当前位置:文档之家› 工程测量报告--隧道贯通误差计算

工程测量报告--隧道贯通误差计算

工程测量报告--隧道贯通误差计算
工程测量报告--隧道贯通误差计算

《工程测量学》实习报告隧道贯通误差计算

2011 年 4 月24 日

1 基本要求------------------------------------------------------------------------------------- 3

2 实习目的-------------------------------------------------------------------------------------

3 3平面网的模拟计算与分析(COSA)---------------------------------------- 3

4 控制网的优化设计-------------------------------------------------------------- 4

5 总结--------------------------------------------------------------------------------- 5

1实习任务

分别采用COSA系列软件和自研发软件进行平面网平差和贯通误差计算,熟悉COSA软件的使用并与自研发软件对比。

2 实习目标

1) 对比进出口点与不同定向组合的横、纵向贯通误差,分析导致贯通误差最小的组合及其意义

2) 分别用两个软件进行平差和贯通误差计算,对比所得结果,分别分析其相对中误差,最弱点及最

弱边精度,隧道贯通误差估算结果的差异。

3 平面网平差与隧道贯通误差计算(COSA)

3.1观测方案文件:

人工生成简化的观测方案文件“网名.FA2”(只含一组精度),单击“生成初始观测方案文件”菜单项。

平面网观测方案文件结构:

第1行(观测精度指标部分):

方向中误差,边长固定误差(mm),比例误差(ppm)

第2行到第K行(控制点坐标部分):

点名,点类型(0-已知点,1-未知点),X坐标,Y坐标

…,……,……,……

第K+1行(已知方位角部分,有已知方位角值时才有此行):

测站点,照准点,A,方位角值

从第K+2行起(观测方案部分):

测站点点号

L(代表方向):照准点点号1,....., 照准点点号n(按顺时针方向排序)

S(代表边长): 照准点点号1,....., 照准点点号n(按顺时针方向排序)

观测值方案文件示例(网名.FA2)

0.7,1,1

J,0,398.9779,377.7966

J1,1,410.7532,490.5660

J2,1,287.2544,386.3646

J3,1,343.9037,290.1835

C,1,1507.0854,400.0228

C1,1,1490.7444,490.5660

C2,1,1559.4496,376.2656

C3,1,1464.0045,296.1208

J,J1,A,84.0388

J

L:J1,J3,C,C3

S:J1,J3,C,C3

J1

L:J,J2,J3,C1

S:J,J2,J3,C1

J2

L:J1,J3,C1

S:J1,J3,C1

J3

L:J,J1,J2,C2,C3

S:J,J1,J2,C2,C3

C

L:C1,C2,C3,J

S:C1,C2,C3,J

C1

L:C,C2,C3,J1,J2

S:C,C2,C3,J1,J2

C2

L:C,C1,C3,J3

S:C,C1,C3,J3

C3,

L:C,C1,C2,J,J3

S:C,C1,C2,J,J3

3.2生成正态标准随机数

单击“生成正态标准随机数”,将弹出一对话框,要求您输入生成随机数的相关参数,第一个参数用于控制生成不相同的随机数序列,其取值可取1-10的任意整数。第二个参数即“随机数个数”只能选200,400或500三个值,即最多可生成500个服从(0,1)分布的正态随机数。系统对所生成的随机数按组进行检验,检验通过就存放在RANDOM.DAT文件中.该文件中的随机数用于网的优化设计,籍此可生成不同精度下的模拟观测值。

3.3 模拟计算

可由人工生成简化的观测方案文件自动生成平面网初始观测方案文件“网名.OB2”;再单击“生成初始观测值文件”菜单项,可自动生成平面网初始观测值文件“网名.IN2”。由“网名.IN2”文件,可在“平差”栏作平面网平差计算与分析。

3.4 平差结果分析

打开“网名.ou2”文件查看平差结果,可同时生成控制网图“网名.map”对照分析。该文件列出了近似坐标值、方向平差结果、距离平差结果(在平差结果中,RI一项即为多余观测分量)、平差坐标及其精度、最弱点及其精度、网点间边长、方位角及其相对精度、最弱边及其精度、单位权中误差和改正数带权平方和、VVQ控制网总体信息。

3.5 贯通误差影响值计算

使用“工具”中“贯通误差影响值计算”一项,进行隧道贯通误差估算:

导入GTI文件:J,J1,C,C1,9,892.0697,388.8905,90

J,J1,C,C2,9,892.0697,388.8905,90

J,J1,C,C3,9,892.0697,388.8905,90

J,J2,C,C1,9,892.0697,388.8905,90

J,J2,C,C2,9,892.0697,388.8905,90

J,J2,C,C3,9,892.0697,388.8905,90

J,J2,C,C1,9,892.0697,388.8905,90

J,J2,C,C2,9,892.0697,388.8905,90

J,J2,C,C3,9,892.0697,388.8905,90

其中:

//J进口点点号,J1进口点定向方向,C出口点点号,C1出口点定向方向

//9,贯通点点号,892.0697,388.8905贯通点坐标x,y,90为贯通点方位角

4平面网平差与隧道贯通误差计算(自研发软件)

4.1数据文件准备:

自研发软件中原始数据的格式与COSA略有不同,其已知数据与观测数据需分别导入。

4.2 隧道贯通误差计算:

进入“控制网优化设计”中的“隧道贯通误差计算”,分别导入已知数据和观测数据。进行平差,得到平差结果文件:

点击网图可生成图形:

导入引导文件GTI,进行贯通误差估算,可得到估算结果:

5 对比和分析

将两个软件得到的平差结果和贯通误差估算结果进行对比

5.1平面网平差:

对比两软件平差结果,两软件平差结果所给最弱点及最弱边一致,最弱点均为C2,其MX值在COSA的平差结果中较自研发软件更小。

5.2隧道贯通误差计算:

对比两软件贯通误差的估算结果,其中mq为横向贯通误差,ml为纵向贯通误差。各进出口点的不同定向组合的横、纵向贯通在两各软件的计算结果中几乎一致,相差不大。

6 总结

本次上机实习让我们熟悉了COSA软件,也对师兄师姐自行研发的软件有了进一步了解。COSA软件是为大众熟悉和经常使用的软件,针对这次课程设计,COSA软件使用起来很简便,更让人容易上手,因为菜单等的设置比研发的软件更为让人接受,不过研发的软件页面也很简洁,已知数据和观测数据的分别导入方便了其分别的查询,看起来也更简洁,网图的显示等方便使用。

通过两个软件分别进行了平面网的平差及隧道贯通误差的估算,并进行结果比对和分析,有以下结论:

1)进口点定向方向为J1,出口点定向方向为C3时,横、纵向贯通误差最小,即

此组合的隧道贯通精度最高,最能保证隧道的正确贯通。

2)贯通误差的变化规律:进口点定向方向不变时,出口点定向方向为C3时贯通

误差最小,为C1时略大,为C2时最大,而进口点定向方向为J2的所有组合的贯通误差均比为J1时的大。

建筑施工中的工程测量及误差控制分析 高峰

建筑施工中的工程测量及误差控制分析高峰 发表时间:2019-03-21T11:41:10.077Z 来源:《防护工程》2018年第34期作者:高峰 [导读] 在科学技术日新月异的当下,多种数字化、自动化技术被运用到建筑工程测量之中。 泗阳县方圆测绘有限公司江苏宿迁 223800 摘要:在科学技术日新月异的当下,多种数字化、自动化技术被运用到建筑工程测量之中。施工企业要顺应时代发展形势,合理运用各种现代化仪器设备,提升测量人员的综合能力,掌握科学高效的建筑测量技术,以彰显工程测量在建筑工程施工的价值,有效控制测量误差。 关键词:建筑施工;工程测量;误差原因;控制措施 引言 对于影响工程测量精准度的原因及控制对策研究,首先分析影响工程测量精准度的主要原因,从大的角度出发以影响测量精准度的因素作为控制方向,提出相应的控制对策,切实加强对工程测量的建设。在管理当中立足于现状,用科学的控制对策减少测量误差的出现,同时加强对测量设备的维护和检修,保障工程测量工作稳定开展,提高工程测量的实际精准度。 1工程测量的含义 工程测量的工作内容非常丰富,一般主要包括线路测量,定位以及检测三大部分,每一部分的工作都需要认真做好。完整的工程测量定义指的是建筑工程前期勘测、中期施工以及后期检测的全过程。通过将整个工程的施工工作,分成前、中、后三个阶段,对工程进行精细化分工,以此保证各个施工环节工作的精确性。工程测量工作贯穿于工程的各个环节,包括勘测环节测量、施工环节测量以及检测运营环节测量,建筑工程中的测量工作是为其他工作所服务的,对于其他工作具有指示性作用,可以保证建筑工程施工工作的顺利进行。这对于工程测量的工作人员提出了更高的要求,建筑测量人员要不断提高自身的专业知识和实际的工作技能,具有足够的实际工程测量工作经验,具有应对突发状况的能力,可以在实际工作中将理论知识应用到实际工作中。 2建筑施工中产生测量误差的主要原因 2.1自然原因 工程测量工作在建设工程前期的作用最为明显,建设工程的前期需要对工程施工地点进行实时勘察,而施工地点特殊的环境、不同的气候、复杂的地貌以及交通环境会对工程测量的准确性造成严重的影响。以地形为例,人为因素对地形的改变是微小的,实际的建筑工程往往受特殊地形的影响较大。特殊的地势地貌在自然环境下,降雨降雪、昼夜温差等都会影响工程测量结果的准确性。 2.2人为因素 人为因素对工程测量精准度的影响是工程测量当中的重要部分,其中,工程测量本就是需要以人力作为工作的核心开展的测量工作,其参与者本身的综合素质将直接影响工程测量的整体精准度。例如,在建筑工程的工程测量工作当中,部分测量人员对测量的新型设备和新型技术认识不全面,导致实际测量工作当中不能够发挥新技术、新设备的优势,相应的工程测量的精准度也没有较大的提高,导致工程测量整体质量不高,不能够为建筑工程提供准确的测量数据。此外,一些工作人员对于地形较特殊的地区的工作认真度不够,也是造成建筑工程测量数据准确度较差的主要原因之一。工作人员对于一些施工较复杂的实地测量工作还是按照对一般建筑测量的手段开展测量工作,没有考虑到地形高度、长度、面积等因素的差异,导致建筑测量收集的数据和实地的数据相差较大,导致建筑规划设计工作的设计缺乏正确的数据支持,决策不科学,严重导致建筑质量低下甚至出现返工的情况。 2.3设备因素 (1)设备本身的误差。设备因素对工程测量精准度的影响在于设备本身的精准度和操作方面。实际的工程测量工作当中,其测量设备避免不了存在机械自身的误差,进而会对工程测量的精准度造成一定影响。而伴随着测量设备的长久使用,恶劣的施工环境对设备造成一定影响,导致设备老化、磨损严重,加剧设备本身磨损的出现,更加剧设备误差的出现。(2)设备检修和保养。工程测量的设备缺乏定期的检修也是影响测量精准度的重要因素,在恶劣施工环境的影响下测量设备需要定期进行规范化的检修和保养,一些超出使用年限的设备存在较大的测量误差隐患,没有规范化的检修制度将会造成工程测量工作的随意性,不能保障建筑工程实地数据的准确性。(3)设备操作的因素。设备操作上的不规范也会对最终的工程测量数据精确度造成严重的影响。其中,由于测量工程的特殊性,一些工程需要快速完成测量工作,测量工作人员在运送和使用测量设备时,不注重对设备的保护导致设备在运送和使用当中出现暴力使用的现象,设备本身的使用寿命受到一定影响,测量的精准度也有所下降。例如,GPS的测量方法其本身就存在一定的误差,如表1所示,GPS作为平面控制测量但那个中的一种,其等级不同相对的误差也就不同。 3建筑施工中工程测量及误差控制的有效对策 3.1关于控制网测量误差的有效控制措施 在建筑工程测量环节,相关工作人员在开展平面控制网测定时,要将以下工作落实到位。第一,在实地勘察施工现场周围环境之后,选择最为适宜的地理位置作为控制点,所选择位置点的高程须符合现场观测的实际要求。第二,在开展控制网测量之前,相关工作人员要严格遵守相关规章制度,预先检查仪器设备,确保仪器设备造成的误差在法定范围内,方能将相关仪器设备运用到测量工作中。反之,若仪器设备的误差值超出相应范围,不仅会耗费大量人力物力财力,还会影响测量结果的准确性,给后续施工造成负面影响。第三,在开展工程测量的进程中,相关工作人员要在相应仪器设备的辅助下开展测量工作,遵循仪器、观测员、观测线路三固定的原则,在此基础上落实测量工作,以保障测量数据的精准性。第四,在开展控制网测定工作时,要依据测量要求,选择温差变化偏小的侧测量地点,以推进测量工作的有序进行。 3.2关于放样工作的质量控制 影响建筑工程施工质量的因素有很多,而放样施工便是其中极为关键的因素。若放样施工的误差值过大,则会加大建筑工程出现施工

施工测量方法及精度评定

施工测量方法及精度评定 1、设站方法 根据现场情况,主要选择以下两种方式设站。 1.1 全站仪坐标法设站 (1)在施工控制点上架设全站仪并对中整平,初始化后检查仪器的设置:气温、气压、棱镜常、在输入(或调出)测站点的三维坐标,量取并输入仪器高,输入(或调出)后视点坐标,照准后视点进行后视。 (2)如果后视点上有棱镜,输入棱镜高,可以测量后视点的坐标和高程并与已知数据检核。 (3)瞄准另一控制点,检查方位角或坐标;在另一后视点上竖棱镜或尺子检查仪器的视线高。 (4)利用仪器自身的计算功能进行计算时,记录员也应该进行相应的计算,以检查输入数据的正确性。 (5)在各待测站点上架设脚架和棱镜,量取、记录并输入棱镜高,测量、记录待定点的坐标和高程。 1.2 全站仪边角交会法设站 (1)在未知点P上架设、整平全站仪;在已知的基本控制点A上安置棱镜,量测棱镜高;在已知点B、C上安置照准点标志。 (2)量测PA间平距D、高差DH和PA至PB方向间的水平角α、β。 (3)用D、α及A、B点的坐标计算P点的一组坐标;用D、β及A、C点的坐标计算P点的另一组坐标;两组坐标的差值不超过规定限差,取中数即为P点的最后坐标。

(4)根据A点的高程HA和高差DH计算仪器的视线高:H视=HA-DH。 (5)如果需要可以将P点投影到地面上,并作好记录。量取仪器高,求出地面P 点的高程。 2、施工测量方法 2.1 放样方法 (1)用以上方法把测站设置好了后,就可以用测站极坐标法开始放样。 (2)使用全站仪测量测点的三维坐标,用计算器计算测点距设计棱镜的距离,再指挥司镜员移动棱镜,直至到位。 (3)若使用免棱镜全站仪时,可由观测员移动激光斑点再进行测量,直至到位。 (4)在直线较长的边坡、洞室、混凝土工程放样时,建立以边坡平行线、洞室轴线、混凝土边线、为坐标轴的独立坐标系,以便加快测量放样的速度和减少现场测量计算的错误。 2.2 验收断面测量方法 (1)验收断面测量采用免棱镜全站仪。 (2)边坡断面测量时,采用相对坐标设站,任意架设仪器,直接测量符合断面要求的点位,保证断面桩号差小于10cm,数据直接保存在仪器内。 (3)洞室断面测量时也可以用边坡断面测量方法,而现场通常是先把每个断面的中桩放出来,然后将仪器架设于中桩上,将方向置于断面方向上,用独立坐标进行断面测量,数据直接保存在仪器内。 (4)内业资料处理前,把仪器内存储的数据传到计算机内,用专用软件进行数据格式转换,网上也可下载。

地铁车站的装修工程施工方案

地铁车站的装修工程施工方案

目录 一、总体施工安排 (4) 1.6车站施工区段划分 (4) 1.7施工程序和施工顺序 (4) 二、各工序施工要点 (5) 2.1吊顶工程技术标准 (5) 2.1.1一般规定 (5) 2.1.2铝合金天花吊顶施工 (6) 2.2 抗静电架空地板施工 (8) 2.2.1抗静电铝合金板架空地板操作工艺 (8) 2.2.2抗静电架空地板质量标准 (10) 2.3埃特板离壁墙基 (10) 2.3.1范围及材料要求 (10) 2.3.2施工程序及施工工艺要求 (11) 2.3.4作业条件 (11) 2.3.5质量要求 (12) 2.4砌体工程 (12) 2.4.1作业条件 (12) 2.4.2施工工艺及技术措施 (13) 2.4.3质量控制 (14) 3.4.4工程质量通病及注意事项 (14) 2.5地面工程 (15) 2.5.1地面工程主要内容 (15) 2.5.2细石混凝土地面主要施工工艺与方法 (16) 2.6涂料工程及乳胶漆工程施工 (19) 2.6.1一般规定 (19) 2.6.2材料质量要求 (20) 2.6.3乳胶漆施工工艺 (20) 2.7不锈钢饰面及不锈钢栏杆施工工艺 (21) 2.7.1不锈钢施工要求 (21) 2.7.2不锈钢栏杆规定 (21) 2.7.3施工要点 (22)

2.7.4质量要求和质量通病及防治措施 (23) 2.7.5质量检验标准 (24) 2.8门窗工程 (25) 2.8.1门窗施工作业条件 (25) 2.8.2门窗施工操作工艺 (25) 2.9标志系统的安装要求 (28) 2.9.1标志系统安装的一般要求 (28) 2.9.2标志系统安装的特殊要求 (29)

地铁车站工程重难点分析及对策

地铁车站工程重难点分析及对策 1、深基坑 本站基坑最大深度近17m,基坑重要性等级为一级,因此确保基坑安全是本工程的重点之一; 对茦:一是对基坑周围地表沉降、支护结构水平位移及竖向沉降、周围建筑物和地下管线的沉降和倾斜、地下水位、支护结构内力、支撑轴力、土体分层变形、土体分层竖向位移、支护界面上侧向压力等加强施工过程中的监控量测,对量测数据及时整理、分析和判断,出现问题在第一时间内作出快速反应,确保基坑安全及周围、地下结构物的安全;二是加强防洪预案的落实,在雨季基坑施工时事先备好防洪物资,做好地面排水设施,防止雨水进入基坑,造成基坑塌方事故,人员、机具设备做好准备,随时对突发事件作出正确的应急处理;三是在基坑开挖时严格按设计做好基坑支护,并加强检查,确保基坑支护符合设计要求。 2、防水工程 本设计要求车站、出入口及机电设备集中区段须达到地下工程防水等级一级标准。车站结构不允许渗水,结构表面不得有湿渍。车站的风道无机电设备区段,防水达到地下工程防水等级二级标准。车站断面变化多,车站出入口、风道口多,施工中要特别加强对施工缝、变形缝的防水控制。因此地下结构防水是施工是本工程重点之二; 对策:①主体结构防水 主体结构采用防水钢筋混凝土,抗渗等级≥S8,采用外包全封闭防水形式。车站结构顶板采用优质单组份聚氨酯涂料,侧墙地板采用预铺式反粘材料,顶、底板防水层上设细石混凝土保护。

②变形缝防水 车站主体设一道变形缝,其它部分采取控制分段浇筑长度、采用掺有外加剂的混凝土、控制入模温度及加强养护等措施,变形缝采用钢边橡胶止水带。车站与风道、出入口、区间衔接处设置的变形缝采用中埋式橡胶止水带止水,缝间充填双组聚硫橡胶和聚苯板,在变形缝内侧设置预留槽,槽内涂刷双组份聚氨酯涂料并用EVA砂浆封口,在变形缝外侧设外贴式钢边橡胶止水带。 ③施工缝防水 车站主体及出入口结构施工缝处在断面中间设置一道橡胶止水带,风道结构断面中间设置遇水膨胀橡胶止水带;后浇混凝土浇筑前应将先浇混凝土基面凿毛并冲洗干净,并涂刷优质混凝土界面处理剂。环向施工缝间距8~12m。施工缝采用钢板止水带。 ④注意对外防水层的保护 结构外防水层施做完成后,底部及时施工细石混凝土进行保护,钢筋绑扎时,端头套塑料帽处理,防止刺穿防水板.在进行钢筋焊接时,在焊接钢筋与防水板之间设置石棉板隔离,防止烧穿防水板。混凝土浇灌前彻底检查防水层,对破坏部位进行修补。 ⑤加强混凝土结构自防水 混凝土结构刚性自防水质量是结构防水的关键,施工中为确保混凝土结构自防水效果,考虑在按照设计要求及相关规范施工的基础上,还从以下几个方面进行控制: a.督促商品混凝土供应商优选原材料,砂石级配满足规范要求,保证生产出的商品混凝土具有良好的抗渗性,控制好粗骨料含碱量,确保防水混凝土自身质

数值计算中误差的传播规律

数值计算方法 实 验 报 告 实验序号:实验一 实验名称:数值计算中误差的传播规律 实验人: 专业年级: 教学班: 学号: 实验时间:

实验一 数值计算中误差的传播规律 一、实验目的 1.观察并初步分析数值计算中误差的传播; 2.观察有效数字与误差传播的关系. 二、实验内容 1.使用MATLAB 的help 命令学习MATLAB 命令digits 和vpa 的用途和使用格式; 2.在4位浮点数下解二次方程01622=++x x ; 3.计算下列5个函数在点2=x 处的近似值 (1)60)1(-=x y , (2)61) 1(1+=x y , (3)32)23(x y -=, (4)3 3)23(1x y +=, (5)x y 70994-=. 三、实验步骤 本次实验包含三个相对独立的内容. 1.在内容1中,请解释两个命令的格式和作用; 在matlab 中采用help 语句得到:

1、digits用于规定运算精度,比如: digits(20); 这个语句就规定了运算精度是20位有效数字。但并不是规定了就可以使用,因为实际编程中,我们可能有些运算需要控制精度,而有些不需要控制。vpa就用于解决这个问题,凡是用需要控制精度的,我们都对运算表达式使用vpa函数。 例如: digits(5); a=vpa(sqrt(2)); 这样a的值就是1.4142,而不是准确的1.4142135623730950488016887242097 又如: digits(11); a=vpa(2/3+4/7+5/9); b=2/3+4/7+5/9; a的结果为1.7936507936,b的结果为1.793650793650794......也就是说,计算a的值的时候,先对2/3,4 /7,5/9这三个运算都控制了精度,又对三个数相加的运算控制了精度。而b的值是真实值,对它取11位有效数字的话,结果为1.7936507937,与a不同,就是说vpa 并不是先把表达式的值用matlab本身的精度求出来,再取有效数字,而是每运算一次都控制精度。 2.求解方程时,分别使用求根公式和韦达定理两种方法,并比较其有效数字和相对误差; 用求根公式解得:x1=-0.015,x2=-62.00 用韦达定理解得:x11=-0.016,x22=-62.00 x22=x2,x11=1/x22

工程测量测量误差练习题

测量误差(练习题)、选择题 1、对某一量进行观测后得到一组观测值,则该量的最或是值为这组观测值 的( ) 。 A .最大值 B .最小值 C .算术平均值 D .中间值 2、观测三角形三个内角后,将它们求和并减 去 180°所得的三角形闭合差为() 。 A .中误差 B .真误差 C .相对误差 D .系统误差 3、系统误差具有的特点为 ( ) 。 A .偶然性 B .统计性 C .累积性 D .抵偿性 4、在相同的观测条件下测得同一水平角角值 为: 173° 58′58" 、 173 °59′02" 、 173 59′04" 、173° 59′ 06" 、173°59′10" ,则观测值的中误差为()。 A .± 4.5" B.± 4.0" C . 5.6" D.± 6.3" 5、组测量值的中误差越小,表明测量精度越( A .高 B .低 C .精度与中误差没有关系.无法确 定 6、边长测量往返测差值的绝对值与边长平均值的比值 称为 ) 。 A .系统误差 B .平均中误差 C .偶然误差.相对误 差 7、对三角形三个内角等精度观测,已知测角中误 差为 10″,则三角形闭合差的中误差为 ( ) 。 A .10″.30″ C .17.3 ″.5.78 ″ 8、两段距离及其中误差为: D1=72.36m±0.025m, D2=50.17m±0.025m ,比较它们的测距精度 为 ) 。 A .D1精度 高 B .两者精度相同.D2 精度高 D .无法比较 9、设某三角形三个内角中两个角的测角中误差 为± 4″和± 3″,则求算的第三个角的中误差 为 ) 。 A .±4″ B .± 3″ C .± 5″ D .± 6″ 10、设函数X=L1+2L2,Y=X+L3,Z=X+Y,L1,L2 ,L3 的中误差均为m,则X,Y,Z的中误差分 别为 ) 。 A.5m ,6m ,11m .5m ,6m ,21m C.5m ,6m ,21m .5m ,6m ,11m 11、某三角网由10 个三角形构成,观测了各三角形的内角并算出各三角形闭合 差, 分别为:+9″、- 4 - 2″、+5″、-4″、+3″、0″、+7″、+3″、+1″,则该三角网的测角中误差为()。 A.±12″±1.2″±2.6″ D .±2.4 ″ 12、测一正方形的周长,只测一边,其中误差为± 0.02m,该正方形周长的中误差为()。 A.± 0.08m B .± 0.04m C .± 0.06m .± 0.02m 13、已知用DJ6 型光学经纬仪野外一测回方向值的中误差为±,则一测回角值的中误差为) 。 A.±17″.±6″.±12 ″.± 8.5 ″ 14、已知用DJ2 型光学经纬仪野外一测回方向值的中误差为±2″,则一测回角值的中误差 为 ) 。

工程测量误差测量理论例题和习题(专题复习)

测量误差理论 一、中误差估值(也称中误差): Δi (i=1,2,…,n ) (6-8) 【例】 设有两组同精度观测值,其真误差分别为: 第一组 -3″、+3″、-1″、-3″、+4″、+2″、-1″、-4″; 第二组 +1″、-5″、-1″、+6″、-4″、0″、+3″、-1″。 试比较这两组观测值的精度,即求中误差。 解:"2 2222219.28 41243133±=+++++++±=m "222223.38 1 3046151±=+++++++±=m 由于m 1

水准测量误差来源及控制方法

水准测量的误差来源及控制方法 水准测量是确定公路工程地面点高程的方法之一,是高程测量中精度较高且常用的方法。实施过程中,需要几个人合作才能完成,误差允许范围内的精度由于仪器和人为的影响而不容易控制,而且易出现隐蔽性错误,如果不能及早发现,基础资料是错误的,从而水准点高程不正确,直接影响路线纵断面设计和施工。关键词:水准测量水准仪高程误差 1. 0勘察设计过程中水准测量的问题 水准测量是采用几何原理,利用水平视线测定两点间高差。仪器使用水准仪,工具是水准尺和尺垫。公路工程测量一般使用DS3型微倾式自动安平水准仪,每公里能达到的精度是3mm,水准仪在一个测站使用的基本程序是安置仪器、粗略整平、瞄准水准尺、精确整平和读数。我们在实际勘测过程中按这个顺序施行,在每一水准点段测完后复核结果。 同一条公路采用同一个高程系统,测量方法是基平与中平同时测量,两台水准仪同时观测一个水准尺,间视和转点由两个人立水准尺,但两台水准仪总是同时观测一个水准尺进行读数,一个水准点段测完后检核,在每一测站,没有检查、复核,为误差的积累创造了条件,容易返工,耽误时间、浪费人力。通过工程实践证明,这一方法经常出现错误,节选五个水准点连续错误中的一个测段结果如表1.1和1.2所示:

表1.1经过成果整理,读数差Δh=Σ后视-Σ前视,Δh小于2mm满足规范要求。但是施工过程中,施工单位提出问题,经过表1.2复核补充测量成果证实,外业测量的结果不正确,因此,有必要分析水准测量的误差,找出控制纠正的方法,避免错误的出现,保证项目的顺利施工。 2. 0水准测量的现状 现在应用水准点与中桩分开观测的方法,水准点观测采取往返测量,成果整理要求高差闭合差fh容(fh容=Σh往+Σh返)达到平原微丘区三等水准测量的精度不大于±20·L(1/2)。平原微丘地区影响水准测量精度的主要因素是水准路线的长度,长度越长,精度越低。山区,则是测站,测站越多,精度越低。 3. 0水准测量的误差分析及控制方法 水准测量误差有仪器误差、观测误差和外界条件的影响。 3.1仪器误差之一是水准仪的望远镜视准轴不平行于水准管轴所产生的误差 仪器虽在测量前经过校正,仍会存在残余误差。因此造成水准管气泡居中,水准

建筑工程测量-测量误差的基本知识

第五节测量误差基础知识 一、测量误差概述 1.测量误差产生的原因 测量时,由于各种因素会造成少许的误差,这些因素必须去了解,并有效的解决,方可使整个测量过程中误差减至最少。实践证明,产生测量误差的原因主要有以下三个方面。 (1)人为因素。由于人为因素所造成的误差,包括观测者的技术水平和感觉器管的鉴别能力有一定的局限性,主要体现在仪器的对中、照准、读数等方面。 (2)测量仪器的原因。由于测量仪器的因素所造成的误差,包括测量仪器在构造上的缺陷、仪器本身的精度、磨耗误差及使用前未经校正等因素。 (3)环境因素。外界观测条件是指野外观测过程中,外界条件的因素,如天气的变化、植被的不同、地面土质松紧的差异、地形的起伏、周围建筑物的状况,以及太阳光线的强弱、照射的角度大小等。 测量时受环境或场地之不同,可能造成的误差有热变形误差和随机误差为最显着。热变形误差通常发生于因室温、人体接触及加工后工件温度等情形下,因此必须在温湿度控制下,不可用手接触工件及量具、工件加工后待冷却后才测量。但为了缩短加工时在加工中需实时测量,因此必须考虑各种材料之热胀系数作为补偿,以因应温度材料的热膨胀系数不同所造成的误差。

在实际的测量工作中,大量实践表明,当对某一未知量进行多次观测时,不论测量仪器有多精密,观测进行得多么仔细,所得的观测值之间总是不尽相同。这种差异都是由于测量中存在误差的缘故。测量所获得的数值称为观测值。由于观测中误差的存在而往往导致各观测值与其真实值(简称为真值)之间存在差异,这种差异称为测量误差(或观测误差)。用L代表观测值,X代表真值,则误差=观测值L—真值X,即 ?(5-1) = L- X 这种误差通常又称之为真误差。 由于任何测量工作都是由观测者使用某种仪器、工具,在一定的外界条件下进行的,所以,观测误差来源于以下三个方面:观测者的视觉鉴别能力和技术水平;仪器、工具的精密程度;观测时外界条件的好坏。通常我们把这三个方面综合起来称为观测条件。观测条件将影响观测成果的精度:若观测条件好,则测量误差小,测量的精度就高;反之,则测量误差大,精度就低;若观测条件相同,则可认为精度相同。在相同观测条件下进行的一系列观测称为等精度观测;在不同观测条件下进行的一系列观测称为不等精度观测。 由于在测量的结果中含有误差是不可避免的,因此,研究误差理论的目的不是为了去消灭误差,而是要对误差的来源、性质及其产生和传播的规律进行研究,以便解决测量工作中遇到的一些实际问题。例如:在一系列的观测值中,如何确

建筑工程测量教案

第一讲工程测量的基本理论知识㈠ 知识目标:熟悉工程测量的任务、内容 能力目标:掌握工程测量的一般程序与工作原则 一、本课程学习的目的与内容简介 通过设疑、答疑引入工程测量的目的,对照课程目录解说本课程学习的主要内容及能力要求。 二、工程测量的概念 1.工程测量学的任务和内容 工程测量学的含义——指的是研究工程建设在勘测设计阶段、施工准备阶段、施工阶段、竣工验收阶段以及交付使用后的服务管理阶段所进行的各种测量工作的一门科学。 工程测量学的任务——为工程建设服务 工程测量学的内容——测定和测设 工程测量学的实质——确定点的位置 测定——指的是用恰当的测量仪器、工具和测量方法对地球表面的地物和地貌的位置进行实地测量并按照一定的比例尺缩绘成图的过程。(包括图根控制测量、地形测量、竣工测量、变形测量等) 测设——指的是用恰当的测量仪器、工具和测量方法将规划、设计在图上的建筑物、构筑物标定到实地上,作为施工依据的过程。(包括建筑基线及建筑方格网的测设、施工放样、设备安装测量等) 2.建筑工程测量的内容

⑴工程规划设计阶段——测绘地形图 ⑵工程施工准备阶段——按图样要求实地标定建筑物、构筑物的平面位置和高程 ⑶施工阶段——对施工和安装工作进行检验、校核 ⑷管理阶段——定期进行变形观测(大型和重要建筑物) 工程建设的每一个阶段都离不开测量工作,测量的精度和速度直接影响到整个工程的质量和速度。 测量放线工——进行工程建设的施工测量 3. 测量工作的一般程序 ⑴从整体到局部 ⑵从高级到低级 ⑶先控制后细部 4. 测量放线工的工作原则 ⑴严格按建筑工程施工设计图样的要求进行施工测量 ⑵按建筑工程施工组织设计的安排及时进行有关测量工作 ⑶严格按测量规范和细则进行测量工作 ⑷边工作边检核 第二讲工程测量的基本理论知识㈡ 知识目标:掌握地面点位的确定方法及建筑工程施工图的识读方法

全站仪测量误差分析

全站仪测量误差分析 随着新仪器新设备的不断出现,测量技术的不断提高,同时对工程质量的要求也是愈来愈高,这就对精度的要求加强了许多,随着全站仪在施工放样中的广泛应用,为了使全站仪在实际生产中更好地运用,现结合工程测量理论,对全站仪在测量放样中的误差及其注意事项进行分析。 在我们建筑施工测量中,全站仪主要是用于测量坐标点位的控制和高程的控制,在以下几个方面对全站仪放样的误差作简要概述。 1、全站仪在施工放样中坐标点的误差分析 全站仪极坐标法放样点点位中误差MP由测距边边长S(m)、测距中误差ms(m)、水平角中误差mβ(″)和常数ρ=206265″共同构成,其精度估算公式为: 而水平角中误差mβ(″)包含了仪器整平对中误差、目标偏心误差、照准误差、仪器本身的测 角精度以及外界的影响等。 式(3)表明,对固定的仪器设备,采用相同的方法放样时,误差相等的点分布在一个圆周上,圆心为测站O。因此对每一个放样控制点O,可以根据点位放样精度m计算圆半径S,在半径范围内的放样点都可由此控制点放样。由式(1)可看出,放样点位误差中,测距误差较小,主要是测角误差。因此,操作中应时时注意提高测角精度。 2、全站仪在控制三角高程上的误差分析 一般情况下,在测量高程时方法为:设A,B为地面上高度不同的两点。已知A点高程HA,只要知道A点对B点的高差HAB即可由HB=HA±HAB得到B点的高程HB。 当A、B两点距离较短时,用上述方法较为合适。 在较长距离测量时要考虑地球曲率和大气折光对高差的影响。 设仪器高为i,棱镜高度为l,测得两点间的斜距为S,竖直角α,则AB两点的高差为: 一般情况下,当两点距离大于400m时须考虑地球曲率及大气折光的影响,在高差计算时需加两差改正。 式中R为地球曲率半径,取6371km, k为大气折光差系数,k=1-2RC (C为球气差,C=0.43D2/R,D:两点间水平距离)。 从上式中可以看出,当距离较远时,影响高差精度的主要因素就是地球曲率及大气折光,如果高程传递次数较多,累计误差就会加大,在测量时,最好是一次传递高程,若有需要,往返测高程,取其平均值以减小误差。 (1)、地球曲率改正 以水平面代替椭球面时,地球曲率对高差有较大的影响,测量中,采取视距离相等,消除其影响。三角高程测量是用计算影响值加以改正。地球曲率引起的高差误差,按下式计算 P=D2 /2R (2)、大气折光改正 一般情况下,视线通过密度不同的大气层时,将发生连续折射,形成向下弯曲的曲线。视线读数与理论位值读数产生一个差值,这就是大气光引起的高差误差。按下式计算 r =D2 /14R

(完整版)地铁开题报告模板报告.doc

辽宁工程技术大学 本科毕业设计(论文)开题报告 题目XXX 地铁车站结构及施工组织设计指导教师 院(系、部)土木与交通学院 专业班级 学号 姓名 日期 教务处印制

一、选题的目的、意义和研究现状 (一)选题目的和意义: 本次设计充分运用我们学到的专业知识,在对地铁车站有了一定认识后,自己独立的完 成一个比较完善的项目,把自己在学校学到的知识与实际相结合,将设计中的结构和自己的 想法充分的实践,设计充分的利用 CAD软件以及抗震,抗浮,防水,钢筋混凝土,钢结 构,配筋等专业知识,在设计中学习相关的知识,自己在学校学到得知识有限,必须学习一 些所需的专业知识,独立的学习其他相关的技术,要想把毕业设计做的好就一定要学习更多 的知道、掌握更多的技术,只有这样才得做的更加完善。 地铁是城市快速轨道交通的一部分,因其运量大、快速、正点、低能耗、少污染、乘 坐舒适方便等优点,常被称为“绿色交通” 。发达国家的应验表明,地铁是解决大中城市 公共交通运输的根本途径,对于 21 世纪实现城市持续发展有非常重要的意义,已成为城市 交通现代化的重要标志之一。 沈阳市城市交通体系规划概括为:“三环”、“四环”、“五快”和“十四射” 。建立一个以快速轨道交通为中心、公共交通为主体,快速道路交通为骨干,交通系统立体化,客运管理现代化,有足够容量和应变能力的综合交通体系。 地铁车站设备监控系统 EMCS分为中央级、车站级和就地级三级对车站设备进行监控。在中央级和车站级进行系统管理,车站设备监控系统对全线各个车站的通风空调系统设备、 给排水设备、自动扶梯、电梯、车站公共区照明、广告照明、车站事故照明电源、屏 蔽门、人防密闭隔断门等车站设备进行全面有效的自动化监控及管理,确保设备处于高效、节能、可靠的最佳运行状态,创造一个舒适的地下环境。并能在火灾等灾害或阻塞事故状 态下,更好地协调车站设备的运行,充分发挥各种设备应有的作用,保证乘客的安全和设 备的正常运行。 作为一名当代的大学生,我们必须掌握坚实的专业知识和丰富的施工经验,只有不断 的完善自己、充实自己才能做一个对社会有用的人才,对国家贡献出自己的力量。经过毕 业设计使我们不断的学习,有了一部分的经验,对以后的发展打下坚实的基础。 (二)研究现状 地铁车站应根据车站规模、运行要求、地面环境、地质、技术经济指标等条件选用合 理的结构形式和施工方法。结构净空尺寸应满足建筑、设备、使用以及施工工艺等要求, 还要考虑施工误差、结构变形和后期沉降的影响。

工程测量测量误差练习题

测量误差(练习题) 一、选择题 1、对某一量进行观测后得到一组观测值,则该量的最或是值为这组观测值的( )。 A .最大值 B .最小值 C .算术平均值 D .中间值 2、观测三角形三个内角后,将它们求和并减去180°所得的三角形闭合差为( )。 A .中误差 B .真误差 C .相对误差 D .系统误差 3、系统误差具有的特点为( )。 A .偶然性 B .统计性 C .累积性 D .抵偿性 4、在相同的观测条件下测得同一水平角角值为:173°58′58"、173°59′02"、173°59′04"、173°59′06"、173°59′10",则观测值的中误差为( )。 A .±" B.±" C.±" D.±" 5、一组测量值的中误差越小,表明测量精度越( ) A .高 B .低 C .精度与中误差没有关系 D .无法确定 6、边长测量往返测差值的绝对值与边长平均值的比值称为( )。 A .系统误差 B .平均中误差 C .偶然误差 D .相对误差 7、对三角形三个内角等精度观测,已知测角中误差为10″,则三角形闭合差的中误差为( )。 A .10″ B .30″ C .″ D .″ 8、两段距离及其中误差为:D1=72.36m±0.025m, D2=50.17m±0.025m ,比较它们的测距精度为( )。 A .D1精度高 B .两者精度相同 C .D2精度高 D .无法比较 9、设某三角形三个内角中两个角的测角中误差为±4″和±3″,则求算的第三个角的中误差为( )。 A .±4″ B .±3″ C .±5″ D .±6″ 10、设函数X=L 1+2L 2,Y=X+L 3,Z=X+Y ,L 1,L 2,L 3的中误差均为m ,则X ,Y ,Z 的中误差分别为( )。 A .m 5,m 6,m 11 B .m 5,m 6,m 21 C .5m ,6m ,21m D .5m ,6m ,11m 11、某三角网由10个三角形构成,观测了各三角形的内角并算出各三角形闭合差,分别为:+9″、-4″、-2″、+5″、-4″、+3″、0″、+7″、+3″、+1″,则该三角网的测角中误差为( )。 A .±12″ B . ±″ C . ±″ D .±″ 12、测一正方形的周长,只测一边,其中误差为±0.02m,该正方形周长的中误差为( )。

施工测量的目的和内容

测量地形图是以地面控制点为基础,测量出控制点至周围各地形特征点的距离、角度、高差以及测点与测点间的相互位置关系等数据,并按一定的比例将这些测点缩绘到图纸上,绘制成图。施工测量是以地面上的施工控制点为基础,根据图纸上的建、构筑物的设计尺寸,计算出各部分的特征点与控制点之间的距离、角度、高差等数据,将建、构筑物的特征点在实地标定出来,以便施工,这项工作又称“放样”。施工测量所采用的方法基本上与测图所用的方法一致,所用仪器基本相同。但施工测量也有其自身的特点和规律。 一、施工测量的目的和内容 施工测量的目的是按照设计和施工的要求将设计的建筑物、构筑物的平面位置和高程在地面上标定出来,作为施工的依据,并在施工过程中进行一系列的测量工作,以衔接和指导各工序之间的施工。 施工测量贯穿于整个施工过程中。从场地平整、建筑物定位、基础施工,到建筑物构件安装等,都需要进行施工测量,以能使建筑物、构筑物各部分的尺寸、位置符合设计要求。其主要内容有:(1)建立施工控制网。(2)建筑物、构筑物的详细测设。(3)检查、验收。每道施工工序完工之后,都要通过测量检查工程各部位的实际位置及高程是否与设计要求相符合。(4)变形观测。随着施工的进展,测定建筑物在平面和高程方面产生的位移和沉降,收集整理各种变形资料,作为鉴定工程质量和验证工程设计、施工是否合理的依据。 二、施工测量的特点 与测图工作相比,具有如下特点:(1)目的不同。测图工作是将地面上的地物、地貌测绘到图纸上,而施工测量是将图纸上设计的建筑物或构筑物测设到实地。(2)精度要求不同。施工测量的精度要求取决于工程的性质、规模、材料、施工方法等因素。一般高层建筑物的施工测量精度要求高于低层建筑物的施工测量精度,钢结构施工测量精度要求高于钢筋混凝土结构的施工测量精度,装配式建筑物的施工测量精度要求高于非装配式建筑物的施工测量精度。此外,由于建筑物、构筑物的各部位相对位置关系的精度要求较高,因而工程的细部放样精度要求往往高于整体放样精度。(3)施工测量工序与工程施工工序密切相关,某项工序还没有开工,就不能进行该项的施工测量。测量人员必须了解设计的内容、性质及其对测量工作的精度要求,熟悉图纸上的设计数据,了解施工的全过程,并掌握施工现场的变动情况,使施工测量工作能够与施工密切配合。(4)受施工干扰。施工场地上工种多、交叉作业频繁,并要填、挖大量土石方,地面变动很大,又有车辆等机械振动,因此各种测量标志必须埋设稳固且在不易破坏的位置。解决办法是采用二级布设方式,即设置基准网和定线网。基准网远离现场,定线网布设于现场,当定线网密度不够或者现场受到破坏时,可用基准网增设或恢复之。定线网的密度应尽可能满足一次安置仪器就可测设的要求。 三、施工测量的原则 为了保证施工能满足设计要求,施工测量也应遵循“由整体到局部,先控制后细部”的原则,即先在施工现场建立统一的施工控制网,然后以此为基础,测设出各个建筑物和构筑物的细部位置。这样可以减少误差累积,保证测设精度,免除因建筑物众多而引起测设工作的紊乱。 此外,施工测量责任重大,稍有差错,就会酿成工程事故,造成重大损失。因此,必须加强外业和内业的检核工作。检核是测量工作的灵魂。 四、施工测量的精度 施工测量的精度取决于工程的性质、规模、材料、施工方法等因素。因此,施工测量的精度应由工程设计人员提出的建筑限差或工程施工规范来确定。建筑限差一般是指工程竣工后的最低精度要求,它应理解为允许误差。设建筑限差为,工程竣工后的中误差应为建筑限差的一半,即= /2。 工程竣工后的中误差由测量中误差和施工中误差组成,而测量中误差又由控制测量中误差和细部放样中误差两部分组成,则 (5-1-1) 上述各种误差之间的相互匹配要根据施工现场条件来确定,并以每一项作业工序的“难易度、成本比”大致相等为准则,既要保证工程质量,又要节省人力、物力。 一般来说,测量精度要比施工精度高。它们之间的比例关系为:

工程测量中三角高程测量误差分析及解决方法

工程测量中三角高程测量的误差分析及解决方法 戚忠 中国水利水电第四工程局有限公司测绘中心,青海西宁,邮编810007 一引言 一直以来,为保证精度,高等级高程测量都采用几何水准的方法。而在某些特定环境下,几何水准往往会耗费大量的人力、物力,且受地形等条件因素影响较大!鉴于几何水准在某些特定情形下无法进行的问题,探讨如何提高三角高程测量的精度,以保证其测量成果的可行性和可靠性,使得三角高程测量成果足以替代几何水准。随着高精度全站仪的问世,结合合理的方式、方法,运用三角高程替代几何水准测量是切实可行的。三角高程代替几何水准可以解决跨河水准及高边坡、危险地段无法进行精密几何水准测量的难题,保障危险地段测量人员和仪器设备的安全,提高了工作效率,降低了测量成本。 二三角高程测量误差分析 常见的三角高程测量有单向观测法、中间法和对象观测法,对向观测法可以消除部分误差,故在三角高程测量中采用较为广泛。对向观测法三角高程测量的高差公式为: (1) 式中:D为两点问的距离;a为垂直角;为往返测大气垂直折光系数差;i为仪器高;v为目标高; R为地球曲率半径(6370 km);为垂线偏差非线性变化量; 令。 对式(1)微分,则由误差传播定律可得高差中误差:

(2) 由式(2)可知影响三角高程测量精度主要有:1.竖直角(或天顶距)、2.距离、3.仪器高、4.目标高、5.球气差。第1、2项可以通过试验观测数据分析选择精度合适的仪器及其配套的反光棱镜、温度计、气压表等,我们选择的是徕卡TCA2003及其配套的单棱镜、国产机械通风干湿温度计、盒式气压计;第3、4项,一般要求建立稳定的观测墩和强制对中装置,采用游标卡尺在基座3个方向量取,使3个方向量取的校差小于0.2 mm,并在测前、测后进行2次量测;第5项球气差也就是大气折光差,也是本课题的研究重点。 三减弱大气折光差的方法和措施 大气折光差:是电磁波经过大气层时,由于传播路径产生弯曲及传播速度发生变化而引起观测方向或距离的误差。大气折光对距离的影响,表现在电磁波测距中影响的量值相对较大,必须在测距的同时实测测线上的气象元素,再用大气折光模型对距离观测值进行改正。减弱大气折光差的方法和措施有:a.提高观测视线高度;b.尽量选择短边传递高程;c.选择有利观测时间;d.采用同时对向观测;e.确定合适的大气折光系数。上述的5种办法虽然都可以减弱大气折光对三角高程测量精度的影响,但在实际工作中也有很多制约因素。下面具体分析。 3.1提高观测视线高度。由于工地地形条件限制、抬高视线高度需要造高标增大测量成本、由于标墩高大影响其它工程施工,提高观测视线高度的方法不可取。 3.2尽量选择短边传递高程。由三角高程测量高差计算公式可知,折光的影响与距离的平方成比例,选择短边传递高程有利。但控制网的边长是由多种因素控制的,不能随意增加和减少。 3.3选择有利观测时间。中午前后(10~15时)垂直折光小,观测垂直角最有利。日出

地铁车站周边环境调查报告

目录 第一部分调查总体情况 (2) 一、工程调查目的和依据 (2) (一)、调查目的 (2) (二)、调查依据 (2) 二、调查范围和对象 (2) 三、调查方法和手段 (3) 第二部分车站周边环境调查 (4) 一、概况 (4) 二、调查成果及资料说明 (5) 三、周边环境风险说明及对工程设计、施工的建议 (6) 第三部分附图、附表 (6) 附表1 建(构)筑物调查表 (6) 附表2 地下管线调查表 (10) 附表3 周边环境调查统计表 (17)

第一部分调查总体情况 一、工程调查目的和依据 (一)、调查目的 因2号风道及A出入口设计环境发生变化,本次周边环境调查目的为保证在2号风道及A出入口结构施工过程中对周边地上、地下建筑、管线进行保护,防止因车站及区间施工造成对周边建筑、管线的破坏,保障周边管线及临建的安全,同时也保障了地铁结构工程的质量。 (二)、调查依据 调查依据为《天津市地铁建设发展有限公司周边环境调查管理办法》 二、调查范围和对象 本次周边环境调查范围包括施工基坑边缘以外30m,调查对象主要包括:可能受车站施工影响的周边建筑物,包括1号线既有结构、天庆里、宝和里、muse 酒吧、晶采大厦等。 下瓦房车站2号风道及A出入口地处河西区大沽南路、琼州道繁华路段,施工设计切改管线6种,已全部切改到基坑范围以外。

车站周边环境调查范围示意图 三、调查方法和手段 与各条管线的产权单位进行沟通,并结合管线综合图纸,对既有管线进行调查。与河西人民防空办公室进行沟通,绘制出现状地下管线位置。与周边临建的使用单位进行调查,明确现状临建的基础形式、结构形式、使用情况等。

误差基本知识及中误差计算公式

测量误差按其对测量结果影响的性质,可分为: 一.系统误差(system error) 1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均相同或按一定的规律变化,这种误差称为系统误差。 2.特点:具有积累性,对测量结果的影响大,但可通过一般的改正或用一定的观测方法加以消除。 二.偶然误差(accident error) 1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均不一定,这种误差称为偶然误差。但具有一定的统计规律。 2.特点: (1)具有一定的范围。 (2)绝对值小的误差出现概率大。 (3)绝对值相等的正、负误差出现的概率相同。 (4)数学期限望等于零。即: 误差概率分布曲线呈正态分布,偶然误差要通过的一定的数学方法(测量平差)来处理。 此外,在测量工作中还要注意避免粗差(gross error)(即:错误)的出现。 §2衡量精度的指标 测量上常见的精度指标有:中误差、相对误差、极限误差。 一.中误差 方差 ——某量的真误差,[]——求和符号。 规律:标准差估值(中误差m)绝对值愈小,观测精度愈高。 在测量中,n为有限值,计算中误差m的方法,有: 1.用真误差(true error)来确定中误差——适用于观测量真值已知时。 真误差Δ——观测值与其真值之差,有: 标准差 中误差(标准差估值),n为观测值个数。 2.用改正数来确定中误差(白塞尔公式)——适用于观测量真值未知时。 V——最或是值与观测值之差。一般为算术平均值与观测值之差,即有: 二.相对误差 1.相对中误差=

2.往返测较差率K= 三.极限误差(容许误差) 常以两倍或三倍中误差作为偶然误差的容许值。即:。§3误差传播定律 一.误差传播定律 设、…为相互独立的直接观测量,有函数 ,则有: 二.权(weight)的概念 1.定义:设非等精度观测值的中误差分别为m 1、m 2 、…m n ,则有: 权其中,为任意大小的常数。 当权等于1时,称为单位权,其对应的中误差称为单位权中误差(unit weight mean square error) m ,故有:。 2.规律:权与中误差的平方成反比,故观测值精度愈高,其权愈大。

相关主题
文本预览
相关文档 最新文档