当前位置:文档之家› 悬臂梁模态分析实验报告.doc

悬臂梁模态分析实验报告.doc

悬臂梁模态分析实验报告.doc
悬臂梁模态分析实验报告.doc

精品资料

悬臂梁各阶固有频率及主振形的测定试验

一、实验目的

1、用共振法确定悬臂梁横向振动时的前五阶固有频率;

2、熟悉和了解悬臂梁振动的规律和特点;

3、观察和测试悬臂梁振动的各阶主振型,分析各阶固有频率及其主振型的实测值与理论计算值的误差。

二、仪器和设备

悬臂梁固定支座;脉冲锤1个;圆形截面悬臂钢梁标准件一个;加速度传感器一个;LMS振动噪声测试系统。

三、实验基本原理

瞬态信号可以用三种方式产生,分述如下:

一是快速正弦扫频法.将正弦信号发生器产生的正弦信号,在幅值保持不变的条件下,由低频很快地连续变化到高频.从频谱上看,该情况下,信号的频谱已不具备单一正弦信号的特性,而是在一定的频率范围内接近随机信号.

二是脉冲激励.用脉冲锤敲击试件,产生近似于半正弦的脉冲信号.信号的有效频率取决于脉冲持续时间τ,τ越小则频率范围越大.

三是阶跃激励.在拟定的激振点处,用一根刚度大、重量轻的弦经过力传感器对待测结构施加张力,使其产生初始变形,然后突然切断张力弦,相当于给该结构施加一个负的阶跃激振力.

用脉冲锤进行脉冲激振是一种用得较多的瞬态激振方法,它所需要的设备较

少,信号发生器、功率放大器、激振器等都可以不要,并且可以在更接近于实际工作的条件下来测定试件的机械阻抗.

四、实验结果记录

前五阶固有频率表

阶数固有频率(Hz)

1 8.491

2 54.216

3 154.607

4 304.354

5 494.691

实验测得的前五阶振型图如下:

1阶振型图

2阶振型图

3阶振型图

4阶振型图

5阶振型图

五、理论计算悬臂梁固有频率

圆截面悬臂钢梁有关参数可取:Pa E 11101.2?=,7850=ρkg/3

m 。用直尺测

量悬臂梁的梁长L=1000mm 、梁直径D=12mm 。计算简支梁一、二、三、四阶固有频率和相应的振型,并将理论计算结果填入表。

悬臂梁的振动属于连续弹性体的振动,它具有无限多自由度及其相应的固有频率和主振型,其振动可表示为无穷多个主振型的叠加。对于梁体振动时,仅考虑弯曲引起的变形,而不计剪切引起的变形及其转动惯量的影响,这种力学分析 模型称为欧拉-伯努利梁。

运用分离变量法,结合悬臂梁一端固定一端自由的边界条件,通过分析可求得均质、等截面悬臂梁的频率方程

1 L Lch cos -=ββ (5-1)

式中:L ——悬臂梁的长度。 梁各阶固有频率为

4

2

2(Al EI

l f i i ρπ

β)=

(5-2)

悬臂梁固有圆频率及主振型函数

034.22516.3222

1==ββ

....)5,4,3()2

1(=-≈i i i π

β657.199912.120623

.6125242

3===βββ

471.2106785064

1012101.221

216

-212

-411

*=??????

?==

πππ

ρπ

A EI f

687.8470.2516.3*2

11=?==f f β 445.54471.2034.22*222=?==f f β

270.152471.2623.61*2

33=?==f f β

774.298471.2912.120*2

44=?==f f β

260.547741.2657.1992

55=?==*f f β

六、ANSYS 有限元模拟仿真结果 6.1 前五阶固有频率仿真数据

6.2 振型仿真图

1阶振型仿真图

2阶振型仿真图

3阶振型仿真图

4阶振型仿真图

5阶振型仿真图

七、结果误差分析

悬臂梁理论计算固有频率理论值、有限元仿真值与实测值表

误差原因:

(1)实验试件在并非是十分标准,5阶实验计算模态存在误差;

(2)有限元法分析一般包括四个步骤:物理模型的简化、数学模型的程序化、计算模型的数值化和计算结果的分析。每一个步骤在操作过程中都或多或少地引入了误差,这些误差的累积最终可能会对计算结果造成误差;

(3)实验基座刚度有限:Z方向上刚度基本上满足,但水平方向上即使两边夹紧也只能靠一根螺栓提供切向刚度,刚度有限。

即便如此,由实验结果可得出各阶的振型还是很准确的,频率误差也在可接受的范围内。

悬臂梁固有频率测试实验数据处理

实验题目:悬臂梁固有频率测试实验数据处理 一、实验要求以下: 1. 用振动测试的方法,识别一阻尼结构的(悬臂梁)一阶固有频率和阻尼系数; 2. 了解小阻尼结构的衰减自由振动形态; 3. 选择传感器,设计测试方案和数据处理方案,测出悬臂梁的一阶固有频率和阻尼 根据测试曲线,读取数据,识别悬臂梁的一阶固有频率和阻尼系数。 二、实验内容 识别悬臂梁的二阶固有频率和阻尼系数。 三、测试原理概述: 1,瞬态信号可以用三种方式产生,有脉冲激振,阶跃激振,快速正弦扫描激振。 2,脉冲激励用脉冲锤敲击试件,产生近似于半正弦的脉冲信号。信号的有效频率取决于脉冲持续时间τ,τ越小则频率范围越大。 3.幅值:幅值是振动强度的标志,它可以用峰值、有效值、平均值等方法来表示。 频率:不同的频率成分反映系统内不同的振源。通过频谱分析可以确定主要频率成分及其幅值大小,可以看到共振时的频率,也就可以得到悬臂梁的固有频率 实验步骤及内容 1,按要求,把各实验仪器连接好接入电脑中,然后在悬臂梁上粘紧压电式加速度传感器打开计算机,。。 2,打开计算机,启动计算机上的“振动测试及谱分析.vi ”。 3,选择适当的采样频率和采样点数以及硬件增益。点击LabVIEW 上的运行按钮(Run )观察由脉冲信号引起梁自由衰减的曲线的波形和频谱。 4,尝试输入不同的滤波截止频率,观察振动信号的波形和频谱的变化。 5,尝试输入不同的采样频率和采样点数以及硬件增益,观察振动信号的波形变化。 6,根椐最合适的参数选择,显示最佳的结果。然后按下“结束按钮,完成信号采集。最后我选择的参数是:采样频率 f为512HZ,采样点数N为512点。 s 7,记录数据,copy读到数据的程序,关闭计算机。

青岛理工大学材料力学实验报告记录

青岛理工大学材料力学实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

材料力学实验报告 系别 班级 姓名 学号 青岛理工大学力学实验室

目录 实验一、拉伸实验报告 实验二、压缩实验报告 实验三、材料弹性模量E和泊松比μ的测定报告 实验四、扭转实验报告 实验五、剪切弹性模量实验报告 实验六、纯弯曲梁的正应力实验报告 实验七、等强度梁实验报告 实验八、薄壁圆筒在弯扭组合变形下主应力测定报告 实验九、压杆稳定实验报告 实验十、偏心拉伸实验报告 实验十一、静定桁架结构设计与应力分析实验报告 实验十二、超静定桁架结构设计与应力分析实验报告 实验十三、静定刚架与压杆组合结构设计与应力分析实验报告实验十四、双悬臂梁组合结构设计与应力分析实验 实验十五、岩土工程材料的多轴应力特性实验报告

实验一 拉伸实验报告 一、实验目的与要求: 二、实验仪器设备和工具: 三、实验记录: 1、试件尺寸 实验前: 实验后: 2、实验数据记录: 屈服极限载荷:P S = kN 强度极限载荷:P b = kN 材 料 标 距 L 0 (mm) 直径(mm ) 截面 面积 A 0 (mm 2) 截面(1) 截面(2) 截面(3) (1) (2) 平均 (1) (2) 平均 (1) (2) 平均 材 料 标 距 L (mm) 断裂处直径(mm ) 断裂处 截面面积 A(mm 2) (1) (2) 平均

四、计算 屈服极限: ==0 A P s s σ MPa 强度极限: == A P b b σ MPa 延伸率: =?-= %10000 L L L δ 断面收缩率: =?-= %1000 0A A A ψ 五、绘制P -ΔL 示意图:

悬臂梁的模态实验

悬臂梁的模态实验 1、实验概述 点)之间的频响函数,利用上式可得 「(k ) J 10 令t 0k ) =1就可得到第k 阶主振型的10个元素。根据他们的相对大小就能画出第 k 阶主振型。如果分别令 k =1,2,3,4,就可以画出前 4阶主振型。 2、实验要求 (1) 证明无论用频响函数的幅值谱或虚部谱,都可以求出各阶主振型; (2) 如果我们不测量振动的位移信号, 而是测量振动的加速度信号,就可以得到加 速度频响函数。试证明利用加速度频响函数也可以求出各阶主振型; 在频响函数曲线上 f 『二f k 处,s k = 1 ,将出现第k 阶共振峰,该处的频响函数 可以近似写为 ?: ( k) ?: ( k) ~ r j H rj (k) ■ i2k ( ? 设 j =1,2,…,10,和 r=10, 即测量悬臂梁上均匀分布的 本实验的装置如图 8所示。用激振力锤2敲击悬臂梁 1,由锤头的力传感器测量锤击 力,电涡流传感器测量梁自由端的振动信号, 算机,由虚拟动态分析仪处理可以求出锤击 点 (设为第j 点)与位移测量点(设为第r 点) 之间的频响函数。悬臂梁可以抽象为由 无限多 个质点用板簧串联的多自由度的振 动系统,其 中第j 点与第r 点之间的频响 函数公式为 分别经电荷放大器 6、位移测量仪5送给计 H rj k ⑴(1 -s : i2 j Sj -2~. f S i 悬臂梁的檯态实验 10个点与自由端(即第 10 H 10 ,10 1.悬臂絮2、激振力锤久电涡凉位移怯感器 J 前置盟久便移量仪&电荷放大器 f

(3)本实验求出前4阶主振型,对实验过程中出现的问题进行讨论。

悬臂梁地振动模态实验报告材料

实验 等截面悬臂梁模态测试实验 一、 实验目的 1. 熟悉模态分析原理; 2. 掌握悬臂梁的测试过程。 二、 实验原理 1. 模态分析基本原理 理论上,连续弹性体梁有无限多个自由度,因此需要无限多个连续模型才能描述,但是在实际操作中可以将连续弹性体梁分为n 个集中质量来研究。简化之后的模型中有n 个集中质量,一般就有n 个自由度,系统的运动方程是n 个二阶互相耦合(联立)的常微分方程。这就是说梁可以用一种“模态模型”来描述其动态响应。 模态分析的实质,是一种坐标转换。其目的在于把原在物理坐标系统中描述的响应向量,放到所谓“模态坐标系统”中来描述。这一坐标系统的每一个基向量恰是振动系统的一个特征向量。也就是说在这个坐标下,振动方程是一组互无耦合的方程,分别描述振动系统的各阶振动形式,每个坐标均可单独求解,得到系统的某阶结构参数。 多次锤击各点,通过仪器记录传感器与力锤的信号,计算得到第i个激励点与定响应点(例如点2)之间的传递函数 ω ,从而得到频率响应函数矩阵中的一行 频响函数的任一行包含所有模态参数,而该行的r 阶模态的频响函数 的比值,即为r 阶模态的振型。 2. 激励方法 为进行模态分析,首先要测得激振力及相应的响应信号,进行传递函数分析。传递函数分析实质上就是机械导纳,i 和j 两点之间的传递函数表示 [] ∑==N r iN r i r i r H H H 1 21 ... [] Nr r r N r r r r ir k c j m ???ωω? (2112) ∑ =++-=[]{}[] T r ir N r r iN i i Y H H H ??∑==1 21 ...

28.悬臂梁固有频率测量实验

实验二十八悬臂梁固有频率测量实验 1. 简介 悬臂梁实验台主要是针对高校工程测试课程实验教学需要而设计的,结合drvi快速可重组虚拟仪器开发平台、振动测量传感器和数据采集仪,可以开设悬臂梁固有频率测量实验。 2. 结构组成 悬臂梁实验台的结构示意如图1所示,结构总体尺寸为120×110×150mm(长×宽×高),主要包括的零件有: 图1 悬臂梁实验台结构示意图 1. 悬臂 2. 底座 3. 操作说明 3.1 实验准备 运用悬臂梁实验台进行实验教学所需准备的实验设备为: 1. 悬臂梁实验台(lxbl-a)1套 2. 加速度传感器(yd-37)1套 3. 加速度传感器变送器(lbs-12-a)1台 4. 蓝津数据采集仪(ldaq-epp2)1台 5. 开关电源(ldy-a)1套 6. 脉冲锤1只 7. 5芯对等线1条 备齐所需的设备后,将加速度传感器安装在悬臂梁前端的安装孔上,然后将加速度传感器与变送器相连,变送器通过5芯对等线与数据采集仪1通道连接,数据采集仪通过并口电缆与pc机并口连接,加速度传感器调理电路模块接线如图2所示。在保证接线无误的情况下,可以开始进行实验。

图2 加速度传感器调理电路接线示意图 3.2 实验操作 悬臂梁固有频率测量实验利用加速度传感器来测量悬臂振动的信号,经过频谱变换(fft)处理后得到悬臂梁的一阶固有频率,需要注意的是该实验数据采集采用预触发方式,数据采集仪的触发电平要根据现场情况进行设置,实验过程如下: 1. 启动服务器,运行drvi主程序,开启drvi数据采集仪电源,然后点击drvi快捷工具条上的“联机注册”图标,进行服务器和数据采集仪之间的注册。联机注册成功后,启动drvi内置的“web服务器功能”,开始监听8500端口。 图3 悬臂梁固有频率测量实验样本图 2. 启动drvi中的“悬臂梁固有频率测量”实验脚本,然后设定数据采集仪的工作模式为外触发采样,同时设置触发电平(如800)和预触发点数(如20),然后点击“运行”按钮启动采样过程(由于采用外触发采样方式,此时处于等待状态)。 3. 用脉冲锤敲击悬臂梁,产生脉冲激振。敲击的力幅要适当,着力点要准确,迅速脱开。如检测不到冲击振动信号,则适当修改采集仪中的预触发电平,然后点击面板中的“开始”按钮再次进行测量,此时,信号分析窗口中应显示出悬臂梁受瞬态激励后输出的信

基于comsol的悬臂梁形变实验报告

基于comsol4.2的悬臂梁形变仿真 参考文献:Becker,A.A.,Background to Finite Element Analysis of Geometric Non-linearity Benchmarks,NAFEMS,Ref: -R0065,Glasgow. 一、创建工程 1、选择空间维度:二维。如图一 图一 2、增加物理场:结构力学—>固体力学(solid)。如图二 图二

3、选择求解类型:稳态。如图三 图三 4、点击“完成”,按钮位于“模型向导”栏右上角的符号。 二、创建几何模型 1、单击“几何”,将“长度单位”改为um。如图四 图四

2、右键“几何”,选择“矩形”,设置矩形参数如图五,并单击设定栏右上角的“创建选定”,生成图形。 图五 三、设定材料参数 右键“材料”,选择“材料”,几何是实体选择如图六。在材料目录中添加材料的杨氏模量、泊松比、密度,具体参数如图七。 图六

图七 四、设置边界约束 1、单击“固体力学”,在厚度中输入“10e-6”,如图八。 图八 2、右键“固体力学”,选择“固定约束”,添加边界选择:1,如图九。 图九

3、右键“固体力学”,选择“边界载荷”,添加边界选择:4,将力—>载荷中,X和Y方向的力分别改为:-3.844e6/0.1*load_para和-3.844e3/0.1如图十。 图十 五、划分网格 右键网格,选择“自由剖分三角形网格”,在设定栏右上角点击“创建所有”,如图十一。 图十一

六、设置求解约束 1、打开“求解”下拉菜单,右键“求解器配置”,选择“缺省求解器”,如图十二。 图十二 2、点击“稳态求解器”,将“相对容差”改为:1e-6,如图十三。 图十三 3、右键“稳态求解器”,选择“参数的”,在设定栏输入参数名称:load_para和参数值:range(0,0.01,1),如图十四

ABAQUS简支梁分析报告(梁单元和实体单元)

基于ABAQUS简支梁受力和弯矩的相关分析 (梁单元和实体单元) 对于简支梁,基于 ABAQUS2016,首先用梁单元分析了梁受力作用下的应力,变形,剪力和力矩;对同一模型,并用实体单元进行了相应的分析。另外, 还分析了梁结构受力和弯矩作用下的剪力及力矩分析。 对于CAE仿真分析具体细节操作并没有给出详细的操作,不过在后面上 传了对应的cae,odb,inp文件。不过要注意的是本文采用的是ABAQUS2016 进行计算,低版本可能打不开,可以自己提交inp文件自己计算即可。可以到 小木虫搜索:“基于ABAQUS简支梁受力和弯矩的相关分析”进行相应文件 下载。 对于一简支梁,其结构简图如下所示,梁的一段受固支,一段受简支,在 梁的两端受集中载荷,梁的大直径D=180mm,小直径d=150mm,a=200mm, b=300mm,l=1600mm,F=300000N。现通过梁单元和实体单元分析简支梁的受 力情况,变形情况,以及分析其剪力和弯矩等。材料采用45#钢,弹性模量 E=2.1e6MPa,泊松比v=0.28。 图1 简支梁结构简图 1.梁单元分析 ABAQUS2016中对应的文件为beam-shaft.cae ,beam-shaft.odb,beam-shaft.inp。 在建立梁part的时候,采用三维线性实体,按照图1所示尺寸建立,然后 在台阶及支撑梁处进行分割,结果如图2所示。

图2 建立part并分割 接下来为梁结构分配材料,创建材料,定义弹性模量和泊松比,创建梁截 面形状,如图3,非别定义两个圆,圆的直接分别为180和150mm。然后创建 两个截面,截面选择梁截面,再选择图2中的所有梁,定义梁的方向矢量为(0,0,-1)(点击图3中的n2,n1,t那个图标即可创建梁的方向矢量),最后把 创建好的梁赋给梁结构。 图3 创建梁截面形状 接下来装配实体,再创建分析步,在创建分析步的时候,点击主菜单栏的Output,编辑Edit Field Output Request,在SF前面打钩,这样就可以在结果后 处理中输出截面剪力和力矩,如图4所示。在Load加载中,在固支处剪力边界 条件,约束x,y,z,及绕x和y轴的转动,如图5所示,同理,在固支另一处约束y,z,及绕x和y轴的转动。在梁的两端添加集中力,集中力的大小为300000N。最后对实体部件进行分网,采用B32梁单元,网格尺寸为10。完成

实验报告总结(精选8篇)

《实验报告总结》 实验报告总结(一): 一个长学期的电路原理,让我学到了很多东西,从最开始的什么都不懂,到此刻的略懂一二。 在学习知识上面,开始的时候完全是老师讲什么就做什么,感觉速度还是比较快的,跟理论也没什么差距。但是之后就觉得越来越麻烦了。从最开始的误差分析,实验报告写了很多,但是真正掌握的确不多,到最后的回转器,负阻,感觉都是理论没有很好的跟上实践,很多状况下是在实验出现象以后在去想理论。在实验这门课中给我最大的感受就是,必须要先弄清楚原理,在做实验,这样又快又好。 在养成习惯方面,最开始的时候我做实验都是没有什么条理,想到哪里就做到哪里。比如说测量三相电,有很多种状况,有中线,无中线,三角形接线法还是Y形接线法,在这个实验中,如果选取恰当的顺序就能够减少很多接线,做实验就应要有良好的习惯,就应在做实验之前想好这个实验要求什么,有几个步骤,就应怎样安排才最合理,其实这也映射到做事情,不管做什么事情,就应都要想想目的和过程,这样才能高效的完成。电原实验开始的几周上课时间不是很固定,实验报告也累计了很多,第一次感觉有那么多实验报告要写,在交实验报告的前一天很多同学都通宵了的,这说明我们都没有合理的安排好自己的时间,我就应从这件事情中吸取教训,合理安排自己的时间,完成就应完成的学习任务。这学期做的一些实验都需要严谨的态度。在负阻的实验中,我和同组的同学连了两三次才把负阻链接好,又浪费时间,又没有效果,在这个实验中,有很多线,很容易插错,所以要个性仔细。 在最后的综合实验中,我更是受益匪浅。完整的做出了一个红外测量角度的仪器,虽然不是个性准确。我和我组员分工合作,各自完成自己的模块。我负责的是单片机,和数码显示电路。这两块都是比较简单的,但是数码显示个性需要细致,由于我自己是一个粗心的人,所以数码管我检查了很多遍,做了很多无用功。 总结:电路原理实验最后给我留下的是:严谨的学习态度。做什么事情都要认真,争取一次性做好,人生没有太多时间去浪费。 实验报告总结(二): 在分子生物学实验室为期两个月的实习使我受益匪浅,我不仅仅学习到了专业知识,更重要的是收获了经验与体会,这些使我一生受用不尽,记下来与大家共勉: 1.手脚勤快,热心帮忙他人。初来匝道,不管是不是自己的份内之事,都就应用心去完成,也许自己累点,但你会收获很多,无论是知识与经验还是别人的称赞与认可。 2.多学多问,学会他人技能。学问学问,无问不成学。知识和经验的收获能够说与勤学好问是成正比的,要记住知识总是垂青那些善于提问的人。 3.善于思考,真正消化知识。有知到识,永远不是那么简单的事,当你真正学会去思考时,他人的知识才能变成你自己的东西。 4.前人铺路,后人修路。墨守陈规永远不会有新的建树,前人的道路固然重要,但是学会另辟蹊径更为重要。

实验四 悬臂梁弯曲实验汇总

实验四悬臂梁弯曲实验 一、电阻应变仪 各种不同规格及各种品种的电阻应变计现在有二万多种,测量仪器也有数百余种,但按其作用原理,电阻应变测量系统可看成由电阻应变计、电阻应变仪及记录器三部分组成。其中电阻应变计可将构件的应变转换为电阻变化。电阻应变仪将此电阻变化转换为电压(或电流)的变化,并进行放大,然后转换成应变数值。 其中电阻变化转换成电压(或电流)信号主要是通过应变电桥(惠斯顿电桥)来实现的,下面简要介绍电桥原理。 1、应变电桥 应变电桥一般分为直流电桥和交流电桥两种,本篇只介绍直流电桥。

电桥原理图所示,它由电阻R1、R2、R3、R4组成四个桥臂,AC两点接供桥电压U。图中U BD是电桥的输出电压,下面讨论输出电压与电阻间的关系。 通过ABC的电流为:I1=U/(R2+ R1) 通过ADC的电流为:I2=U/(R3+ R4) BD二点的电位差 U BD= I1R2-I2R3=(R2R4-R1R3)U /(R2+ R1)(R3+ R4) 当U BD=0,即电桥平衡。由此得到电桥平衡条件为: R1 R3 =R2R4 如果R1 =R2 =R3 =R4 =R,而其中一个R有电阻增 量, 式中2ΔR 与4R相比为高阶微量,可略去,上式化为 如果R1 =R2 =R3 =R4为电阻应变计并受力变形后产生的电阻增量为 、、、代入式中,计算中略去高阶微量,可得

将式代入上式可得 电桥可把应变计感受到的应变转变成电压(或电流)信号,但是 这一信号非常微弱,所以要进行放大,然后把放大了的信号再用应变 表示出来,这就是电阻应变仪的工作原理。电阻应变仪按测量应变的 频率可分为:静态电阻应变仪、静动态电阻应变仪、动态电阻应变仪 和超动态电阻应变仪,下面我们简要介绍常用的静态电阻应变仪中的 一种应变仪--数字电阻应变仪。 二、测量电桥的接法 各种应变计和传感器通常需采用某种测量电路接入测量仪表,测 量其输出信号。对于电阻应变计或者电阻应变计式传感器,通常采用 电桥测量电路,将应变计引起电阻变化转换为电压信号或电流信号。 电桥的测量电路由电阻应变计及电阻组成桥臂,电桥的应变计接桥方 式分为半桥和全桥。 在实际测量中,可以利用电桥的基本特性,采用各种电阻应变计在电桥中不同 的连接方法达到不同的测量目的:

实验报告实验心得

实验心得体会 在做测试技术的实验前,我以为不会难做,就像以前做物理实验一样,做完实验,然后两下 子就将实验报告做完.直到做完测试实验时,我才知道其实并不容易做,但学到的知识与难度 成正比,使我受益匪浅. 在做实验前,一定要将课本上的知识吃透,因为这是做实验的基础,否则,在老师讲解时就 会听不懂,这将使你在做实验时的难度加大,浪费做实验的宝贵时间.比如做光伏的实验,你要 清楚光伏的各种接法,如果你不清楚,在做实验时才去摸索,这将使你极大地浪费时间,使你事 倍功半.做实验时,一定要亲力亲为,务必要将每个步骤,每个细节弄清楚,弄明白,实验后,还 要复习,思考,这样,你的印象才深刻,记得才牢固,否则,过后不久你就会忘得一干二净,这还 不如不做.做实验时,老师还会根据自己的亲身体会,将一些课本上没有的知识教给我们,拓宽 我们的眼界,使我们认识到这门课程在生活中的应用是那么的广泛. 通过这次测试技术的实验,使我学到了不少实用的知识,更重要的是,做实验的过程,思考 问题的方法,这与做其他的实验是通用的,真正使我们受益匪浅. 实验心得体会 这个学期我们学习了测试技术这门课程,它是一门综合应用相关课程的知识和内容来解 决科研、生产、国防建设乃至人类生活所面临的测试问题的课程。测试技术是测量和实验的 技术,涉及到测试方法的分类和选择,传感器的选择、标定、安装及信号获取,信号调理、 变换、信号分析和特征识别、诊断等,涉及到测试系统静动态性能、测试动力学方面的考虑 和自动化程度的提高,涉及到计算机技术基础和基于labview的虚拟测试技术的运用等。 课程知识的实用性很强,因此实验就显得非常重要,我们做了金属箔式应变片:单臂、 半桥、全桥比较, 回转机构振动测量及谱分析, 悬臂梁一阶固有频率及阻尼系数测试三个实 验。刚开始做实验的时候,由于自己的理论知识基础不好,在实验过程遇到了许多的难题, 也使我感到理论知识的重要性。但是我并没有气垒,在实验中发现问题,自己看书,独立思 考,最终解决问题,从而也就加深我对课本理论知识的理解,达到了“双赢”的效果。 实验中我学会了单臂单桥、半桥、全桥的性能的验证;用振动测试的方法,识别一小阻 尼结构的(悬臂梁)一阶固有频率和阻尼系数;掌握压电加速度传感器的性能与使用方法; 了解并掌握机械振动信号测量的基本方法;掌握测试信号的频率域分析方法;还有了解虚拟 仪器的使用方法等等。实验过程中培养了我在实践中研究问题,分析问题和解决问 题的能力以及培养了良好的工程素质和科学道德,例如团队精神、交流能力、独立思考、 测试前沿信息的捕获能力等;提高了自己动手能力,培养理论联系实际的作风,增强创新意 识。 实验体会 这次的实验一共做了三个,包括:金属箔式应变片:单臂、半桥、全桥比较;回转机构 振动测量及谱分析;悬臂梁一阶固有频率及阻尼系数测试。各有特点。 通过这次实验,我大开眼界,因为这次实验特别是回转机构振动测量及谱分析和悬臂梁 一阶固有频率及阻尼系数测试,需要用软件编程,并且用电脑显示输出。可以说是半自动化。 因此在实验过程中我受易非浅:它让我深刻体会到实验前的理论知识准备,也就是要事前了 解将要做的实验的有关质料,如:实验要求,实验内容,实验步骤,最重要的是要记录什么 数据和怎样做数据处理,等等。虽然做实验时,指导老师会讲解一下实验步骤和怎样记录数 据,但是如果自己没有一些基础知识,那时是很难作得下去的,惟有胡乱按老师指使做,其 实自己也不知道做什么。 在这次实验中,我学到很多东西,加强了我的动手能力,并且培养了我的独立思考能力。 特别是在做实验报告时,因为在做数据处理时出现很多问题,如果不解决的话,将会很难的 继续下去。例如:数据处理时,遇到要进行数据获取,这就要求懂得labview软件一些基本

悬臂梁—有限元ABAQUS线性静力学分析报告实例

线性静力学分析实例——以悬臂梁为例 线性静力学问题是简单且常见的有限元分析类型,不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。在ABAQUS 中,该类问题通常采用静态通用(Static,General)分析步或静态线性摄动(Static,Linear perturbation)分析步进行分析。 线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。在一般的分析中,应尽量选用精度和效率都较高的二次四边形/六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I、C3D8I)的性价比很高。对于复杂模型,可以采用分割模型的方法划分二次四边形/六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/四面体单元进行网格划分。 悬臂梁的线性静力学分析 1.1 问题的描述 一悬臂梁左端受固定约束,右端自由,结构尺寸如图1-1所示,求梁受载后的Mises应力、位移分布。 ν 材料性质:弹性模量3 = E=,泊松比3.0 2e 均布载荷:F=103N 图1-1 悬臂梁受均布载荷图 1.2 启动ABAQUS 启动ABAQUS有两种方法,用户可以任选一种。 (1)在Windows操作系统中单击“开始”--“程序”--ABAQUS 6.10 --

ABAQUS/CAE。 (2)在操作系统的DOS窗口中输入命令:abaqus cae。 启动ABAQUS/CAE后,在出现的Start Section(开始任务)对话框中选择Create Model Database。 1.3 创建部件 在ABAQUS/CAE顶部的环境栏中,可以看到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分的几何形体。可以参照下面步骤创建悬臂梁的几何模型。 (1)创建部件。对于如图1-1所示的悬臂梁模型,可以先画出梁结构的二维截面(矩形),再通过拉伸得到。 单击左侧工具区中的(Create Part)按钮,或者在主菜单里面选择Part--Create,弹出如图1-2所示的Create Part对话框。 图1-2 Create Part对话框 在Name(部件名称)后面输入Beam,Modeling Space(模型所在空间)设

机械振动实验报告

《机械振动基础》实验报告 (2015年春季学期) 姓名 学号 班级 专业机械设计制造及其自动化报告提交日期2015.05.07 哈尔滨工业大学

报告要求 1.实验报告统一用该模板撰写,必须包含以下内容: (1)实验名称 (2)实验器材 (3)实验原理 (4)实验过程 (5)实验结果及分析 (6)认识体会、意见与建议等 2.正文格式:四号字体,行距为1.25倍行距; 3.用A4纸单面打印;左侧装订; 4.报告需同时提交打印稿和电子文档进行存档,电子文档由班长收 齐,统一发送至:liuyingxiang868@https://www.doczj.com/doc/6215049335.html,。 5.此页不得删除。 评语: 教师签名: 年月日

实验一报告正文 一、实验名称:机械振动的压电传感器测量及分析 二、实验器材 1、机械振动综台实验装置(压电悬臂梁) 一套 2、激振器一套 3、加速度传感器一只 4、电荷放大器一台 5、信号发生器一台 6、示波器一台 7、电脑一台 8、NI9215数据采集测试软件一套 9、NI9215数据采集卡一套 三、实验原理 信号发生器发出简谐振动信号,经过功率放大器放大,将简谐激励信号施加到电磁激振器上,电磁激振器振动杆以简谐振动激励安装在激振器上的压电悬臂梁。压电悬臂梁弯曲产生电流显示在示波器上,可以观测悬臂梁的振动情况;另一方面,加速度传感器安装在电磁激振器振动杆上,将加速度传感器与电荷放大器连接,将电荷放大器与数据采集系统连接,并将数据采集系统连接到计算机(PC机)上,操作NI9215数据采集测试软件,得到机械系统的振动响应变化曲线,可以观测电磁激振器的振动信号,并与信号发生器的激励信号作对比。实验中的YD64-310型压电式加速度计测得的加速度信号由DHF-2型电荷放大器后转变为一个电压信号。电荷放大器的内部等效电路如图1所示。 q

abaqus有限元分析报告开裂梁要点

Abaqus梁的开裂模拟计算报告 1.问题描述 利用ABAQUS有限元软件分析如图1.1所示的钢筋混凝土梁的裂缝开展。参考文献Brena et al.(2003)得到梁的基本数据: 图1.1 Brena et al.(2003)中梁C尺寸 几何尺寸:跨度3000mm,截面宽203mm,高406mm的钢筋混凝土梁 由文献Chen et al. 2011得材料特性: 1.混凝土:抗压强度f c’=35.1MPa,抗拉强度f t= 2.721MPa,泊松比ν=0.2,弹性模量 E c=28020MPa; 2.钢筋:弹性模量为E c=200GPa,屈服强度f ys=f yc=440MPa,f yv=596MPa 3.混凝土垫块:弹性模量为E c=28020MPa,泊松比ν=0.2 2.建模过程 1)Part 打开ABAQUS使用功能模块,弹出窗口Create Part,参数为:Name:beam;Modeling Space:2D;Type:Deformable;Base Feature─Shell;Approximate size:2000。点击Continue 进入Sketch二维绘图区。由于该梁关于Y轴对称,建模的时候取沿X轴的一半作为模拟对象。 使用功能模块,分别键入独立点(0,0),(1600,0),(1600,406),(406,0),(0,0)并按下下方提 示区的Done,完成草图。 图2.1 beam 部件二维几何模型

相同的方法建立混凝土垫块: 图2.2 plate 部件二维几何模型 所选用的点有(0,0),(40,0),(40,10),(0,10) 受压区钢筋: 在选择钢筋的base feature的时候选择wire,即线模型。 图2.3 compression bar 部件二维几何模型 选取的点(0,0),(1575,0) 受拉区钢筋: 图2.4 tension bar 部件二维几何模型 选取的点(0,0),(1575,0) 箍筋: 图2.5 stirrup 部件二维几何模型 选取的点为(0,0),(0,330) 另外,此文里面为了作对比,部分的模型输入尺寸的时候为m,下面无特别说明尺寸都为mm。

实验三 矩形截面悬臂梁弯曲测弹性模量和泊松比

中国矿业大学力学实验报告 姓名白永刚 班级 土木11-9班 同组姓名 方雷、蔡卫、蔡尧 实验日期2012-10-26 材料弹性模量E 和泊松比μ的测试 一、实验目的 1. 测定常用金属材料的弹性模量E 和泊松比μ。 2. 验证胡克定律。 3. 学习掌握电测法的基本原理和电阻应变仪的操作。 4. 熟悉测量电桥的应用。掌握应变片在测量电桥中的各种接线方法。 5. 学习用最小二乘法处理实验数据。 二、实验设备 1. 电子万能试验机或组合实验台; 2. 静态电阻应变测力仪; 3. 游标卡尺; 4. 矩形截面梁。 三、实验原理和方法 材料在线弹性范围内服从胡克定律,应力和应变成正比关系。单向拉伸时,其形式为 E σε= (1) 式中E 为弹性模量。在εσ-曲线上,E 由弹性阶段直线的斜率确定,它表征材料抵抗弹性应变的能力。E 愈大,产生一定弹性变形所需的应力愈大。E 是弹性元件选材的重要依据,是力学计算中的一个重要参量。 00F = l E A l σε = ? (2) 试件弯曲时,产生纵向伸长和横向收缩,或者产生纵向收缩和纵向伸长。实验表明在弹性范围内,横向应变ε'与轴向应变ε,二者之比为一常数,其绝对值称为泊松比,用μ来表示,即 ε εμ' = (3) 本实验采用电测法来测量E 、μ。 试件采用矩形截面试件,布片方式如图(a)。在试件中央某截面,沿前后两面轴向分别对称地分布有两对轴向应变片R 1,R 1’以测量轴向应变ε。一对横向应变片R 2,R 2’以测轴向应变ε'。

1. 测弹性模量E 由于实验装置和安装初始状态的不稳定性,拉伸曲线的初始阶段往往是非线性的。为了尽可能减少测量误差,实验已从初载()000F F ≠开始。与0F 对应的应变仪读数d ε可预调到零。采用增量法,分级加载,分别测量在各项同载荷增量F ?作用下,产生的应变增量ε?,并求ε?的平均值。设试件初始横截面面积为A 0,又因=/l l ε?,则(2)式可写成 0A F E ε?= ?均 (4) 上式即为增量法测E 得计算公式,其中d ε?为试件实际轴向应变增量的平均值, F ?为加载力的阶段差值。 实验前拟定加载方案,通常考虑以下情况: (1) 由于在比例极限内进行试验,故最大应力值不应大于比例极限,实验最 大载荷为 max 0(0.70.8)A S F σ≤- (5) (2) 初载荷0F 可按max F 的10%或稍大于此值来设定。 (3) 分5-7级加载,每级加载后要使应变度数有明显变化。 2. 测泊松比μ 利用试件的横向应变和轴向应变,采用全桥测量法,在弯曲情况下测出横向应变ε'和轴向应变F ε,并随时检验其增长是否符合线性规律。按照定义有 ()F 21d εμε=+ (6) 'F =ε με?? 均 均 (7) 布片方案如图(a)所示。

梁的振动实验报告

《机械振动学》实验报告 实验名称梁的振动实验 专业航空宇航推进理论与工程 姓名刘超 学号 SJ1602006 南京航空航天大学 Nanjing University of Aeronautics and Astronautics 2017年01月06日

1实验目的 改变梁的边界条件,对比分析不同边界条件,梁的振动特性(频率、振型等)。对比理论计算结果与实际测量结果。正确理解边界条件对振动特性的影响。 2实验内容 对悬臂梁、简支梁进行振动特性对比,利用锤击法测量系统模态及阻尼比等。 3实验原理 3.1 固有频率的测定 悬臂梁作为连续体的固有振动,其固有频率为: ()1,2,.......r r l r ωλ==其中, 其一、二、三、四阶时, 1.87514.69417.854810.9955.....r l λ=、 、、 简支梁的固有频率为: ()1,2,.......r r l r ωλ==其中 其一、二、三、四阶时, 4.73007.853210.995614.1372.....r l λ=、 、、 其中E 为材料的弹性模量,I 为梁截面的最小惯性矩,ρ为材料密度,A 为梁截面积,l 为梁的长度。 试件梁的结构尺寸:长L=610mm, 宽b=49mm, 厚度h=8.84mm. 材料参数: 45#钢,弹性模量E =210 (GPa), 密度ρ=7800 (Kg/m 3) 横截面积:A =4.33*10-4 (m 2), 截面惯性矩:J =3 12 bh =2.82*10-9(m 4) 则梁的各阶固有频率即可计算出。

3.2、实验简图 图1 悬臂梁实验简图 图2简支梁实验简图

ABAQUS简支梁分析(梁单元和实体单元)

基于ABAQUS 简支梁受力和弯矩的相关分析 (梁单元和实体单元) 对于简支梁,基于ABAQUS2016,首先用梁单元分析了梁受力作用下的应 力,变形,剪力和力矩;对同一模型,并用实体单元进行了相应的分析。另 外,还分析了梁结构受力和弯矩作用下的剪力及力矩分析。 对于CAE 仿真分析具体细节操作并没有给出详细的操作,不过在后面上 传了对应的cae, odb , inp 文件。不过要注意的是本文采用的是 ABAQUS2016 进行计算,低版本可能打不开,可以自己提交 inp 文件自己计算即可。可以到 小木虫搜索:“基于ABAQUS 简支梁受力和弯矩的相关分析”进行相应文件 下载。 对于一简支梁,其结构简图如下所示,梁的一段受固支,一段受简支,在 梁的两端受集中载荷,梁的大直径 D=180mm ,小直径d=150mm ,a=200mm , b=300mm , l=1600mm , F=300000N 。现通过梁单元和实体单元分析简支梁的受 力情况,变形情况,以及分析其剪力和弯矩等。材料采用 45#钢,弹性模量 E=2.1e6MPa,泊松比 v=0.28。 1.梁单元分析 ABAQUS2016 中对应的文件为 beam-shaft.cae , beam-shaft.odb , beam- shaft.inp 。 在建立梁part 的时候,采用三维线性实体,按照图1所示尺寸建立,然后 在台阶及支撑梁处进行分割,结果如图 2所示 l b b a a A A C B A 图1简支梁结构简图

图2建立part并分割 接下来为梁结构分配材料,创建材料,定义弹性模量和泊松比,创建梁截面形状,如图3,非别定义两个圆,圆的直接分别为180和150mm。然后创建两个截面,截面选择梁截面,再选择图2中的所有梁,定义梁的方向矢量为 (0,0,-1)(点击图3中的n2, n 1,t那个图标即可创建梁的方向矢量),最后把创建好的梁赋给梁结构。 图3创建梁截面形状 接下来装配实体,再创建分析步,在创建分析步的时候,点击主菜单栏的Output,编辑Edit Field Output Request,在SF前面打钩,这样就可以在结果后处理中输出截面剪力和力矩,如图4所示。在Load加载中,在固支处剪力边界条件,约束x,y,z,及绕x和y轴的转动,如图5所示,同理,在固支另一处约束y,z,及绕x和y轴的转动。在梁的两端添加集中力,集中力的大小为300000N。最后对实体部件进行分网,采用B32梁单元,网格尺寸为10。完成

悬臂梁实验简明指导书

悬臂梁实验指导 1、实验目的 1、初步掌握电测方法和多点应变测量技术; 2、测定悬臂梁上下表面的应力,验证梁的弯曲理论。 2、实验设备 1、材料力学组合试验台; 2、电阻应变仪; 3、矩形截面钢梁。 3、原理及方法 如上图,梁在纯弯曲时,同一截面的上表面产生拉应变,下表面产生压应变,上下表面产生的拉压应变绝对值相等。分别在梁上下表面对称位置贴上应变片R1、R2,此时,可得到不同横截面的正应力σ,其理论值计算公式: M :弯矩 M=P·L ( L :载荷作用点到测试点的距离) (抗弯截面矩量) 温度补偿片贴在相同材料的金属上。对每一待测应变片联同补偿片按半桥接线。测出载荷作用下各待测点的应变ε,由胡克定律知:,于是可将实测值和理论值进行比较。 四、实验步骤及注意事项 1、按照指导书介绍的电阻应变仪使用方法,根据应变片灵敏 系数k,设定仪器灵敏系数k仪,使k仪=k。 2、对每一待测应变片联同补偿片按半桥接线,在本次实验 中,将用导线把所有的b端、c端各自连通(短路),以实 现各测点共用补偿片。 3、准备好加载法码 (本次实验用的是非标准法码)。 4、确认无加载,此时把各测点的应变调零,用应变仪的换点 开关切换测点。 5、开始进行加载、实验。(应片仪读数为微应变) 6、加载法码时要缓慢,测量中不要挪动导线;小心操作,不

要因超载压坏钢梁。 五、数据处理 1、本次实验以加载一次和卸载一次为例,卸载可观察一下数 据飘移的现象,多次的可以类推。每次由P1到P3(Pmax),在应变仪上读出各测点逐次的应变值,然后进行逐级卸载,并记录相应的应变值。 2、把所有实测数据填入数据表中,并按公式进行计算。 3、每一测点求出对的相对误差e: 4、相关数据 应变片灵敏系数k=2,阻值为120Ω; 悬臂梁弹性模量E=2.15×1011 Pa 悬臂梁横相关几何尺寸:L=300mm、h=10mm、b=30mm、1N=0.102kgf 1kgf (公斤力) =9.8N 1MPa=1×106 Pa (1MPa=1N/mm2,1Pa=1N/m2) 测量片1 载荷加载卸载相对误差 e: P1 P2 P3 测量片2 载荷加载卸载相对误差 e: P1 P2 P3 实验中心机械实验室 2009年10月

第10章 周期对称结构的模态分析

第十章周期对称结构的模态分析 ANSYS的周期对称分析支持静力(Static)分析和模态(Modal)分析。静力分析支持线性和大变形非线性;模态分析支持带有预应力的模态分析和不带有预应力的两种,关于带有预应力的模态分析本书第九章有专门讲述。本章只讲述不带有预应力的模态分析。在静力分析和模态分析这两种分析类型中,关于模型建立部分的要求是一致的,不同的是在进行模态分析时需要指定求解的节径数以及指定对于每个节径数的求解的模态阶数。对于每个节径,ANSYS均将其作为一个载荷步。ANSYS将周期对称边界条件施加于每一载荷步,并且每求解一个载荷步(即节径)后,都将构成周期对称边界条件的约束方程删除(保留任何用户自定义的约束方程)。在静力分析中ANSYS只求解零节径,而在模态分析中默认将求解全部节径。 本章中介绍的实例依然是第7章的轮盘,包括模型和边界条件。 10.1 问题描述 某型压气机盘,见7.1节的对其描述。要求查看其低阶频率结构和振动模态。 10.2 建立模型 在周期对称分析中,在建立模型后,划分网格之前,需要指定周期对称选项。 10.2.1 设定分析作业名和标题 在进行一个新的有限元分析时,通常需要修改数据库文件名(原因见第二章),并在图形输出窗口中定义一个标题用来说明当前进行的工作内容。另外,对于不同的分析范畴(结构分析、热分析、流体分析、电磁场分析等)ANSYS6.1所用的主菜单的内容不尽相同,为此我们需要在分析开始时选定分析内容的范畴,以便ANSYS6.1显示出跟其相对应的菜单选项。 (1)选取菜单路径Utility Menu >File >Change Jobname,将弹出修改文件名(Change Jobname)对话框,如图10.1所示。

Abaqus梁结构经典计算

Abaqus梁结构经典计算 一榀轻钢结构库房框架,结构钢方管构件,材质E=210GPa,μ=, ρ=7850kg/m3(在不计重力的静力学分 析中可以不要)。F=1000N,此题要计入重力。计算水平梁中点下降位移。 文件与路径 顶部下拉菜单File, Save As ExpAbq02。 一部件 创建部件,命名为Prat-1。 3D,可变形模型,线,图形大约范围20(m)。 选用折线绘出整个图示屋架。 退出Done。 二性质 1 创建截面几何形状:Module,Property,Create Profile, 将截面(1)命名为Profile-1,选Box型截面,按图输入数据,关闭。直至完成截面(3)。 2 定义各段梁的方向: 选中所有立杆,输入截面主惯性轴1方向单位矢量(1,0,0),选中横梁和斜杆,输入截面主轴1方向单位矢量(0,1,0),关闭。还有好办法,请大家自己捉摸。

3 定义截面力学性质: 将截面(1) Profile-1命名为Section-1,梁,梁,截面几何形状选 Profile-1,输入E=210GPa,G=,ν=,ρ=7850,关闭。直至完成截面(3) Section-3。 4 将截面的几何、力学性质附加到部件上: 选中左右立柱和横梁,将各Section-1~3信息注入Part-1的各个杆件上,要对号入座。 5 保存模型: 将本题的CAE模型保存为。 三组装 创建计算实体,以Prat-1为原形,用Independent方式或Dependent生成实体。 四分析步 创建分析步,命名为Step-1,静态Static,通用General。 注释:无,时间:不变,非线性开关:关。 五载荷 1 施加位移边界条件: 命名为BC-1,在分析步Step-1中,性质:力学,针对位移和转角。 选中立柱两脚,约束全部自由度。 2 创建载荷: 命名为Load-1,在分析步Step-1中,性质:力学,选择集中力。 选中顶点,施加Fy=F2=-1000(N)。 六网格 对部件Prat-1进行。 1 撒种子: 针对部件,全局种子大约间距。 2 划网格: 针对部件,OK。 3 保存你的模型: 将本题的CAE模型保存为。

悬臂梁实验报告

实验报告悬臂梁的模态实验 姓名:xxx 学号:xxx 专业:xxx 系别:xxx

一、试验装置 二、实验原理 本实验采用锤击法测定悬臂梁的频响函数,将第S 点沿坐标X S 方向作用的锤击力和第r 点沿X r 方向的响应分别由相应的传感器转换为电信号,在由动态分析仪,按照随机振动理论,运算得出r,s 两点间的频响函数rs H ~ , ∑=+-==n i i i i k i s i r s r rs i k F X H 12 ) ()()(0) 21(~~ λζλ?? (1) 又由于响应信号是加速度,同时圆频率为ω,位移函数,sin t X x ω=其加速度为 ,sin 22x t X a ωωω-=-=用复数表示后,参照(1)可得到加速度频响函数为: ∑=+--=-=n i i i i k i s i r s r a rs i k F X H 12 ) ()()(2 02)21(~~λζλ??ωω (2) 由公式(2)可知,当k ωω=时,1=k λ,此时式(2)可近似写为: ,22)(~) ()()()() ()(2k k k s k r k k k s k r k k a rs m i k i H ζ??ζ??ωωω-=-== (3) 它对应频响函数a rs H ~的幅频曲线的第k 个峰值,其中在上面(3),k m k k k 2() (ω)式中= 为各阶主质量...n k ,3,2,1=。改变s 点的位置,在不同点激振,可以得到不同点与点r 之间的频响函数,当s=r 时,就可得到点r 处的原点频响函数,表示为: ∑ =+--=n i i i i i i r i r a rr i k H 1 2 )() ()(2 ) 21(~λζλ??ω (4) 它的第k 个峰值为:

相关主题
文本预览
相关文档 最新文档