当前位置:文档之家› 双参数威布尔分布函数的确定及曲线拟合(精)

双参数威布尔分布函数的确定及曲线拟合(精)

双参数威布尔分布函数的确定及曲线拟合(精)
双参数威布尔分布函数的确定及曲线拟合(精)

2007.NO.4. CN35-1272/TK

图 1威布尔函数拟合曲线的仿真系统模块

作者简介 :包小庆 (1959~ , 男 , 高级工程师 , 从事可再生能源的研究。

大型风电场的建设不但可以减缓用电短缺情况 , 而且并网后还能为电网提供很大一部分电能。而大型风电场的选址 , 与该地的风速分布情况有关。用于描述风速分布的模型很多 , 如瑞利分布、对数正态分布、 r 分布、双参数威布尔分布、 3参数威布尔分布 , 皮尔逊曲线拟合等。经过大量的研究表明 , 双参数威布尔分布函数更接近风速的实际分布。本文采用 4种方法计算威布尔分布函数的参数 , 并利用计算出的参数确定威布尔分布函数的实际数学模型进行曲线拟合。最后以白云鄂博矿区风电场拟选址为例 , 使用计算机软件 (MATLAB 对该地区风速威布尔分布函数进行曲线拟合 , 得到该地区不同高度的风速分布函数曲线。

1双参数威布尔分布函数的确定

双参数威布尔分布是一种单峰的正偏态分布函数 , 其概

率密度函数表达式为 :

p(x=k

x " exp-x "

(1

式中 :k ———形状参数 , 无因次量 ;

c ———

尺度参数 , 其量纲与速度相同。为了确定威布尔分布函数的实际模型 , 需计算出实际情况下对应函数的 2个参数。估算风速威布尔参数的方法很多 , 本文给出4种有效的方法以确定 k 和 c 值。

1.1HOMER 软件法

HOMER 是一个对发电系统优化配置与经济性分析的软件。通过输入 1a 逐时风速数据或者月平均风速数据 , 根据实际情况设置相应参数 , 即可计算得到 k 和c 值 , 此时计算出的 k 和 c 值是计算机系统认为的最佳值。 1.2Wasp 软件法

Wasp 是一个风气候评估、

计算风力发电机组年发电量、风电场年总发电量的软件。通过输入风速统计资料 , 计算机可以直接计算出 k 和 c 值。

1.3最小二乘法

通过风速统计资料计算出最小二乘法拟合直线 y=ax+b 的斜率 a 和截距 b 。由下式确定 k 和 c 的值 :

k=b (2 c=esp a

(3

1.4平均风速和最大风速估计法

从常规气象数据获得平均风速和时间 T 观测到的 10min 平均最大风速 V m ax , 设全年的平均风速为通过下式计算 k 和

c 值 :

k=ln (lnT (4

c=(5

计算过程中 , 为了减小 V m ax 的抽样随机误差 , 一般情况

V m ax 取多年平均值 (10a 以上进行计算。

2数学模型的建立与仿真

根据上述任意一种方法均可计算出 k 和 c 值 , 将 k 和 c

值带入式 (1 , 经简化可得到威布尔分布函数的实际数学模

型 :

p(V=

k " exp k-!

"

1ln V " -kln V #$(6

由式 (6 可知 , 当 k 和 c 值确定时 , p(V 只是与速度有关的单值函数。根据数学模型 (6 使用 MATLAB 进行威布尔函数拟合曲线的系统仿真 , 仿真模块建立如图 1和子系统模块

研究与探讨

双参数威布尔分布函数的确定及曲线拟合

包小庆 1

刘志强 2

吴永忠 1

李冬梅 2

(1

水利部牧区水利科学研究所

内蒙古呼和浩特

010010

2

内蒙古工业大学内蒙古呼和浩特 010051

摘要双参数威布尔分布函数能准确地描述风速的实际分布。通过威布尔分布函数实际数学模型的建立 , 利用计算机软件 (MATLAB 对其函数模型进行曲线拟合 , 并将拟合曲线应用到实际中 , 对风资源做初步评价。

关键词

威布尔函数

建模

曲线拟合

中图分类号 :TB114

文献标识码 :A

文章编号 :1672-9064(200704-0008-02

k-1k

8

2007.NO.4. CN35-1272/TK

图 3白云鄂博矿区 10m 的威布尔分布函数曲线概率密度 p

风速 V/(m . s -1

方法 1方法 2方法 3方法 4

表 110m 处月平均风速

月份 /月 66.1

75.484.795.4

106.5

126.5

117.0

15.4

25.3

36.3

47.6

57.0

m . s -1

图 2威布尔函数拟合曲线的仿真子系统模块

图 4测风塔不同高度的威布尔分布函数曲线

概率密度 p

风速 V/(m . s -1

图 2所示。将 k 和 c 值输入到系统中 , 并根据实际统计的风速分布情况设置风速的取值范围 , 便可拟合出威布尔分布函数的曲线。

3双参数威布尔函数的实例分析及应用

以白云鄂博矿区风电场选址为例 , 该地区的多年平均风速

为 (1972 ̄2006年 , 在测风年 (2005年 6月 ̄2006年

5月内测风塔上 10m 年平均风速为 6.1m/s , 最大风速值

为 Vmax=16.7m/s , 观测时间 T=8760h , 测风塔海拔高度为 1612m 。拟定风电场测风塔上 10m 的月平均风速见表 1:

根据所给的资料 , 利用上述 4种方法分别对威布尔分布的参数 k 和 c 进行计算 , 计算结果见表 2

将表 2中的 k 和 c 值输入到威布尔分布函数曲线的仿真系统图 1中 , 通过计算机模拟仿真 , 得到的拟合曲线如图

3。

由图 3可知 , 上述 4种方法拟合出来的曲线基本重合 , 且通过计算得到的威布尔分布函数 , 可以确定风速的分布形式 , 风力发电机组设计的各个参数 , 因此给实际使用带来了许多方便。根据拟合的威布尔曲线可以很好地描述白云鄂博矿区10m 的风速分布情况 , 并能得出对该地区的风能资源评价的参数 , 如平均风功率密度 , 风能可利用小时数。

威布尔函数不仅可以拟合地面风速分布 , 也可以拟合高

层风速分布 , 其参数在近地层中随高度的变化呈规律性变化。利用白云鄂博矿区拟定风电场测风塔 10m 高度确定的 k 和 c 值 , 建立此地区 30m 、 50m 、 70m 的风速威布尔分布函数的实际数学模型为 :

p(V =k

A V

" k-1

exp A V "

k

$(7

式中 , A 是风速比例系数与高度有关 , 30m , 50m , 70m 的风速比例系数值分别为 A 30=1

" a ,A 50=

1" a ,A 70=

1" a

,

其中 a

是风切变指数。

根据式 (7 拟合不同高度的威布尔分布函数曲线。本文在计算 A 值时 , 取

α=1/7=0.143。

为使拟合曲线更加准确 , k 和 c 值取上述 4种方法计算的平均值 , =1.90,

=6.83。通过仿

真得到测风塔上不同高度的威布尔拟合曲线如图 4。

由拟合曲线图 4可知 , 随着高度的增加 , 曲线向右移动 , 并且移动的距离受风速比例因素 A 的影响。 A 值越小 , 威布尔风速分布曲线向右移动的幅度就越大。白云鄂博矿区风速威布尔分布曲线在不同高度的单峰值基本保持不变 , p (v 在

0.12~0.13之间。最大风速概率密度 p (v 对应的风速随高度

的增加而增加。影响速度变化大小的主要因素为风速比例因素 A , 而 A 主要受测风高度和风切变指数的影响。在实测风

速有困难时 , 可通过拟合出的威布尔分布曲线得到所要分析高度的风速分布曲线 , 以便对风能资源作初步评价。

4小结

双参数威布尔分布函数适用于风速统计描述的概率密

度函数 , 其结果接近风速的实际分布。威布尔函数参数的确定和曲线的拟合都较方便 , 根据某个高度的风速威布尔函数

曲线可以推算各种高度的威布尔函数拟合曲线 , 这样可大大减少风速分布统计的工作量。因此 , 双参数威布尔分布函数曲线的拟合对实际风能资源的评估、风力机的选择、风力发电机组年发电量、风电场年总发电量的计算都很有帮助。参考文献

1宫靖远 , 贺德馨 , 等 . 风电场工程技术手册 . 北京 :机械工业出版社 , 20042

黄永安 , 马路 , 等 .MATLAB 7.0/Simulink 6.0建模仿真开发与高级工程应用 . 北京 :清华大学出版社 , 2005

3张志涌 , 精通 MATLAB6.5版 . 北京 :北京航空航天大学出版社 , 2003 表 2

威布尔分布的参数 k 和 c 计算结果

威布尔参数形状参数 k 尺度参数 c

估计法

1.946.78

HOMER 2.026.91

Wasp 1.776.79

最小二乘法

1.866.82

计算方法

研究与探讨

9

正态分布、指数分布、对数正态分布和威布尔分布函数及其在工程分析中的应用.

正态分布、指数分布、对数正态分布和威布尔分布函数及其在工程分析中的应用 071330225 张洋洋

目录 正态分布函数 (3) 正态分布应用领域 (4) 正态分布案例分析 (5) 指数分布函数 (5) 指数分布的应用领域 (6) 指数分布案例分析 (7) 对数正态分布函数 (7) 对数正态分布的应用领域 (9) 对数正态分布案例分析 (9) 威布尔分布函数 (10) 威布尔分布的应用领域 (16) 威布尔分布案例分析 (16) 附录 (18) 参考文献 (21)

正态分布函数【1】 0.20 0.15 0.10 0.05 105510 正态分布概率密度函数f(t) 蓝线:μ=-1 σ=2 红线:μ=1 σ=2 棕线:μ=-1 σ=3 绿线:μ=1 σ=3 均数μ决定正态曲线的中心位置;标准差σ决定正态曲线的陡峭或扁平程度。σ越小,曲线越陡峭;σ越大,曲线越扁平。 1.0 0.8 0.6 0.4 0.2 105510 正态分布函数F(t) 蓝线:μ=-1 σ=2 红线:μ=1 σ=2 棕线:μ=-1 σ=3 均数μ改变,图像会进行平移,标准差σ改变,图形陡峭度发生变化。σ越小,图像越陡。

1.0 0.8 0.6 0.4 0.2 105510 正态分布可靠度函数R(t) 蓝线:μ=-1 σ=2 红线:μ=1 σ=2 棕线:μ=-1 σ=3 均数μ改变,图像会进行平移,标准差σ改变,图形陡峭度发生变化。σ越小,图像越陡。 2.5 2.0 1.5 1.0 0.5 105510 正态分布失效率函数λ(t) 蓝线:μ=-1 σ=2 红线:μ=1 σ=2 棕线:μ=-1 σ=3 均数μ改变,图像会进行平移,标准差σ改变,图形陡峭度发生变化。σ越小,图像越陡。正态分布应用领域【1】 正态分布是一种最常见的连续型随机变量的分布,它在概率论和数理统计中无论在理论研究还是实际应用上都占有头等重要的地位,这是因为它在误差理论、无线电噪声理论、自动控制、产品检验、质量控制、质量管理等领域都有广泛应用.数理统计中许多重要问题的解决都是以正态分布为基础的.某些医学现象,如同质群体的身高、红细胞数、血红蛋白量、胆固醇等,以及实验中的随机误差,呈现为正态或近似正态分布;有些资料虽为偏态分布,但经数据变换后可成为正态或近似正态分布,故可按正态分布规律处理。

MATLAB绘制威布尔分布曲线

MATLAB 绘制威布尔分布曲线 威布尔分布概率密度函数: 1(/)(,,)()a a x m a x f x m a e m m --= 威布尔分布概率分布函数: ()()1a mx F x e -=- 其中m>0,是尺度参数也叫比例参数,a>0是形状参数。 X 是随机变量,是未知参数,表示时间延滞。 图1:设定尺度参数m 值为1,取五个形状参数a ,自变量x 代码如下: m=[1 1 1 1 1,2]; a=[0.5 1 1.5 2.5 5,5]; x=linspace(0,5); linecolor=['r','b','g','k','y']; for n=1:5 y1=m(n)*a(n)*((m(n)*x).^(a(n)-1)).*(exp(-(m(n)*x).^a(n))); y=1-exp(-(m(n)*x).^a(n)); subplot(1,2,2) title('图1:概率分布函数'); plot(x,y);

hold on; subplot(1,2,1) type=linecolor(n); title('图1:概率密度函数'); plot(x,y1,type); hold on; legend('m=1,a=0.5','m=1,a=1','m=1,a=1.5','m=1,a=2.5','m=1,a=5'); end 图2:设定形状参数a值为2,取五个尺度参数m,自变量x 代码如下: m=[0.5 0.75 1 1.5 1.75,2]; a=[2 2 2 2 2.5]; x=linspace(0,5); linecolor=['r','y','b','g','k']; for n=1:5 y1=m(n)*a(n)*((m(n)*x).^(a(n)-1)).*(exp(-(m(n)*x).^a(n))); y=1-exp(-(m(n)*x).^a(n)); subplot(1,2,2) title('图2:概率分布函数'); plot(x,y); hold on;

双参数威布尔分布函数的确定及曲线拟合(精)

2007.NO.4. CN35-1272/TK 图 1威布尔函数拟合曲线的仿真系统模块 作者简介 :包小庆 (1959~ , 男 , 高级工程师 , 从事可再生能源的研究。 大型风电场的建设不但可以减缓用电短缺情况 , 而且并网后还能为电网提供很大一部分电能。而大型风电场的选址 , 与该地的风速分布情况有关。用于描述风速分布的模型很多 , 如瑞利分布、对数正态分布、 r 分布、双参数威布尔分布、 3参数威布尔分布 , 皮尔逊曲线拟合等。经过大量的研究表明 , 双参数威布尔分布函数更接近风速的实际分布。本文采用 4种方法计算威布尔分布函数的参数 , 并利用计算出的参数确定威布尔分布函数的实际数学模型进行曲线拟合。最后以白云鄂博矿区风电场拟选址为例 , 使用计算机软件 (MATLAB 对该地区风速威布尔分布函数进行曲线拟合 , 得到该地区不同高度的风速分布函数曲线。 1双参数威布尔分布函数的确定 双参数威布尔分布是一种单峰的正偏态分布函数 , 其概 率密度函数表达式为 : p(x=k x " exp-x " (1 式中 :k ———形状参数 , 无因次量 ; c ———

尺度参数 , 其量纲与速度相同。为了确定威布尔分布函数的实际模型 , 需计算出实际情况下对应函数的 2个参数。估算风速威布尔参数的方法很多 , 本文给出4种有效的方法以确定 k 和 c 值。 1.1HOMER 软件法 HOMER 是一个对发电系统优化配置与经济性分析的软件。通过输入 1a 逐时风速数据或者月平均风速数据 , 根据实际情况设置相应参数 , 即可计算得到 k 和c 值 , 此时计算出的 k 和 c 值是计算机系统认为的最佳值。 1.2Wasp 软件法 Wasp 是一个风气候评估、 计算风力发电机组年发电量、风电场年总发电量的软件。通过输入风速统计资料 , 计算机可以直接计算出 k 和 c 值。 1.3最小二乘法 通过风速统计资料计算出最小二乘法拟合直线 y=ax+b 的斜率 a 和截距 b 。由下式确定 k 和 c 的值 : k=b (2 c=esp a (3 1.4平均风速和最大风速估计法 从常规气象数据获得平均风速和时间 T 观测到的 10min 平均最大风速 V m ax , 设全年的平均风速为通过下式计算 k 和 c 值 : k=ln (lnT (4 c=(5

威布尔分析方法

第1章威布尔分析 1.1 引言: 在所有可用的可靠性计算的分布当中,威布尔分布是唯一可用于工程领域的。在1937,Waloddi Weibull教授(1887-1979)创造性的提出了该种分布,它是用于失效数据分析分布中应用最广泛的分布之一,也用于寿命数据分析,因为系统或部件的寿命周期的测量也需要分析。 一位瑞典的工程师和一位数学家潜心研究冶金的失效,威布尔教授曾指出正态分布要求冶金的初始强度服从正态分布,而情况并非如此。他还指出对于功能需求可以包含各种分布,其中包括正态分布。 1951年他发表了代表作,“一个具有广泛适用性的统计分布函数”,威布尔教授声称寿命数据可以从威布尔分布族中选择最恰当的分布,然后用合适的参数进行合理准确的失效分析。他列举七种不同的情况来证明威布尔分布可顺利用于很多问题的分析。 对威布尔分布的最初反应是普遍诊断它太过完美以致于不真实。尽管如此,失效数据分析领域的先驱们还是开始应用并不断改进,直到1975年,美国空军才认可了它的优点并资助了威布尔教授的研究。 今天,威布尔分析涉及图表形式的概率分析以找出对于一个给定失效模式下最能代表一批寿命数据的分布。尽管威布尔分布在检测寿命数据以确定最合适的分布方面在世界范围内处于领先位置,但其它分布也会偶尔用于寿命数据分析包括指数分布,对数正态分布,正态分布,寿命数据有了对应的统计学分布,威布尔分析对预计产品寿命做了准备。这种具代表性的样本分布用来估计产品的重要寿命特征,如可靠性,某一时刻的失效率,产品的平均寿命及失效率。 1.1.1威布尔分析的优点: 威布尔分析广泛用于研究机械、化工、电气、电子、材料的失效,甚至人体疫病。威布尔分析最主要的优点在于它的功能: ?提供比较准确的失效分析和小数据样本的失效预测,对出现的问题尽早的制订解 决方案。 ?为单个失效模式提供简单而有用的图表,使数据在不充足时,仍易于理解。 ?描述分布状态的形状可很好的选择相应的分布。 ?提供基于威布尔概率图的斜率的物理失效的线索。

蒙特卡洛方法解决威布尔密度分布函数

% P(X>1.8)=1-P(X<=1.8) % =1-P(0

00.51 1.52 2.53 3.54 00.1 0.2 0.3 0.4 0.5 0.6 0.7 概率密度分布函数 %函数积分的方法 a=2; k=3; syms x f Fx ; f=(k/a).*((x/a).^(k-1)).*exp(-(x/a).^k); %当要求X>1.8时,也就是 da=int(f,1.8,inf) %最终答案0.4824 da =1/exp(729/1000); %蒙特卡罗方法:随机试验的方法计算积分 % 方法1: % x 范围(0,1.8),y 的范围是(0,0.6)形成一个矩形 % 均匀布点N ,计算落入曲线下面的数据点的个数acount

% 那么P(x<=1.8)的(面积)概率也就是1.8*0.6*acount/N % 当然,这个方法取决于布点的密度,也就是个数的多寡 a=2; k=3; x=0:0.01:1.8; y=0:0.01:0.6; sx=size(x); sy=size(y); N=sx(1,2)*sy(1,2); %总共有N=11041个点 acount=0; %计算落入曲线下方的点的个数 for i=1:sx(1,2) for j=1:sy(1,2) t=(k/a).*((x(i)/a).^(k-1)).*exp(-(x(i)/a).^k); if y(j)

相关主题
文本预览
相关文档 最新文档