靠近仪器的背面。 进样口 进样口就是将挥发后的样品引入载气流。最常用的进样装置是注射进样口和进样阀。注射进样口 用于气体和液体样品进样。常用来加热使液体样品蒸发。用气体或液体注射器穿透隔垫将样品注入载气流。其原理(非实际设计尺寸)如图4所示。

油色谱试验标准

油色谱分析试验标准 一、作业前的准备 (一)人员配置:2人(一人操作、一人监护) (二)工器具:油色谱分析仪,油样振荡器电源,烘干箱,油样注射器、5ML注射器、1ML注射器万用表,点火器 二注意事项 1、开色谱分析仪器前,一定先打开氮气钢瓶总阀,避免钨丝烧坏。 2、色谱分析仪器上的压力表参数:氮气0.32Mpa,氢气0.14Mpa,空气0.14Mpa。 3、注射样品后,当采集波形因某种原因,时间没有完成而停止了,需要等到上一次时间完成后才可开始注射下一次的样品,进行第二次试验。 4、A信号采集的六个峰值分别是:一氧化碳(CO)、甲烷(CH4)、二氧化碳(CO2)乙烯(C2H4)、乙炔(C2H2)、乙烷(C2H6)。 5、检测器A内的塞子,大概30次换一次。 6、开机后,当没有信号显示,检查“检测器”开关是否打开。 7、柱箱温度值不能升高时,检查柱箱温度开关是否打开。 8、变压器油气体色谱分析 油中溶解气体含量的注意值: 总炔 150ppm 乙炔 5ppm 氢气 150ppm ※总炔=甲烷+乙炔+乙烯+乙烷 ppm是每升油中含该气体的微升数(106) 三常见故障 1信号A显示“8300”,信号板A放大板没插好, 2信号B显示“1535”,调节调零旋转扭,若值没有什么变化,可能是信号B的钨丝烧坏或旋转按钮损害,需厂家修理处理。 3量程都是1如: SIGNAL 1 RANGE 1 SIGNAL 2 RANGE 1 4调零、衰减都是“0”。 四操作步骤 1开机 1.1打开空气、氢气、氮气钢瓶总阀。钢瓶总阀上的输出压力表的值在0.4 Mpa <压力值<0.5Mpa,钢瓶压力表小于2Mpa以下,换钢瓶。 1.2打开色谱分析仪器的红色开关。

怎样分析气相色谱图

在实际工作中,当我们拿到一个样品,我们该怎样定性和定量,建立一套完整的分析方法是关键,下面介绍一些常规的步骤: 1、样品的来源和预处理方法 GC能直接分析的样品通常是气体或液体,固体样品在分析前应当溶解在适当的溶剂中,而且还要保证样品中不含GC不能分析的组分(如无机盐),可能会损坏色谱柱的组分。这样,我们在接到一个未知样品时,就必须了解的来源,从而估计样品可能含有的组分,以及样品的沸点范围。如果样品体系简单,试样组分可汽化则可直接分析。如果样品中有不能用GC直接分析的组分,或样品浓度太低,就必须进行必要的预处理,如采用吸附、解析、萃取、浓缩、稀释、提纯、衍生化等方法处理样品。 2、确定仪器配置 所谓仪器配置就是用于分析样品的方法采用什么进样装置、什么载气、什么色谱柱以及什么检测器。 一般应首先确定检测器类型。碳氢化合物常选择FID检测器,含电负性基团(F、Cl等)较多且碳氢含量较少的物质易选择ECD检测器;对检测灵敏度要求不高,或含有非碳氢化合物组分时,可选择TCD检测器;对于含硫、磷的样品可选择FPD检测器。 对于液体样品可选择隔膜垫进样方式,气体样品可采用六通阀或吸附热解析进样方法,一般色谱仅配置隔膜垫进样方式,所以气体样品可采用吸附-溶剂解析-隔膜垫进样的方式进行分析。 根据待测组分性质选择适合的色谱柱,一般遵循相似相容规律。分离非极性物质时选择非极性色谱柱,分离极性物质时选择极性色谱柱。色谱柱确定后,根据样本中待测组分的分配系数的差值情况,确定色谱柱工作温度,简单体系采用等温方式,分配系数相差较大的复杂体系采用程序升温方式进行分析。 常用的载气有氢气、氮气、氦气等。氢气、氦气的分子量较小常作为填充柱色谱的载气;氮气的分子量较大,常作为毛细管气相色谱的载气;气相色谱质谱用氦气作为载气。 3、确定初始操作条件 当样品准备好,且仪器配置确定之后,就可开始进行尝试性分离。这时要确定初始分离条件,主要包括进样量、进样口温度、检测器温度、色谱柱温度和载气流速。进样量要根据样品浓度、色谱柱容量和检测器灵敏度来确定。样品浓度不超过10mg/mL时填充柱的进样量通常为1-5uL,而对于毛细管柱,若分流比为50:1时,进样量一般不超过2uL。进样口温度主要由样品的沸点范围决定,还要考虑色谱柱的使用温度。原则上讲,进样口温度高一些有利,一般要接近样品中沸点最高的组分的沸点,但要低于易分解温度。

热分析考试考试)20121210)

热分析习题 一、填空(10分,共10题,每题1分)。 1、差热分析是在程序控温条件下,测量样品坩埚与坩埚间的温度差与温 度的关系的方法。(参比) 2、同步热分析技术可以通过一次测试分别同时提供-TG或 -TG两组信号。(DTA-TG ,DSD-TG) 3、差示扫描量热分析是在程序控温条件下,测量输入到物质与参比物的功率差与温度的关 系的方法,其纵坐标单位为。(mw或mw/mg) 4、硅酸盐类样品在进行热分析时,不能选用材质的样品坩埚。(刚玉) 5、差示扫描量热分析根据所用测量方法的不同,可以分类为热流型DSC 与 型DSC。(功率补偿) 6、与差热分析(DTA)的不同,差示扫描量热分析(DSC)既可以用于定性分析,又可以 用于分析。(定量) 7、差热分析(DTA)需要校正,但不需要灵敏度校正。(温度) 8、TG热失重曲线的标注常常需要参照DTG曲线,DTG曲线上一个谷代表一个失重阶段, 而拐点温度显示的是最快的温度。(失重) 9、物质的膨胀系数可以分为线膨胀系数与膨胀系数。(体) 10、热膨胀系数是材料的主要物理性质之一,它是衡量材料的好坏的一个重要指 标。(热稳定性) 二、名词解释 1.热重分析答案:在程序控温条件下,测量物质的质量与温度的关系的方法。 2.差热分析答案:在程序控温条件下,测量物质与参比物的温度差与温度的关系的方法。 3.差示扫描量热分析答案:在程序控温条件下,测量输入到物质与参比物的功率差与温度的关系的方法。 4.热膨胀分析答案:在程序控温条件下,测定试样尺寸变化与温度或时间的关系的方法。 三、简答题 1.DSC与DTA测定原理的不同 答案:DSC是在控制温度变化情况下,以温度(或时间)为横坐标,以样品与参比物间温差为零所需供给的热量为纵坐标所得的扫描曲线。DTA是测量T-T 的关系,而DSC是保持T = 0,测定H-T 的关系。两者最大的差别是DTA只能定性或半定量,而DSC的结果可用于定量分析。DTA在试样发生热效应时,试样的实际温度已不是程序升温时所控制的温度(如

油色谱在线监测系统专用技术规范(范本)

油色谱在线监测系统专用技术规范(范本) 目次 1 标准技术参数 (1) 2 项目需求部分 (2) 2.1 货物需求及供货范围一览表 (2) 2.2 必备的备品备件、专用工具和仪器仪表供货表 (2) 2.3 图纸资料提交单位及其接收单位 (3) 2.4 工程概况 (3) 2.5 项目单位技术差异表 (3) 2.6 使用条件 (3) 3 投标人响应部分 (4) 3.1 投标人技术偏差表 (4) 3.2 销售及运行业绩表 (4) 3.3 推荐的备品备件、专用工具和仪器仪表供货 (4) 3.4 最终用户的使用情况证明 (4) 3.5 投标人提供的试验检测报告表 (4) 3.6 投标人提供的鉴定证书表 (4) 1 标准技术参数 投标人应认真逐项填写标准技术参数表(见表1)中投标人保证值,不能空格,也不能以“响应”两字代替,不允许改动招标人要求值。如有差异,请填写表7 投标人技术偏差表。表 1 系统标准技术参数表

中给出,投标人应对该差异表响应。差异表与标准技术参数表中参数不同时,以差异表给出的参数为准。 2 项目需求部分 2.1 货物需求及供货范围一览表 表 2 货物需求及供货范围一览表 2.2 必备的备品备件、专用工具和仪器仪表供货表 表 3 必备的备品备件、专用工具和仪器仪表供货表

2.3 图纸资料提交单位及其接收单位 经确认的图纸资料应由卖方提交表 4 所列单位。 2.4.1 项目名称: 2.4.2 项目单位: 2.4.3 工程规模: 2.4.4 工程地址: 2.4.5 交通、运输: 2.5 项目单位技术差异表 项目单位原则上不能改动通用部分条款及专用部分固化的参数。根据工程实际情况,使用条件及相关技术参数有差异时,应逐项在“表5 项目单位技术差异表”中列出。本表是对技术规范的补充和修改,如有冲突,应以本表为准。

油色谱在线监测系统

ES-2010变压器油色谱在线监测系统 福州亿森电力设备有限公司 安装准备方案 (变压器制造商、电力设计院) “ES-2010变压器油色谱在线监测系统”是一种高可靠性的在线监测设备,可连续、实时、在线、自动分析变压器油中溶解气体的含量和增长率,通过故障诊断专家系统,对变压器故障进行自动诊断。 “ES-2010变压器油色谱在线监测系统”安装的最佳方案是在变压器出厂前即预留好油路安装接口,为便于与变压器制造商更好配合,特编制了以下准备方案,供变压器生产商参考。 一、ES-2010变压器油色谱在线监测系统现场安装示意图 ES-2010系统的现场主机安装在变压器油池边,现场主机与变压器预留接口通过4mm不锈钢管连接,ES-2010数据处理器安装在变电站(电厂)主控室内,与现场主机通过通讯电缆连接,安装示意图如图1 图1:室外安装示意图

二、ES-2010变压器色谱在线监测系统的组成 ES-2010系统包含配置:(图纸附后) 1.色谱在线监测现场主机:型号:ES-2010,1台; 2.数据处理服务器:型号:品牌服务器1台(安装于变电站主控室,建议组屏);3.分析软件: 1套; 4.不锈钢连接管:长度根据现场距离而定(连接变压器上接口与油色谱现场主机);5.配件:通讯电缆(连接油色谱现场主机与数据处理服务器)。 三、ES-2010变压器油色谱在线监测系统安装条件准备: 1.变压器油路接口(变压器厂提供) 由变压器厂在每台变压器本体上开2个接口,并加装阀门,上部接口位置最好在变压器2/3高度,并与下部接口在同一条直线上。 建议两个阀门采用常用的球阀或者闸阀,若采用其他尺寸阀门,变压器厂将接口法兰尺寸告知福州亿森,由福州亿森加工相对应油路接口。 2.现场电源(设计院设计) ES-2010油色谱现场主机电源要求:220V不间断交流电源;由变压器周围配电箱提供,现场设备功耗1000W。 3.油色谱现场主机基础(附图)(设计院设计) ES-2010油色谱在线监测现场主机基础要求用混凝土或水泥材料建立,在砌基础时预埋四个M10×100不锈钢螺栓和三根Ф50镀锌管,膨胀螺栓用来固定油色谱在线监测现场主机,镀锌管用来铺设油管和电缆,附图。 4.数据处理服务器安装位置(设计院设计) ES-2010数据处理服务器外型满足19″工业机箱标准,组屏,可直接在主控室控制屏上安装,要求在控制屏上预留安装位置。 5.主控室电源(设计院设计) ES-2010数据处理服务器电源要求:220V交流电源,所需的交流电源取自室内设备不间断电源,设备功耗400W。 6.主控室网线(设计院设计) 为能达到MIS系统与远程控制的顺利进行,在主控室安装监控服务器系统的控制屏处

变压器油色谱在线监测系统

ES-Y102变压器油色谱在线监测系统 产品说明书福州亿森电力设备有限公司

目录 1、前言..................................................................错误!未定义书签。 2、产品简介 (6) 3、系统组成 (6) 4、工作原理 (7) 5、技术特点 (8) 6、技术参数 (10) 7、装置安装 (11) 8、在线分析及故障诊断专家系统软件 (12)

1、基本介绍 ES-2010油色谱在线监测系统是集控制、测量分析技术于一体的精密设备,对变压器等油浸电力设备进行在线监测,及在线及时准确检测出绝缘油中溶解的各种故障特征气体浓度及变化趋势,这些气体包括氢气、一氧化碳、甲烷、乙烷、乙烯、乙炔等。ES-2010油色谱在线监测系统能够快速准确的进行油色谱分析,实现完全在线监测油浸式电力设备的运行信息,为变压器等油浸电力设备的长期稳定运行提供了可靠保证。 2主要特点编辑 1、独特的内置油循环系统 2、世界最先进的真空脱气方式 3、专用复合色谱柱 4、高灵敏度的气敏传感器 ES-2010 5、高精度恒温控制系统 6、最新诊断技术

7、先进的数据处理算法 3产品简介编辑 系统组成: 系统由前端脱气装置(ESTAM-sp)、数据处理器(ESTAM-sm)和系统分析管理软件(ESTAM-st)三部分组成 系统特点: ◆油气分离采用一体化气室,密封性能好 ◆高性能渗透膜抗压力强、平衡快、使用寿命长 ◆数据采集器可自动检测并储存多天的检测数据,主控计算机随时实施数据上传 ◆系统数据处理软件实现数据自动上传、自动捕峰、自动出峰增益和自动故障诊断 ◆系统数据通讯支持TCP/IP网络协议,可实现远程检测诊断和系统远程维护 ◆系统检测前端小,便于维护和现场安装 ◆全汉化软件系统,界面友好、操作方便 在线油色谱检测系统 技术参数:

变压器油色谱异常分析及处理_图文(精)

变压器油色谱异常分析及处理 (陕西延安) 摘要:介绍了延安发电厂3#主变压器油色谱分析数据超标后的检查、试验、分析判断及处理。 关键词:变压器;色谱;分析;处理 延安发电厂3#主变压器(型号SFSb-20000/110,额定容量20MW),在8月13日的油样色普分析结果中,发现乙炔含量为6.51ppm,超过注意值5.0ppm,引 起注意,及时汇报加强监督,为了进一步判断分析,在8月17日,又取油样送检,分析结果仍然是油样不合格,且乙炔含量增长较快,由6.5 1ppm 增长到7.26 ppm,在8月18日,再次送检油样,分析结果仍然是油样不合格,且乙炔含量增长较快,增长到11.76 ppm,根据三比值计算编码为102,判断设备内部存在裸金属放电故障,及时汇报,立即退出运行安排检查。 1 设备修前测量试验情况 1.1变压器油气相色谱分析报告 采样时间气体组分 (uL/L) H 2 CO CO 2 CH4 C 2H6 C 2H4 C 3H8 C 2H2 C 3H6 C 1+C2 86.95 16281514 6 5

.13 6.32 7.95 .77 .77 1.31 .51 5.36 8 .17 13.35 22 1.87 275 5.66 5 .66 2 .22 4 2.82 7 .26 5 7.96 8 .18 60.6 22 5.75 341 6.01 1 1.57 1 .82 5 4.3 1 1.76 7 9.45 8 .20 64.82 21 7.14 359 1.95 1 4.34 2 .31 6 5.67 1 4.15 9 6.47 结论根据三比值计算 编码为102,判断设 备内部存在裸金属放 电故障,建议立即停 运检修。 以8月20日的数据为依据,利用三比值法对其故障进行判断: (1)C2H2/ C2H4=14.15/65.67=0.27,比值范围的编码为:1; (2)CH4/ H2=14.34/64.28=0.22,比值范围的编码为:0; (3)C2H4/C C2H6=65.67/2.31=28.42,比值范围的编码为:2; 通过三比值计算编码为102,初步判断其故障性质为高能量放电。 1.2在西北电研院专家的指导下,对变压器进行了修前检测、试验。绕组绝缘测试合 格;绕组直流泄漏电流测试合格;各绕组介质损耗测试合格;高压侧110kv套管介质

色谱分析中各种图谱现象的判断

色谱分析中各种图谱现象的判断 色谱分析中各种图谱现象的判断 可能产生的原因及处理办法 一.基线噪音 1 流动池脏,用极性试剂清洗。当有填料进入,拆开流通池。 2 检测器灯有问题,如能量偏低,更换氘灯。 3 周期性的波动,则起源于泵的脉冲,检修泵或更换垫片等。 4 温度对检测器的影响,控制温度。 5 气泡经过检测器,用大流量冲洗。 6 可能难出峰的样品连续不断出来,用强极性流动相冲柱。 7 流动相本底高,如水的纯度不够,换超纯水。或试剂纯度不够,换色谱纯的试剂。 二.基线漂移(上漂和下漂) 1 柱中的流动相没有平衡,延长平衡时间,尤其在流动相中添加了有紫外吸收的添加剂。 2 在梯度洗脱中,基线上漂是正常的,在空白梯度中有可能是柱子中有杂质洗出。其次是流动相中有干扰物,换流动相。 3 温度不稳定(示差检测器),控温。 4 在等度分析中,样品缓慢洗出,改变淋洗液强度或用梯度分析。 5 样品进入检测器,吸附在池中,可能每进样一次,本底一次比一次高,很少见。 三.倒峰的产生和消除 1.柱切换的脉冲效应,一般不是很明显,必要时考虑换阀。

2.在低波长分析时,流动相本底比较高时,而样品用本底低的流动相溶解,肯定出现倒峰,其程度同进样量和本底差有关。解决办法,用流动相溶解样品,减少进样量,消除倒峰的影响。高波长时,影响比较小。 3.如果倒峰不影响峰的分离,对外标法定量不影响。但影响面积归一化法。 4.样品中有比流动相本底低的物质存在,如无机盐等,将出倒峰。这种情况下,倒峰的位置不一定在死体积位置出现(大多数在死体积位置出现)。 四.鬼峰的产生和消除 1.样品分析时峰没出完,在下一针或下下一针出现,判断办法,延长分析时间,计算可能出现的保留时间。然后调整流动相。 2.连续进样,在某个位置出现忽高忽低的峰,最可能是进样针污染,清洗进样针,注意污垢的干扰,有些样品易残留在针管里。可重新取样分析。 3.定量管污染,处理方法同上。 4.在死体积位置出现的小峰,可能是柱切换造成的。 5.流动相与样品溶剂不一致,也会出现鬼峰,尤其在低波长时,出现位置在死体积的地方。 6.气泡,如果有小气泡通过流通池,也出现随机的假峰,大气泡存在,其出现的峰往往直上直下,脱气解决。 7.样品发生变化反应,重新取样快速分析。

变压器油的气相色谱分析与研究

变压器油的气相色谱分析与研究 【摘要】以某公司送来两台运行中变压器的油样,经色谱分析,其中一台有C2H2气体(4.9PPm)为例,以实例分析说明:在变压器运行过程中,定期做油的色谱分析,能尽早发现设备内部的潜伏性故障,以避免设备发生故障或事故损失。 【关键词】压器油;色谱分析;气相色谱;误差分析 1. 色谱分析在绝缘监督中的作用 在电气试验中,通过气相色谱分析绝缘油中溶解气体,能尽早的发现充油电气设备内部存在的潜伏性故障,是绝缘监督的一种重要手段。这一检测技术可以在设备不停电的情况下进行,而且不受外界因素的影响,可定期对运行设备内部绝缘状况进行监测,确保设备安全可靠运行。变压器大多采用油纸复合绝缘,当内部发生潜伏性故障时,油纸会因受热分解产生烃类气体。含有不同化学键结构的碳氢化合物有着不同的热稳定性,绝缘油随着故障点的温度升高依次裂解产生烷烃、烯烃和炔烃。在正常情况下,充油电气设备内的绝缘油及有机绝缘材料,在过热或电的作用下会逐渐老化和分解,产生少量的低分子烃类气体和一氧化碳及二氧化碳气体,这些气体大部分溶解于油中。当充油电器内部存在潜伏

性过热和放电性故障时,就会加快这些气体的产生速度,随着故障的发展,分解出的气体形成气泡在油中对流、扩散,不断溶解在油中。故障气体的组成及含量与故障类型和故障严重程度关系密切。因此,在变压器运行过程中,定期做油的色谱分析,能尽早发现设备内部的潜伏性故障,以避免设备发生故障或事故损失。 2. 实例 (1)变压器内部放电性故障产生的特征气体主要是乙炔。正常的变压器油中不含这种气体,如果变压器油中这种气体增长很快,说明该变压器存在严重的放电性故障。某公司送来两台运行中变压器的油样,经色谱分析,其中一台有C2H2气体(4.9PPm),5天后他们再次送来该台变压器油样检测,乙炔含量猛增到12.8PPm,见表1。 (2)从表1可以看出,总的烃类气体不高,惟有乙炔气体超过注意值。氢气含量也比较高。我们分析该变压器内可能存在放电性故障,要他们回去检查,果然发现是分接开关拨叉电位悬浮引起放电,经过处理,避免了事故的发生。还有一次,某电站送来升压变压器油样,经色谱分析烃类气体含量均在注意值范围内,惟有氢气含量高达345ppm,见表2。我们分析该变压器可能有进水现象。经检查,果然发现该变压器进水受潮,经处理,避免了绝缘击穿事故的发生。 (3)变压器油的气相色谱分析在绝缘监督中具有很重

热分析常用方法及谱图

常用的热分析方法 l热重法(Thermogravimetry TG) l 差示扫描量热仪(Differential Scanning Calorimetry DSC)l 差热分析(Differential Thermal Analysis DTA) l 热机械分析(Thermomechanical Analysis TMA) l 动态热机械法(Dynamic Mechanical Analysis DMA) 谱图分析的一般方法 《热分析导论》刘振海主编 《分析化学手册》热分析分册 TGA DSC 分析图谱的一般方法——TGA 1. 典型图谱 分析图谱的一般方法——TGA的实测图谱

I、PVC 35.26% II、Nylon 6 25.47% III、碳黑14.69% IV、玻纤24.58% 已知样品的图谱分析 与已知样品各方面特性结合起来分析 如:无机物(黏土、矿物、配合物)、生物大分子、高分子材料、金属材料等热分析谱图都有各自的特征峰。 与测试的仪器、条件和样品结合起来分析 仪器条件样品 应用与举例 TGA DSC/DTA TMA 影响测试图谱结果的因素——测试条件 TGA 升温速率 样品气氛

扫描速率 样品气氛 升温速率对TGA 曲线的影响 气氛对TGA 曲线的影响 PE TGA-7 测试条件: 扫描速率:10C/min 气氛:a. 真空 b. 空气 流量:20ml/min 样品:CaCO3(AR) 过200目筛,3-5mg 扫描速率对DSC/DTA曲线的影响气氛对DSC/DTA曲线的影响 气氛的性质

两个氧化分解峰 曲线b: 一个氧化分解峰, 和一个热裂解峰 影响测试图谱结果的因素——样品方面 TGA/DSC/DTA 样品的用量 样品的粒度与形状 样品的性质 样品用量对TGA/DSC/DTA曲线的影响 样品的粒度与形状对曲线的影响——TGA/DSC/DTA 样品的性质对曲线的影响——TGA/DSC/DTA TGA/ DSC/DTA 热分析曲线的形状随样品的比热、导热性和反应性的不同而不同。即使是同种物质,由于加工条件的不同,其热谱图也可能不同。如PET树脂,经过拉伸过的PET树脂升温结晶峰就会消失。 PET 树脂的DSC 曲线 TGA应用 成分分析 无机物、有机物、药物和高聚物的鉴别与多组分混合物的定量分析。游离水、结合水、结晶水的测定,残余溶剂或单体的测定、添加剂的测定等。 热稳定性的测定 物质的热稳定性、抗氧化性的测定,热分解反应的动力学研究等 居里点的测定 磁性材料居里点的测定 可用TGA测量的变化过程

气相色谱分析方法的建立

气相色谱分析方法的建立

内标法与外标法 一、内标法 什么叫内标法?怎样选择内标物? 内标法是一种间接或相对的校准方法。在分析测定样品中某组分含量时,加入一种内标物质以校谁和消除出于操作条件的波动而对分析结果产生的影响,以提高分析结果的准确度。 内标法在气相色谱定量分析中是一种重要的技术。使用内标法时,在样品中加入一定量的标准物质,它可被色谱拄所分离,又不受试样中其它组分峰的干扰,只要测定内标物和待测组分的峰面积与相对响应值,即可求出待测组分在样品中的百分含量。采用内标法定量时,内标物的选择是一项十分重要的工作。理想地说,内标物应当是一个能得到纯样的己知化合物,这样它能以准确、已知的量加到样品中去,它应当和被分析的样品组分有基本相同或尽可能一致的物理化学性质(如化学结构、极性、挥发度及在溶剂中的溶解度等)、色谱行为和响应特征,最好是被分析物质的一个同系物。当然,在色谱分析条什下,内标物必须能与样品中各组分充分分离。需要指出的是,在少数情况下,分析人员可能比较关心化台物在一个复杂过程中所得到的回收率,此时,他可以使用一种在这种过程中很容易被完全回收的化台物作内标,来测定感兴趣化合物的百分回收率,而不必遵循以上所说的选择原则。 在使用内标法定量时,有哪些因素会影响内标和被测组分的峰高或峰面积的比值? 影响内标和被测组分峰高或峰面积比值的因素主要有化学方面的、色谱方面的和仪器方面的三类。 由化学方面的原因产生的面积比的变化常常在分析重复样品时出现。 化学方面的因素包括: 1、内标物在样品里混合不好; 2、内标物和样品组分之间发生反应, 3、内标物纯度可变等。 对于一个比较成熟的方法来说,色谱方面的问题发生的可能性更大一些,色谱上常见的一些问题(如渗漏)对绝对面积的影响比较大,对面积比的影响则要小一些,但如果绝对面积的变化已大到足以使面积比发生显著变化的程度,那么一定有某个重要的色谱问题存在,比如进样量改变太大,样品组分浓度和内标浓度之间有很大的差别,检测器非线性等。进样量应足够小并保持不变,这样

变压器油色谱基础知识

●色谱法(也称色谱分析、色层法、层析法):是一种物理分离方法,它是利用混合物中 各物质在两相间分配系数的差别,当含有各种混合物的溶质在两相间做相对移动时,各物质在两相间进行多次分配,从而使各组分得到分离的方法。 ●分离原理:当混合物A和B在两相间做相对运动时,样品各组分在两相间进行反复多 次的分配,由于不同物质的分配系数不一样,所以不同物质在色谱柱中的运动速度就不同,滞留时间也就不一样。分配系数小的组分会较快的流出色谱柱;分配系数愈大的组分就愈易滞留在固定相间,流过色谱柱的速度也就较慢。这样,当流经一定柱长后,样品中各组分得到了分离。当分离后的各个组分流出色谱柱再进入检测器时,记录仪或色谱数据工作站就描绘出各组分的色谱峰。 ●气相色谱法的工作流程:来自高压气瓶或气体发生器的载气首先进入气路控制系统,经 调节和稳定到所需要的流量与压力后,流入进样装置把样品带入色谱柱。经色谱柱分离后的各个组分依次进入检测器经检测后放空,由检测器检测到的电信号送至色谱工作站描绘出各组分的色谱峰,从而计算出各种气体组分的含量。 ●气相色谱仪的基本组成包括:气路控制系统、进样口、色谱柱和柱箱、检测器、检测电 路、温度控制系统、色谱分析工作站。 ●基线:当通过检测器的气流成分没有发生变化,或成分的变化不能为检测器所检测出来 时所得到的信号——时间曲线。 ●保留时间:从样品注入到色谱峰最大值出现时的时间。 ●色谱峰的位置(即保留时间和保留体积)决定组分的性质,是色谱定性的依据;色谱峰 的高度或面积是分组浓度或含量的量度,是色谱定量的依据。 ●1号柱分离H2、O2、CO、CO2 2号柱分离CH4、C2H4、C2H6、C2H2 3号柱分离H2、O2、N2 6号柱是平衡柱 ●色谱柱有一个进口和一个出口,柱体为不锈钢材料 ●转化炉原理:在做绝缘油色谱分析时,由于微量CO和CO2热导池无法检测,而FID对 其又无反应,所以为了能检测低浓度的CO和CO2,色谱仪中安装了转化炉。它的作用是在高温和Ni催化剂的作用下使CO和CO2与氢气反应生成FID可以直接检测的甲烷。

色谱简单流程方框图

色谱简单流程方框图:1..典型流程中的各部件 离开来。 3.色谱操作条件选择 最佳流速的选择: 从速率理论方程式知道,载气流速对柱效有明显的影响。如果从小到大改变载气线速,那么它和理论板高H的关系如图(1)所示: H H μμ 图(1)板高H与载气线速μ关系图 曲线的最低点,即H最小则柱效最高,此点对应的流速即是最佳线速度。对N 来说, 2 则为600~720cm/min。在实际工作中,往往采用稍高于最佳线速为420~600cm/min;而H 2 最佳线速的流速,以缩短分析时间。对于一个内径为4mm的填充柱,载气流速多选用50~80ml/min。 4.固定相的使用温度范围任何一种固定相,都有其使用温度范围。如柱温超过其上限,则固定相会流失或分解,使柱寿命缩短甚至失效,而且污染检测器;如果低于其下限, 加大,而使传质阻力增高,柱效降低。则固定液粘度变大,使组分在液相中的扩散系数D L 往往还会出现异常现象,表现为峰形不正常。如果低于固定液的凝固点时,则其已不是液相了,失去了分配能力。一般说来,提高柱温,各组分的挥发度都增加,分配系统变小而组分靠拢,溶剂效率降低,不利于分开。但操作速度快,分析周期短;降低柱温,有利于分离。但柱温太低,组分蒸气在两相中的扩散传质速率大为减小,分配不能迅速达到平衡,致使峰形变宽、柱效下降,并延长分析时间。甚至组分蒸气会冷凝下来,使分析不能正常进行。 5.汽化温度

对气化温度的要求:应有足够的温度和热容量使被测试样瞬时汽化。一般高于柱温50℃以上,或比样品中组分的最高沸点高出20~40℃;试样在该温度下,不被分解。 汽化温度不足的危害:峰形变宽、峰不对称,降低柱效及分离度;峰形异常,不能重复。 汽化温度过高的危害:样品分解,出现极为复杂的峰图,同样给以假象;汽化室橡皮垫变粘,易漏气; 6.检测温度 应保证样品组分蒸气不被冷凝,一般不低于柱温;要考虑检测器对温度的要求。如火焰离子化检测器,温度不能低于100℃,防止水蒸汽冷凝,否则会破坏离子室的绝缘性,出现异常现象;要考虑温度对检测器灵敏度的影响,如热导检测器的温度高,则灵敏度降低。 注意事项: a.色谱先通载气再开电源,关机时先关电源,在各温度降至室温后再关载气。 b. 使用氢火焰检测器,不点火,为了安全严禁打开氢气气路,换气时先断电源,打开柱箱门,让柱箱内温度下降后再换气瓶, c.热导检测器,以氢气为载气,系统应试漏,尾气必须排到室外,先通载气,后开桥 流电源,换气时应关闭桥流电源。 d.用气瓶应先开总阀,再开减压器阀,关闭时先关减压器阀,后关总阀。 e.使用电脑时应先按显示器电源,后按主机电源,严禁在开机的状态下插拔电缆,不 能随意使用电脑的光驱、软驱,以防电脑感染病毒。 f.用六通阀时要轻开轻闭,不要用力过度,造成六通阀损坏。 g.色谱开机状态下,应经常注意色谱操作条件的变化,出现问题时应尽己所能及时处 理,如不能处理的应向有关技术人员或部门反映,使问题及时得到解决。 SP-2305气相色谱仪操作规程 1、适用范围:SP-2305(1#、6#)适用于酯柱色谱分析。 2、仪器设备:配有热导检测器的色谱、电脑、色谱数据处理工作站。 3、试剂和材料:氢气(纯度≥%),乙醚:AR,6201载体(φ~),5A分子筛。 4、色谱柱:柱长3m,内径4mm不锈钢管。 固定相(酯柱)的配制:按固定液邻苯二甲酸二乙酯/6201载体(φ~)=1:5的比例称取配柱所需的固定液和载体。将称好的固定液用乙醚充分溶解,倒入称好的载体,使载

变压器油色谱分析仪参数

滕州中科谱分析仪器有限公司生产的GC-2010变压器油色谱分析仪适用于电力系统绝缘油中溶解气体组份含量的测定,一次进样即可完成绝缘油中溶解的7种气体组分含量的全分析,其对乙炔的最小检测浓度达0.1ppm。仪器配备大屏幕LCD液晶显示界面,菜单式中文操作,显示直观、操作方便。仪器采用双柱并联分流系统,配有热导检测器、双氢焰检测器及甲烷转化器,能一次进样完成H2、O2 、CO2 、CH4 、C2H2、C2H4、C2H6、全分析。 执行标准 GB/T 17623-1998《绝缘油中溶解气体组分含量的气相色谱测定法》 GB/T 7252-2001《变压器油中溶解气体分析和判断导则》 DL/T 722-2000《变压器油中溶解气体分析和判断导则》 性能指标 (1)最小检测量:一次进样,进样量为1mL时,油中最小检测浓度: (2)定性重复性:偏差≤1% (3)定量重复性:偏差≤3% 主要技术特点 1.实现计算机实时控制和数据处理 (1)主控电路采用了功能先进的微处理器、大容量的FLASH及EEPROM存储器的采用,使数据的保存更加可靠;同时集测量、控制、电源于一块电路板的一体化设计提高了仪器的抗干扰性和可靠性; (2)采用微处理器的温度控制电路,各加热区被控对象的温度精度达到0.1度; (3)柱箱具有双重的超温保护装置。任一路温度超过设定极艰,仪器均会停止加热,并在显示器上报告故障部位; (4)智能化的双后开门技术,保证仪器在柱箱温度在接近室温工作时也能有良好的控温精度,并能快速降温; 2.高精度、稳定可靠的温度控制系统 (1)主控电路采用了功能先进的微处理器、大容量的FLASH及EEPROM存储器的采用,使数据的保存更加可靠;同时集测量、控制、电源于一块电路板的一体化设计提高了仪器的抗干扰性和可靠性; (2)采用微处理器的温度控制电路,各加热区被控对象的温度精度达到0.1度; (3)柱箱具有双重的超温保护装置。任一路温度超过设定极艰,仪器均会停止加热,并在显示器上报告故障部位;

色谱分析谱图

A5000气相色谱工作站分析报告 样品信息: 样品名称: 乙酸乙酯、甲苯盲样样品编号: 样品来源: 省职防院邮寄采样人: 稀释倍数: 0.0 样品量: 0.0 含量单位: 取样时间: 仪器条件: 仪器名称: 气相色谱仪柱子型号: FFAP 检测器: FID 积分参数: 最小值: 10.00 漂移: 0.02 mV/min 噪声: 0.05 mV 最小峰宽: 2.00 S 相对窗宽: 5% 计算方式: 峰面积 色谱条件: 柱箱温度: 50 (℃)程序升温载气流速: 30 (ml/min) 检测器温度: 130 (℃)空气流速: 300 (ml/min) 气化室温度: 200 (℃)氢气流速: 30 (ml/min) 谱图: 分析结果: 定量方法:外标法 序号组分名保留时间峰面积峰高含量峰型 1 二硫化碳 3.91 9726895 366254 9726895 BB 2 乙酸乙酯0.00 0 0 0.000000 BB

3 甲苯0.00 0 0 0.000000 BB 谱图: 分析结果: 定量方法:归一法 序号组分名保留时间峰面积峰高含量峰型 1 二硫化碳 3.87 9287219 363551 9287219 BB 2 乙酸乙酯 5.40 67436 4449 25.265 BB 3 甲苯8.2 4 63476 13403 8.777 B B 谱图:

分析结果: 定量方法:外标法 序号组分名保留时间峰面积峰高含量峰型 1 二硫化碳 3.88 9515607 362744 9515607 BB 2 乙酸乙酯 5.42 68086 4510 25.508 B B 3 甲苯8.25 58293 13600 8.061 BB 谱图: 分析结果: 定量方法:外标法 序号组分名保留时间峰面积峰高含量峰型 1 二硫化碳 3.88 9231735 354067 9231735 BB 2 乙酸乙酯 5.41 67415 4556 25.256 B B 3 甲苯8.25 59548 13601 8.235 BB 谱图:

变压器油专用分析气相色谱仪原理说明

变压器油专用气相色谱仪原理说明 1.1 仪器的工作原理 气相色谱仪是以气体为流动相(载气)。当样品由微量注射器“注射”进入进样器后被载气携带进入填充柱或毛细管色谱仪。由于样品中各组份在色谱仪中的流动相(气相)和固定相(液相或固相)间分配或吸附系数的差异,在载气的冲洗下,各组份在两相间作反复多次分配,使各组织在柱中得到分离,使各组份在柱中得到分离,然后用接在柱后的检测器根据组份的物理化学特性,将各组份按顺序检测出来。GC9310型气相色谱仪就是根据上述原理制造的分析仪器。GC9310气相色 图1-1 GC9310型气相色谱仪原理框图 1.2 仪器的主机结构 GC9310气相色谱仪由流量控制部件、进样器、色谱柱箱、检测器、温控及检测器电路部件、色谱工作站等部分组成。 基型仪器中部是色谱柱箱,右侧上部是微机温度控制器,右侧下部是FID微电流放大器,仪器左部是流量控制部件及气路面板,柱箱上方右部是离子化检测器安装位置(基型安装二个火焰离子化检测器)以及热导池检测器(TCD)安装位置,柱箱上方左部是双填充柱进样器或毛细管进样器。

主机结构图一(主视) 主机结构图二(左视)

主机结构图三(右视) 1.3 色谱仪柱箱 GC9310气相色谱柱箱容积大,可安装双填充柱或毛细管柱,且升降温速度快等特点。本机采用了降低噪声电机,运行平稳机震小,且安装了自动后开门装置。 当柱箱需要冷却时,箱后部冷却空气进风口与热空气排风口自动开启,冷却空气便从进风口进入柱箱,将柱箱内的热空气从热空气排风口置换出来,使柱箱迅速冷却。 1.4 进样器 本仪器基型配有双填充柱进样器。用户可根据需要灵活安装成毛细管分流/不分流进样器。进样器结构见图。双填充柱进样器安装在主机顶部左侧导热体内,导热体内同时安装有电热元件和陶瓷铂电阻,由微机温度控制器控制其温度。 图中填充柱进样器以安装ф3mm不锈钢柱为例(柱头进样)。仪器出厂时所装的内径为ф3.2mm 柱接头,适用于外径为ф3的柱管。此外,本填充柱进样器还可以安装ф6mm不锈钢柱和ф5.7mm玻璃柱,毛细管进样器可安装ф0.32mm和ф0.53mm石英毛细管柱。

GS-101D油色谱分析仪说明书

变压器油色谱分析仪使 用说明书 上海菲柯特电气科技有限公司

敬告用户: 欢迎贵单位使用本公司最新推出变压器油专用油气相色谱仪。 使用前请阁下详细阅读本说明书。 目录

一、产品概述 (1) (一)、主要技术指标 (1) (二)、主要性能特点 (2) (三)、工作条件 (2) 二键盘使用说明 (3) (一)、面板与键盘 (3) (二)、键盘与显示...........................................................................3-4 (三)、开机 (5) (四)、键盘操作..............................................................................5-7 三、绝缘油分析 (8) (一)、分离流程 (8) (二)、热导检测器 (9) (三)、氢焰检测器 (9) (四)、转化炉 (10) (五)、操作条件的选择 (10) 四、柱分流柱系统流程图 (11) 五、变压器油专用油气相色谱仪整套系统配置表 (12)

一、产品概述 变压器油专用油气相色谱仪是按照电力系统《绝缘油中溶解气体组分含量测定法(色谱法)》要求,采用微机自动控制、全键盘操作、大屏幕液晶显示,具有控温精度高、性能稳定可靠、灵敏度高、重复性好等特点。 该仪器采用双柱并联分流系统,配有TCD和双FID及甲烷转化炉,能一次进样实现油中溶解气体九组分(H2、O2、N2、CH4、C2H2、C2H4、C2H6、CO、CO2)的全分析。 仪器可用于电力系统油气设备内部故障检测,氢冷发电机冷却介质分析、六氟化硫杂质分析、锅炉烟气分析、天然气分析和环境监测分析等。既可作专用分析,又可作通用分析,因而它成为石油、化工、矿山等系统作为气体分析的最有效设备。 (一)、主要技术指标 1、温度控制 ①温控范围: 柱室:室温+15℃—399℃ 汽化室:室温+30℃—399℃ 转化炉:室温+30℃—399℃ 热导检测器:室温+30℃—399℃ 氢焰检测器:室温+30℃—399℃ ②控温精度:±0.1℃ 2、热导检测器 ①灵敏度:对氢最小检测浓度≥5μl/L ②噪声:≤0.05mv ③漂移:≤0.15mv/30min 3、氢焰检测器 ①对烃类最小检测浓度≥0.1μl/L ②对CO、CO2最小检测浓度≤5μl/L ③噪声:≤0.05mv

色谱图

chromatogram 样品流经色谱柱和检测器,所得到的信号-时间曲线,又称色谱流出曲线(elution profile)。 色谱图是指被分离组分的检测信号随时间分布的图象。色谱图形状随色谱方法和检测记录的方式不同而不同,迎头色谱和顶替色谱的色谱图为一系列台阶;在洗脱法色谱中,若采用微分型检测器时,分离组分的检测信号随时间变化的图形为近似于高斯分布的一组色谱峰群,色谱图的纵坐标为检测器的响应信号,横坐标为时间、体积或距离。 [编辑本段] 相关术语 ⊕色谱图(chromatogram)--样品流经色谱柱和检测器,所得到的信号-时间曲线,又称色谱流出曲线(elution profile). ⊕基线(base line)--流动相冲洗,柱与流动相达到平衡后,检测器测出一段时间的流出曲线。一般应平行于时间轴。 ⊕噪音(noise)――基线信号的波动。通常因电源接触不良或瞬时过载、检测器不稳定、流动相含有气泡或色谱柱被污染所致。 ⊕漂移(drift)基线随时间的缓缓变化。主要由于操作条件如电压、温度、流动相及流量的不稳定所引起,柱内的污染物或固定相不断被洗脱下来也会产生漂移。 ⊕色谱峰(peak)--组分流经检测器时相应的连续信号产生的曲线。流出曲线上的突起部分。正常色谱峰近似于对称性正态分布曲线(高斯Gauss曲线)。不对称色谱峰有两种:前延峰(leading peak)和脱尾峰(tailing peak ).前者少见。 ⊕拖尾因子(tailing factor,T)--T=B/A,用以衡量色谱峰的对称性。也称为对称因子(symmetry factor)或不对称因子(asymmetry factor)《中国药典》规定T 应为0.95~1.05。T<0.95为前延峰,T>1.05为拖尾峰。 ⊕峰底――基线上峰的起点至终点的距离。 ⊕峰高(Peak height,h)――峰的最高点至峰底的距离。 ⊕峰宽(peak width,W)--峰两侧拐点处所作两条切线与基线的两个交点间的距离。W=4σ。 ⊕半峰宽(peak width at half-height,Wh/2)--峰高一半处的峰宽。W h/2=2. 355σ。 ⊕标准偏差(standard deviation, σ)--正态分布曲线x=±1时(拐点)的峰宽之半。正常峰宽的拐点在峰高的0.607倍处。标准偏差的大小说明组分在流出色谱柱过程中的分散程度。σ小,分散程度小、极点浓度高、峰形瘦、柱效高;反之,σ大,峰形胖、柱效低。

相关主题
文本预览
相关文档 最新文档