当前位置:文档之家› 高数 第十章线面积分习题和答案

高数 第十章线面积分习题和答案

高数 第十章线面积分习题和答案
高数 第十章线面积分习题和答案

第十章曲线积分曲面积分练习题

A 组

一.填空题

1. 设L 是 12

2

=+y x 上从)0,1(A 经)1,0(E 到)0,1(-B 的曲线段,则?L

y

dy e 2

=

2.设?

MN 是从M(1,3) 沿圆 2)2()2(22=-+-y x 至点 )1,3(N 的半圆,则积分

?

?

+MN

xdy ydx =

3. L 是从)6,1(A 沿6=xy 至点)2,3(B 的曲线段,则

?

++L

y x xdy ydx e )( =

4. 设L 是从)0,1(A 沿12

2

2

=+y x 至点2,0(B )的曲线段,

?

+L

y x y x dy ye dx xe 2

22 =

5. 设L 是 2x y = 及 1=y 所围成的区域D 的正向边界,则

?+L

dx y x xy )(3

3 + dy y x x )(242+ = 6. 设L 是任意简单闭曲线,b a ,为常数,则?

+

+L bdy adx )( =

7. 设L 是xoy 平面上沿逆时针方向绕行的简单闭曲线,且9)34()2(=++-?

dy y x dx y x L

,则L 所围成的

平面区域D 的面积等于

8. 常数 k = 时, 曲线积分?

+L

dy x kxydx 2

与路径无关。

9.设是球面 1222=++z y x ,则对面积的曲面积分

??

++ds z y x 222 =

10.设L 为)0,0(o , )0,1(A 和)1,0(B 为顶点的三角形围成的线, 则对弧长的曲线积分?

L

ds =

11. 设L 是从点)1,1(到)3,2(的一条线,则

?-++L

dy y x dx y x )()(=

12. 设L 是圆周 t a x cos =, t a y sin = )20(π≤≤t ,则

?

+L

dS y x 322)(=

13. 设为曲面2

2

2

2

a z y x =++, 则??∑

dS z y x 2

22=

二、选择题

1.设→

+=j y x Q i y x P A ),(),(,D y x ∈),(且P ,Q 在域D 内具有一阶连续偏导数,又L :?

AB 是D 内任一曲线,则以下四个命题中,错误的是( )

A .若

?+L

Qdy Pdx 与路径无关,则在D 内必有

y

P

x Q ??≡?? B .若?

?L

ds A 与路径无关,则在D 内必有单值函数),(y x u ,

使得dy y x Q dx y x P y x du ),(),(),(+=

C .若在

D 内

y

P

x Q ??≡??,则必有?L ds A ·与路径无关。

D .若对D 内每一闭曲线C ,恒有

?

+C

Qdy Pdx ,则?+L

Qdy Pdx 与路径无关。

2.已知

2

)()(y x ydy

dx ay x +++为某函数的全微分,又为与路径无关的曲线积分被积函数,则a 等于( )

A .-1

B .0

C .1

D .2 3、设曲线积分

()dx x y dx xy L

φ+?

2与路径无关,其中()x φ具有连续导数,且()00=φ,则

(

)

()

()dy x y dx xy φ+?1,10,02=( )

A .3/8

B .1/2

C .3/4

D .1

4.设S 是平面4=++z y x 被圆柱面122=+y x 截出的有限部分,则曲面积分

??S

yds 的值是( )

A .0 ;

B .

34

3

; C . 34; D . 5.设空间区域Ω由曲面2

2

2

y x a z --=与平面0=z 围成,其中a 为正的常数,记Ω的表面外侧为S ,Ω的体积为V ,则

()dxdy xyz z dzdx z xy dydz yz x

S ++-??12222

= ( )

A .0

B .V

C .2V

D .3V 6. 已知曲线C :12

2

=+y x 逆时针方向一周,则

?

+-C

y x ydx

xdy 2

2=( )

A. 0;

B. π2;

C. π2-;

D. π

7. 已知∑为平面1=++z y x 在第一卦限内的下侧曲面,则??

++dxdy z y x )(22=( ) A. ?

?

-+--+-x

dy y x y x dx 10

221

)1(; B.

?

?

-+--+x

dy y x y x dx 10

221

)1(

C.

?

?-+--+x

dx y x y x dy 10

2

2

1

)1(; D. ?

?-++-x dy z y x dx 10

2210

)(

8. 单连通区域G 内),(y x P ,),(y x Q 具有连续的一阶偏导数,则曲线积分?+L

Qdy Pdx 与路径无关的充

要条件是( )

A 在G 内有一闭曲线 ,使?=+γ0Qdy Pdx ;

B 在G 内有恒有

x

y Q

y x P ???=???22 C. 在G 内有另一曲线C ,使

??

+=+L

C

Qdy Pdx Qdy Pdx ;

D. 在G 内有恒有

y

P

x Q ??=?? 9. 设为平面14

32=++z

y x 在第一卦限内的部分,则

??∑

+

+dS y x z )3

4

2(=( ) A

?

?-)1(30

2

2

4x dy dx ; B.

???203043

61

dy dx ; C.???30204361dy dx ; D. ??-)1(302

023

614x dy dx 10. 设L :122

22=+b

y a x ,则?+-L y x ydx xdy 22( )

A. 与L 取向无关,与b a ,大小有关;

B. 与L 取向无关,与b a ,大小无关;

C. 与L 取向有关,与b a ,大小有关;

D. 与L 取向有关,与b a ,大小无关; 三、计算题

1. 计算曲线积分?

++L

dy x y xdx )(2

,其中L 是圆周122=+y x 在第一象限中的部分,依逆时针方向。 2. 计算

??∑

++dxdy ydzdx xdydz 2,其中∑是上半球面222y x a z --=

上侧

3. 设L 是由63232=++y xy x 所表示的正向椭圆,

计算 I = ?

+++L

dy y xy dx y x )32()3(2

22 4.计算

?-L y x ds

,L 是点)2,0(-A 与)0,4(B 直线段

5.计算()ds y x L

?+,L 是以)0,0(O ,)0,1(A ,)1,0(B ,为顶点的三角形闭回路。

6.计算ds y x L

?

+22,L 为圆周Rx y x =+22

7.计算ds xy L

?

,L 是圆周222R y x =+的闭路

8.计算

?+L

dy x xydx 2

2,L 分别为下列三种情形。

1)从点)0,0(O 经x y =到)1,1(A 2)从点)0,0(O 经2x y =到)1,1(A 3)从点)0,0(O 经3x y =到)1,1(A

9.计算

()

d y

y x L

?+22

,L 是由直线1=x ,1=y ,3=x ,5=y 围成的逆时针闭路。

10.计算?→

L dS

F ,其中→

+-=j x i y F ,L 是由x y =,1=x 及0=y 所围成的三角形逆时针闭路。

11.计算xydy dx x y L 21++?,L 是由2x y =与

x y =,所围成的逆时针闭路。 12.计算

()()

dy y x dx y x

L

2222

+-+?,L 是以)0,0(,)0,1(,)1,0(为顶点的三角形正向闭路。

13.计算(

)(

)

dy y x dx y x L 2

2

--+?,L 是沿椭圆122

22=+b

y a x 的正向闭路。

14.计算

()22x y z ds ++??∑

,∑:平面1=++z y x 15.计算??∑

++

ds z y x )342(,:14

32=++z y x 在第一卦限

16计算

ds x ??

,∑:2

222R z y x =++在第一卦限部分。 四.应用题

1.利用曲线积分,求曲线所围图形的面积。椭圆t x cos 34+=,t y sin 42+=

2.设半径为r 的球面∑的球心在定球面2

2

2

2

a z y x =++ (0>a )上, 问当r 取何值时, 球面∑在定球面内

部的哪部分面积最大

3.在过点)0,0(O 和)0,(πA 的曲线族x a y sin = ,(0>a )中,求一条曲线L ,使沿该曲线从O 到A 的积分

()()?+++L

dy y x dx y 213

的值最小

4.求

??

-+-ANC

x x

dy

m y e dx my y e

)cos ()sin (,式中?

ANC 为由)0,(a A 至)0,0(O 的ax y x =+2

2 ()0>a

设)(x f 连续可导,求dy xy f y y x dx y xy f y C ]1)([)(1222-++?,式中C 是从)3

2

,3(A 到)2,1(B 的直线段。 五 证明题

1. 设函数f(x)在( -,+)内具有一阶连续导数,L 是上半平面)0(>y 内的有向分段光滑曲线,其起点为),(b a ,

终点为),(d c ,

记dy xy f y y x dx xy f y y I C ]1)([)]([122

2-++=

? (1) 证明曲线积分I 与路径L 无关;(2)当cd ab =时,求I 的值

2. 设L 2是包含坐标原点在内的任意光滑无重点闭回路,对于它所围成的区域来说取正向,试证:

?

=+-2

22

2L y x ydx

xdy π。

A 组答案

一、1. 0;2. 0;3. 0提示:)(xy d xdy ydx =+ ;,提示:)2

(22

2

y x d ydy xdx +=+;5. 3/10;6. 0;7. 3/2;

8. 2;9. π4;10. 22+;11.

2

5

;12. 72a π;; 二、 2、D 3、B 4、A 5、B 6. B ;7. A ;8. D ;9. D ;10. D

三、1、32a π 3、0 42 5、1+ 6、2R 2 7、32R

8、1 9、32 10、1 11、41

30

-+2ln 2 12、-1 13、2ab π-

14 15、 16、34R π

四、1、12π 2、2

432327

S a a π??=

??? 3、sin y x = ()0x π≤≤是使曲线积分的为最小的曲线。 4、2

18

a m π 5、-4 B 组

一、填空题:

1、设L 是顺时针方向的椭圆

14

22

=+y x ,其周长为l ,则=++?L dS y x xy )4(22 . 2、设曲线C 为R z x R z y x =+=++与2

2

2

2

的交线,从原点看去C 的方向为顺时针方向,则

=++?

C

xdz zdy ydx .

3、计算?C

dS x 2

,其中???=++=++0:2

222z y x R z y x C .

4、设r =

()div gradr = .

5、设S 为曲面2

2

2

1x y z ++=的外侧,则222

s

I x dydz y dxdz z dxdy =++??ò= . 二、解答题:

6、计算

?

+-C

y

x ydx xdy 2

2,C 为逆时针方向绕圆周12

2=+y x 一圈的路径。 7、设函数)(t f 具有连续的二阶导数,且1)1()1(='=f f ,试确定函数)(x

y f ,使

0)]([)]([2='-++?dy x

y

f x y dx x y xf x y L ,其中L 是不与y 轴相交的简单正向闭路径。 8、计算

??

-+-xzdxdy xydzdx dydz x 48)1(22

,其中∑是由曲线)0(a y e x y ≤≤=绕x 轴旋转成的旋转曲面。

9、空间立体V 由x z z y x +==≤+2,0,12

2

所围成,V S 为的边界面。 (1)求曲面积分

??S xdS ;

(2)若S 有均匀密度ρ(常数),求M S 的质量。 10、设)(u f 为连续函数,C 为xOy 平面上逐段光滑的闭曲线,证明:

?

=++C

ydy xdx y x f 0))((22

B 组答案:1.l 4 2.222R π-

3.332R π 4.23 5.12

5

π

6.π2 7.1)()()(2

3+-=x

y x y x y f 8.)1(222-a

e

a π 9.(1)π;(2)5)ρπ

定积分典型例题20例答案(供参考)

定积分典型例题20例答案 例1 求2 1lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111 n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 = ?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=, 故321(1)3f x x -= ,令3126x -=得3x =,所以1(26)27 f =.

高中数学线面角与线线角例题、习题-学生

线面角与线线角专练(小练习一)【知识网络】 1、异面直线所成的角:(1)范围:(0,]2π θ∈; (2)求法; 2、直线和平面所成的角:(1)定义:(2)范围:[0,90]o o ;(3)求法; 【典型例题】 例1:(1)在正方体1111ABCD A B C D -中,下列几种说法正确的是 ( ) A 、11AC AD ⊥ B 、11D C AB ⊥ C 、1AC 与DC 成45o 角 D 、11AC 与1B C 成60o 角 (2)在正方体AC 1中,过它的任意两条棱作平面,则能作得与A 1B 成300角的平面的个数为 ( ) A 、2个 B 、4个 C 、6个 D 、8个 (3)正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1底面边长是1,2则这个棱柱的侧 面对角线E 1D 与BC 1所成的角是 ( ) A .90o B .60o C .45o D .30o (4)在空间四边形ABCD 中,AB ⊥CD ,BC ⊥DA ,那么对角线AC 与BD 的位置关系是 。 (5)点AB 到平面α距离距离分别为12,20,若斜线AB 与α成030的角,则AB 的长等于__ ___. 例2:.如图:已知直三棱柱ABC —A 1B 1C 1,AB =AC ,F 为棱BB 1上一点,BF ∶FB 1=2∶1,BF =BC =2a 。 (I )若D 为BC 的中点,E 为AD 上不同于 A 、D 的任意一点,证明EF ⊥FC 1; (II )试问:若AB =2a ,在线段AD 上的E 点能否使EF 与平面BB 1C 1C 成60°角,为什么?证明你的结论。 例3: 如图, 四棱锥P-ABCD 的底面是AB=2, BC =2的矩形, 侧面PAB 是等边三角形, 且侧面 PAB ⊥底面ABCD. (Ⅰ)证明:BC ⊥侧面PAB; (Ⅱ)证明: 侧面PAD ⊥侧面PAB; (Ⅲ)求侧棱PC 与底面ABCD 所成角的大小; A B C D P

第十一章曲线积分与曲面积分经典例题

第十一章 曲线积分与曲面积分 内容要点 一、引例 设有一曲线形构件所占的位置是xOy 面内的一段曲线L (图10-1-1),它的质量分布不均匀,其线密度为),(y x ρ,试求该构件的质量. 二、第一类曲线积分的定义与性质 性质1 设α,β为常数,则 ???+=+L L L ds y x g ds y x f ds y x g y x f ),(),()],(),([βαβα; 性质2设L 由1L 和2L 两段光滑曲线组成(记为=L 21L L +),则 .),(),(),(2 1 2 1 ???+=+L L L L ds y x f ds y x f ds y x f 注: 若曲线L 可分成有限段,而且每一段都是光滑的,我们就称L 是分段光滑的,在以后的讨论中总假定L 是光滑的或分段光滑的. 性质3 设在L 有),(),(y x g y x f ≤,则 ds y x g ds y x f L L ??≤),(),( 性质4(中值定理)设函数),(y x f 在光滑曲线L 上连续,则在L 上必存在一点),(ηξ,使 s f ds y x f L ?=?),(),(ηξ 其中s 是曲线L 的长度. 三、第一类曲线积分的计算:)(), (),(βα≤≤?? ?==t t y y t x x dt t y t x t y t x f ds y x f L )()(])(),([),(22'+'=??β α 如果曲线L 的方程为 b x a x y y ≤≤=),(,则 dx x y x y x f ds y x f b a L )(1])(,[),(2'+=?? 如果曲线L 的方程为 d y c y x x ≤≤=),(,则 dy y x y y x f ds y x f d c L )(1]),([),(2'+=?? 如果曲线L 的方程为 βθαθ≤≤=),(r r ,则 θθθθθβ α d r r r r f ds y x f L )()()sin ,cos (),(22'+=??

线面角的计算方法

教师姓名 余永奇 学生姓名 洪 懿 上课时间 2014.11.15 辅导学科 数学 学生年级 高二 教材版本 人教版 课题名称 线面角,二面角的计算方法(文科) 本次学生 课时计划 第(10)课时 共(60)课时 教学目标 线面角的计算方法 教学重点 线面角的计算方法 教学难点 线面角的计算方法 教师活动 学生活动 上次作业完成情况(%) 一.检查作业完成情况,并讲解作业中存在的问题 二.回顾上次课辅导内容 三.知识回顾,整体认识 1、本章知识回顾 (1)空间点、线、面间的位置关系; (2)直线、平面平行的判定及性质; (3)直线、平面垂直的判定及性质。 2、本章知识结构框图 (二)整合知识,发展思维 1、刻画平面的三个公理是立体几何公理体系的基石,是研究空间图形问题,进行逻辑推理的基础。 公理1——判定直线是否在平面内的依据; 公理2——提供确定平面最基本的依据; 公理3——判定两个平面交线位置的依据; 公理4——判定空间直线之间平行的依据。 2、空间问题解决的重要思想方法:化空间问题为平面问题; 3、空间平行、垂直之间的转化与联系: 平面(公理1、公理2、公理3、公理4) 空间直线、平面的位置关系 直线与直线的位置关系 直线与平面的位置关系 平面与平面的位置关系 直线与直线平行 直线与平面平行 平面与平面平行

4、观察和推理是认识世界的两种重要手段,两者相辅相成,缺一不可。 典型例题: 线面夹角的计算 例1(2014浙江高考文科20题)如图,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED =90°,AB=CD=2, DE=BE=1,AC=2. (Ⅰ)证明:AC⊥平面BCDE; (Ⅱ)求直线AE与平面ABC所成的角的正切值. 例2(2013浙江,文20)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=BC=2,AD=CD=7,PA =3,∠ABC=120°,G为线段PC上的点. (1)证明:BD⊥平面APC; (43 3 ) (2)若G为PC的中点,求DG与平面APC所成的角的正切值; (3)若G满足PC⊥平面BGD,求PG GC 的值.(3/2) 直线与直线垂直直线与平面垂直平面与平面垂直

线面垂直与面面垂直典型例题

线面垂直与面面垂直 基础要点 1、若直线αβ所成的角相等,则平面αβ B ) A 、//αβ B 、α不一定平行于β C 、α不平行于β D 、以上结论都不正确 2、在斜三棱柱111ABC A B C -,90BAC ∠=,又1BC AC ⊥,过1C 作1C H ⊥底面ABC ,垂足为H ,则H 一定在( B ) A 、直线AC 上 B 、直线AB 上 C 、直线BC 上 D 、△ABC 的内部 3、如图示,平面α⊥平面β,,,A B AB αβ∈∈与两平面,αβ所成的角分别为4π和6 π ,过A 、B 分别作两平面交线的垂线,垂足为,A B '',则:AB A B ''=( A ) A 、2:1 B 、3:1 C 、3:2 D 、4:3 4、如图示,直三棱柱11ABB DCC -中,190,4ABB AB ∠==, 12,1BC CC ==DC 上有一动点P ,则△1APC 周长的最小值是 5.已知长方体1111D C B A ABCD -中,21==AB A A , 若棱AB 上存在点P ,使得PC P D ⊥1,则棱AD 长 的取值范围是 。 题型一:直线、平面垂直的应用 1.(2014,江苏卷)如图,在三棱锥P-ABC 中,D ,E ,F 分别为 PC ,AC ,AB 的中点. 已知,685PA AC PA BC DF ⊥===,,. 求证:(1) PA DEF 平面;(2) BDE ABC ⊥平面平面 . 证明: (1) 因为D ,E 分别为棱PC ,AC 的中点, 所以DE ∥PA. 又因为PA ? 平面DEF ,DE ?平面DEF , 所以直线PA ∥平面DEF. (2) 因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,PA =6,BC =8,所以DE ∥PA ,DE = 12PA =3,EF =1 2 BC =4. 又因 DF =5,故DF 2=DE 2+EF 2, 所以∠DEF =90°,即DE 丄EF. 又PA ⊥AC ,DE ∥PA ,所以DE ⊥AC. 因为AC∩EF =E ,AC ?平面ABC ,EF ?平面ABC ,所以DE ⊥平面ABC. 线面垂直 线线垂直 面面垂直 B` A` B A α β A B C D 1 B 1 C B 1 1 D A D B A

线线角-线面角-二面角的一些题目.

B 1 D 1 A D C 1 B C A 1 线线角与线面角习题 新泰一中 闫辉 一、复习目标 1.理解异面直线所成角的概念,并掌握求异面直线所成角的常用方法. 2.理解直线与平面所成角的概念,并掌握求线面角常用方法. 3.掌握求角的计算题步骤是“一作、二证、三计算”,思想方法是将空间图形转化为平面图形即“降维”的思想方法. 二、课前预习 1.在空间四边形ABCD 中,AD=BC=2, E 、F 分别为AB 、CD 的中点且EF=3,AD 、BC 所成的角为 . 2.如图,在长方体ABCD-A 1B 1C 1D 1中 ,B 1C 和C 1D 与底面所成的角分别为60ο和45ο ,则异面直线B 1C 和C 1D 所成角的余弦值为 ( ) (A). 4 6 (B). 36 (C).62 (D).6 3 3.平面α与直线a 所成的角为 3 π ,则直线a 与平面α内所有直线所成的角的取值范围是 . 4.如图,ABCD 是正方形,PD ⊥平面ABCD,PD=AD,则PA 与BD 所成的角的度数为 (A).30ο (B).45ο (C).60ο (D).90ο 5.有一个三角尺ABC,∠A=30ο, ∠C=90ο ,BC 是贴于桌面上, 当三角尺与桌面成45ο 角时,AB 边与桌面所成角的正弦值 是 . 三、典型例题 例1.(96·全国) 如图,正方形ABCD 所在平面与正方形 ABEF 所在平面成60ο 角,求异面直线AD 与BF 所成角的余弦值. 备课说明:1.求异面直线所成的角常作出所成角的平面图形.作法有: ①平移法:在异面直线的一条上选择“特殊点”,作另一条直线平行线 或利用中位线.②补形法:把空间图形补成熟悉的几何体,其目的在于容 易发现两条异面直线的关系.2.解立几计算题要先作出所求的角,并要 有严格的推理论证过程,还要有合理的步骤. 例2.如图在正方体AC 1中, (1) 求BC 1与平面ACC 1A 1所成的角; (2) 求A 1B 1与平面A 1C 1B 所成的角. 备课说明:求直线与平面所成角的关键是找直线在此平面上的射影,为此必须在这条直线上找一点作平面的垂线. 作垂线的方法常采用:①利用平面垂直的性质找平面的垂线.②点的射影在面内的特殊位置. A C B A D C 1D 1 A 1 B 1C B D B P C D A C B F E

线面垂直经典例题及练习题-.

立体几何 1.P 点在则ABC ?所在的平面外,O 点是P 点在平面ABC 内的射影 ,PA 、PB 、PC 两 两垂直,则D 点是则ABC ? ( B ) (A)重心 (B) 垂心 (C)内心 (D)外心 2.与两个相交平面的交线平行的直线和这两个平面的位置关系是 ( A ) (A)都平行 (B) 都相交 (C) 在两个平面内 (D)至少与其中一个平行 3.若两个平面内分别有一条直线,这两条直线互相平行,那么这两平面的位置关系是( A ) (A)平行 (B) 相交 (C)平行或相交 (D)垂直 4.在空间,下述命题正确的是 ( B ) (A)若直线//a 平面M ,直线b a ⊥,则直线⊥b 平面M (B)若平面M //平面N ,则平面M 内任意直线a //平面N (C)若平面M 与N 的交线为a ,平面M 内的直线a b ⊥,则N b ⊥ (D)若平面N 的两条直线都平行平面M ,则平面N //平面M 5.a 、b 表示两条直线,α、β、γ表示三个平面,下列命题中错误的是 (A ) (A),,αα??b a 且ββ//,//b a ,则βα// (B)a 、b 是异面直线,则存在唯一的平面与a 、 b 等距 (C) ,,,b a b a ⊥?⊥βα则βα// (D),,,//,βαβγγα⊥⊥⊥b a 则b a ⊥ 6.直线l //平面α,αβ⊥,则l 与平面β的位置关系是 ( D ) (A) l β? (B) //l β (C) l β与相交 (D ) 以上三种情况均有可能 7.已知直线l ⊥平面α,直线m ?平面β,有以下四个命题:①//l m αβ?⊥② //l m αβ⊥?③//l m αβ?⊥④//l m αβ⊥?,其中正确的是(D ) (A) ①② (B) ②④ (C) ③④ (D) ①③ 8.αβγδ,,,是四个不同的平面,且αγβγαδβδ⊥⊥⊥⊥,,,,则( B ) (A) ////αβγδ或 (B) ////αβγδ且 (C) 四个平面中可能任意两个都不平行 (D) 四个平面中至多有一对平面平行 9.已知平面α和平面β相交,a 是α内的一条直线,则( D ) (A) 在β内一定存在与a 平行的直线 (B) 在β内一定存在与a 垂直的直线 (C) 在β内一定不存在与a 平行的直线 (D) 在β内一定不存在与a 垂直的直线 10.已知PA ⊥正方形ABCD 所在平面,垂足为A ,连PB PC PD AC BD ,,、,,则互 相垂直的平面有( C ) (A) 5对 (B) 6对 (C) 7对 (D) 8对

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

第十三讲 三重积分和线面积分

第十三讲 三重积分、曲线、曲面积分及场论初步(数一) 一、考试要求 1、理解三重积分的概念,了解三重积分的基本性质。 2、会计算三重积分(直角坐标、柱面坐标、球面坐标)。 3、理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关 系。 4、掌握计算两类曲线积分的方法。 5、掌握格林公式并会运用平面曲线积分与路径元关的条件,会求全微分的原函数。 6、了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,了解高斯公式、斯托克斯公式,掌握用高斯公式计算曲面积分,会用斯托克斯公式计算曲线积分。 7、了解散度与旋度的概念,并会计算。 8、 会用三重积分、曲线积分及曲面积分,求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、重心、转动惯量、引力、功及流量等)。 9、理解方向导数与梯度的概念并掌握其计算方法。 二、内容提要 1、 三重积分的概念 ???Ω dV z y x f ),,( 2、两类曲线积分 1)、对弧长的曲线积分(第一类曲线积分) (1) 定义:f x y ds f s L i i i i n (,)lim (,)=→=?∑λξη0 1 ? (2) 性质:1) 与积分路径的方向无关,即f x y ds f x y ds BA AB (,)(,)=?? 2) 可加性 f x y ds f x y ds f x y ds L L L L (,)(,)(,)=+??? +2 1 12 2)、对坐标的曲线积分(第二类曲线积分) (1) 定义:P x y dx Q x y dy P x Q y L i i i i i i i n (,)(,)lim [(,)(,)]+=+→=?∑λξηξη0 1 ?? (2) 性质:1) 与积分路径的方向有关,即 P x y dx Q x y dy P x y dx Q x y dy L L (,)(,)(,)(,)+=-+?? - 2) 可加性 P x y dx Q x y dy P x y dx Q x y dy P x y dx Q x y dy L L L L (,)(,)(,)(,)(,)(,)+=+++?? ?+1 12 2 注:以上两种曲线积分可分别推广到空间中去。 3)、 两类曲线积分之间的联系

定积分典型例题20例答案

定积分典型例题20例答案 例1 求33322 32 1lim (2)n n n n n →∞+++. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 33322 32 1lim (2)n n n n n →∞+++=333 112 lim ()n n n n n n →∞++ +=1303 4 xdx =?. 例2 2 20 2x x dx -? =_________. 解法1 由定积分的几何意义知,2 20 2x x dx -?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故220 2x x dx -? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 2 2 2x x dx -? =2 2 2 1sin cos t tdt ππ- -? =2 2 21sin cos t tdt π -? =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=,

(完整版):平面直角坐标系经典例题解析

【平面直角坐标系重点考点例析】 考点一:平面直角坐标系中点的特征 例1 在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.思路分析:根据第一象限的点的坐标,横坐标为正,纵坐标为正,可得出m的范围. 解:由第一象限点的坐标的特点可得: 20 m m > ? ? -> ? , 解得:m>2. 故答案为:m>2. 点评:此题考查了点的坐标的知识,属于基础题,解答本题的关键是掌握第一象限的点的坐标,横坐标为正,纵坐标为正. 例1 如果m是任意实数,则点P(m-4,m+1)一定不在() A.第一象限B.第二象限C.第三象限D.第四象限 思路分析:求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.解:∵(m+1)-(m-4)=m+1-m+4=5, ∴点P的纵坐标一定大于横坐标, ∵第四象限的点的横坐标是正数,纵坐标是负数, ∴第四象限的点的横坐标一定大于纵坐标, ∴点P一定不在第四象限. 故选D. 点评:本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).例2 如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是() A.(2,0)B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1) 分析:利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答. 解答:解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知: ①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;

直线与平面垂直的典型例题

直线与平面垂直的典型例题 例1 判断题:正确的在括号内打“√”号,不正确的打“×”号. (1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.( ) (2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.( ) (3)垂直于三角形两边的直线必垂直于第三边.( ) (4)过点A 垂直于直线a 的所有直线都在过点A 垂直于α的平面内.( ) (5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.( ) 例2 在正方体1111D C B A ABCD -中,E 是1BB 的中点,O 是底面正方形ABCD 的中心,求证:⊥OE 平面1ACD 例3 如图,在△ABC 中, 90=∠B ,⊥SA 平面ABC ,点A 在SB 和SC 上的射影分别为N M 、,求证:SC MN ⊥

例4如图,AB 为平面α的斜线,B 为斜足,AH 垂直平面α于H 点,BC 为平面α内的直线,θ=∠ABH ,α=∠HBC ,β=∠ABC ,求证:θαβcos cos cos ?= 例5如图,已知正方形ABCD 边长为4,⊥CG 平面ABCD ,2=CG ,F E 、分别是AD AB 、中点,求点B 到平面GEF 的距离 例6 如图所示,直角ABC ?所在平面外一点S ,且SC SB SA ==. (1)求证:点S 与斜边AC 中点D 的连线SD ⊥面ABC ; (2)若直角边BC BA =,求证:BD ⊥面SAC .

例7如图所示,?=∠90BAC .在平面α内,PA 是α的斜线,?=∠=∠60PAC PAB .求PA 与平面α所成的角. 例8如图,ABCD 是正方形,SA 垂直于平面ABCD ,过A 且垂直于SC 的平面交SB 、SC 、SD 分别于点E 、F 、G ,求证:SB AE ⊥,SD AG ⊥. 例9 如图,求证:如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面内的射影在这个角的平分线上.

线面垂直面面垂直知识点总结经典例题及解析高考题练习及答案第次补课

直线、平面垂直的判定与性质 【知识梳理】 一、直线与平面垂直的判定与性质 1、 直线与平面垂直 (1)定义:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直,记作l ⊥α,直线l 叫做平面α的垂线,平面α叫做直线l 的垂面。如图,直线与平面垂直时,它们唯一公共点P 叫做垂足。 (2)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。 结论:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面,记作.//a b b a αα? ?⊥?⊥? (3)性质定理:垂直于同一个平面的两条直线平行。即,//a b a b αα⊥⊥?. 由定义知:直线垂直于平面内的任意直线。 2、 直线与平面所成的角 平面的一条斜线和它在平面上的射影所成的锐角或者直角叫做这条直线和这个平面所成的角。一条直线垂直于平面,该直线与平面所成的角是直角;一条直线和平面平行,或在平面内,则此直线与平面所成的角是0 0的角。 3、 二面角的平面角 从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。如果记棱为l ,那么两个面分别为αβ、的二面角记作l αβ--.在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的射线,则两射线所构成的角叫做叫做二面角的平面角。其作用是衡量二面角的大小;范围:0 0180θ≤≤. 二、平面与平面垂直的判定与性质 1、定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面垂直. 2、判定:一个平面过另一个平面的垂线,则这两个平面垂直。简述为“线面垂直,则面面垂直”,记作 l l βαβα⊥? ?⊥??? . 3、性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直,记作l m m m l αβαββα⊥??=? ?⊥??? ?⊥? I . 【经典例题】 【例1】(2012浙江文)设l 是直线,a,β是两个不同的平面 ( ) A .若l ∥a,l ∥β,则a ∥β B .若l ∥a,l ⊥β,则a ⊥β C .若a ⊥β,l ⊥a,则l ⊥β D .若a ⊥β, l ∥a,则l ⊥β 【答案】B

(完整版)常用公式--线面积分公式大全

(一)对弧长的曲线积分(第一类) (1)对光滑曲线弧() :,()() x t L t y t =?≤≤? =??αβψ (,)d [(),(L f x y s f t t t βα ?ψ=? ?; (2)对光滑曲线弧:()(),L y x a x b ?=≤≤ (,)d (,()) b L a f x y s f x x x ?=? ?; (3)对光滑曲线弧:()(),L r r θαθβ=≤≤ (二)对坐标的曲线积分(第二类) (1)对有向光滑弧() :() x t L y t φψ=??=?,:t αβ→, {}(,)d (,)d [(),()]'()[(),()]'()d L P x y x Q x y y P t t t Q t t t t βα φψφφψψ+=+? ? ; (2)对有向光滑弧:(),:L y x x a b ?=→, {}(,)d (,)d [,()][,()]'()d b L a P x y x Q x y y P x x Q x x x x ???+=+? ? ; (格林公式) d d L D Q P Pdx Qdy x y x y ?? ??+=- ???? ?????; (斯托克斯公式) R Q P R Q P Pdx Qdy Rdz dydz dzdx dxdy y z z x x y Γ∑????????????++=-+-+- ? ? ????????????????? L dydz dzdx dxdy Pdx Qdy Rdz x y z P Q R ∑ ? ??++=?????? ?

(一)对面积的曲面积分(第一型) 计算口诀:一投二代三换,曲积化为重积算. (1)对光滑曲面:(,),(,)x y z z x y x y D ∑=∈, (,,)d (,,(,d x y D f x y z S f x y z x y x y ∑ =?? ?? ; (2)对光滑曲面:(,),(,)y z x x y z y z D ∑=∈, (,,)d [(,),,yz D f x y z S f x y z y z ∑ =?? ??; (3)对光滑曲面:(,),(,)x z y y x z x z D ∑=∈, (,,)d [,(,),xz D f x y z S f x y x z z ∑ =?? ?? (二)对坐标的曲面积分(第二型) 计算口诀:一投二代三定,曲积化为重积算. 1、对光滑曲面:(,),(,)x y z z x y x y D ∑=∈,则 (,,)d d (,, (,))d d x y D R x y z x y R x y z x y x y ∑ =±???? (上侧正,下侧负) 2、对光滑曲面:(,),(,)y z x x y z y z D ∑=∈, (,,)d d ((,), ,)d d y z D P x y z y z P x y z y z y z ∑ =±???? ; (前侧正,后侧负) 3、对光滑曲面:(,),(,)x z y y x z x z D ∑=∈, (,,)d d (,(,),z )d d z x D Q x y z z x Q x y x z z x ∑ =±?? ?? (右侧正,左侧负) 合一投影公式:(,)z z x y = ()()xy D z z Pdydz Qdzdx Rdxdy P Q R dxdy x y ∑????++=?-+?-+????? ????? (高斯公式) ()d d d d d d d d d P Q R P y z Q z x R x y x y z x y z ∑ Ω ???++=++????? ??? ò; ()( )cos cos cos d =d d d P Q R P Q R S x y z x y z ∑Ω???α+β+γ++????????。

线面垂直--经典练习题(精选.)

1.如图,在四棱锥P ABCD -中,底面ABCD 是直角梯形,90BCD ∠=?,AB CD ∥,又1AB BC PC ===,2PB =,2CD =,AB PC ⊥. (Ⅰ)求证:PC ⊥平面ABCD ; (Ⅱ)求PA 与平面ABCD 所成角的大小; (Ⅲ)求二面角B PD C --的大小. 2.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为直角梯形,且AB CD ∥,90BAD ∠=?,2PA AD DC ===,4AB =. (Ⅰ)求证:BC PC ⊥; (Ⅱ)求PB 与平面PAC 所成角的正弦值; (Ⅲ)求点A 到平面PBC 的距离. 3.在直四棱柱1111ABCD A B C D -中,AB CD ∥,1AB AD ==,12D D CD ==,AB AD ⊥. (Ⅰ)求证:BC ⊥平面1D DB ; (Ⅱ)求1D B 与平面11D DCC 所成角的大小.

9.如图,在三棱锥P -ABC 中,△PAC 和△PBC 是边长为2的等边三角形,AB =2,O 是AB 中点. (1)在棱PA 上求一点M ,使得OM ∥平面PBC ; (2)求证:平面PAB ⊥平面ABC . 10.如图所示,三棱锥V -ABC 中,AH ⊥侧面VBC ,且H 是△VBC 的垂心,BE 是VC 边上的高. 求证:VC ⊥AB ; 11.如图,在直三棱柱111C B A ABC -中,1AB BB =,1AC ⊥平面D BD A ,1为AC 的中点. (1)求证://1C B 平面BD A 1; (2)求证:⊥11C B 平面11A ABB ; 提示:11A C 中点和1B A 连 D A C B S E F G A 1 B 1 C 1 A B C D

2015简单线性规划典型例题

良好的开端是成功的一半 1. “平面区域”型考题 1.不等式组?? ? ??-≥≤+<31y y x x y ,表示的区域为D ,点P 1(0,-2),P 2(0,0),则 ( ) A .D P D P ??21且 B .D P D P ∈?21且 C . D P D P ?∈21且D .D P D P ∈∈21且 2.已知点P (x 0,y 0)和点A (1,2)在直线0823:=-+y x l 的异侧,则 ( ) A .02300>+y x B .<+0023y x 0 C .82300<+y x D .82300>+y x 3.已知点P (1,-2)及其关于原点的对称点均在不等式012>+-by x 表示的平面区域内,则b 的取值范围是 . 2. “平面区域的面积”型考题 1.设平面点集{} 221 (,)()()0,(,)(1)(1)1A x y y x y B x y x y x ??=--≥=-+-≤??? ? ,则A B 所表示的平 面图形的面积为 A 34π B 35π C 47π D 2 π 2.在平面直角坐标系xOy ,已知平面区域{(,)|1,A x y x y =+≤且0,0}x y ≥≥,则平面区域 {(,)|(,)}B x y x y x y A =+-∈的面积为 ( )A .2 B .1 C .12 D .1 4 3、若A 为不等式组002x y y x ≤?? ≥??-≤? 表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫 过A 中的那部分区域的面积为 . 4、 若不等式组0 3434 x x y x y ≥?? +≥??+≤? 所表示的平面区域被直线43y kx =+分为面积相等的两部分,则k 的值是 (A ) 73 (B ) 37 (C )43 (D ) 34 高 5、若0,0≥≥b a ,且当?? ? ??≤+≥≥1,0, 0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点(,)P a b 所形成的平面 区域的面积等于__________. 3. “求约束条件中的参数”型考题 1.在平面直角坐标系中,若不等式组10 1010x y x ax y +-≥?? -≤??-+≥? (α为常数)所表示的平面区域内的面积等于2, 则a 的值为 A. -5 B. 1 C. 2 D. 3 2、若直线x y 2=上存在点),(y x 满足约束条件?? ???≥≤--≤-+m x y x y x 03203,则实数m 的最大值为( ) A . 21 B .1 C .2 3 D .2 3、设二元一次不等式组2190802140x y x y x y ?+-? -+??+-? ,,≥≥≤所表示的平面区域为M ,使函数(01)x y a a a =>≠,的图 象过区域M 的a 的取值范围是( )A .[1,3] B .[2,10] C .[2,9] D .[10,9] 4.设m 为实数,若{250 (,)300x y x y x mx y -+≥??-≥??+≥? }22 {(,)|25}x y x y ?+≤,则m 的取值范围是___________. 4. “截距”型考题 1. ,x y 满足约束条件241y x y x y ≤?? +≥??-≤? ,则3z x y =+的最大值为( ) ()A 12()B 11 ()C 3()D -1 2.设变量,x y 满足-100+20015x y x y y ≤?? ≤≤??≤≤? ,则2+3x y 的最大值为A .20 B .35 C .45 D .55 3.若,x y 满足约束条件1030330 x y x y x y -+≥??? +-≤??+-≥??,则3z x y =-的最小值为 。 4.设函数ln ,0 ()21,0 x x f x x x >?=?--≤?,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成

高中数学线面角与线线角例题习题

线面角与线线角 【知识网络】 1、异面直线所成的角:(1)范围:(0, ]2 π θ∈; (2)求法; 2、直线和平面所成的角:(1)定义:(2)范围:[0,90]o o ;(3)求法; 3、一些常见模型中的角之间的关系。 【典型例题】 例1:(1)在正方体1111ABCD A B C D -中,下列几种说法正确的是 ( ) A 、11AC AD ⊥ B 、11D C AB ⊥ C 、1AC 与DC 成45o 角 D 、11AC 与1B C 成60o 角 答案:D 。解析:A 1C 1与AD 成45°,D 1C 1与AB 平行,AC 1与DC 所成角的正切为 2 2 。 (2)在正方体AC 1中,过它的任意两条棱作平面,则能作得与A 1B 成300角的平面的个数为 ( ) A 、2个 B 、4个 C 、6个 D 、8个 答案:B 。解析:平面A 1ACC 1,平面BB 1D 1D ,平面ABC 1D 1,平面A 1D 1CC 1。 (3)正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1底面边长是1,2则这个棱柱的侧 面对角线E 1D 与BC 1所成的角是 ( ) A .90o B .60o C .45o D .30o 答案:B 。解析将BC 1平移到E 1F 即可。 (4)在空间四边形ABCD 中,AB ⊥CD ,BC ⊥DA ,那么对角线AC 与BD 的位置关系是 。 答案:AC ⊥BD 。解析:过A 作AH ⊥平面BCD ,垂足为H ,因为CD ⊥AB ,BC ⊥AD ,所以CD ⊥BH ,BC ⊥DH ,故H 为△BCD 的垂心,从而BD ⊥CH ,可得BD ⊥AC 。 (5)点AB 到平面α距离距离分别为12,20,若斜线AB 与α成030的角,则AB 的长等于__ ___. 答案:16或64。解析:分A 、B 在平面α的同侧和异侧进行讨论。 例2:.如图:已知直三棱柱ABC —A 1B 1C 1,AB =AC ,F 为棱BB 1上一点,BF ∶FB 1 =2∶1,BF =BC =2a 。 (I )若D 为BC 的中点,E 为AD 上不同于 A 、D 的任意一点,证明EF ⊥FC 1; (II )试问:若AB =2a ,在线段AD 上的E 点能否使EF 与平面BB 1C 1C 成60°角,为什么?证明你的结论。

定积分典型例题

定积分典型例题 例1 求21lim n n →∞ . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+ =1lim n n →∞+ =34=?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 比较1 2 x e dx ?,2 1 2 x e dx ?,1 2 (1)x dx +?. 分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小. 解法1 在[1,2]上,有2 x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又 1 22 1 ()()f x dx f x dx =-? ?,从而有2 111 2 2 2 (1)x x x dx e dx e dx +>>???. 解法2 在[1,2]上,有2 x x e e ≤.由泰勒中值定理2 12! x e e x x ξ=++得1x e x >+.注意到 1 2 2 1 ()()f x dx f x dx =-? ?.因此 2 1 11 2 2 2 (1)x x x dx e dx e dx +>>? ??. 例4 估计定积分2 2x x e dx -?的值. 分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值.

相关主题
文本预览
相关文档 最新文档