当前位置:文档之家› 化学元素的基本性质

化学元素的基本性质

化学元素的基本性质
化学元素的基本性质

化学元素的基本性质

--------------------------------------------------------------------------------

1氢

氢就是元素周期表中的第一号元素,元素名来源于希腊文,原意就是“水素”。氢就是由英国化学家卡文迪许在1766年发现,称之为可燃空气,并证明它在空气中燃烧生成水。1787年法国化学家拉瓦锡证明氢就是一种单质并命名。氢在地壳中的丰度很高,按原子组成占15、4%,但重量仅占1%。在宇宙中,氢就是最丰富的元素。在地球上氢主要以化与态存在于水与有机物中。有三种同位素:氕、氘、氚。氢在通常条件下为无色、无味的气体;气体分子由双原子组成;熔点-259、14°C,沸点-252、8°C,临界温度33、19K,临界压力12、98大气压,气体密度0、0899克/升;水溶解度21、4厘米3/千克水(0°C),稍溶于有机溶剂。在常温下,氢比较不活泼,但可用合适的催化剂使之活化。在高温下,氢就是高度活泼的。除稀有气体元素外,几乎所有的元素都能与氢生成化合物。非金属元素的氢化物通常称为某化氢,如卤化氢、硫化氢等;金属元素的氢化物称为金属氢化物,如氢化锂、氢化钙等。

氢就是重要的工业原料,又就是未来的能源。

--------------------------------------------------------------------------------

3锂

原子序数3,原子量6、941,就是最轻的碱金属元素。元素名来源于希腊文,原意就是“石头”。1817年由瑞典科学家阿弗韦聪在分析透锂长石矿时发现。自然界中主要的锂矿物为锂辉石、锂云母、透锂长石与磷铝石等。在人与动物机体、土壤与矿泉水、可可粉、烟叶、海藻中都能找到锂。天然锂有两种同位素:锂6与锂7。金属锂为一种银白色的轻金属;熔点为180、54°C,沸点1342°C,密度0、534克/厘米3,硬度0、6。金属锂可溶于液氨。锂与其它碱金属不同,在室温下与水反应比较慢,但能与氮气反应生成黑色的一氮化三锂晶体。锂的弱酸盐都难溶于水。在碱金属氯化物中,只有氯化锂易溶于有机溶剂。锂的挥发性盐的火焰呈深红色,可用此来鉴定锂。

锂很容易与氧、氮、硫等化合,在冶金工业中可用做脱氧剂。锂也可以做铅基合金与铍、镁、铝等轻质合金的成分。锂在原子能工业中有重要用途。

--------------------------------------------------------------------------------

11钠

原子序数11,原子量22、989768,就是最常见的碱金属元素。元素名来源拉丁文,原意就是“天然碱”。1807年英国化学家戴维首先用电解熔融的氢氧化钠的方法制得钠,并命名。在地壳中钠的含量为2、83%,居第六位,主要以钠盐的形式存在。钠就是有银白色光泽的软金属,用小刀就能很容易的切割。熔点97、81°C,沸点882、9°C,密度0、97克/厘米3。通常保存在煤油中。钠就是一种活泼的金属。钠与水会产生激烈的反应,生成氢氧化钠与氢;钠还能与钾、锡、锑等金属生成与金;金属钠与汞反应生成汞齐,这种合金就是一种活泼的还原剂,在许多时候比纯钠更适用。钠离子能使火焰呈黄色,可用来灵敏地检测钠的存在。

以往金属钠主要用于制造车用汽油的抗暴剂,但由于会污染环境,已经日趋减少。金属钠还用来制取钛,及生产氢氧化钠、氨基钠、氰化钠等。熔融的金属钠在增值反应堆中可做热交换剂。

--------------------------------------------------------------------------------

原子序数19,原子量39、0983。元素名来源于拉丁文,原意就是“碱”。1807年由英国化

学家戴维首次用电解法从氢氧化钾熔体中制得金属钾,并定名。钾在地壳中的含量就是2、59%,居第七位。重要的价矿物有钾石盐、钾硝石等;海水中含有氯化钾,其含量为氯化钠的1/40;土壤中的钾很容易进入植物组织,所以植物灰中都含有碳酸钾。钾有三种天然同位素:钾39、钾40与钾41。钾就是一种轻而软的低熔点金属;熔点为63、25°C,沸点760°C,密度0、86可/厘米3。钾比钠活泼,金属钾与水或冰的反应,即使温度低到-100°C,也非常剧烈;与酸的水溶液反应更为剧烈。金属钾在空气中燃烧,易生成橘红色的超氧化钾。金属钾与氢气反应很慢,但在400°C时反应很快。金属钾与一氧化碳反应能生成一种爆炸性的羰基化合物。含钾的化合物能使火焰呈现紫色。

钾盐就是重要的肥料,就是植物生长的三大营养元素之一。

--------------------------------------------------------------------------------

原子序数37,原子量85、4678,稀有碱金属元素。元素名来源于铷光谱上的两条明显的红线,拉丁文原意为“深红色”。1861年,德国化学家本生与基尔霍夫在研究锂云母样品的光谱时发现铷。铷就是一种分散性元素,难以独立形成矿物,常与钾共生,主要矿物有锂云母与光卤石。如有两种天然同位素:铷85与铷87,其中铷87有放射性。铷就是低熔点活泼轻金属,熔点38、89°C,沸点686°C,密度1、532克/厘米3。铷的化学性质与钾相似,但比钾活泼;挥发性铷盐的火焰成紫红色,可用来定性检验铷;金属铷可用钙、镁等还原氯化铷来制备。

金属铷在光的作用下易放出电子,可制光电管。

原子序数55,原子量132、90543,元素名来源于拉丁文,原意就是“天蓝”。1860年德国化学家本生与基尔霍夫在研究矿泉水残渣的光谱时发现铯,因其光谱上有独特的蓝线而得名。铯在地壳中的含量为百万分之七,主要矿物为铯榴石。铯就是软而轻、熔点很低的金属,纯净的金属铯呈金黄色;熔点28、4°C,沸点669、3°C,密度1、8785克/厘米3。铯的化学性质活泼,铯与水与-116°C的冰反应都很剧烈;碘化铯与三碘化铋反应能生成难溶的亮红色复盐,此反应用来定性与定量测定铯;铯的火焰成紫红色,可用来检验铯。

铯可产生突出的光电效应,极易电离而放出电子,就是光电管的主要材料;近年来在离子火箭、磁流体发电机与热电换能器等方面也有新的应用。

--------------------------------------------------------------------------------

原子序数87,就是一种天然放射性元素,化学符号源于发现者的祖国—法国的名字。1939年法国的佩雷在研究铀矿中锕227的衰变产物时发现钫。现已发现质量数201~230的钫的全部同位素,其中只有钫223、224就是天然放射性同位素,其余都就是通过人工核反应合成的。

金属钫为体心立方晶格;熔点27°C,沸点677°C,密度2、48克/厘米3。钫的化学性质活泼,所有的钫盐都就是水溶性的。

--------------------------------------------------------------------------------

原子序数4,原子量9、012182,就是最轻的碱土金属元素。1798年由法国化学家沃克兰对绿柱石与祖母绿进行化学分析时发现。1828年德国化学家维勒与法国化学家比西分别用金属钾还原熔融的氯化铍得到纯铍。其英文名就是维勒命名的。铍在地壳中含量为0、001%,主要矿物有绿柱石、硅铍石与金绿宝石。天然铍有三种同位素:铍7、铍8、铍10。铍就是钢灰色金属;熔点1283°C,沸点2970°C,密度1、85克/厘米3,铍离子半径0、31埃,比其她金属小得多。

铍的化学性质活泼,能形成致密的表面氧化保护层,即使在红热时,铍在空气中也很稳定。

铍即能与稀酸反应,也能溶于强碱,表现出两性。铍的氧化物、卤化物都具有明显的共价性,铍的化合物在水中易分解,铍还能形成聚合物以及具有明显热稳定性的共价化合物。

金属铍主要用作核反应堆的中子减速剂。铍铜合金被用于制造不发生火花的工具,如航空发动机的关键运动部件、精密仪器等。铍由于重量轻、弹性模数高与热稳定性好,已成为引人注目的飞机与导弹结构材料。

铍化合物对人体有毒性,就是严重的工业公害之一。

--------------------------------------------------------------------------------

原子序数12,原子量24、305,为碱土金属中最轻的结构金属。1808年英国化学家戴维通过电解氧华镁与氧化汞的混合物,制得镁汞齐,蒸出其中的汞后,析出金属镁。1828年法国科学家比西用金属钾还原熔融的无水氯化镁得到纯镁。镁在地壳中的含量约2、5%,就是第8个最丰富的元素。镁的矿物主要有菱镁矿、橄榄石等。海水中也含有大量的镁。镁也存在于人体与植物中,它就是叶绿素的主要组分。

镁为银白色金属;熔点648、8°C,沸点1107°C,密度1、74克/厘米3。镁具有优良的切削加工性能。金属镁能与大多数非金属与酸反应;在高压下能与氢直接合成氢化镁;镁能与卤化烃或卤化芳烃作用合成格利雅试剂,广泛应用于有机合成。镁具有生成配位化合物的明显倾向。

镁就是航空工业的重要材料,镁合金用于制造飞机及森、发动机零件等;镁还用来制造照相与光学仪器等;镁及其合金的非结构应用也很广;镁作为一种强还原剂,还用于钛、锆、铍、铀与铪的生产中。

--------------------------------------------------------------------------------

原子序数20,原子量40、078,就是碱土金属中最活泼的元素。元素名来源于拉丁文,愿意为“石灰”。1808年英国化学家戴维在电解石灰与氧化汞的混合物时得到钙汞齐,然后蒸掉汞制得纯的金属钙。钙在地壳中的含量为3、64%,排第5位。钙以化合物的形式广泛存在于自然界中,钙的主要矿物有石灰石、方解石、大理石等。

钙呈银白色;熔点839°C,沸点1484°C,密度1、54克/厘米3。钙的氧化态为+2,它能同空气中的氧与氮缓慢作用生成一层氧化物与氮化物保护膜;钙与冷水作用缓慢,在热水中发生剧烈反应放出氢;钙可与卤族元素直接反应,在加热下与硫、碳反应;钙与浓氨水形成六氨合钙,这就是一种有金属光泽的高导电性固体。

钙在生物体中就是一种重要的元素。动物体内的钙不仅参加骨骼与牙齿的组成,而且参与新陈代谢。

--------------------------------------------------------------------------------

原子序数38,原子量87、62。元素名来源它的发现地的地名。1790年克劳福德在苏格兰斯特朗申得铅矿中第一次识别了自然界存在的碳酸锶;1792年霍普证实并分离了钡、锶、钙的化合物;1808年戴维利用汞阴极电解氢氧化锶,第一次得到纯的金属锶,并命名。锶在地壳中的含量为0、02%,主要矿石为天青石与菱锶矿,锶也在动、植物中与钙共存。锶有四个天然同位素。

锶就是一种活泼金属,熔点769°C,沸点1384°C,密度2、6克/厘米3。锶能与水直接反应,与酸猛烈反应;锶与卤素、氧与硫都能迅速反应;锶在空气中会很快生成保护性氧化膜;锶在空气中加热会燃烧;在一定条件下可与氮、碳、氢直接化合;由于锶很活泼,应保存在煤油中。

金属锶的实际应用很少;锶的挥发性盐在火焰中呈现红色,可用作焰火、照明灯与曳光弹

的材料;放射性锶90可治疗骨癌。

原子序数56,原子量137、327,就是碱土金属中最活泼的元素,元素名来源于希腊文,原意就是“重的”。1774年瑞典化学家舍勒在软锰矿中发现钡,1808年英国化学家戴维通过电离分解出金属钡。钡在地壳中的含量为0、05%,主要矿物有重晶石与毒重石。钡就是银白色金属,熔点725°C,沸点1140°C,密度3、51克/厘米3。钡能与卤素与氧直接反应;钡粉在潮湿空气中能自燃,所以一般保存在煤油中;钡与水猛烈反应,生成氢氧化钡与氢;加热下能与氢、硫、氮、碳作用;除难溶的硫酸钡外,所有钡的化合物都有毒。

金属钡在电子管、显像管中用作消气剂;钡镍合金用于电子管工业;钡也可作轴承合金的成分;硫酸钡用于医疗诊断。

--------------------------------------------------------------------------------

原子序数88,原子量2260254,就是一种天然放射性元素,元素名来源于拉丁文,原意就是“射线”。1898年居里夫妇从沥青铀矿矿渣中发现了镭,1902年分离出90毫克氯化镭,初步测定了镭的原子量。镭在自然界分布很广,但含量极微,地壳中的含量为十亿分之一,总量约1800万吨。现已发现质量数为206~230的镭的全部同位素,其中只有镭223、224、226、228就是天然放射性同位素,其余都就是通过人工核反应合成的。镭226半衰期最长,天然丰度最大,就是镭的最重要的同位素。

镭就是银白色有光泽的金属,熔点700°C,沸点1140°C,密度约5克/厘米3,体心立方晶格。镭的化学性质活泼,与钡相似。金属镭暴露在空气中能迅速反应,生成氧化物与氮化物;能与水反应生成氢氧化镭;新制备的镭盐呈白色,放置后因受辐照而变色。

镭就是现代核工业兴起前最重要的放射性物质,广泛应用于医疗、工业与科研领域;把镭盐与硫化锌荧光粉混匀,可制成永久性发光粉。到1975年为止,全世界共生产了约4千克镭,其中85%用于医疗,10%用来制造发光粉。镭就是剧毒物质。

--------------------------------------------------------------------------------

原子序数21,原子量44、95591,为稀土元素之一。1817年门捷列夫根据她的元素周期律,预言“类硼”的存在与性质;1879年瑞典的尼尔森从硅铍钇矿与黑稀金矿中分离出钪的氧化物;瑞典的克莱夫在研究钪的性质后,确认就就是门捷列夫语言的“类硼”。钪在地壳中的含量约为0、0005%,主要矿物为钪钇石,钪也存在于核裂变产物中,自然界存在的钪全部为稳定同位素钪45。

钪为银白色金属,质较软;熔点1541°C,沸点2831°C密度2、989克/厘米3。晶体结构有六方密堆积(1335°C以下)与体心立方。钪在空气中比较稳定;氧化钪为白色粉末,易溶于酸中生成相应的盐;钪的离子半径较小,形成配位化合物的能力较强;钪能与多种氨羧络合剂生成稳定的螯合物;钪能与茜素与苯胂酸等有机试剂生成有色配合物,这个性质被用于钪的比色分析与光谱分析。

钪可用于制造高光效的金属卤素灯;钪的化合物在有机合成中可作催化剂;在锆氧陶瓷中掺入氧化钪,可防止晶形转变时发生龟裂。

--------------------------------------------------------------------------------

原子序数39,原子量88、90585,为稀土元素之一。元素名来源于钇的发现地—瑞典斯德哥尔摩附近的村庄名。1794年芬兰化学家加多林从硅铍钇矿中发现钇的氧化物。钇就是第一个被发现的、含量最丰富的稀土元素,在地壳中的含量约0、0028%,主要存在于硅铍钇矿与黑稀金矿中,钇还存在于核裂变产物中。自然界中存在的钇全部为稳定同位素钇89。

钇为灰黑色金属,有延展性,熔点1522°C,沸点3338°C,密度4、4689克/厘米3。钇在空气中较稳定;白色的三氧化二钇能溶于酸,生成相应的白色盐;钇与多种氨羧配合剂能生成稳定的螯合物。

含钕的钇铝石榴石就是优良的激光材料;钇铁石榴石与钇铝石榴石就是新型磁性材料;钇耐高温与耐腐蚀,可作核燃料的包壳材料。

--------------------------------------------------------------------------------

原子序数57,原子量138、9055,元素名来源于希腊文,原意就是“隐蔽”。1839年瑞典化学家莫桑德尔从粗硝酸铈中发现镧,并确认就是一种新元素。镧在地壳中的含量为0、00183%,就是稀土元素中含量最丰富的一个。镧有两种天然同位素:镧139与放射性镧138。

镧为可锻压、可延展的银白色金属,质软可用刀切开;熔点921°C,沸点3457°C,密度6、174克/厘米3。镧化学性质活泼,在干燥空气中迅速变暗,在冷水中缓慢腐蚀,热水中加快;镧可直接与碳、氮、硼、硒、硅、磷、硫、卤素等反应;镧的化合物呈反磁性。高纯氧化镧可用于制造精密透镜;镧镍合金可做储氢材料,六硼化镧广泛用作大功率电子发射阴极。

--------------------------------------------------------------------------------

原子序数58,原子量140、115,元素名来源于小行星谷神星的英文名。1803年德国化学家克拉普罗特、瑞典化学家贝采利乌斯分别发现了铈的氧化物。铈在地壳中的含量约0、0046%,就是稀土元素中丰度最高的。铈的天然稳定同位素有4种:铈136、138、140、142。

铈为铁灰色金属,有延展性,熔点799°C,沸点3426°C,密度6、657克/厘米3。铈就是除铕外稀土元素中最活泼的。铈在室温下很容易氧化;在冷水中缓慢分解,在热水中反应加快;大多数铈盐及其溶液为橙红色到橙黄色,具有反磁性与强氧化性。二氧化铈用于抛光精密玻璃制品,也可做玻璃去色剂与用于生产有色玻璃,硝酸铈用于制造白炽灯罩。

原子序数59,原子量140、90765,元素名来源于希腊文,原意就是“绿色”。1841年瑞典化学家莫桑德尔从铈土中得到镨、钕的混合物;1885年奥地利的韦耳斯拔从中分离出绿色的镨盐与玫瑰色的钕盐,确定它们就是两种新元素。镨在地壳中的含量约0、000553%,常于其它稀土元素共生于许多矿物中。天然稳定同位素只有镨141。

镨为淡黄色金属,质地较软,有延展性;熔点931°C,沸点3512°C,密度6、773克/厘米3。镨在空气中缓慢形成绿色易碎氧化物层;镨通常以三价氧化态存在。三氧化二镨可用于制造优良的高温陶瓷材料,也用于制造绿色的镨玻璃;镨在石油化工方面可用作催化剂。

--------------------------------------------------------------------------------

原子序数60,原子量144、24,元素名来源于希腊文,原意就是“孪生”。1841年瑞典化学家莫桑德尔从铈土中得到镨、钕的混合物;1885年奥地利的韦耳斯拔从中分离出绿色的镨盐与玫瑰色的钕盐,并确定它们就是两种新元素。钕在地壳中的含量为0、00239%,主要存在于独居石与氟碳铈矿中。自然界存在7种钕的同位素:钕142、143、144、145、146、148、150,其中钕142含量最高。

钕为银白色金属,熔点1024°C,密度7、004克/厘米3。钕就是最活泼的稀土金属之一,在空气中能迅速变暗,生成氧化物;在冷水中缓慢反应,在热水中反应迅速。掺钕的钇铝石榴石与钕玻璃可代替红宝石做激光材料,钕与镨玻璃可做护目镜。

--------------------------------------------------------------------------------

原子序数61,就是人工放射性元素,元素名来源于希腊文,原意就是“火”。1945年马林斯

基与格伦丁宁从铀的裂变产物中首先分离得到钷的两个同位素钷147与钷139,尽管此前人们从光谱线条的观察中发现了这种元素,但没有人能从自然界的矿石中分离出钷。

钷为六方晶格晶体,熔点1168°C,沸点2460°C,密度7、22克/厘米3。钷的氯化物、硝酸盐就是可溶性盐,草酸盐、氟化物难溶。钷147可制作防护的发光粉与用于航标灯;也可用于作核电池的燃料。

--------------------------------------------------------------------------------

原子序数62,原子量150、36,元素名来源于发现它的矿石名。1879年法国化学家布瓦博得朗从萨马尔斯克矿石中分离出氧化钐,并用光谱鉴定为一种新元素;1901年法国德马尔盖制得钐的高纯化合物。钐在地壳中的含量为0、000647%,主要存在于稀土矿物中。

钐为银白色金属,熔点1077°C,沸点1791°C,密度7、52克/厘米3,就是稀土元素中最易挥发的元素之一。钐在空气中比较稳定,在化合物中主要以三价氧化态存在。钐具有很高的热中子俘获截面,可作核反应控制棒与中子吸收材料;钐钴合金具有高剩磁、高矫顽力与最大磁能积等性能,广泛用于行波管、高频管与各种微波设备等方面。

--------------------------------------------------------------------------------

原子序数63,原子量151、965,元素名来源于拉丁文,原意就是“欧洲”。1896年由法国化学家德马尔盖发现。铕在地壳中的含量为0、000106%,就是最稀有的稀土元素,主要存在于独居石与氟碳铈矿中,自然界有两种铕的同位素:铕151与铕153。

铕为铁灰色金属,熔点822°C,沸点1597°C,密度5、2434克/厘米3;铈稀土元素中密度最小、最软与最易挥发的元素。铕为稀土元素中最活泼的金属:室温下,铕在空气中立即失去金属光泽,很快被氧化成粉末;与冷水剧烈反应生成氢气;铕能与硼、碳、硫、磷、氢、氮等反应。铕广泛用于制造反应堆控制材料与中子防护材料。

--------------------------------------------------------------------------------

原子序数64,原子量157、25,元素名来源于研究镧系元素有卓越贡献的芬兰科学家加多林。1880年瑞士的马里尼亚克分离出钆,1886年法国化学家布瓦博德朗制出纯净的钆,并命名。钆在地壳中的含量为0、000636%,主要存在于独居石与氟碳铈矿中。

钆为银白色金属,有延展性,熔点1313°C,沸点3266°C,密度7、9004克/厘米3。钆在室温下有磁性。钆在干燥空气中比较稳定,在湿空气中失去光泽;能与水缓慢反应;溶于酸形成相应的盐。钆有最高的热中子俘获面,可用作反应堆控制材料与防护材料;用钆盐经磁化制冷可获得接近绝对零度的超低温。

原子序数65,原子量158、92534,元素名来源于它的最初发现地。1843年瑞典化学家莫桑德尔从钇土中发现铽的氧化物,1877年正式命名。铽在地壳中的含量为十万分之九,存在于多种稀土矿物中,天然稳定同位素只有铽159。

铽为银灰色金属,有延展性,质较软,可用刀切开;熔点1360°C,沸点3123°C,密度8、2294克/厘米3;铽在室温下有很强的顺磁性。铽在空气中不易氧化,在高温时容易氧化;可与硫酸、硝酸、卤素反应。铽的氧化物广泛用于制备发光材料。

--------------------------------------------------------------------------------

原子序数66,原子量162、50,元素名来源于希腊文,原意就是“难以取得”。1886年法国化学家布瓦博特朗发现镝,1906年法国的于尔班制出比较纯的镝。镝在地壳中的含量为0、00045%,与其它稀土元素存在与多中矿物中,有七种天然同位素。

镝为银白色金属,质软可用刀切开;熔点1412°C,沸点2562°C,密度8、55克/厘米3;在接近绝对零度就是有超导性。镝在空气中相当稳定,高温下易被空气与水氧化,生成三氧化二镝。镝主要用于制造新型照明光源镝灯;镝可作反应堆的控制材料;镝化合物在炼油工业中可作催化剂。

--------------------------------------------------------------------------------

原子序数67,原子量164、93032,元素名来源于发现者的出生地。1878年索里特从铒土的光谱中发现钬,次年瑞典的克莱夫用化学方法从铒土中分离出钬。钬在地壳中的含量为0、000115%,与其它稀土元素一起存在于独居石与稀土矿中。天然稳定同位素只有钬165。

钬为银白色金属,质较软,有延展性;熔点1474°C,沸点2695°C,密度8、7947克/厘米3。钬在干燥空气中稳定,高温时很快氧化;氧化钬就是已知顺磁性最强的物质。获得化合物可做新型铁磁材料的添加剂;碘化钬用于制造金属卤素灯—钬灯。

--------------------------------------------------------------------------------

原子序数68,原子量167、26,元素名来源于钇土的发现地。1843年瑞典科学家莫桑德尔用分级沉淀法从钇土中发现铒的氧化物,1860年正式命名。铒在地壳中的含量为0、000247%,存在于许多稀土矿中。有六种天然同位素:铒162、164、166、167、168、170。

铒为深灰色粉末;熔点1529°C,沸点2863°C,密度9、006克/厘米3;铒在低温下就是反铁磁性的,在接近绝对零度时为强铁磁性,并为超导体。铒在室温下缓慢被空气与水氧化,氧化铒为玫瑰红色。铒可用作反应堆控制材料;铒也可作某些荧光材料的激活剂。

--------------------------------------------------------------------------------

原子序数69,原子量168、93421,元素名来源于发现者的国家名。1879年瑞典科学家克莱夫从铒土中分离出铥与钬两种新元素。铥在地壳中的含量为十万分之二,就是稀土元素中含量最少的元素,主要存在于磷钇矿与黑稀金矿中,天然稳定同位素只有铥169。

铥为银白色金属,有延展性,质较软可用刀切开;熔点1545°C,沸点1947°C,密度9、3208。铥在空气中比较稳定;氧化铥为淡绿色晶体。铥的用途不多,主要就是做金属卤素灯的添加剂。--------------------------------------------------------------------------------

原子序数70,原子量173、04,元素名来源于它的发现地。1878年马里尼亚克从铒土中分离出镱的氧化物,1907年于尔班与韦耳斯指出马里尼亚克分离出的就是氧化镥与氧化镱的混合物。镱在地壳中的含量为0、000266%,主要存在于磷钇矿与黑稀金矿中,有7种天然同位素。

镱为银白色金属,有延展性,质较软;熔点819±5°C,沸点1194°C,密度6、972克/厘米3。室温下镱能被空气与水缓慢氧化,氧化镱无色;镱可溶于酸生成无色盐。镱粒子就是重要的发光材料敏化剂;镱170可用于医疗诊断。

--------------------------------------------------------------------------------

原子序数71,原子量174、967,元素名来源发现者的出生地。1907年奥地利化学家韦耳斯与法国化学家于尔班分别从镱土中发现镥。镥在地壳的含量为十万分之7、5,主要存在于磷镱矿与黑稀金矿中,有两种天然同位素:镥175、镥176。

镥为银白色金属,就是稀土元素中最硬与最致密的金属;熔点1663°C,沸点3395°C,密度9、8404。镥在空气中比较稳定;氧化镥为无色晶体,溶于酸生成相应的无色盐。镥主要用于研究工作,其它用途很少。

原子序数89,原子量227、0278,就是天然放射性元素,元素名来源于希腊文,原意就是“射线”。1899年法国化学家德比埃尔内从铀矿渣中分离出锕。现已发现质量数209~232的全部锕同位素,其中只有锕227、228就是天然放射性同位素,其余都就是通过人工核反应合成的。

锕为银白色金属,能在暗处发光;熔点1050℃沸点3200℃密度10、07克/厘米3,面心立方晶格。锕化学性质活泼,与镧与钇十分相似,可直接与多种非金属元素直接反应;锕有较强的碱性。锕主要用做航天器中的热源。

--------------------------------------------------------------------------------

原子序数90,原子量232、0381,天然放射性元素,以北欧神话中战神的名字命名。1828年瑞典化学家贝采利乌斯发现钍。钍在地壳中的含量为百万分之1、5,自然界含土的矿物很多。现已发现质量数212~236的全部钍同位素,只有钍232就是天然放射性同位素。

钍为银白色金属,质较软,熔点1750°C,沸点4790°C,密度11、72克/厘米3。钍化学性质活泼,除惰性气体外,钍能与所有非金属元素作用,生成二元化合物;室温下与空气与水的反应缓慢,加热后反应迅速。钍及其化合物在核能、航天航空、冶金、化工、石油、电子工业等众多部门都有重要应用。钍就是高毒性元素。

--------------------------------------------------------------------------------

原子序数91,原子量231、03588,就是天然放射性元素。1913年美国化学家法扬斯发现短半衰期的镤234,1917年英国化学家索迪、哈恩等各自独立发现长半衰期的镤231,这也就是仅有的两种天然放射性元素,现已发现质量数在215~238之间的镤的21个同位素。

镤为灰色金属,属四方晶个;熔点低于1600°C,密度15、37克/厘米3。镤在空气中稳定,高温下可与氧反应。镤233在能源技术中具有重要意义。镤231就是极毒的放射性核素。--------------------------------------------------------------------------------

原子序数92,原子量238、0289,就是最重要的核燃料,元素名源于纪念1781年发现的天王星。1789年德国化学家克拉普罗特从沥青铀矿中发现铀的氧化物。1841年法国化学家佩利若用钾还原四氯化铀制的金属铀。铀在自然界分布很广,在地壳中的含量为万分之3~4,比汞、银、金的含量都高。现已发现质量数在226~242之间的16个铀同位素,其中只有铀238、235、234就是天然放射性同位素。

金属铀的熔点为1132°C,沸点3818°C,密度约19、05克/厘米3;铀在接近绝对零度时有超导性,有延展性。铀的化学性质活泼,易与绝大多数非金属反应,能与多种金属形成合金。铀最初只用做玻璃着色或陶瓷釉料,1938年发现铀核裂变后,开始成为主要的核原料。

--------------------------------------------------------------------------------

原子序数93,原子量237、0482,就是人工放射性元素,元素名源于海王星。1940年美国核物理学家麦克米伦与艾贝尔森利用中子轰击薄铀片研究裂变物的射程时,发现镎239。在铀矿中只发现过痕量的镎239、237,其它都就是通过人工核反应合成的。

镎为银白色金属,有延展性,熔点637°C,理论沸点为3902°C,平均密度为19、42克/厘米3。金属镎化学性质比较活泼,能与氧、氢、卤素直接反应;能溶于酸。镎主要用来制备钚238。

--------------------------------------------------------------------------------

原子序数94,就是人工放射性元素,元素名仿照铀、镎以冥王星命名。钚就是继镎后第二个发现的超铀元素,1940年末,美国科学家西博格、麦克米伦等在美国用60英寸回旋加速器加速的16兆电子伏特氘核轰击铀时发现钚238,次年又发现了最重要的同位素钚239。

钚为银白色金属,熔点640°C,沸点3234°C;从室温到熔点之间有6种同素异形体,这就是冶金学上很独特的现象。钚在空气中的氧化速度于湿度有关,湿度高则氧化快,且有自燃的危险;钚易溶于酸中,不过浓酸可能会引起钝化。钚239就是易裂变核素,就是重要的核燃料;钚238可用于制作同位素电池,广泛应用于宇宙飞船、人造卫星、极地气象站等的能源。钚属于极毒元素。

原子序数95,就是人工放射性元素,元素名源于发现地美洲的名字。1944年美国科学家西博格、吉奥索等在经过中子长期辐照的钚中首次发现镅241。已发现的13种镅的同位素都就是通过人工核反应得到的,其中半衰期最长的就是镅243。

镅就是银白色金属,熔点1176°C,沸点2607°C,平均密度13、66克/厘米3。镅易溶于稀的无机酸,在强酸溶液中易发生歧化。镅同位素中用途最大的就是镅241,主要用于制造中子源,还用于密度测定仪、探伤照相与做荧光分析仪的激发源;其次就是镅243,用于在高通量反应堆中生产超钚元素。

--------------------------------------------------------------------------------

原子序数96,因纪念著名科学家居里夫妇而得名。1944年美国科学家西博格、詹姆斯等用32兆电子伏特的α粒子轰击钚239时发现锔242,现已发现质量数为238~251的全部锔同位素。锔的发现先于95号元素镅。

锔为银白色金属,熔点1340°C,锔有两种同素异形体,其密度分别就是13、51克/厘米3与19、26克/厘米3。金属锔易溶于稀的无机酸;研究过的锔的固体化合物主要有卤化物、氢化物与氧化物。用途最大的锔同位素石锔242与锔244,主要用作同位素能源;锔244还就是在高通量反应堆中制造超锔元素的原料。

--------------------------------------------------------------------------------

原子序数97,就是人工放射性元素,元素名称源于发现地。1949年美国科学家汤普森、吉奥索、西博格用加速到35兆电子伏的α粒子轰击镅241时发现锫243。现已发现质量数为240、242~251的锫同位素。

锫为银白色金属,熔点986±22°C。锫的化学性质与其它锕系元素相似,能与氧、卤素、稀酸等反应。锫主要用于科学研究。

--------------------------------------------------------------------------------

原子序数98,就是人工放射性元素,因纪念发现地加利福尼亚而得名。1950年美国科学家汤普森、斯特里特等在美国加利福尼亚大学用加速的α粒子轰击锔242时发现锎245。现已发现质量数239~256的全部锎同位素。

锎的熔点为900°C,容易挥发,从室温到熔点有三种不同的晶体结构。锎最有用的同位素就是锎252,就是一种很有价值的中子源,可用于中子活化分析;锎249与锎251有较长的半衰期,适用于化学研究。

--------------------------------------------------------------------------------

原子序数99,就是人工放射性元素,因纪念著名的物理学家爱因斯坦而得名。1952年美国科学家吉奥索等从比基尼岛氢弹试验沉降物中首次成功提取并鉴定了锿与镄,现已发现了质

量数243~256的全部锿同位素。

锿就是易挥发的金属,熔点860°C。金属锿的化学性质活泼;锂可将氟化锿还原为锿。锿就是能获得可称量的最重的元素。

--------------------------------------------------------------------------------

原子序数100,就是人工放射性元素,因纪念著名的意大利物理学家费密而得名。1952年美国科学家吉奥索等从比基尼岛氢弹试验沉降物中首次成功提取并鉴定了锿与镄,现已发现了质量数242~259的全部镄同位素。镄可通过氦、铍、碳、氧、氖等离子轰击重元素靶或用反应堆中子长时间照射钚等方式合成。

--------------------------------------------------------------------------------

原子序数101,就是人工放射性元素,因纪念元素周期表的创始者门捷列夫而得名。1955年美国科学家吉奥索等用α粒子轰击锿253,首次发现钔256。钔的生成截面很小,长达3小时轰击实验只生成一个钔256原子,现已发现14种钔的放射性同位素。目前只能在痕量水平上研究钔的性质。

--------------------------------------------------------------------------------

原子序数102,就是人工放射性元素,因纪念著名瑞典科学家诺贝尔而得名。锘由谁最早发现至今仍无定论,1957年瑞典的国际科学家小组声称发现102号元素;1958年美国与苏联的科学家分别进行合成102号元素的试验,一致证明瑞典的实验结果就是错误的。1971年美国橡树岭国家实验室合成了锘259。现已发现质量数为250~259的全部锘同位素。半衰期最长的锘259的半衰期也只有约1小时。

--------------------------------------------------------------------------------

原子序数103,就是人工放射性元素,为纪念回旋加速器的创始人—美国科学家劳伦斯而得名。1961年美国科学家吉奥索等用加速的硼粒子轰击锎靶时,观察到一种半衰期约8秒的新核素,后证明就是铹258。此后苏联杜布纳联合核子研究所用加速的氧粒子轰击镅靶生成了铹256与铹257。现已发现质量数为253~260的全部铹同位素。半衰期最长的铹260的半衰期只有约3分钟。

非金属单质(F2 ,Cl2 , O2 , S, N2 , P , C , Si)

1, 氧化性:

F2 + H2 === 2HF

F2 +Xe(过量)===XeF2

2F2(过量)+Xe===XeF4

nF2 +2M===2MFn (表示大部分金属)

2F2 +2H2O===4HF+O2

2F2 +2NaOH===2NaF+OF2 +H2O

F2 +2NaCl===2NaF+Cl2

F2 +2NaBr===2NaF+Br2

F2+2NaI ===2NaF+I2

F2 +Cl2 (等体积)===2ClF

3F2 (过量)+Cl2===2ClF3

7F2(过量)+I2 ===2IF7

Cl2 +H2 ===2HCl

3Cl2 +2P===2PCl3

Cl2 +PCl3 ===PCl5

Cl2 +2Na===2NaCl

3Cl2 +2Fe===2FeCl3

Cl2 +2FeCl2 ===2FeCl3

Cl2+Cu===CuCl2

2Cl2+2NaBr===2NaCl+Br2

Cl2 +2NaI ===2NaCl+I2

5Cl2+I2+6H2O===2HIO3+10HCl

Cl2 +Na2S===2NaCl+S

Cl2 +H2S===2HCl+S

Cl2+SO2 +2H2O===H2SO4 +2HCl

Cl2 +H2O2 ===2HCl+O2

2O2 +3Fe===Fe3O4

O2+K===KO2

S+H2===H2S

2S+C===CS2

S+Fe===FeS

S+2Cu===Cu2S

3S+2Al===Al2S3

S+Zn===ZnS

N2+3H2===2NH3

N2+3Mg===Mg3N2

N2+3Ca===Ca3N2

N2+3Ba===Ba3N2

N2+6Na===2Na3N

N2+6K===2K3N

N2+6Rb===2Rb3N

P2+6H2===4PH3

P+3Na===Na3P

2P+3Zn===Zn3P2

2.还原性

S+O2===SO2

S+O2===SO2

S+6HNO3(浓)===H2SO4+6NO2+2H2O

3S+4 HNO3(稀)===3SO2+4NO+2H2O

N2+O2===2NO

4P+5O2===P4O10(常写成P2O5)

2P+3X2===2PX3 (X表示F2,Cl2,Br2)

PX3+X2===PX5

P4+20HNO3(浓)===4H3PO4+20NO2+4H2O

化学丨常见化学元素的性质特征或结构特征

常见化学元素的性质特征或结构特征 一、氢元素 1.核外电子数等于电子层数的原子; 2.没有中子的原子; 3.失去一个电子即为质子的原子; 4.得一个电子就与氦原子核外电子排布相同的原子; 5.质量最轻的原子;相对原子质量最小的原子;形成单质最难液化的元素; 6.原子半径最小的原子; 7.形成的单质为相同条件下相对密度最小的元素; 8.形成的单质为最理想的气体燃料; 9.形成酸不可缺少的元素; 二、氧元素 1.核外电子数是电子层数4倍的原子; 2.最外层电子数是次外层电子数3倍的原子; 3.得到两个电子就与氖原子核外电子排布相同的原子; 4.得到与次外层电子数相同的电子即达到8电子稳定结构的原子; 5.地壳中含量最多的元素; 6.形成的单质是空气中第二多的元素; 7.形成的单质中有一种同素异形体是大气平流层中能吸收太阳光紫外线的元素; 8.能与氢元素形成三核10电子分子(H2O)的元素; 9.能与氢元素形成液态四核18电子分子(H2O2)的元素; 10.在所有化合物中,过氧化氢(H2O2)中含氧质量分数最高;

11.能与氢元素形成原子个数比为1:1或1:2型共价液态化合物的元素; 12.能与钠元素形成阴、阳离子个数比均为1:2的两种离子化合物的元素; 三、碳元素 1.核外电子数是电子层数3倍的原子; 2.最外层电子数是次外层电子数2倍的原子; 3.最外层电子数是核外电子总数2/3的原子; 4.形成化合物种类最多的元素; 5.形成的单质中有一种同素异形体是自然界中硬度最大的物质; 6.能与硼、氮、硅等形成高熔点、高硬度材料的元素; 7.能与氢元素形成正四面体构型10电子分子(CH4)的元素; 8.能与氢元素形成直线型四核分子(C2H2)的元素; 9.能与氧元素形成直线型三核分子(CO2)的元素。 四、氮元素 1.空气中含量最多的元素; 2.形成蛋白质和核酸不可缺少的元素; 3.能与氢元素形成三角锥形四核10电子分子(NH3)的元素; 4.形成的气态氢化物(NH3)能使湿润的蓝色石蕊试纸变红的元素; 5.能与氢、氧三种元素形成酸、碱、盐的元素; 6.非金属性较强,但形成的单质常用作保护气的元素。 五、硫元素 1.最外层电子数是倒数第三层电子数3倍的原子;

化学中各元素性质

各元素性质 各元素性质 序号符 号 中 文 读 音 原子 量 外层电 子 常见 化合 价 分类英文名英文名音标其它 1H氢轻11s11、-1主/非/ 其 Hydrogen['haidr?d??n]最轻 2He氦害41s2主/非/ 稀 Helium['hi:li?m]最难液化 3Li锂里72s11主/碱Lithium['liθi?m]活泼 4Be铍皮92s22主/碱 土 Beryllium[be'rili?m]最轻碱土金属元素 5B硼朋10.82s2 2p13主/类Boron['b?:r?n]硬度仅次于金刚石的非金属元素 6C碳探122s2 2p22、4、 -4 主/非/ 其 Carbon['kɑ:b?n]硬度最高 7N氮蛋142s2 2p3-3 1 2 3 4 5 主/非/ 其 Nitrogen['naitr?d??n] 空气中含量最多的元 素 8O氧养162s2 2p4-2、-1、2主 / 非 / 其 Oxygen['?ksid??n]地壳中最多 9F氟福192s2 2p5-1主 / 非 / 卤 Fluorine['flu?ri:n] 最活泼非金属,不能 被氧化 10Ne氖乃202s2 2p6主 / 非 / 稀 Neon['ni:?n] 稀有 气体 11Na钠那233s11主Sodium['s?udi?m]活泼

/碱 12Mg镁每243s22主 / 碱 土 Magnesium[mæɡ'ni:zi?m] 轻金 属之 一 13Al铝吕273s2 3p13主 / 金 / 其 Aluminum[,ælju'minj?m] 地壳 里含 量最 多的 金属 14Si硅归283s2 3p24主 / 类 Silicon['silik?n] 地壳 中含 量仅 次于 氧 15P磷林313s2 3p3-3、3、5主 / 非 / 其 Phosphorus['f?sf?r?s] 白磷 有剧 毒 16S硫留323s2 3p4-2、4、6主 / 非 / 其 Sulfur['s?lf?] 质地 柔 软, 轻。 与氧 气燃 烧形 成有 毒的 二氧 化硫 17Cl氯绿35.53s2 3p5-1、1、3、 5、7 主 / 非 / 卤 Chlorine['kl?:ri:n] 有毒 活泼

高中化学元素关系图

硫(S)元素关系图 重要关系: ○9H2S→S:SO2、Cl2、Ca(ClO)2、Br2、I2、KMnO4、K2Cr2O7、KNO3、H2O、Fe3+、O2、浓H2SO4 ○21SO2→SO42-:H2O2、X2、HNO3、KMnO4、Ca(ClO)2、Na2O2 ○22H2SO4(浓)→SO2:Cu、C、S、P、HBr、HI、H2S ○23SO32-→SO42-:Cl2、Br2、I2、O2、KMnO4、K2Cr2O7、HNO3、H2O2、Na2O2 ○1Na2S+CuSO4====Na2SO4+CuS↓○2H2S+CuSO4====CuS↓+H2SO4 ○3Na2S+H2SO4(稀)====Na2SO4+H2S↑○4H2S+2NaOH====Na2S+2H2O ○5Na2S+FeSO4====FeS↓+Na2SO4○6FeS+H2SO4(稀)====FeSO4+H2S↑○72H2S+3O点燃2H2O+2SO2 ○8S+H2△H2S ○9H2S+Cl2====2HCl+S↓ 2H2S+SO2====3S↓+2H2O H2S+Br2====2HBr+S↓ H2S+I2====2HI+S↓ 5H2S+2KMnO4+3H2SO4====5S↓+K2SO4 +2MnSO4+8H2O 3H2S+K2Cr2O7+4H2SO4====3S↓+K2SO4 +Cr2(SO4)3+7H2O 3H2S+2HNO3(稀)====3S↓+2NO↑+2H2O H2S+H2O2====S↓+2H2O H2S+2FeCl3====S↓+2FeCl2+2HCl 2H2S+O2====2S↓+2H2O H2S+H2SO4(浓)====SO2↑+S↓+2H2O 2H2S+Ca(ClO)2====2S↓+CaCl2+2HCl ○10S+2Cu△Cu2S ○11Na2S2O3+2HCl====2NaCl+S↓+SO2↑+H2O ○12S+O SO2 ○133SO2+2Na2S====3S↓+2Na2SO3 ○14H2SO3+2H2S====3H2O+3S↓

高中化学元素的性质

元素的性质呈现周期性变化的根本原因-碱金属元素的性质-卤 族元素的性质及递变规律 卤族元素的性质及递变规律 (1)相似性: ①卤素原子最外层都有七个电子,易得到一个电子形成稀有气体元素的稳定结构,因此卤素的负价均为-1价。氯、溴、碘的最高正价为+7价,有的还有+1、+3、+5价,其最高价氧化物及水化物的化学式通式分别为X2O7和HXO4(F除外) ②卤族元素的单质均为双原子分子(X2);均能与H2化合: H 2+X2=2HX;均能与水不同程度反应,其通式(除F2外)为:H2O+X2 HX+HXO;均能与碱溶液反应;Cl2、Br2、I2在水中的溶解度较小(逐渐减小,但在有机溶剂中溶解度较大,相似相溶)。 (2)递变性: ①原子序数增大,原子的电子层数增加,原子半径增大,元素的非金属性减弱。 ②单质的颜色逐渐加深从淡黄绿色→黄绿色→深红棕色→紫黑色,状态从气→气→液→固,溶沸点逐渐升高;得电子能力逐渐减弱,单质的氧化性逐渐减弱,与氢气化合由易到难,与水反应的程度逐渐减弱。 ③阴离子的还原性逐渐增强。 ④氢化物的稳定性逐渐减弱。 ⑤最高正价含氧酸的酸性逐渐减弱(氟没有含氧酸)。

元素的性质: 由于核外电子排布的周期性变化,使元素表现出不同的性质。元素性质与原子结构密切相关,主要与原子核外电子排布,特别是最外层电子数有关。 碱金属元素的性质: (1)元素性质同:均为活泼金属元素,最高正价均为+1价异:失电子能力依次增强,金属性依次增强 (2)单质性质同:均为强还原性(均与O2、X2等非金属反应,均能与水反应生成碱和氢气。),银白色,均具轻、软、易熔的特点异:与水(或酸)反应置换出氢依次变易,还原性依次增强,密度趋向增大,熔沸点依次降低,硬度趋向减小 (3)化合物性质 同:氢氧化物都是强碱。过氧化物M2O2具有漂白性,均与水反应产生O2;异:氢氧化物的碱性依次增强。 注:①Li比煤油轻,故不能保存在煤油中,而封存在石蜡中。②Rb,Cs比水重,故与水反应时,应沉在水底。③与O2反应时,Li为 Li2O;Na可为Na2O,Na2O2;K,Rb,Cs的反应生成物更复杂。

化学元素的一些特殊性质

化学元素的一些特殊性质 高中化学 2011-05-02 19:55 一.周期表中特殊位置的元素 ①族序数等于周期数的元素H、Be、Al、Ge。 ②族序数等于周期数2倍的元素C、S。 ③族序数等于周期数3倍的元素O。 ④周期数是族序数2倍的元素Li、Ca。 ⑤周期数是族序数3倍的元素Na、Ba。 ⑥最高正价与最低负价代数和为零的短周期元素C。 ⑦最高正价是最低负价绝对值3倍的短周期元素S。 ⑧除H外,原子半径最小的元素F。 ⑨短周期中离子半径最大的元素P。 二.常见元素及其化合物的特性 ①形成化合物种类最多的元素、单质是自然界中硬度最大的物质的元素或气态氢化物中氢的质量分数最大的元素C。 ②空气中含量最多的元素或气态氢化物的水溶液呈碱性的元素N。 ③地壳中含量最多的元素、气态氢化物沸点最高的元素或氢化物在通常情况下呈液态的元素O。 ④最轻的单质的元素H ;最轻的金属单质的元素Li 。 ⑤单质在常温下呈液态的非金属元素Br ;金属元素Hg 。 ⑥最高价氧化物及其对应水化物既能与强酸反应,又能与强碱反应的元素Be、Al、Zn。

⑦元素的气态氢化物和它的最高价氧化物对应水化物能起化合反应的元素N;能起氧化还原反应的元素S。 ⑧元素的气态氢化物能和它的氧化物在常温下反应生成该元素单质的元素S。 ⑨元素的单质在常温下能与水反应放出气体的短周期元素Li、Na、F。 ⑩常见的能形成同素异形体的元素C、P、O、S。 ? (2011-04-30 20:09:45) ? (2011-04-30 20:04:35) ? (2011-04-29 09:58:50) ? (2011-04-07 17:33:15) ?(2011-04-06 17:32:47) ? (2011-04-06 16:00:54) ? (2011-04-05 19:26:15) ? (2011-04-04 12:10:35) ? (2011-03-21 10:57:34) ? (2010-05-26 20:21:19)

高中化学元素周期表教案

高中化学元素周期表 教案 Revised on November 25, 2020

通过学生亲自编排元素周期表培养学生的求实、严谨和创新的优良品质;提高学生的学习兴趣 教学方法:通过元素周期表是元素周期律的具体表现形式的教学,进行“抽象和具体”这一科学方法的指导。 教学重难点:同周期、同主族性质的递变规律;元素原子的结构、性质、位置之间的关系。 教学过程: [新课引入] 初中我们学过了元素周期律,谁还记得元素周期律是如何叙述的吗[学生活动] 回答元素周期律的内容即:元素的性质随着元素原子序数的递增而呈周期性的变化。 [过渡]对!这样的叙述虽然很概括,但太抽象。我们知道元素周期律是自然界物质的结构和性质变化的规律。既然是规律,我们只能去发现它,应用它,而不能违反它。但是,我们能否找到一种表现形式,将元素周期律具体化呢经过多年的探索,人们找到了元素周期表这种好的表现形式。元素周期表就是元素周期表的具体表现形式,它反映了元素之间的相互联系的规律。它是人们的设计,所以可以这样设计,也可以那样设计。历史上本来有“表”的雏形,经过漫长的过程,现在有了比较成熟,得到大家公认的表的形式。根据不同的用途可以设计不同的周期表,不同的周期表有不同的编排原则,大家可以根据以下原则将前18号元素自己编排一个周期表。 [多媒体展示]元素周期表的编排原则: 1.按原子序数递增顺序从左到右排列; 2.将电子层数相同的元素排列成一个横行;

3.把最外层电子数相同的元素排列成一列(按电子层递增顺序)。 [过渡]如果按上述原则将现在所知道的元素都编排在同一个表中,就是我们现在所说的元素周期表,现在我们一同研究周期表的结构。 [指导阅读]大家对照元素周期表阅读课本后,回答下列问题。 1.周期的概念是什么 2.周期是如何分类的每一周期中包含有多少元素。 3.每一周期有什么特点 4.族的概念是什么 5.族是如何分类的主族和副族的概念是什么,包括哪些列,如何表示 6.各族有何特点 [教师归纳小结] [板书] 一、元素周期表的结构 1、横行--周期 ①概念 ②周期分类及各周期包含元素的个数。 ③特点 a.周期序数和电子层数相同;

高中化学元素的性质总结

高中化学元素的性质总结 元素 白色固体:Na2O、MgO、Al2O3、ZnO 淡黄色粉末:Na2O 红色固体:Fe2O3、Cu2O、HgO 黑色粉末:FeO、Fe3O4、CuO、Ag2O 【提问】分析一下这些金属氧化物的化学性质有何规 律?可从下面几点去考虑: (1)加热是否分解 (2)与水反应 (3)与强酸(H+)反应 (4)与强碱(OH-)反应 (5)与氨水反应 (6)与H2或CO反应 并写出相应反应的化学方程式。 (1)热稳定性 2Ag2O 4Ag+O2↑ 2HgO 2Hg+O2↑ 4Cu 2Cu2O+O2↑ 规律:只有HgO、Ag2O、CuO等不活泼的金属氧化物加热易分解。(2)与水反应

Na2O+H2O=2NaOH MgO+H2O Mg(OH)2 2Na2O2+2H2O=4NaOH+O2↑ 规律:只有活泼金属(ⅠA、ⅡA)氧化物能与水反应。 (3)与酸反应 MgO+2H+=Mg2++H2O Al2O3+6H+=2Al3++3H2O CuO+2H+=Cu2++H2O 规律:碱性氧化物或两性氧化物能与酸溶液反应生成盐和水。 (4)与强碱溶液反应 Al2O3+2OH-=2AlO2-+H2O ZnO+2OH-=ZnO22-+H2O 规律:只有两性氧化物能与强碱反应生成盐和水。 (5)与氨水反应 Ag2O+4NH3·H2O=2Ag(NH3)2++2OH-+3H2O ZnO+4NH3· H2O=Zn(NH3)42++2OH-+3H2O 规律:易形成氨合离子的金属氧化物能与氨水反应。 (6)与还原剂的反应 CuO+H2Cu+H2O Fe2O3+3CO 2Fe+3CO2 ZnO+C Zn+CO↑ 规律:“Al”以后的金属的氧化物能与H2、C、CO等还原剂高温下发生氧化还原反应。 【小结】金属氧化物所发生的这些反应,总结起来,主要是金属氧

高一化学元素性质检测题目

预测元素及其化合物的性质 1.在元素周期表中的金属元素和非金属元素的分界线附近可以找到( ) A.耐高温材料 B.新型农药材料 C.半导体材料 D.新型催化剂材料 答案 C 解析半导体材料分布在元素周期表中金属元素和非金属元素的分界线附近。 2.砷为第4周期ⅤA族元素,根据它在周期表中的位置推测,砷不可能具有的性质是( ) A.AsH3比NH3稳定性强 B.可以存在-3、+3、+5等多种化合价 C.As2O5对应水化物的酸性比H3PO4弱 D.砷的非金属性比磷弱 答案 A 解析N、P、As均为ⅤA族元素,分别位于第2、3、4周期,根据元素周期律判断,As 比P非金属性弱,NH3比AsH3稳定性强,H3AsO4(As2O5的对应水化物)的酸性比H3PO4弱。As与N、P同在ⅤA族,N和P都有-3、+3、+5的化合价,则As也有-3、+3、+5的化合价。 3.已知某元素的最高化合价为+7价,下列说法中正确的是( ) A.该元素在元素周期表中一定处于ⅦA族 B.该元素可能是氟元素 C.该元素的某种化合物可能具有漂白性 D.该元素的单质没有还原性 答案 C 解析元素的最高化合价为+7价,可能位于ⅦA族或ⅦB族,A错误;氟元素没有正价,B错误;可能为氯元素,氯元素形成的次氯酸有漂白性,C正确;若为氯气,氯气与水反应生成盐酸和次氯酸,氯气既作氧化剂又作还原剂,有还原性,D错误。 4.2016年IUPAC命名117号元素为Ts(中文名

“”,tián),Ts的原子核外最外层电子数是7。下列说法不正确的是( ) A.Ts是第7周期ⅦA族元素 B.Ts的同位素原子具有相同的电子数 C.Ts在同族元素中非金属性最弱 D.HTs易溶于水,稳定性强,还原性强 答案 D 解析元素周期表中第7周期0族为118号元素。117号元素位于118号左侧,即ⅦA 族,所以Ts是第7周期ⅦA族元素,A正确;同位素是同种元素的不同原子,因此Ts的同位素原子具有相同的电子数,B正确;同主族元素从上到下非金属性依次减弱,所以Ts在同族元素中非金属性最弱,C正确;同主族元素从上到下非金属性逐渐减弱,气态氢化物的稳定性减弱,所以HTs的稳定性较弱,D错误。 5.下列说法中不正确的是( ) A.硅是非金属元素,但它的单质是灰黑色有金属光泽的固体 B.硅的导电性介于导体和绝缘体之间,是良好的半导体材料 C.硅的化学性质不活泼,常温下不与任何物质反应 D.自然界中不存在游离态的硅 答案 C 解析硅常温下可与F2、HF、NaOH溶液等发生反应。 6.关于硅的化学性质的叙述中,不正确的是( ) A.在常温下,不与任何酸反应 B.在常温下,可与强碱溶液反应 C.在加热条件下,能与氧气反应 D.单质硅的还原性比碳的还原性强 答案 A 解析A项,在常温下,Si能与氢氟酸反应,不正确;Si在常温下能与强碱溶液反应,加热条件下也能与Cl2、O2等反应,B、C正确;碳和硅最外层电子数相同,化学性质相似,但硅比碳易失电子,还原性比碳强,D正确。

化学基础知识入门

实用标准文档 文案大全 化学基础知识 一.原子核 a.数量关系:核内质子数=核外电子数 b、电性关系: 原子:核电荷数=核内质子数=核外电子数 阳离子:核内质子数>核外电子数 阴离子:核内质子数<核外电子数 c、质量关系:质量数(A)=质子数(Z)+中子数(N) 二微粒的性质 1.分子是很小的粒子 体积小:如果用水分子的大小跟乒乓球比,就像拿乒乓球跟地球比一样。 质量小:以水分子为例,1个水分子的质量大约是3×10-26 kg。 分子虽然小且轻,却是真实存在的。 2.分子总是在不断地运动 分子运动的例子很多。湿衣服经过晾晒会干;很远的地方就能嗅到花香;糖块放到水里,糖不见了,水却变甜了,这些都是分子不断运动的结果。分子的运动跟温度有关,温度高,分子运动快;温度低,分子运动慢。 3.构成物质的微粒 一、分子

分子是保持物质化学性质的最小微粒。 实用标准文档 文案大全 二、原子 原子是化学反应变化中最小的微粒。 三、分子、原子的区别与联系: 例题解析

例1、下列说法有错的是() A.原子可以直接构成物质 B.分子可以再分,原子不能再分 C.化学反应中,分子改变而原子不变,说明分子是运动的,原子是静止的 D.水分子保持水的化学性质 解:分子和原子均可以直接构成物质,分子由原子构成,原子可分为质子和中子。分子是保持物质化学性质的最小微粒,分子原子都在做不规则的运动。 实用标准文档 文案大全 三元素 1.元素的概念: 具有相同核电荷数(即核内质子数)的一类原子的总称。 水是由水分子构成的,水分子是由氢原子和氧原子构成的;氧气是由氧分子构成的, 氧分子又是由氧原子构成的。同种原子质子数相同,即水分子中的氧原子和氧分子中的氧原子,其质子数都是8,化学上把质子数都是8的氧原子统称为氧元素。 【小结】 (1)既然核电荷数=核内质子数=核外电子数,为何不说元素是具有相同电子数的一 类原子的总称呢?因为在发生化学反应时,有些原子的核外电子失去或得到(变为离子),核外电子数发生了变化。 (2)区分原子种类的是质子数(即核电荷数)不同,那么区分元素的依据也是核电荷 数(或核内质子数)不同,即核电荷数不同,元素种类不同。例如,碳元素的质子数为6,而氧元素的质子数为8,氢元素的质子数为1。 【注意】元素是个宏观的概念,只有种类之分没有数量之别。(一般“元素”与“组成”匹配,“分子或原子”与“构成”匹配)

(完整版)高中化学元素性质

高中化学方程式

一、非金属单质(F2,Cl2,O2,S,N2,P,C,Si,H) 1、氧化性: ①氟F2+H2===2HF (阴暗处爆炸) 2F2+2H2O===4HF+O2 (水是还原剂) 2F2+2NaOH===2NaF+OF2+H2O 熔融条件下:F

氟气与稀有气体反应:F2+Xe(过量)==XeF22F2(过量)+Xe==XeF4(XeF4是强氧化剂,能将Mn2+氧化为MnO4–) 氟气与金属反应:nF2+2M===2MFn(M表示大部分金属) 氟气与其他卤素元素反应:7F2(过量)+I2===2IF7F2+Cl2(等体积)===2ClF (ClF属于类卤素:ClF+H2O==HF+HClO ) 3F2(过量)+Cl2===2ClF3 (ClF3+3H2O==3HF+HClO3 ) ②氯气Cl2+H22HCl (将H2在Cl2点燃;混合点燃、加热、光照发生爆炸) 3Cl2+2P2PCl3Cl2+PCl3PCl5Cl2+2Na2NaCl 3Cl2+2Fe2FeCl3Cl2+Cu CuCl2 ③氧气2O2+3Fe Fe3O4O2+K===KO2 ④硫S+H2H2S 2S+C CS2S+Zn ZnS S+Fe FeS (既能由单质制取,又能由离子制取) S+2Cu Cu2S (只能由单质制取,不能由离子制取) 3S+2Al Al2S3 (只能由单质制取,不能由离子制取) ⑤氮气N2+3H2催化剂 高温高压 2NH3N2+3Mg Mg3N2N2+3Ca Ca3N2 N2+3Ba Ba3N2N2+6Na2Na3N N2+6K2K3N N2+6Rb2Rb3N N2+2Al2AlN ⑥磷P4+6H24PH3P+3Na Na3P 2P+3Zn Zn3P2H2+2Li2LiH 2、还原性 ①硫S+O2SO2S+H2SO4(浓)3SO2↑+2H2O S+6HNO3(浓)H2SO4+6NO2↑+2H2O S+4H++6==6NO2↑+2H2O+-2 4 SO 3S+4HNO3(稀)3SO2+4NO↑+2H2O 3S+4H++4- 3 NO3SO2+4NO↑+2H2O ②氮N2+O2 2NO ③磷4P+5O2P4O10(常写成P2O5) 2P+3X22PX3(X表示F2,Cl2,Br2)PX3+X2 PX5 P4+20HNO3(浓)4H3PO4+20NO2↑+4H2O ④碳C+2F2CF4C+2Cl2CCl4 C+O2(足量)CO2 2C+O2(少量)2CO C+CO22CO C+H2O CO+H2(生成水煤气) 2C+SiO2Si+2CO(制得粗硅) ⑤硅Si(粗)+2Cl2SiCl4(SiCl4+2H2===Si(纯)+4HCl) Si(粉)+O2SiO2Si+C SiC(金刚砂) Si+2NaOH+H2O==Na2SiO3+2H2↑(Si+2OH-+H2O=-2 3 SiO+2H2↑) 3、歧化反应 Cl 2+H2O==HCl+HClO(加碱或光照促进歧 化: (Cl2+H2O H++Cl–+HClO) Cl2+2NaOH==NaCl+NaClO+H2O (Cl2+2OH–=Cl–+ClO–+H2O) Cl2+2Ca(OH)2==CaCl2+Ca(ClO)2+2H2O (Cl2+2OH–=Cl–+ClO–+H2O) 3Cl2+6KOH(浓)5KCl+KClO3+3H2O ( 3Cl2+6OH–5Cl–+ClO3–+3H2O) 3S+6NaOH2Na2S+Na2SO3+3H2O(3S+6OH–2S2–+SO32–+3H2O) 4P+3KOH(浓)+3H2O==PH3↑+3KH2PO2(4P+3OH–+3H2O==PH3↑+3H2PO2–)

化学元素周期表性质

化学元素周期表性质 1元素周期表中元素及其化合物的递变性规律 1.1原子半径 (1)除第1周期外,其他周期元素(惰性气体元素除外)的原子半径随原子序数的递增而减小; (2)同一族的元素从上到下,随电子层数增多,原子半径增大。 1.2元素化合价 (1)除第1周期外,同周期从左到右,元素最高正价由碱金属+1递增到+7,非金属元素负价由碳族-4递增到-1(氟无正价,氧无+6价,除外); (2)同一主族的元素的最高正价、负价均相同 1.3单质的熔点 (1)同一周期元素随原子序数的递增,元素组成的金属单质的熔点递增,非金属单质的熔点递减;(2)同一族元素从上到下,元素组成的金属单质的熔点递减,非金属单质的熔点递增 1.4元素的金属性与非金属性 (1)同一周期的元素从左到右金属性递减,非金属性递增; (2)同一主族元素从上到下金属性递增,非金属性递减。 1.5最高价氧化物和水化物的酸碱性 元素的金属性越强,其最高价氧化物的水化物的碱性越强;元素的非金属性越强,最高价氧化物的水化物的酸性越强。 1.6非金属气态氢化物 元素非金属性越强,气态氢化物越稳定。同周期非金属元素的非金属性越强,其气态氢化物水溶液一般酸性越强;同主族非金属元素的非金属性越强,其气态氢化物水溶液的酸性越弱。 1.7单质的氧化性、还原性 一般元素的金属性越强,其单质的还原性越强,其氧化物的氧离子氧化性越弱;元素的非金属性越强,其单质的氧化性越强,其简单阴离子的还原性越弱。 2.推断元素位置的规律 判断元素在周期表中位置应牢记的规律: (1)元素周期数等于核外电子层数; (2)主族元素的序数等于最外层电子数; (3)确定族数应先确定是主族还是副族,其方法是采用原子序数逐步减去各周期的元素种数,即可由最后的差数来确定。最后的差数就是族序数,差为8、9、10时为VIII族,差数大于10时,则再减去10,最后结果为族序数。

高中化学选修3 物质结构与性质 全册知识点总结

高中化学选修3知识点总结 主要知识要点: 1、原子结构 2、元素周期表和元素周期律 3、共价键 4、分子的空间构型 5、分子的性质 6、晶体的结构和性质 (一)原子结构 1、能层和能级 (1)能层和能级的划分 ①在同一个原子中,离核越近能层能量越低。 ②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。 ③任一能层,能级数等于能层序数。 ④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。 ⑤能层不同能级相同,所容纳的最多电子数相同。 (2)能层、能级、原子轨道之间的关系 每能层所容纳的最多电子数是:2n2(n:能层的序数)。

2、构造原理 (1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。 (2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。 (3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E (5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np (4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。 根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。 (5)基态和激发态 ①基态:最低能量状态。处于最低能量状态的原子称为基态原子。 ②激发态:较高能量状态(相对基态而言)。基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。处于激发态的原子称为激发态原子。 ③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。利用光谱分析可以发现新元素或利用特征谱线鉴定元素。 3、电子云与原子轨道 (1)电子云:电子在核外空间做高速运动,没有确定的轨道。因此,人们用“电子云”模型来描述核外电子的运动。“电子云”描述了电子在原子核外出现的概率密度分布,是核外电子运动状态的形象化描述。

高中化学元素周期表和元素题型归纳

元素周期律和元素周期表习题 知识网络 中子N 原子核 质子Z 原子结构 : 电子数(Z 个)核外电子 排布规律 → 电子层数 周期序数及原子半径 表示方法 → 原子(离子)的电子式、原子结构示意图 随着原子序数(核电荷数)的递增:元素的性质呈现周期性变化 ①、原子最外层电子的周期性变化(元素周期律的本质) 元素周期律 ②、原子半径的周期性变化 ③、元素主要化合价的周期性变化 ④、元素的金属性与非金属性的周期性变化 ①、按原子序数递增的顺序从左到右排列; 元素周期律和 排列原则 ②、将电子层数相同的元素排成一个横行; 元素周期表 ③、把最外层电子数相同的元素(个别除外)排成一个纵行。 ①、短周期(一、二、三周期) 周期(7个横行) ②、长周期(四、五、六周期) 周期表结构 ③、不完全周期(第七周期) ①、主族(ⅠA ~ⅦA 共7个) 族(18个纵行) ②、副族(ⅠB ~ⅦB 共7个) ③、Ⅷ族(8、9、10纵行) ④、零族(稀有气体) 同周期同主族元素性质的递变规律 ①、核外电子排布 ②、原子半径 性质递变 ③、主要化合价 ④、金属性与非金属性 ⑤、气态氢化物的稳定性 ⑥、最高价氧化物的水化物酸碱性 电子层数 相同条件下,电子层越多,半径越大。 判断的依据 核电荷数 相同条件下,核电荷数越多,半径越小。 最外层电子数 相同条件下,最外层电子数越多,半径越大。 微粒半径的比较 1、同周期元素的原子半径随核电荷数的增大而减小(稀有气体除外) 如:Na>Mg>Al>Si>P>S>Cl. 2、同主族元素的原子半径随核电荷数的增大而增大。如:Li Na +>Mg 2+>Al 3+ 5、同一元素不同价态的微粒半径,价态越高离子半径越小。如Fe>Fe 2+>Fe 3+ ①与水反应置换氢的难易 ②最高价氧化物的水化物碱性强弱 金属性强弱 ③单质的还原性 ④互相置换反应 非金属性强弱 ③ (1)原子序数=核电荷数=质子数=核外电子数 (2)周期序数=核外电子层数 (3)主族序数=最外层电子数=元素的最高正价数(F 无正价,O 一般也无正价) (4)非金属元素:|最高正价数|+|负价数|=8 巩固练习 一、原子或离子半径大小比较 1.比较下列微粒的半径大小 ① 比较Na 原子与Mg 原子的原子半径大小 元素的金属性 或非金属性强 弱的判断依据 决定原子呈电中性 编排依据 X) (A Z 七 主七副 零 和八 三长三短一不全

常见化学元素性质 全讲课讲稿

H 核内无中子;原子半径最小;在IA族中,但属非金属;唯一能形成裸露阳离子的非金属元素。最外层电子数=电子总数=电子层数=周期数=主族序数。H2为最轻的气体。第ⅠA族中能形成共价化合物的元素;在化合物中其数目改变,质量分数变化不大;与O可生成两种液体(H2O、H2O2)。 He最外层电子数(2个)是电子层数的2倍,是最轻的稀有气体,一般不参加反应。 Li最轻的金属(密度最小的金属)。最外层电子数=电子层数的一半(1/2)=次外层电子数的一半(1/2);次外层电子数=电子层数;周期数=主族序数的2倍。唯一不能形成过氧化物的碱金属元素。密保存于石蜡中。 Be相同质量情况下与酸反应放出H2最多的金属;最高价氧化物及其水化物既能与强酸反应又能与强碱反应。最外层电子数=电子层数=次外层电子数=核外电子总数的一半(1/2);周期数=主族序数。 B最外层电子数比次外层电子数多1。硼酸(H3BO3)可用于洗涤不小心溅在皮肤上的碱液的药品;硼砂(Na2B4O7?10H20)为制硼酸盐玻璃的材料。 C 12C作为相对原子质量的标准;气态氢化物含氢量最高;是形成化合物最多的元素;金刚石是天然矿物中最硬的物质;石墨是一种有金属光泽且能导电的混合晶体单质。次外层电子数=电子层数=最外层电子数的一半(1/2);主族序数=周期数的2倍;最高正价=最

低负价的绝对值。CO2通入石灰水生成沉淀再消失;CO2灭火;CO2充汽水。氧化物CO、CO2;简单氢化物CH4,正四面体结构,键角109°28′;最高价含氧酸H2CO3; N氮元素是植物所需的三大元素之一;气态氢化物水溶液呈碱性且溶解度最大;气态氢化物可以与其最高价氧化物对应水化物发生化合反应;液态时可以做致冷剂;其单质化学性质较稳定,可用于填充灯泡、储存粮食和焊接金属的保护气;HNO3为实验室中常备的三大强酸之一。最外层电子数比次外层多3个;最高正价与负价绝对值之差为2。氢化物NH3;氧化物形式最多(6种);含氧酸有HNO3,HNO2;气态氢化物水溶液唯一呈碱性;常见离子化合物NH4C1中含配位键;NH4+正四面体结构;HNO3与金属不产生氢气。 O地壳中含量最多的元素;气态氢化物(H20)常温下呈液态;单质有两种同素异形体,它们对生物的生存均有重大意义。最外层电子数=次外层电子数的3倍=电子层数的3倍;主族序数=周期数的3倍;周期数与主族序数之和为8;最高正价与负价绝对值之差为4。外层电子是次外层的三倍;地壳含量最多;空气体积的21%;与金属生成金属氧化物;H2O2、H2O、Na2O2等化合物特殊形式;O2能助燃。 F是最活泼的非金属元素,能与稀有气体反应,无正价;其单质与水剧烈反应是唯一能放出O2的非金属;氟单质与其氢化物均有剧毒,

人教部编版高中化学常见元素的性质特征或结构特征

人教部编版高中化学常见元素的性质特征或结构特征 常见元素的性质特征或结构特征 (1)氢元素 a.核外电子数等于电子层数的原子; b.没有中子的原子; c.失去一个电子即为质子的原子; d.得一个电子就与氦原子核外电子排布相同的原子; e.质量最轻的原子;相对原子质量最小的原子;形成单质最难液化的元素; f.原子半径最小的原子; g.形成的单质为相同条件下相对密度最小的元素; h.形成的单质为最理想的气体燃料; i.形成酸不可缺少的元素; (2)氧元素 a.核外电子数是电子层数4倍的原子; b.最外层电子数是次外层电子数3倍的原子; c.得到两个电子就与氖原子核外电子排布相同的原子; d.得到与次外层电子数相同的电子即达到8电子稳定结构的原子; e.地壳中含量最多的元素;

f.形成的单质是空气中第二多的元素; g.形成的单质中有一种同素异形体是大气平流层中能吸收太阳光紫外线的元素; h.能与氢元素形成三核10电子分子(H2O)的元素; i.能与氢元素形成液态四核18电子分子(H2O2)的元素; j.在所有化合物中,过氧化氢(H2O2)中含氧质量分数最高; k.能与氢元素形成原子个数比为1:1或1:2型共价液态化合物的元素; l.能与钠元素形成阴、阳离子个数比均为1:2的两种离子化合物的元素; (3)碳元素 a.核外电子数是电子层数3倍的原子; b.最外层电子数是次外层电子数2倍的原子; c.最外层电子数是核外电子总数2/3的原子; d.形成化合物种类最多的元素; e.形成的单质中有一种同素异形体是自然界中硬度最大的物质; f.能与硼、氮、硅等形成高熔点、高硬度材料的元素; g.能与氢元素形成正四面体构型10电子分子(CH4)的元素;

化学元素与物质的分类

第3讲 元素与物质分类 考纲要求 1.了解分子、原子、离子和原子团等概念的含义。2.理解物理变化与化学变化的区别与联系。3.理解混合物和纯净物、单质和化合物、金属和非金属的概念。4.理解酸、碱、盐、氧化物的概念及其相互联系。5.了解胶体是一种常见的分散系,了解溶液和胶体的区别。 考点一 物质的组成与分类 1.原子、分子、离子概念比较 (1)原子、分子、离子的概念 原子是化学变化中的最小微粒。分子是保持物质化学性质的最小微粒,一般分子由原子通过共价键构成,但稀有气体是单原子分子。离子是带电荷的原子或原子团。 (2)原子是怎样构成物质的? 2.元素与物质的关系 (1)元素:元素是具有相同核电荷数的一类原子的总称。元素在自然界的存在形式有游离态和化合态。 ①游离态:元素以单质形式存在的状态。 ②化合态:元素以化合物形式存在的状态。 (2)元素组成物质 元素――→组成? ???? 单质:同种元素组成的纯净物化合物:不同种元素组成的纯净物

(3)纯净物与混合物 ①纯净物:由同种单质或化合物组成的物质。 ②混合物:由几种不同的单质或化合物组成的物质。 3.同素异形体 (1)概念:同种元素形成的不同单质叫同素异形体。 (2)形成方式 ①原子个数不同,如O2和O3; ②原子排列方式不同,如金刚石和石墨。 (3)性质差异:物理性质差别较大,同素异形体之间的转化属于化学变化。4.简单分类法——交叉分类法和树状分类法 (1)交叉分类法的应用示例 (2)明确分类标准是对物质正确树状分类的关键

(3)树状分类法在无机化合物分类中的应用 无机化合 物 ???????? ????????????? 氢化物:HCl 、H 2S 、H 2O 、NH 3等 氧化物????? 不成盐氧化物:CO 、NO 等 成盐氧化物????? 碱性氧化物:Na 2O 、CaO 等酸性氧化物:CO 2 、P 2 O 5 等两性氧化物:Al 2 O 3 等 过氧化物:Na 2O 2、H 2O 2 等酸???? ??? 按电离出的H + 数????? 一元酸:HCl 、HNO 3 等二元酸:H 2SO 4、H 2 S 等 三元酸:H 3 PO 4 等按酸根是否含氧 ? ???? 无氧酸:HCl 、H 2 S 等含氧酸:HClO 4、H 2SO 4 等按酸性强弱? ???? 强酸:HCl 、H 2SO 4、HNO 3 等弱酸:CH 3 COOH 、HF 等按有无挥发性? ???? 挥发性酸:HNO 3 、HCl 等 难挥发性酸:H 2SO 4、H 3 PO 4 等碱??? 按水溶性? ???? 可溶性碱: NaOH 、KOH 、Ba (OH )2 等 难溶性碱:Mg (OH )2、Cu (OH )2 等 按碱性强弱? ???? 强碱:NaOH 、Ba (OH )2 、KOH 等 弱碱:NH 3·H 2 O 等 盐?? ?? ? 正盐:BaSO 4、KNO 3 、NaCl 等 酸式盐:NaHCO 3、KHSO 4 等碱式盐:Cu 2(OH )2CO 3 等复盐:KAl (SO 4)2·12H 2 O 等 1.分子、原子、离子的概念及物质组成成分的判断 (1)现在人们借助扫描隧道显微镜,应用STM 技术可以“看”到越来越细微的结构,并实现对原子或分子的操纵( ) (2)Na 、NaCl 、SiO 2、H 2SO 4都称为分子式( ) (3)含有金属元素的离子不一定是阳离子( )

高中化学常见化学元素的性质和结构

高中化学常见化学元素的性质和结构 在高中的化学学习中,我们首先要入门的是对一些常见的化学元素性质和结构有明确的认知和理解,这样在实验的过程中,能更加明白实验过程的原理和化学方程式的书写。下面小编就给大家整理了一份高中化学考试中比较常见的化学元素的性质和结构。 (1)氢元素 a. 核外电子数等于电子层数的原子; b. 没有中子的原子; c. 失去一个电子即为质子的原子; d. 得一个电子就与氦原子核外电子排布相同的原子; e. 质量最轻的原子;相对原子质量最小的原子;形成单质最难液化的元素; f. 原子半径最小的原子; g. 形成的单质为相同条件下相对密度最小的元素; h. 形成的单质为最理想的气体燃料; i. 形成酸不可缺少的元素; (2)氧元素 a. 核外电子数是电子层数4倍的原子; b. 最外层电子数是次外层电子数3倍的原子; c. 得到两个电子就与氖原子核外电子排布相同的原子; d. 得到与次外层电子数相同的电子即达到8电子稳定结构的原

子; e. 地壳中含量最多的元素; f. 形成的单质是空气中第二多的元素; g. 形成的单质中有一种同素异形体是大气平流层中能吸收太阳光紫外线的元素; h. 能与氢元素形成三核10电子分子(H2O)的元素; i. 能与氢元素形成液态四核18电子分子(H2O2)的元素; j. 在所有化合物中,过氧化氢(H2O2)中含氧质量分数最高; k. 能与氢元素形成原子个数比为1:1或1:2型共价液态化合物的元素; l. 能与钠元素形成阴、阳离子个数比均为1:2的两种离子化合物的元素; (3)碳元素 a. 核外电子数是电子层数3倍的原子; b. 最外层电子数是次外层电子数2倍的原子; c. 最外层电子数是核外电子总数2/3的原子; d. 形成化合物种类最多的元素; e. 形成的单质中有一种同素异形体是自然界中硬度最大的物质; f. 能与硼、氮、硅等形成高熔点、高硬度材料的元素; g. 能与氢元素形成正四面体构型10电子分子(CH4)的元素; h. 能与氢元素形成直线型四核分子(C2H2)的元素; i. 能与氧元素形成直线型三核分子(CO2)的元素。

化学元素性质大全

化学元素性质大全

1H 原子序数:1 元素符号:H 元素中文名称:氢 元素英文名称:Hydrogen 相对原子质量:1.008 核内质子数:1 核外电子数:1 核电核数:1 质子质量:1.673E-27 质子相对质量:1.007 所属周期:1 所属族数:IA 摩尔质量:1 氢化物:无 氧化物:H2O 最高价氧化物:H2O 密度:0.08988 熔点:-259.14 沸点:-252.87

外围电子排布:1s1 核外电子排布:1 颜色和状态:无色气体 原子半径:0.79 常见化合价+1,-1 发现人:卡文迪许 发现时间和地点:1766 英格兰 元素来源:在地球上和地球大气中只存在极稀少的游离状态氢,锌与稀盐酸反映制取是一种办法,电解水方法。 元素用途:导热能力特别强,跟氧化合成水。氢气球。氢能源。 工业制法:电解水2H2O=O2+2H2 实验室制法:锌与稀盐酸反映Zn+2HCl=ZnCl2+H2 其他化合物:H2O-水H2S-硫化氢HCl-氯化氢HBr-氢溴酸H2SO4-硫酸NH3-氨气CH4-甲烷 扩展介绍:利用氢的同位素氘和氚的原子核聚变时产生的能进行杀伤和破坏的炸弹,其威力比原子弹大得多 2He 原子序数:2 元素符号:He 元素中文名称:氦 元素英文名称:Helium 相对原子质量:4.003 核内质子数:2 核外电子数:2 核电核数:2 质子质量:3.346E-27 质子相对质量:2.014 所属周期:1 所属族数:0 摩尔质量:4 氢化物: 氧化物: 密度:0.1785 熔点:-272.0 沸点:-268.6 外围电子排布:1s2 核外电子排布:2 颜色和状态:无色气体 原子半径:0.49 常见化合价:0 发现人:严森、洛克耶、拉姆塞、克利夫 发现时间和地点:1895 苏格兰/瑞典 元素来源:存在于整个宇宙中

相关主题
文本预览
相关文档 最新文档