当前位置:文档之家› 超重力精馏哪家好

超重力精馏哪家好

超重力精馏哪家好
超重力精馏哪家好

超重力精馏哪家好

在中小型农药、医药、精细化工的生产过程中都要用到有机溶剂,使用后的有机溶剂大多可进行回收再利用,企业一般采用传统的填料精馏塔等气液传质设备通过精馏的手段来处理。在塔设备中的常规重力场作用下,液膜流动缓慢、传质系数低,所以设备体积庞大、空间利用率低、生产效率低。超重力精馏塔是利用超重力技术原理强化气液传质过程的一种新型设备, 其实质是利用旋转的离心力场来代替常规的重力场, 使得气液两相的相对速度大大提高, 相界面更新加快, 生产强度成倍提高, 加大地强化气液传质过程。

流式超重力床(精馏塔)主要由圆形外壳和折流式转子组成。折流式转子是超重力床的核心部件, 由静盘和动盘组成,静盘与壳体固定连接, 动盘与轴连接并随轴一起转动。在动、静盘上按一定间距同心安装了一定数量的折流圈, 然后将两盘嵌套在一起, 静盘上的折流圈与动盘留有一定距离, 同样动盘上的折流圈与静盘也留有一定距离, 形成了供气液流通的折流式通道。其工作原理为:作为连续相的气体由进气口2进入壳体,在压差的作用下从转子外侧沿着静折流圈与动折流圈之间的间隙曲折地由外向中芯流动,然后经出气口5离开床体;作为分

散相的液体由进液口6进入至动盘中芯随后被一系列高速旋转的动折流圈反复甩向静折流圈,则后在壳体内收集后由出液口9引出。液相在其间经历了多次加速—抛出—撞击的过程,在此过程中,液体与气体以极大的相对速度逆流接触,液体以极小细微的液滴甩离动圈的筛孔,高速运动的液滴在动静圈上被碰撞、剪切和飞溅,形成细小的液滴、液丝、液膜,从而获得了比表面积极大而又不断更新的气液界面,使气液接触相当充分,因此具有极高的传质速率。

所以说超重力精馏哪家好,就找杭州钱江干燥设备有限公司,我们会更加注重的是服务。一直以来本公司在保证产品质量的同时,尤其注重服务质量。培养每个员工具备专业的服务标准,并将“诚恳、负责、热情”作为自己永恒的追求,竭诚为用户提供更加“诚心、贴心、放心”的服务。

更多详情请拨打联系电话或登录杭州钱江干燥设备有限公司官网https://www.doczj.com/doc/631702091.html,咨询。

甲醇精馏塔厂家

甲醇精馏塔厂家 甲醇是重要的工业有机原料之一,也是煤基产业链合成新型能源的基础产品,它的主要下游产品有芳烃、烯烃、二甲醚、1,4丁二醇、甲醇叔丁基醚等。随着科技的发展及工业技术的提高,甲醇的应用也愈加广泛,国内甲醇产能持续快速增长,工业生产技术更是精益求精,精馏在甲醇生产中极为重要。那么,对于甲醇厂商而言,只有选择靠谱的甲醇精馏塔,才能确保甲醇的质量和速度。而杭州钱江干燥设备有限公司制造的旋流剪切式超重力精馏塔获得了许多甲醇厂家的好评,那么,旋流剪切式超重力精馏塔有哪些优势呢? 1.塔径大大减少(相等处理量下) 2.塔高大大下降,传统塔一般高度>10米,超重力塔只有2米左右。从而可大大节省土建费用,也能放在一般厂房或实验室中使用。 3.操作快捷、方便。传统塔开车到塔顶达设计组分往往需2~5小时左右,而超重力塔达平衡只需30分钟左右。同时超重力塔清洗方便、快捷,更换物料容易,可实现一机多用。 4.节能5~30%左右。主要是超重力塔体积小,回流比较小,持液量小,吸

热量和散热损失均少之故(虽然产生离心力需耗一部分能)。 5.塔板效率高,是传统塔的十几倍,故能用于要求分离精度高的产品生产。该塔也能用于吸收、解吸、萃取精馏、脱辉等单元操作。 6.由于塔的容积小,又无填料,滞留的料液少,持液时间短,一般只有1~5分钟,热敏物料不会在塔内挥发、变质,故特别适合热敏性物料的精馏操作。 7.由于塔内的理论塔板数大大高于普通塔,分离能力强,成品纯度高;排出的废水中的物料浓度可达0.5%以下。 8.检修方便,费用低。普通填料塔需半年修一次,每年需清洗填料,费时、费力;而超重力塔只需每半年更换机封环即可。 总结:杭州钱江干燥设备有限公司的“旋流剪切式超重力塔”是2元或3元组分产品连续精馏或间歇精馏的高手。该设备具有体积小、重量轻、投资省、易运转、安全、可靠、灵活等优点,尤其是其占地少、占空间小(1.5米高的超重力塔相当于15米高的常规填料型精馏塔)、开停容易、安装方便、理论塔板数多,回流比小(单位长度上的理论塔板数是普通塔的5~10倍以上),节能

超重力在精馏中的应用

传统精馏的取代者——超重力精馏 闪俊杰刘润静杜振雷马建兵崔文豪 摘要:对超重力技术在化工中应用的现状,尤其是在精馏领域的应用作了较全面的总结。介绍了超重力技术的基本原理和特点及超重力精馏的基本流程图,并对其在精馏领域的优越性进行了较为详细的叙述。 Abstract:A comprehensive review on the recent advances of HIGEE applied in chemical industry and especially in distillation is given in this paper. The basal principium and characteristic of HIGEE are presented.And the basic flowsheet of distillation in the high-gravity condition is also given.At the same time ,the superiority of HIGEE in the field of distillation is described in detail. 关键词:超重力精馏相间传质分离 在化学工业中,高达百分之八十的投资用于化工产品的净化和提纯,而精馏无疑是其中最重要的操作单元之一,精馏技术的发展直接关系到产品的质量、生产的效率及能耗的高低。因此,现有精馏技术的提高将会大大促进化学工业发展并显著提高其经济效益,超重力精馏就是一种较前沿的分离技术。目前超重力技术已经凭借其独特的优点成功应用于化学工业的多个领域,如包括超细粉体制备、油田注水脱氧、脱硫、除尘、精馏以及吸收等。本文将重点介绍超重力技术在精馏方面的应用。 1.超重力技术的基本原理 超重力是在比地球重力大的多的环境下物质所受到的力。在超重力的环境下,不同大小分子间的分子扩散与相间传递过程均比常规重力场下的要快得多,气-液、液-液及液-固两相在比地球重力场大数百倍至数千倍的超重力环境下的多孔介质或孔道中产生流动接触,巨大的剪切力将液体撕裂成微米至纳米级的液膜、液丝和液滴,产生巨大的和快速更新的相界面,使得相间传质速率比传统的塔器中的提高1~3个数量级,极大强化了微观混合和传质过程,从而有效的促进了许多化学反应过程[1]。 在地球上,实现超重力环境的方法是通过旋转产生离心力,这种经过特殊设计的旋转设备称为超重力机,又称为旋转填充床。它也因为其突破性的优点而被誉为“化学工业的晶体管”。

4-杜佩衡-喷射型立体连续塔板及其在精馏技术的应用

喷射型立体连续塔板及其在精馏技术的应用 杜佩衡 (河北工业大学天津衡创工大现代塔器技术有限公司,天津300384)摘要:在新型垂直筛板基础上进行帽罩结构的改进,形成了一种新的喷射型立体连续传质塔板——梯矩形立体连续传质塔板,文中介绍了其结构、操作工况与技术特性及其在PVC、甲醇等行业精馏塔技术改造应用的实例,表明梯矩形立体连续传质塔板具有更大的处理能力、更高的传质效率、更低的阻力等优异特性。还简要介绍了在梯矩形立体连续传质塔板基础上进一步发展起来的国家发明专利技术,乃是超高通量、超高操作弹性的喷射型立体连续传质塔板。 关键词:喷射型;梯矩形;立体连续传质塔板;精馏技术;工业应用 中图分类号:TQ053.5文献标识码:A Characteristics of spraying tridimensional successive mass transferring-tray and application in distillation technology DU Pei-heng (Hebei University of Technology, Heng Chuang Gong Da Modern Tower Technology Co., Ltd, Tianjin 300384, China) Abstract: Based on the new-vertical-sieve-tray, some reform on cap structure was made to develop a new spraying tridimensional successive mass transferring-tray — LLC-Tray. The structure、operating conditions and technical characteristics of LLC-Tray were introduced, and the applications of LLC-Tray in PVC、Methanol industry and so on were also shown in this paper. It was found that the LLC-Tray had great improvements and excellent advantages, such as greater treatment capacity、higher mass transfer efficiency and even lower resistance. The further development of National invention patent based on LLC-Tray was briefly introduced, which had the advantages of super high flux and operating flexibility. Key words: spraying; trapezoidal-rectangular; LLC-Tray; distillation technology; industrial application 经过长期潜心的研究,我们开发出来喷射型立体连续传质塔板技术,可用3个发展阶段予以简介:第1阶段:新型垂直筛板(New-VST)技术; 第2阶段:梯矩形立体连续传质塔板(LLCT)技术; 第3阶段:国家发明专利技术。 鉴于第1阶段New–VST技术近20年来已在化工、石油化工、制药化工、氯碱化工、煤化工等多个行业广泛采用,对其结构、操作原理与技术特性等已为大家所熟知,因而不予以赘述。这里仅就第2、3阶段尤其是第2阶段梯矩形立体连续传质塔板技术着重进行介绍。 1梯矩形立体连续传质塔板(LLCT)技术 LLCT技术是近几年在New–VST技术长期工业实践成果的基础上经过分析总结并作进一步深入研究开发出来的水平更高、效果更好的喷射型立体连续传质塔板,与New–VST相比具有更大的处理能力、更高的传质效率、更小的流动阻力及更优的操作弹性,并且与New–VST一样具有独特的防有机物自聚堵塞的能力与防固体悬浮物堵塞的能力,并特别适用于脏粘物料与易发泡物系的操作。

超重力技术课程论文

超重力法制备超细碳酸钡和碳酸锶的研究 化研1406 孟宪强2014200142 摘要:综述了超细碳酸钡和碳酸锶制备的研究,详细介绍了利用超重力法制备碳酸锶和碳酸钡在粒子粒度控制方面的应用和进展,创新性的提出在超重力法的基础之上通过添加晶型控制剂来对粒子的形貌进行控制,并且对这种方法的可行性及优缺点进行了分析。对未来超重力法制备碳酸钡和碳酸锶的进一步研究进行了展望。 关键词:碳酸钡碳酸锶超重力法粒度控制剂 Study on gravity technique for the preparation of ultrafine barium carbonate and strontium carbonate Huayan 1406 mengxianqiang 2014200142 Abstract:Study on Preparation of ultrafine barium carbonate and strontium carbonate production were summarized, and introduces in detail the preparation of strontium carbonate and barium carbonate in the application and progress of particle size control by high gravity method, innovation put forward by adding crystal control agent to the morphology of the particles in the control on the basis of high gravity method, and the advantages and disadvantages of the feasibility of this method is analyzed. For further study of the future high gravity method for the preparation of barium carbonate and strontium carbonate is prospected. Keywords: barium carbonate strontium carbonate by high gravity particle size control agent 碳酸钡和碳酸锶在化工生产中是重要的和基本的化工原料,也是非常重要的钡盐和锶盐。它们广泛应用于生产显像管、显示器、监视器和电子元件中,同时还普遍用于制造磁性材料、陶瓷和涂料等。工业中制备碳酸锶和碳酸钡的方法很多,有超重力法、固相合成法、均相沉淀法、沉淀法、微乳液法等等。 进入21世纪以来,超重力工程技术20 年来取得了巨大的进步,被认为是强化传递和多相反应过程的一项突破性技术。由于它适用的广泛性以及具有传统设备所不具备的更小、更精、更安全、更高质量的产品、更能适应环境和对环境友好的特殊品质, 有可能成为21 世纪化学工程的关键技术。由于超重力HGRP 反应器在反应传质和微观混合方面表现出的良好特性, 使得其在纳米材料制备方面有着广阔的前景。最近,科学家们尝试用超重力法将碳酸钡和碳酸锶制成纳米材料,对粒度进行有效的控制,并将其初步应用于实际,收到了比较好的效果。但是,在不同的使用领域中,对碳酸锶和碳酸钡的晶体的形貌的要求不一样,所以,对于碳酸锶和碳酸钡的粒子的形貌的控制和抑制团聚的方法也成为了主要的研究问题。 理论论述 超重力技术的基本原理是利用超重力条件下多相流体系的独特流动行为,强化相与相之间的相对速度和相互接触,从而实现高效的传质传热过程和化学反应过程。获取超重力的方式主要是通过转动设备整体或部件形成离心力场,涉及的多相流体系主要包括气-固体系和气-液体系[1]。它的基本特征是超重力以气液、液液两相或者气液固三相在模拟的超重力环境中进行混合、传质与反应。超重力技术的核心是对传递和微观混合过程的极大强化。超重力技术是一项突破性地强化“三传一反”过程的新技术,是一种广泛适用于能源、材料、石油、化工、环境、生物等多个部门并可带来巨大经济效益和社会效益的新技术。超重力技术制备纳米材料又被称为超重力反应沉淀法,简称超重力法。它的实质是将直接沉淀法与超重力旋转填充床反应器结合起来,将直接沉淀法一步反应,无需煅烧。由于它具有体积小、重量轻、

超重力技术及其应用

超重力技术及其应用 所谓超重力指的是在比地球重力加速度大得多的环境下,物质所受到的力。在地球上,实现超重力场的最简便方法是通过旋转产生离心力而实现。在超重力场中,气-液、液-液、液-固两相传质比在地球重力场中大上百倍至万倍,相间的巨大剪切力和快速更新的相界面,使传质速率比在地球重力场中高出1~3个数量级,微观传质和分离过程得到极大强化。超重力技术是强化多相流传递及反应过程的新技术,在国内外受到广泛的重视,由于它的广泛适用性以及具有传统设备所不具有的体积小、重量轻、能耗低、易运转、易维修、安全、可靠、灵活以及更能适应环境等优点,使得超重力技术在环保和材料生物化工等工业领域中有广阔 的商业化应用前景。 1超重力技术原理 超重力工程技术的基本原理是利用超重力条件下多相流体系的独特流动行为,强化相与之间的相对速度和相互接触,从而实现高效的传质传热过程和化学反应过程。获取超重力的方式主要是通过转动设备整体或部件形成离心力场,涉及的多相流体系主要包括气-固体系和气-液体系。 1.1超重力场气-固接触技术的特点 众所周知,传统重力场条件下,实现气-固体系加工过程的典型设备是各种重力流化床(图1) 。然而,由于重力场的限制,传统流化床同时也表现出许多固有缺陷,如:大颗粒的腾涌、小颗粒的夹带、粘结、大气泡的存在造成气体短路从而导致气固分布不均大大降低了系统内的传质传热和化学反应速率等。为此,前苏联学者首先提出了超重力(离心)流化床概念[1] (图1) 。 图1 传统重力流化床(鼓泡床)和超重力(离心)流化床

相对于传统重力场,超重力气-固接触技术的突出特点主要表现在以下3个方面: a. 在超重力流化床中,由于重力场强度和流化速度均可调节,因此可将流化速度控制在鼓泡速度之下操作,从而获得良好的流化质量。 b. 在超重力条件下,由于颗粒有效重力增加,因而流化时气固之间的相互作用(相对速度)大大增强,从而使其传质传热速率远高于传统流化床。 c. 近年来,随着超细粉体技术的发展,Gel-dart C类颗粒或超细颗粒的流态化加工过程成为科技界和工业界的关注热点[ 2 ] ,但这类颗粒由于粘附性强,流化时易形成稳定沟流,因而难以流态化。但在超重力条件下,气固之间的剪切力大为增强,有可能克服颗粒之间的团聚力,从而促进聚式流态化向散式化的转变,从而改善超细颗粒的流化质量。 此外,超重力流化床还有操作气速范围宽、不怕振动、空间布置灵活并能够在重力场外(太空) 操作等优点。 1. 2超重力场气-液接触技术的特点 在传统重力场中,实现多相流质量传递与反应过程的典型设备是塔器。由于重力场的限制,传统塔器中气-液体系传质反应效率的提高受到了液泛点低、气-液之间的相对速度低、单位体积气-液接触面积小等因素的制约。多年来,塔器内件尤其是填料虽不断有所改进,但过程的强化并未获得突破性进展。为此,人们提出了超重力气-液传质强化技术,其优势主要表现在以下两个方面: a. 在超重力传质反应器中(图2) ,液体受到的有效重力将是传统重力场中的数十倍甚至上百倍,液泛点大大提高,使得通过提高气速来增强气-液之间的相对速度成为现实,从而极大地强化气-液体系的传质反应效率。 b. 在超重力场中,气液两相流体相对滑动速度很大,巨大的剪切应力克服了液体表面张力,使液体伸展出巨大的相际接触界面,液膜变薄,几乎没有持液现象,液体在高分散、高湍动、强混合以及界面急速更新的情况下与气体以较大的相对速度在填料的弯曲孔道中接触,从而极大地强化了传质过程。 此外,超重传质反应器还具有物料停留时间短(10~100 ms) 、设备简单、易于操作和开停车、安装方向不受限制、不怕振动与颠簸等特点。

北京化工大学-超重力课程设计

超重力隔壁精馏塔分离三组分结构设计 摘要 超重力技术是强化多相流传递及反应过程的新技术,由于它的广泛适用性以及具有传统设备所不具有的体积小、重量轻、能耗低、易运转、易维修、安全、可靠、灵活以及更能适应环境等优点,使得超重力技术在环保和材料生物化工等工业领域中有广阔的商业化应用前景。 精馏是石油化工等工业过程中应用最广泛的单元操作之一,但其存在能耗高、热力学效率低的问题。隔壁塔作为完全热耦合的一种特殊结构,可以在一个塔壳内同时完成三组分的分离,具有设备投资少、能耗低的特征。 本文尝试将两种结构结合,强强联合下产生超重力隔壁精馏塔,希望得到更加高效的分离效率。 关键词:超重力;隔壁塔;超重力隔壁精馏塔

目录 1超重力 (1) 1.1旋转填料床结构及特点 (1) 1.2旋转床分类 (2) 2精馏 (3) 2.1精馏过程及特点 (3) 2.2隔壁塔 (4) 3超重力精馏的提出 (5) 4超重力隔壁精馏塔结构设计 (5) 5可行性 (6) 参考文献 (8)

1超重力 通过旋转产生离心力来模拟超重力。超重力机以气液、液液两相或气液固三相在模拟的超重力环境中,多孔填料或孔道内,进行混合、传质与反应为其主要特征。对传递和微观混合过程的极大强化。 1.1旋转填料床结构及特点 超重力实现的过程中使用最多的是旋转填料床。旋转填料床是利用高速旋转的填料形成超重力场并对通过填料的汽液进行无限切割,使其表面不断更新的高效分离设备。其主要结构包括外壳、转子和液体分布器。设备的核心部分是转子,其主要作用是固定填料并带动其旋转,实现良好的气液接触与微观混合。转子一般由上下盘片和转鼓构成,通过轴与电机连接。轴与旋转填料床外壳用轴承连接并加以密封,防止汽、液向外渗漏。转子在轴的带动下以每分钟数百至数千转的速度旋转。 图1 超重力实现方式 通过多年对旋转填料床的基础理论研究和应用研究,发现旋转填料床有以下特点:(l)在相同的操作条件下,与常用的板式塔、填料塔相比,传质单元高度可降低 1-2个数量级,体积传质系数可提高1-3个数量级,设备的体积可缩小10倍以上; (2)气液通量可得到极大提高,气体、液体通量可相应增大到很大而不产生液泛; (3)填料空隙率一般在90%以上,远大于普通的填料塔。在高通量下,气相压降一般比相同传质单元数的普通填料塔还低,所以能耗比较小;

超重力简史

超重力简史 超重力工程技术,作为一个全新的技术正日益受到各个领域科学工作者的重视。在地球上,自然界的很多规律都受到地球重力场的作用,作为一个极端的物理条件,超重力环境为各学科的研究注入了新的活力。 一、超重力技术的基本原理 在化工、冶金、能源、材料、环保等工业过程中,多相流体间的质量传递与反应是最基本的生产过程之一。在这些过程中大量使用着塔器。这种依赖地球重力场作用进行操作的气液逆流接触设备,受到泛点低和单位体积内有效接触面积小的限制。多年来,塔器虽不断有所改进,但过程的强化并未获得突破性进展。 然而在比重力加速度大得多的环境下,物质所受到的力(包括引力或排斥力)。在超重力环境下,不同大小分子间的分子扩散和相间的传质过程均比常规重力场下要快得多,使相间传质速率比传统的塔器提高1~3个数量级,微观混合和传质过程得到极大的强化。 二、超重力技术的发展历程 离心力场(超重力场)被用于相间分离,无论在日常生活还是在工业应用上,都已有相当长的历史。 1925年Myers制作了带有转转动体的锥形截板式蒸馏桂。 1933年,Plackek发明了侧面闭合的螺旋式气液接触装置,液体沿螺旋板由内向外与逆流流动的气体相接触。几年后,该装置又有所改进,使用带有突起的同心圆筒以增加接触时间。 1954年,Chambers开发了附在旋转平扳上的圆环构成的离心吸收器。 1965年,Vivian将一个填料塔固定在大离心机的旋转臂上,以测定离心加速度对传质系数的影响,实验表面:液膜传质系数与加速度的0.41~0.48次方成正比。Vivian是率先利用旋转床进行传质研究的,但没有提出旋转床域超重力这一概念。 1969年,Todd迸行了离心接触器的实验,该接触器由相隔1英寸的12层环状同心筛板组成,在流体流动上,与筛板塔相类似。 首次出现超重力概念是20世纪70年代末出现的“Higee”,并引起工业界的重视,这是英国帝国化学公司的ColinRamshaw教授领导的新科学小组提出的专利技术。 诞生最初是由设想用精馏分离去应征美国太空署关于微重力条件下太空实验项目引起的。1976年,美国太空署征求微重力场实验项目,英国ICI公司(帝国化学公司)的ColinRamshaw 教授等做了化工分离单元操作——蒸馏、吸收等过程中微重力场影响效应的研究,发现在零重力的状态下,其——液间的传质是不可能的,气体和液体不能有效地分离,而超重力使液体表面张力的作用相对变得微不足道,液体在巨大的剪切力作用下被拉升或撕裂成微小的液膜、液丝和液滴,产生巨大的相间接粗面积,因此极大地提高了传递速率系数,而且还使气液逆流操作的泛点速率提高,大大增加了设备的生产能力,这些都对分离过程有力。这一研究成果促成了超重力分离技术的诞生。 在1981年ICI公司Ramshaw教授申请了世界上第一个填料式超重力床专利,在之后的几年时间(198l~1983年)连续提出了名为HIGEE(超重力)新技术的多项专利。 超重力技术的出现,对传质过程的强化可以说是一个质的飞跃,20世纪80年代以来,人们开始意识到这项技术在化工领域具有广阔的应用前景。目前世界上许多大的化学公司都在竞相超重力技术(High Gravit y Tech nology)进行开发研究,并进行了一定的中试或工业化

北京化工大学 超重力技术及应用 课程论文

存档日期:存档编号: 北京化工大学 研究生课程论文 课程名称:超重力技术及应用 课程编号:ChE541 任课教师:邵磊 完成日期:2014年12月28日 专业:化学工程与技术 学号:2014200082 姓名:王晨曦 成绩:_____________

超重力法渣油催化加氢生产轻质油品 摘要 随着原油的重质化、劣质化(硫、氮、金属杂质含量增加),以及环保法规的日益严格,对炼油企业生产清洁油品并做到清洁生产的要求越来越高。渣油加氢技术在解决这些问题时献出了诸多优点,因此受到人们愈来愈多的关注[1]。渣油加氢处理主要是脱除杂原子化合物的过程,加氢裂化过程除了脱除杂原子化合物,主要是生产轻质馏分油。 本文针对渣油加氢技术的重要性和应用情况,以及超重力技术的优点,提出了在超重力条件下对渣油催化加氢的构想。通过分析超重力条件对催化加氢过程中传质的强化,论述了该设想的可行性。 关键词:超重力;渣油;催化加氢

目录 摘要 .................................................................................................................................................. I 1超重力技术简介. (1) 2构想超重力技术应用于渣油催化加氢 (1) 3可行性论述 (2) 4参考文献 (3)

1、超重力技术简介 超重力指的是在比地球重力加速度大得多的环境下物质所受到的力,在化工过程中常通过旋转产生离心力而模拟实现。超重力工程技术的基本原理[2]是利用超重力条件下多相流体系的独特流动行为,强化相与相之间的相对速度和相互接触,从而实现高效的传质传热过程和化学反应过程。获取超重力的方式主要是通过转动设备整体或部件形成离心力场,涉及的多相流体系主要包括气-固体系和气-液体系。 在超重力环境下,气体的线速度也可以大幅度提高,同时液体表面张力的作用相对变得微不足道,并且强大的离心力使液体在巨大的剪切力和撞击下被拉伸成极薄的膜、细小的丝和微小的液滴,产生巨大的相间接触面积,使相间(如气-液)传质过程得到高度强化,从而减小扩散阻力,加速相际间的传质速率[3],单位设备体积的生产效率能够提高1~2个数量级,尤其适合生产附加值较高的产品。 2、构想超重力技术应用于渣油催化加氢 渣油催化加氢技术是在高温、高压和催化剂存在的条件下,使渣油和氢气进行催化反应,渣油分子中硫、氮和金属等有害杂质,分别与氢和硫化氢发生反应,生成硫化氢、氨和金属硫化物,同时,渣油中部分较大的分子裂解并加氢,变成分子较小的理想组分。 超重力技术利用强大的离心力场代替了重力场,从而实现了相间传递过程的强化。由于强大的离心力场的作用,大大提高了反应器中的氢分压,而提高氢分压对渣油加氢催化剂的使用性能有很大的好处,例如可以抑制焦炭生成,减少催化剂表面积炭量,增长催化剂使用寿命等。 基于超重力环境对渣油催化加氢的积极影响,从而提出将超重力技术应用于渣油催化加氢过程。 根据现有的固定床渣油催化加氢工艺流程[4],本文中构想的反应工艺流程图

超重力精馏哪家好

超重力精馏哪家好 在中小型农药、医药、精细化工的生产过程中都要用到有机溶剂,使用后的有机溶剂大多可进行回收再利用,企业一般采用传统的填料精馏塔等气液传质设备通过精馏的手段来处理。在塔设备中的常规重力场作用下,液膜流动缓慢、传质系数低,所以设备体积庞大、空间利用率低、生产效率低。超重力精馏塔是利用超重力技术原理强化气液传质过程的一种新型设备, 其实质是利用旋转的离心力场来代替常规的重力场, 使得气液两相的相对速度大大提高, 相界面更新加快, 生产强度成倍提高, 加大地强化气液传质过程。 流式超重力床(精馏塔)主要由圆形外壳和折流式转子组成。折流式转子是超重力床的核心部件, 由静盘和动盘组成,静盘与壳体固定连接, 动盘与轴连接并随轴一起转动。在动、静盘上按一定间距同心安装了一定数量的折流圈, 然后将两盘嵌套在一起, 静盘上的折流圈与动盘留有一定距离, 同样动盘上的折流圈与静盘也留有一定距离, 形成了供气液流通的折流式通道。其工作原理为:作为连续相的气体由进气口2进入壳体,在压差的作用下从转子外侧沿着静折流圈与动折流圈之间的间隙曲折地由外向中芯流动,然后经出气口5离开床体;作为分

散相的液体由进液口6进入至动盘中芯随后被一系列高速旋转的动折流圈反复甩向静折流圈,则后在壳体内收集后由出液口9引出。液相在其间经历了多次加速—抛出—撞击的过程,在此过程中,液体与气体以极大的相对速度逆流接触,液体以极小细微的液滴甩离动圈的筛孔,高速运动的液滴在动静圈上被碰撞、剪切和飞溅,形成细小的液滴、液丝、液膜,从而获得了比表面积极大而又不断更新的气液界面,使气液接触相当充分,因此具有极高的传质速率。 所以说超重力精馏哪家好,就找杭州钱江干燥设备有限公司,我们会更加注重的是服务。一直以来本公司在保证产品质量的同时,尤其注重服务质量。培养每个员工具备专业的服务标准,并将“诚恳、负责、热情”作为自己永恒的追求,竭诚为用户提供更加“诚心、贴心、放心”的服务。 更多详情请拨打联系电话或登录杭州钱江干燥设备有限公司官网https://www.doczj.com/doc/631702091.html,咨询。

一种高效精馏设备-超重力旋转床

https://www.doczj.com/doc/631702091.html,/xzctd.php 一种高效精馏设备——折流式超重力床 引言 在中小型农药、医药、精细化工等工业生产中,有 机物的分离操作(如精馏、气提或吸收等)大量使用 填料塔和板式塔等塔设备,液相在重力场的作用下与 逆流的气相进行接触传质,达到分离提纯的目的。在 地球的重力场下,塔设备中的液膜流动较慢,汽液接 触比表面积较小,传质效率相对较低,所以设备体积 庞大、空间利用率低、占地面积较大。超重力技术是 上世纪80年代发展起来的强化气液传质的新型技术, 其工作原理是利用高速旋转产生的数百至千倍重力的 离心力场(简称超重力场)来代替常规的重力场,在 超重力场下,液体分散飞行时所呈现的是非常细小的 液滴、液丝状态,因此汽液接触的比表面积非常大,其极佳的微观混合以及极快的相界面更新特征,使其可以极大地强化气液传质过程,将传质单元高度降低1个数量级。从而使巨大的塔设备变为高度不到2米的超重机,达到增加效率、缩小体积以及在有些场合可大幅降低能耗的目的。目前国内外已将此类技术成功地应用到化工过程的吸收、解吸和反应操作过程,已报道的填充式或碟片式等几种类型的超重力床至今都未能在单台设备中实现工业生产中的连续精馏过程。浙江工业大学发明、与杭州科力化工设备有限公司联合开发的折流式超重力床,已成功地应用于工业生产中的连续精馏过程,展示了很好的应用前景。 1 折流式超重力床的基本结构、工作原理和特点 折流式超重力床是一种新型的超重力床,其结构主要由圆形外壳和折流式转子组成。折流式转子是旋转床的核心部件,见图1。 其工作原理是:具有特定结构的转子在壳体内高速旋转,气相由进气口进入壳体,从转子外缘进入转子内,液相由进液口进入转子中心,气液两相在转子内形成比表面积极大而又不断更新的气液界面,具有极高的传质速率。最后气相经出气口离开床体;液相在壳体内收集后由出液口引出。 折流式超重力床的特点:传质效率高,设备体积小,停留时间短,持液量小,抗堵能力强,操作维护方便,安全可靠,适用于贵重物料、热敏物料、高粘度物料或者有毒物料的处理,可以在高度、大小受限制的场合使用。 折流式超重力床已获得发明专利二项,美国专利一项,国内外发表论文十余篇,已通过有关专家的鉴定和验收:该技术处于国际先进水平。一台直径为830mm、高度仅为0.8m的三层BZ750-3P折流式超重力床可达15-30块理论板,能基本满足常规有机物精馏分离提纯的要求。 2 折流式超重力床在工业中的应用 自2004年3月折流式超重力床首次成功应用于乙醇回收的连续精馏过程以来,至今已产业化应用的设备有200余套,有的装置已连续运行七年,设备操作稳定,性能良好,为企

精馏塔塔釜温度控制系统的设计

辽宁工业大学 过程控制系统课程设计(论文)题目:精馏塔塔釜温度控制系统的设计 院(系): 指导教师:(签字) 起止时间:

课程设计(论文)任务及评语 院(系):电气工程学院教研室:自动化 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 本系统利用工业生产过程控制采用串级控制系统实现精馏塔塔釜温度控制系统。通过选用铂铑10-铂热电偶传感器、ZMAP-16P DN15气动调节阀、DT2031数字调节器、热电偶温度变送器来实现。系统设计主要包括控制方案的设计和系统各仪表选型,软件设计,系统仿真四大部分。软件设计采用DCS组态来完成,并完成了系统监控画面。系统仿真采用MATLAB进行仿真,并得出仿真图。本系统便是基于工业生产过程控制采用串级控制系统实现精馏塔塔釜温度控制系统,通过对工业生产过程控制,来实现对精馏塔塔釜温度的控制。此次设计就是要设计一个精馏塔塔釜温度的串级控制系统。要求当物料进入精馏塔时,塔釜的温度可控并且温度恒定,保证生产的连续性。 关键词:精馏;温度控制;PID

目录 第1章绪论 (1) 第2章控制方案的设计 (3) 2.1设计要求 (3) 2.2方案设计 (3) 2.2.1 塔釜温度的前馈控制 (4) 2.2.2 塔釜温度的串级控制 (5) 2.2.3 塔釜温度的反馈控制 (6) 第3章系统各仪表选型 (8) 3.1温度传感器的选择 (8) 3.2执行器的选择 (8) 3.3调节器的选择 (9) 3.4压力变送器的选择 (9) 3.5温度变送器的选择 (10) 3.6控制器的正反作用选择 (10) 第4章软件设计 (11) 4.1系统控制流程图 (11) 4.2DCS组态 (11) 第5章系统仿真 (14) 5.1PID控制器的参数整定 (14) 5.2凑试法确定PID参数 (14) 5.3切线法确定被控对象的传函 (15) 5.4系统MATLAB仿真分析 (17) 第6章课程设计总结 (19) 参考文献 (20)

超重力床精馏设备

超重力床是一种新型高效精馏设备,首创将超重力技术应用于工业生产中的连续精馏过程。超重力床由一个或多个高速旋转的转子组成,气液以逆向折流方式流经转子,进行接触传质。由此技术衍生的很多设备,但是大多用途差不多,这里以杭州钱江干燥设备有限公司的旋流剪切式超重力精馏塔为例。 旋流剪切式超重力精馏塔(也称快装式离心力精馏塔)是该公司与省级科研、设计单位联合研制的一种新型、高效的传质、分离设备,现已获得国家专利。这种设备首先在国防、军工上得到应用,近年来逐渐在民用的化工、医药、轻工、石化、环保行业的溶剂回收、吸收脱硫等项目中得到应用。 其中我公司独创的“旋流剪切式超重力塔”是2元或3元组分产品连续精馏或间歇精馏不可多得的高手。该设备具有体积小、重量轻、投资省、易运转、安全、可靠、灵活等优点,尤其是其占地少、占空间小(1.5米高的超重力塔相当于15米高的常规填料型精馏塔)、开停容易、安装方便、理论塔板数多,回流比小(单位长度上的理论塔板数是普通塔的5~10倍以上),节能明显,是常规塔无可比拟的。

其中“小型旋流剪切式超重力精馏塔”更是大、中学校、科研单位、工厂中试室或车间新产品开发、试制的不可缺少的设备。 本设备已用于甲醇、乙醇、丙酮、乙二醇、DMF、DMAC,N-甲基吡咯烷酮等有机溶剂的精馏、回收操作。对易发生共沸的二元或三元互溶混合溶剂的分离,我公司开发的双塔(超重力)组合的萃取精馏装置在无水乙醇、乙酸乙酯、乙腈等的制取中获得很好效果。超重力塔也能在高真空条件下操作;高沸点馏份的真空精馏分离我公司也开发出一款能将分离所的产品在高真空下(无平衡罐)连续抽出的超重力塔连续精馏装置。 一下就是旋流剪切式超重力精馏塔优点: 1)塔径大大减少(相等处理量下) 2)塔高大大下降,传统塔一般高度>10米,超重力塔只有2米左右。从而可大大节省土建费用,也能放在一般厂房或实验室中使用。 3)操作快捷、方便。传统塔开车到塔顶达设计组分往往需2~5小时左右,而超重力塔达平衡只需30分钟左右。同时超重力塔清洗方便、快捷,更换物料容易,可实现一机多用。

甲醇回收装置

为什么要回收甲醇呢? 回收甲醇用途广泛,是基础的有机化工原料和燃料。主要应用于精细化工,塑料等领域,用来制造甲醛、醋酸、氯甲烷、甲氨、硫二甲酯等多种有机产品,也是农药、医药的重要原料之一。 甲醇在深加工后可作为一种新型清洁燃料,也加入汽油掺烧。具有耐用、功能全、动力性强、经济、环保、可以完全替代石油燃料等作用。 钱江干燥,干燥设备专业制造商。让我们以钱江干燥产品旋流剪切式超重力精馏塔,来了解甲醇回收装置。 一、旋流剪切式超重力精馏塔产品详情 旋流剪切式超重力精馏塔(也称快装式离心力精馏塔)是钱江干燥设备公司与省级科研、设计单位联合研制的一种新型、有效的传质、分离设备,现已获得

国家专利,专利号ZL 2012 2 0066902.1。这种设备首先在国防、军工上受到应用,近年来逐渐在民用的化工、医药、轻工、石化、环保行业的溶剂回收、吸收脱硫等项目中得到应用。 该设备具有体积小、重量轻、投资省、易运转、可靠、灵活等优点,尤其是其占地少、占空间小(1.5米高的超重力塔相当于15米高的常规填料型精馏塔)、开停容易、安装方便、理论塔板数多,回流比小(单位长度上的理论塔板数是普通塔的5~10倍以上),节能明显,是常规塔无可比拟的。其中“小型旋流剪切式超重力精馏塔”更是大、中学院、科研单位、工厂中试室或车间新产品开发、试制的不可缺少的设备。 本设备已用于甲醇、乙醇、丙酮、乙二醇、DMF、DMAC,N-甲基吡咯烷酮等有机溶剂的精馏、回收操作。对易发生共沸的二元或三元互溶混合溶剂的分离,我公司开发的双塔(超重力)组合的萃取精馏装置在无水乙醇、乙酸乙酯、乙腈等的制取中获得很好效果。超重力塔也能在高真空条件下操作;高沸点馏份的真空精馏分离我公司也开发出一款能将分离所的产品在高真空下(无平衡罐)连续抽出的超重力塔连续精馏装置。 二、旋流剪切式超重力精馏塔原理简介 “旋流剪切式超重力精馏装置”是通过高速旋转产生的离心力来实现超重力场(10~1000g作用下)的环境,即超重力因子β(ω2r/g)通常达350~450左右。在该环境下汽、液两相的速度大大提高,其速度可达4~12m/s,从而大大提高液泛速度。塔中的液体在转子高速下旋转下被加速甩出,在转子及定子间折流流道中被逆向尔行的高速旋转的汽流剪切撕裂成微米至纳米级的液膜、液丝和液滴,从而极大地强化了汽、液两相间的传热、传质过程,使传质效率比普通

旋流剪切式超重力精馏塔操作规程

旋流剪切式超重力精馏塔操作规程 一、适用范围 本规程适用于PBTC工段旋流剪切式超重力精馏塔操作。 二、安全危害分析 1、在检修过程中设备内残留液体伤及眼睛和皮肤。 2、维修机封时尖物撬坏机封,造成设备损坏。 三、操作步骤 1:工作原理: 普通的精馏塔(板式或填料塔)是在地球重力场作用下(即在1个g作用下)完成汽、液两相间的传热、传质,进而实现产品组分分离的。由于普通塔在重力场下的液泛速度较小,一般在1.5~1.6m/s内,汽相速度必须<液泛速度,否则即会液泛,届时精馏操作就无法进行,从而使塔内汽速提高受到限制,汽、液两相传质的强化相应也受到限制;而“旋流剪切式超重力精馏装置”是通过高速旋转产生的离心力来实现超重力场(10~1000g作用下)的环境,即超重力因子β(ω2r/g)通常达350~450左右。在该环境下汽、液两相的速度大大提高,其速度可达4~12m/s,从而大大提高液泛速度。塔中的液体在转子高速下旋转下被加速甩出,在转子及定子间折流流道中被逆向尔行的高速旋转的汽流剪

切撕裂成微米至纳米级的液膜、液丝和液滴,从而极大地强化了汽、液两相间的传热、传质过程,使传质效率比普通塔高十多倍。同样的产能所需的设备体积也大大缩小(高度缩小8~10倍),分离效果也大为提高(单位体积内的理论塔板数大大提高,传质单元高度仅为1cm左右)。 2:安装及维护 1.1安装注意事项: 1.1.1本机应安装在比再沸器(也称塔釜)高600——700mm 的平台(钢或水泥)上,并用套圈、地脚螺栓将机架底部的橡胶隔振器固定在平台上。 1.1.2本机与其他设备的管道连接应采用软连接(大管道用金属波纹管,小管道用橡胶或塑料软管),以避免本机的振动传给其他设备或建筑物引起共振或噪音。 1.1.4本机的驱动电机必须与由我厂配套提供的电控箱供电,即必须经过交流变频器供电,以保护当塔的回流过载时不会烧坏电机。 1.1.5如果系统是液相进料,届时应有盲板封死气相进料口,并按进料浓度选1个接口,其余封死。反之封死液相进料口。也可装阀门来代替盲板。 1.1.6安装本机前,机上所有管口都应加装盲板,以防焊渣等异物调入机内破坏机封。外管道安装焊接后必须冲刷干

流化床制粒机

流化床制粒也称一步制粒法,是将常规湿法制粒的混合、制粒、干燥3 个步骤在密闭容器内一次完成的方法。1959 年,美国威斯康星州的Wurster 博士首先提出流化床制粒技术,随后该技术迅速发展,并广泛用于制药、食品及化工工业。我国于上世纪80 年代相继从Aeromatec 公司、德国Glaft 公司、日本友谊株式会社引进流化床制粒设备。近年来,由于医药行业面临的GMP 认证,流化床在我国药厂已获得普遍应用。 流化床制粒原理:在流化床制粒机中,压缩空气和粘合剂溶液按一定比例由喷嘴雾化并喷至流化床层上正处于流化状态的物料粉末上。首先液滴使接触到的粉末润湿并聚结在其周围形成粒子核,同时再由继续喷入的液滴落在粒子核表面上产生粘合架桥作用,使粒子核与粒子核之间、粒子核与粒子之间相互结合,逐渐形成较大的颗粒。干燥后,粉末间的液体桥变成固体桥,即得外形圆整的多孔颗粒。因流化床制粒全过程不受外力作用,仅受床内气流影响,故制得的颗粒密度小,粒子强度低,但颗粒的粒度均匀,流动性、压缩成形性好。 流化床制粒类型选择:流化床制粒设备有空气压缩系统、加热系统、喷雾系统及控制系统等组成。主要结构由容器、空气分流板、喷嘴、过滤袋、空气进出

口、物料排出口等组成。 按其喷液方式的不同分为3类:顶喷流化床、转动切喷流化床、底喷流化床。流化床制粒一般选择顶喷流化床。近年来,为了发挥流化床制粒的优势,亦出现了一系列以流化床为母体的多功能复合型制粒设备。 流化床制粒的优点: 尽管流化床制粒受到诸多因素影响,但与其他制粒方式相比,该技术仍具有很多优点。 1.物料的干混、湿混、搅拌、颗粒成型、干燥都在同一台流化床设备内完成,减少了大量的操作环节,节约了生产时间。 2.使生产在密封环境中进行,不但可防止外界对药物的污染,而且可减少操作人员同具有刺激性或毒性药物和辅料接触的机会,更符合GMP 规范要求。 3.制得的颗粒粒度均匀、流动性、压缩成形性好。 4.可使在组分中含量非常低的药物在制得的颗粒中分布更均匀。 杭州钱江干燥专业研发生产流化床制粒机,国内较早的生产企业,公司具有多年流化床制粒机专业制造经验,我们将竭诚为您提供高质量流化床制粒机产品,我们一直以产品的质量为导向,以客户利益为我们的企业价值,为客户提供

精馏塔与自动控制

精馏塔与自动控制 摘要:在化工领域里,精馏塔是一种常见的用来分离提纯相关组分的设备,而计算机技术的应用使得精馏塔的控制实现自动化,促进了工艺的优化。 随着科技的不断进步以及质量体系促使的工艺技术日益严格精细化,传统的操作方式已经变得越来越无法满足现今行业要求的高效率与高质量。为解决上述缺陷,实现精细有效化的对体系温度的掌控,采用计算机来实现的自动化温度控制系统,经过相应的改装调试后运用到精馏分离的过程中。 一、精馏塔(Rectification Tower) 精馏塔是进行精馏的一种塔式汽液接触装臵。有板式塔与填料塔两种主要类型。根据操作方式又可分为连续精馏塔与间歇精馏塔。 1.简介(Introduction) a、精馏原理(Principle of Rectify)

蒸馏的基本原理是将液体混合物多次部分气化和部分冷凝,利用其中各组份挥发度不同(相对挥发度,α)的特性,实现分离目的的单元操作。蒸馏按照其操作方法可分为:简单蒸馏、闪蒸、精馏和特殊精馏等。 b、过程简述(Introduction of procedure) 蒸气由塔底进入。蒸发出的气相与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向气相中转移,气相中的难挥发(高沸点)组分不断地向下降液中转移,气相愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,从而达到组分分离的目的。由塔顶上升的气相进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。塔底流出的液体,其中的一部分送入再沸器,加热蒸发成气相返回塔中,另一部分液体作为釜残液取出。 c、存在问题(Problems existent) 然而,纵观化工工艺过程,整个冷凝体系的温度控制很难实现精细化。这会造成部分物质以及杂质表现出来的物化性质难以区分。即需要体系中不可避免的混入了其他杂质的,无疑整个精馏分离过程

相关主题
文本预览
相关文档 最新文档