当前位置:文档之家› 幅度键控、频移键控和相移键控调制解调实验.doc

幅度键控、频移键控和相移键控调制解调实验.doc

幅度键控、频移键控和相移键控调制解调实验.doc
幅度键控、频移键控和相移键控调制解调实验.doc

幅度键控、频移键控和相移键控调制解调实验

.实验四。振幅移位键控、频率移位键控、相移键控调制和解调实验

一、实验目的1。掌握绝对码和相对码的概念及其转换关系和转换方法。掌握键控产生2ASK和2FSK信号的方法,以及2ASK相干解调和2FSK过零检测解调的原理。掌握相对码波形和2FSK信号波形4之间的关系。掌握2ASK和2FSK信号的频谱特征

2.实验内容(包括技术指标)1。观察绝对代码和相对代码2的波形。观察2ASK和2FSK信号3的波形。观察2ASK和2FSK信号4的频谱。观察2ASK和2FSK解调信号5的波形。观察2FSK过零检测解调器在所有点的波形

三、实验设备信号源模块、数字调制模块、频谱分析模块、数字解调模块、同步信号提取模块、数字示波器、若干连接线

4.实验原理当调制信号是二进制序列时,数字波段调制称为二进制数字调制。

由于调制载波具有幅度、频率和相位三个独立的可控参数,当这三个参数分别被二进制信号调制时,形成三个基本的数字带调制信号,即二进制幅度键控(2ASK)、二进制频移键控(2FSK)和二进制相移键控(2PSK),而每个调制信号的受控参数只有两个离散的变换状态。

1.2 ASK调制原理。在幅度键控中,载波幅度随着基带信号的变

MFSK的调制与解调

目录 前言 (1) 正文 (1) 2.1 课程设计的目的及意义 (1) 2.2 多进制数字调制 (1) 2.3 MFSK简介 (1) 2.4 MFSK信号的频谱、带宽及频带利用率 (2) 2.5 MFSK调制与解调的原理 (3) 3 仿真结果与分析 (3) 3.1 八进制的随机序列 (3) 3.2 调制后的信号 (4) 3.3 加入高斯白噪声后的已调信号 (5) 3.4 MFSK的解调 (6) 3.4.1 滤除高斯白噪声 (6) 3.4.2 相干解调后的信号 (7) 3.4.3 非相干解调后的信号 (7) 3.5 MFSK系统的抗噪声性能 (8) 3.5.1 相干解调时的误码率 (8) 3.5.2 非相干解调时的误码率 (8) 课程设计总结 (9) 致谢 (9) 参考文献 (10) 附录 (11)

前言 MFSK——多进制数字频率调制,简称多频制,是2FSK方式的推广。它是用不同的载波频率代表各种数字信息。在数字通信系统中,数字调制与解调技术占有非常重要的地位。随着MATLAB技术的发展,数字通信技术与MATLAB的结合体现了现代数字通信系统发展的一个趋势。文中介绍了MFSK调制解调的原理,并基于MATLAB实现MFSK调制解调的程序代码设计,仿真结果表明设计方案是可行的。 正文 2.1 课程设计的目的及意义 本次课程设计我所做的课题是一个多进制频移键控MFSK的调制与解调项目,这就要求我们需要完成信号的调制解调以及抗噪声性能的分析等问题。 通过我们对这次项目的学习和理解,综合运用课本中所学到的理论知识完成一个多进制频移键控MFSK的调制与解调项目的课程设计。以及锻炼我们查阅资料、方案比较、团结合作的能力。学会了运用MATLAB编程来实现MFSK调制解调过程,并且输出其调制及解调过程中的波形,并且讨论了其调制和解调效果,分析了抗噪声性能,增强了我的动手能力,为以后学习和工作打下了基础。 2.2 多进制数字调制 二进制键控调制系统中,每个码元只传输1b信息,其频带利用率不高。而频率资源是极其宝贵和紧缺的。为了提高频带利用率,最有效的办法是使一个码元传输多个比特的信息。这就是将要讨论的多进制键控体制。多进制键控体制可以看作是二进制键控体制的推广。这时,为了得到相同的误码率,和二进制系统相比,接要用更大的发送信号功率。这就是为了传输更多信息量所要付出 的代价。由二进制数字调制系统的性能比较可得知,各种键控体制的误码率都决定于信噪比:r=a 2 2σn2 (r表示信号码元收信号信噪比需要更大,即需码元功率a 2 2 和噪声功率σn2之比)。 现在,设多进制码元的进制数为M,一个码元中包含信息K比特,则有k=log2M;若想把码元 功率a 2 2平均分配给每比特,则每比特分得的功率为P b=a2 2k ;这样每比特的信噪功率比为:r b=r k ; 在M进制中,由于每个码元包含的比特数K和进制数M有关,所以在研究不同M值下的错误率时,适合用r b为单位来比较不同体制的性能优劣。 所谓多进制数字调制,就是利用多进制数字基带信号去调制高频载波的某个参量,如幅度、频率或相位的过程。根据被调参量的不同,多进制数字调制可分为多进制幅度键控(MASK)、多进制频移键控(MFSK)以及多进制相移键控(MPSK或MDPSK)。也可以把载波的两个参量组合起来进行调制,如把幅度和相位组合起来得到多进制幅相键控(MAPK)或它的特殊形式多进制正交幅度调制(MQAM)等。 2.3MFSK简介 多进制数字频率调制(MFSK)简称多频制,是2FSK方式的推广。它是用不同的载波频率代表不同种数字信息。多进制频移键控(MFSK)的基本原理和2FSK是相同的,其调制可以用频率键控法和模拟调频电路来实现,不同之处在于使用键控法的时候供选的频率有M个。

二进制相移键控(2PSK)调制电路课程设计

前言 相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。传统的2PSK (二进制相位键控)调制可采用直接调相法即双极性数字基带信号与载波直接相乘的方法,也可以采用相位选择法即由振荡器和反相器电路来实现调制的方法。对数字信息进行调制可以便于信号的传输;实现信道复用;改变信号占据的带宽;改善系统的性能。 相移键控在数据传输中,尤其是在中速和中高速的数传机中得到了广泛的应用。相移键控有很好的抗干扰性,在有衰落的信道中也能获得很好的效果。二进制移相键控(2P SK)方式是载波相位按基带脉冲序列的规律而改变的一种数字调制方式,和模拟调制不同的是,由于数字基带信号具有离散取值的特点,所以调制后的载波参量只有有限的几个数值,因而数字调制在实现的过程中常采用键控的方法,就像用数字信息去控制开关一样,根据数字基带信号的两个电平,使载波相位在两个不同的数值之间切换的一种相位调制方式。当两个载波相位相差180度时,此时称为反向键控,也称为绝对相移方式。 本次设计实验旨在将理论和实践地结合。依据所学知识,利用Multisim软件进行实验电路设计和仿真。

目录 一、设计实验目的 (1) 1.掌握二进制相移键控调制的概念。 (1) 二、设计指标 (1) 三、原理框图介绍 (1) 四、单元电路设计 (2) 1.载波发生器模块—555脉冲发生电路 (2) 2.载波倒相器 (5) 3.信码反相器 (5) 4.模拟开关CD4066 (5) 五、整体电路图设计与仿真 (6) 1.整体电路图设计说明 (6) 2.总电路图及仿真结果 (6) 六、设计总结 (8) 参考文献 (8) 附件二:元器件清单 (9)

4psk调制与解调

课程设计任务书 学生姓名:王成刚专业班级:通信0906班 指导教师:许建霞工作单位:信息工程学院 题目: 设计一个4PSK调制解调系统 初始条件: 本设计基于数字信号处理技术基础实验,通过自行设计程序并在电脑上利用MATLAB软件进行仿真。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰 写等具体要求) 1)4PSK信号波形的载频和相位参数应随机置或者可有几组参数组合供选择 2)系统中要求加入高斯白噪声 3)4PSK解调方框图采用相干接收形式 4)分析误码率 参考书目: [1]谢自美.电子线路设计·实验·测试(第三版).武汉:华中科技大学出版社 [2]康华光. 电子技术基础模拟部分.高等教育出版社,2005 [3]康华光. 电子技术基础数字部分.高等教育出版社,2005 [4]樊昌信. 通信原理(第五版).北京:国防工业出版社,2005 时间安排: 第1周,安排任务(鉴主15楼实验室) 第1-17周,仿真设计(鉴主13楼计算机实验室) 第18周,完成(答辩,提交报告,演示) 指导教师签名: 年月日系主任签名:年月日

目录 摘要 (3) Abstract (4) 1 引言 (5) 1.1 背景介绍 (5) 1.2 设计要求 (5) 2 4PSK调制解调的基本原理 (6) 2.12PSK数字调制原理 (6) 2.24PSK的调制和解调 (7) 3 4PSK调制解调系统仿真 (10) 3.1MATLAB软件介绍 (10) 3.22PSK调制解调系统仿真 (11) 3.34PSK调制解调系统仿真 (12) 4 4PSK误码率分析 (15) 4.1 4PSK误码率的计算 (15) 4.24PSK误码率的仿真 (16) 5 总结 (17) 参考文献 (18)

四相移相键控调制解调

太原理工大学现代科技学院实验报告 一、 实验目的 1、了解QPSK 调制解调原理及特性。 2、了解载波在QPSK 相干及非相干时的解调特性。 二、 实验内容 1、观察I 、Q 两路基带信号的特征及与输入NRZ 码的关系。 2、观察IQ 调制解调过程中各信号变化。 3、观察解调载波相干时和非相干时各信号的区别。 三、 基本原理 1、QPSK 调制原理 QPSK 又叫四相绝对相移调制,它是一种正交相移键控。 QPSK 利用载波的四种不同相位来表征数字信息。由于每一种载波相位代表两个比特信息,因此,对于输入的二进制数字序列应该先进行分组,将每两个比特编为一组,然后用四种不同的载波相位来表征。我们把组成双比特码元的前一信息比特用a 代表,后一信息比特用b 代表。双比特码元中两个信息比特ab 通常是按格雷码排列的,它与载波相位的关系如表1-1所示,矢量关系如图1-1所示。图1-1(a )表示A 方式时QPSK 信号矢量图,图1-1(b )表示B 方式时QPSK 信号的矢量图。 由于正弦和余弦的互补特性,对于载波相位的四种取值,在A 方式中:45°、135°、225°、315°, 则数据k I 、k Q 通过处理后输出的成形波形幅度有三种取值±1、0。 表1-1 双比特码元与载波相位关系

太原理工大学现代科技学院实验报告 (0,1) (1,1) (0,0) 参考相位参考相位 (a) (b) 图1-1 QPSK 信号的矢 量图 下面以A 方式的QPSK 为例说明QPSK 信号相位的合成方法。 串/并变换器将输入的二进制序列依次分为两个并行序列,然后通过基带成形得到的双极性序列(从D/A 转 码元。双极性的a 和b 脉冲通过两个平衡调制器分别对同相载波及正交载波进行二相调制,得到图1-2中虚 线矢量,将两路输出叠加,即得到QPSK 调制信号,其相位编码关系如表1-2所示。 a(1)b(1) b(0) a(0) 图1-2 矢量图 表1-2 QPSK 信号相位编码逻辑关系 用调相法产生QPSK 调制器框图如图1-3所示。

角度调制与解调电路范文

1.某超外差接收机的中频为465kHz,当接收931kHz的信号时,还收到1kHz的干扰信号,此干扰为( A )A.干扰哨声B.中频干扰 C.镜像干扰D.交调干扰 2.MC1596集成模拟乘法器不可以用作(C )A.振幅调制B.调幅波的解调C.频率调制D.混频 3.若载波u C(t)=U C cosωC t,调制信号uΩ(t)= UΩcosΩt,则调频波的表达式为(A )A.u FM(t)=U C cos(ωC t+m f sinΩt)B.u FM(t)=U C cos(ωC t+m p cosΩt)C.u FM(t)=U C(1+m p cosΩt)cosωC t D.u FM(t)=kUΩU C cosωC tcosΩt 4.单频调制时,调相波的最大相偏Δφm正比于( A )A.UΩB.uΩ(t)C.Ω 5.某超外差接收机的中频f I=465kHz,输入信号载频fc=810kHz,则镜像干扰频率为 (C)A.465kHz B.2085kHz C.1740kHz 6.调频收音机中频信号频率为( A )A.465kHz B.10.7MHz C.38MHz D.不能确定 7.直接调频与间接调频相比,以下说法正确的是(C)A.直接调频频偏较大,中心频率稳定B.间接调频频偏较大,中心频率不稳定C.直接调频频偏较大,中心频率不稳定D.间接调频频偏较大,中心频率稳定8.鉴频特性曲线的调整内容不包括(B)A.零点调整B.频偏调整 C.线性范围调整D.对称性调整 9.某超外差接收机接收930kHz的信号时,可收到690kHz和810kHz信号,但不能单独收到其中一个台的信号,此干扰为(D)A.干扰哨声B.互调干扰 C.镜像干扰D.交调干扰 10.调频信号u AM(t)=U C cos(ωC t+m f sinΩt)经过倍频器后,以下说法正确的是(C)A.该调频波的中心频率、最大频偏及Ω均得到扩展,但m f不变 B.该调频波的中心频率、m f及Ω均得到扩展,但最大频偏不变 C.该调频波的中心频率、最大频偏及m f均得到扩展,但Ω不变 D.该调频波最大频偏、Ω及m f均得到扩展,但中心频率不变 11.关于间接调频方法的描述,正确的是(B)A.先对调制信号微分,再加到调相器对载波信号调相,从而完成调频 B.先对调制信号积分,再加到调相器对载波信号调相,从而完成调频 C.先对载波信号微分,再加到调相器对调制信号调相,从而完成调频 D.先对载波信号积分,再加到调相器对调制信号调相,从而完成调频 12、变频器的工作过程是进行频率变换,在变换频率的过程中,只改变_____A_____频率,而______C_____的规律不变。 (A)载波(B)本振(C)调制信号(D)中频 13、调频系数与___B__、A___有关,当调制信号频率增加时,调频系数____E____,当调制信号幅度增加时,调频系数___D_______。 A)UΩm B) ΩC)Ucm D)增大E)减小F)不变

PSK调制和解调的基本原理回顾

目录 1.实验要求及开发环境 (3) 2. 二、课程设计软件说明 (7) 三、基本原理 (2) 3.1调制方式简介 (2) 3.2OQPSK的含义 (3) 3.3同相正交环法(科斯塔斯环) (5) 四、实验框图原理说明 (12) 4.1实验总框图介绍 (12) 4.2五个子部分的介绍 (7) 4.2.1串并转换 (7) 4.2.2载波调制 (9) 4.2.3 科斯塔斯环解调 (15) 4.2.4 抽样判决 (17) 4.2.5 并串转换 (17) 五、实验结论 (18) 六、调试报告 (19) 6.1频率调制器F M参数设置 (19) 6.2低通滤波器参数设置 (19) 6.3脉冲串的参数设置 (20) 七、实验心得 (21) 八、参考文献 (22)

一、实验要求及开发环境 实验要求:1. 数字相关器子系统 2. 仿真结果分析 实验目的:1.了解PSK直序扩频通信系统的基本原理 2.掌握Systemview的使用 开发环境:PC机开发软件:Systemview Systemview简介 Systemview是一个用于现代工程与科学系统设计及仿的动态系统分析平台。从滤波器设计、信号处理、完整通信系统的设计与仿真。直到一般系统的数学模型建立等各个领域,systemview在友好且功能齐全的窗口环境下,为用户提供了一个精密的嵌入式分析工具。 利用systemview,可以构造各种复杂的模拟、数字、数模混合系统和各种多速率系统.可用于各种线性或非线性控制系统的设计和仿真。其特色是,利用它可以从各种不同角度、以不同方式,拉要求设计多种滤波器,并可自动完成滤波器的各种指标一如幅频待件(波特图)、传递函数、根轨迹图等之间的转换。它还

相移键控(PSK)和差分相移键控(DPSK)的仿真与设计

题目相移键控(PSK)和差分相移键控(DPSK)的仿真与设计 摘要 计算机仿真软件在通信系统工程设计中发挥着越来越重要的作用。利用MATLAB作为编程工具,设计了相移键控系统的模型,并且对模型的方针流程以及仿真结果都给出具体详实的分析,为实际系统的构建提供了很好的依据。数字调制是通信系统中最为重要的环节之一,数字调制技术的改进也是通信系统性能提高的重要途径。本文首先分析了数字调制系统的PSK和PSK的调制解调方法,然后,运用Matlab设计了这两种数字调制解调方法的仿真程序。通过仿真,分析了这两种调制解调过程中各环节时域和频域的波形,并考虑了信道噪声的影响。通过仿真更深刻地理解了数字调制解调系统基本原理。最后,对两种调制解调系统的性能进行了比较。 关键词2PSK 2DPSK Matlab 设计与仿真

1、设计内容、意义 1.1了解MATLAB MATLAB是一种交互式的以矩阵为基础的系统计算平台,它用于科学和工程的计算与可视化。它的优点在于快速开发计算方法,而不在于计算速度。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,雇佣MATLAB可以进行矩阵、控制设计、信号处理与通信、图像处理、信号检测等领域。目前,MATLAB集科学计算(computation) 、可视化(visualization)、编程(programming)于一身,并提供了丰富的Windows图形界面设计方法。MATLAB在美国已经作为大学工科学生必修的计算机语言之一,近年来,MATLAB语言已在我国推广使用,现在已应用于各学科研究部门和高等院校。 1.2设计内容 数字信号的传输可分为基带传输和带通传输,实际中的大多数的信道(如无线信道)因具有带通特性而不能直接传送基带信号,这是因为基带信号往往具有丰富的低频分量,为了使数字信号能在带通信道中传输,必须用数字基带信号对载波进行调制,以使信号与信道相匹配,这种用基带信号控制载波,把数字基带信号变换成数字带通信号的过程称为数字调制。 在接收端通过解调器把带通信号还原成数字基带信号的过程称为数字解调,而包括调制和解调的过程数字传输系统叫做数字带通传输系统。通过改变载波幅度、频率、相位,来传输数字基带信号,所以带通传输也叫做载波传输。利用数字信号的离散取值特点通过开关键控制载波,从而实现数字调制,此法通常称为键控法,根据键控的不同可分为振幅键控,频率键控和相位键控。 此次试验报告首先分析了数字调制系统的几种基本调制解调方法,然后,运用Matlab设计了两种数字调制解调方法的仿真程序,主要包括2PSK,2DPSK。通过仿真,分析了这两种调制解调过程中各环节时域和频域的波形,并考虑了信道噪声的影响。通过仿真更深刻地理解了数字调制解调系统基本原理。最后,对这两种调制解调系统的性能进行了比较。 1.3设计意义 由于传输失真、传输损耗以及保证带内特性的原因,基带信号不适合在各种信道上进行长距离传输。为了进行长途传输,必须对数字信号进行载波调制,将信号频谱搬移到高频处才能在信道中传输。因此,大部分现代通信系统都使用数字调制技术。另外,由于数字通信具有建网灵活,容易采用数字差错控制技术和数字加密,便于集成化,并能够进入综合业务

信号的相位调制与解调概要

MATLAB仿真信号的相位调制与解调 专业:通信与信息系统 姓名:赵* 学号:********* 指导老师:****教授

摘要 Psk调制是通信系统中最为重要的环节之一,Psk调制技术的改进也是通信系统性能提高的重要途径。本文首先分析了数字调制系统的基本调制解调方法,然后,运用Matlab及附带的图形仿真工具——Simulink设计了这几种数字调制方法的仿真模型。通过仿真,观察了调制解调过程中各环节时域和频域的波形,并结合这几种调制方法的调制原理,跟踪分析了各个环节对调制性能的影响及仿真模型的可靠性。最后,在仿真的基础上分析比较了各种调制方法的性能,并通过比较仿真模型与理论计算的性能,证明了仿真模型的可行性。另外,本文还利用Matlab的图形用户界面(GUI)功能为仿真系统设计了一个便于操作的人机交互界面,使仿真系统更加完整,操作更加方便。 关键词:数字调制;分析与仿真;Matlab;Simulink;PSK;QPSK;

1.数字调制技术 (2) 2.PSK调制系统 (3) 2.1 QPSK调制部分,原理框图如图七所示 (6) 2.2 QPSK解调部分,原理框图如图八所示: (8) 3.用Simulink实现PSK调制 (9) 3.1 2PSK仿真 (9) 3.1.1调制 (9) 3.1.2 解调仿真 (12) 3.2 QPSK仿真 (13) 3.2.1 QPSK调制框图 (13) 参考文献 (18)

1.数字调制技术 通信按照传统的理解就是信息的传输与交换。在当今信息社会,通信则与遥感,计算技术紧密结合,成为整个社会的高级“神经中枢”。没有通信,人类社会是不可想象的。一般来说,社会生产力水平要求社会通信水平与之相适应。若通信水平跟不上,社会成员之间的合作程度就受到限制。可见,通信是十分重要的。 通信传输的消息是多种多样的,可以是符号的,文字的,数据和图像的等等。各种不同的消息可以分为两类:一类称为离散消息;另一类称为连续消息。离散消息的状态是可数的或离散的,比如符号,文字或数据等。离散消息也称数字消息。而连续消息则是其状态连续变化的消息,例如,连续变化的语音,图像等。连续消息也称模拟消息。因此按照信道中传输的是模拟信号还是数字信号可以将通信系统分为模拟通信系统和数字通信系统。 数字通信有以下突出的特点:第一,数字信号传输时,信道噪声或干扰所造成的差错,原则上是可以控制的。第二,当需要保密的时候,可以有效的对基带信号进行人为的“扰乱”,即加上密码。 数字通信系统可以用下图表示: →→→→→→→→信数信信数信 信源 道 字受道源字信 息编编调 解译译信 源 码码调码码者 制 道 器 器 器 器 器 器 图一 数字通信在近20年来得到了迅速的发展,其原因是: (1) 抗干扰能力强 (2) 便于进行各种数字信号处理 (3) 易于实现集成化 (4) 经济效益正赶上或超过模拟通信 (5) 传输与交换可结合起来,传输电话与传输数据也可结合起来,成为一个 统一整体,有利于实现综合业务通信网。

GFSK的调制解调原理

GFSK 的调制和解调原理 高斯频移键控GFSK (Gauss frequency Shift Keying),是在调制之前通过一个高斯低通滤波器来限制信号的频谱宽度,以减小两个不同频率的载波切换时的跳变能量,使得在相同的数据传输速率时频道间距可以变得更紧密。它是一种连续相位频移键控调制技术,起源于FSK(Frequency- shift keying)。但FSK 带宽要求在相当大的程度上随着调制符号数的增加而增加。而在工业,科学和医用433MHz 频段的带宽较窄,因此在低数据速率应用中,GFSK 调制采用高斯函数作为脉冲整形滤波器可以减少传输带宽。由于数字信号在调制前进行了Gauss 预调制滤波,因此GFSK 调制的信号频谱紧凑、误码特性好,在数字移动通信中得到了广泛使用(高斯预调制滤波器能进一步减小调制频谱,它可以降低频率转换速度,否则快速的频率转换将导致向相邻信道辐射能量)。 GFSK 调制 1、直接调制:将数字信号经过高斯低通滤波后,直接对射频载波进行模拟调 频。由于通常调制信号都是加在PLL 频率合成器的VCO 上(图一),其固有的环路高通特性将导致调制信号的低频分量受到损失,调制频偏(或相偏)较小。因此,为了保证调制器具有优良的低频调制特性,得到较为理想的GFSK 调制特性,提出了一种称为两点调制的直接调频技术。 uc 图一 两点调制:调制信号被分成2部分,一部分按常规的调频法加在PLL 的VCO 端,另一部分则加在PLL 的主分频器一端(基于PLL 技术的频率合成器将增加两个分频器:一个用于降低基准频率,另一个则用于对VCO 进行分频 )。由于主分频器不在控制反馈环内,它能够被信号的低频分量所调制。这样,所产生的复合GFSK 信号具有可以扩展到直流的频谱特性,且调制灵敏度基本上为一常量, 鉴频器 PD 环路低通滤波器LF 压控振荡器VCO 载波信号 调制信号ui 调频信号uo 主分频器

四相移相键控(QPSK)调制及解调实验

通信对抗原理 实验报告 实验名称:四相移相键控(QPSK)调制及解调实 验 学生姓名: 学生学号: 学生班级: 所学专业: 实验日期:

1. 实验目的 1. 掌握QPSK 调制解调原理及特性。 2.. 熟悉Matlab 仿真软件的使用。 2. 实验内容 1、 编写Matlab 程序仿真QPSK 调制及相干解调。 2、 观察IQ 两路基带信号的特征及与输入NRZ 码的关系。 3、 观察IQ 调制解调过程中各信号变化。 4、 观察功率谱的变化。 5、 分析仿真中观察的数据,撰写实验报告。 3. 实验原理 1、QPSK 调制原理 QPSK 又叫四相绝对相移调制,它是一种正交相移键控。 QPSK 利用载波的四种不同相位来表征数字信息。由于每一种载波相位代表两个比特信息,因此,对于输入的二进制数字序列应该先进行分组,将每两个比特编为一组,然后用四种不同的载波相位来表征。我们把组成双比特码元的前一信息比特用a 代表,后一信息比特用b 代表。双比特码元中两个信息比特ab 通常是按格雷码排列的,它与载波相位的关系如表1-1所示,矢量关系如图1-1所示。图1-1(a )表示A 方式时QPSK 信号矢量图,图1-1(b )表示B 方式时QPSK 信号的矢量图。 由于正弦和余弦的互补特性,对于载波相位的四种取值,在A 方式中:45°、135°、225°、315°,则数据、 通过处理后输出的成形波形幅度有两种取值±;B 方 式中:0°、90°、180°、270°,则数据、通过处理后输出的成形波形幅度有三种取 值±1、0。 表1-1 双比特码元与载波相位关系 k I k Q 2/2k I k Q

通信原理 移频键控FSK调制与解调系统实验报告

移频键控FSK调制与解调系统设计实验 一.实验目的 1.加深对数字调制中移频键控FSK调制器与解调器工作原理及电路组成的理解与掌握。 2.学会综合地、系统地应用已学到的知识,对移频键控FSK调制与解调系统电路的设计与仿真方法,提高独立分析问题与解决问题的能力。 二.实验任务与要求 构建并设计一个数字移频键控FSK传输系统,具体要求是: 主载波频率:11800HZ 载波1频率:2950HZ(四分频) 载波2频率:1475HZ(八分频) 数字基带信号NRZ:7位M序列,传输速率约为400波特。(32分频) FSK调制器可以采用数字门电路构成电子开关电路(或集成模拟开关)与采用集成模拟乘法器,利用键控法实现。 FSK解调器可以采用非相干解调法或过零检测法实现。 传输信道不考虑噪声干扰,采用直接传输。 整个系统用EWB软件仿真完成。 三、2FSK 调制与解调系统原理与电路组成 数字频移键控是用载波的频率的变化来传送数字消息的,即用所传送的数字消息控制载波的频率。实现数字频率调制的方法很多,总括起来有两类。直接调频法和移频键控法。注意到相邻两个振荡器波形的相位可能是连续的,也可能是不连续的,因此有相位连续的FSK 及相位不连续的FSK之分。并分别记作CPFSK及DPFSK。 根据实验任务的要求,本次设计实验采用的是相位连续的FSK调制器与非相干解调器,其电路结构如图1-1所示.: 图1-1 2FSK调制与解调系统电路原理图

1)2FSK 调制系统设计 本次综合设计实验的调制系统主要由主载波振荡器、分频器、M序列发生器、调制器、相加器构成。其调制电路的组成框图如图1-2所示 由图可以看出,当信码为“1”时, 分频链作4分频,即输出频率 图1-2 FSK 调制器电路组成框图 为2950Hz 载波,信码为“0”时,分频链作8分频,输出频率为1475Hz 载波。如此一来,多谐振荡器输出的载波,通过不同次数的分频,就得到了两种不同频率的输出,经相加器后,从而在输出端得到不同频率的已调信号,即FSK 信号,完成了数字基带信号转换为数字频带信号的过程。 ①主载波振荡器电路设计 主要提供2FSK 的载波和信码的定时信号,本设计使用集成电路(555)构成多谐振荡器,产生的振荡频率为11800Hz 载波,其电路如图1-3。。 已知由(555)构成多谐振荡器的振荡频率为: 则R1=3.6K R2=4.7K (可调) 图1-3 555 定时器接成的多谐振荡器 C=0.033uf ②分频器电路设计 将主载波按设计要求,用D 触发器构成适当的分频电路,获得载频f1、f2和M序列所需的时钟信号,因一级D 触发器可实现二分频(选用74LS74双D3片),所以2FSK 系统所需的四、八及32分频器电路如图1-4所示: 图1-4 分频器电路 ③M序列发生器电路设计 实际的数字基带信号是随机的,为了实验和测试的方便,一般都用M 序列产生器产生的伪随机序列来充当数字基带信号。本次设计采用三级线性移位寄存器(选用74LS74双D2片),形成长度为23-1=7位码长的伪随机码序列,码率约为400bit/s ,如图1-5所示: 输出的信码为: 1110010 C R R T f )2(1121+= =

(完整版)振幅调制与解调习题及其解答

振幅调制与解调练习题 一、选择题 1、为获得良好的调幅特性,集电极调幅电路应工作于 C 状态。 A .临界 B .欠压 C .过压 D .弱过压 2、对于同步检波器,同步电压与载波信号的关系是 C A 、同频不同相 B 、同相不同频 C 、同频同相 D 、不同频不同相 3、如图是 电路的原理方框图。图中t t U u c m i Ω=cos cos ω;t u c ωcos 0= ( C ) A. 调幅 B. 混频 C. 同步检波 D. 鉴相 4、在波形上它的包络与调制信号形状完全相同的是 ( A ) A .AM B .DSB C .SSB D .VSB 5、惰性失真和负峰切割失真是下列哪种检波器特有的失真 ( B ) A .小信号平方律检波器 B .大信号包络检波器 C .同步检波器 6、调幅波解调电路中的滤波器应采用 。 ( B ) A .带通滤波器 B .低通滤波器 C .高通滤波器 D .带阻滤波器 7、某已调波的数学表达式为t t t u 6 3102cos )102cos 1(2)(??+=ππ,这是一个( A ) A .AM 波 B .FM 波 C .DSB 波 D .SSB 波 8、AM 调幅信号频谱含有 ( D ) A 、载频 B 、上边带 C 、下边带 D 、载频、上边带和下边带 9、单频调制的AM 波,若它的最大振幅为1V ,最小振幅为0.6V ,则它的调幅度为( B ) A .0.1 B .0.25 C .0.4 D .0.6 10、二极管平衡调幅电路的输出电流中,能抵消的频率分量是 ( A ) A .载波频率ωc 及ωc 的偶次谐波 B .载波频率ωc 及ωc 的奇次谐波 C .调制信号频率Ω D .调制信号频率Ω的偶次谐波 11、普通调幅信号中,能量主要集中在 上。 ( A ) A .载频分量 B .边带 C .上边带 D .下边带 12、同步检波时,必须在检波器输入端加入一个与发射载波 的参考信号。 ( C ) A .同频 B .同相 C .同幅度 D .同频同相 13、用双踪示波器观察到下图所示的调幅波,根据所给的数值,它的调幅度为 ( C )

振幅调制与解调电路思考题与习题填空题1调制是用4

第四章振幅调制与解调电路 思考题与习题 一、填空题 4 -1调制是用。 4-2调幅过程是把调制信号的频谱从低频搬移到载频的两侧,即产生了新的频谱分量,所以必须采用才能实现。 4-3在抑制载波的双边带信号的基础上,产生单边带信号的方法有和。4-4、大信号检波器的失真可分为、、和。 4-5、大信号包络检波器主要用于信号的解调。 4-6 同步检波器主要用于和信号的解调。 二思考题 4-1为什么调制必须利用电子器件的非线性特性才能实现?它和小信号放大在本质上有什么不同? 4-2.写出图思4-2所示各信号的时域表达式,画出这些信号的频谱图及形成这些信号的方框图,并分别说明它们能形成什么方式的振幅调制。

图思4-2 4-3振幅检波器一般有哪几部分组成?各部分作用如何?

4-4下列各电路能否进行振幅检波?图中RC为正常值,二极管为折线特性。 图思4-4 三、习题 4-1 设某一广播电台的信号电压u(t)=20(1+0.3cos6280t)cos6.33×106t(mV),问此电台的载波频率是多少?调制信号频率是多少? 4-2 有一单频调幅波,载波功率为100W,求当m a=1与m a=0.3时的总功率、边总功率和每一边频的功率。

4-3在负载R L=100某发射机的输出信号u(t)=4(1+0.5cos t)cos c t(V),求总功率、边频功率和每一边频的功率。 4-4 二极管环形调制电路如图题4-4所示,设四个二极管的伏安特性完全一致,均自原点出点些率为g d的直线。调制信号uΩ(t)=UΩm cosΩt,载波电压u c(t)如图所示的对称方波,重复周期为T c=2π/ωc,并且有U cm>Uωm,试求输出电流的频谱分量。 图题4-4 4-5.画出如下调幅波的频谱,计算其带宽B和在100Ω负载上的载波功率P c,边带功率P SB和总功率P av。。 (1)i=200(1+0.3cosπ×200t)cos2π×107t(mA) (2)u=0.lcos628×103t+0.lcos634.6×l03t(V) (3) 图题6.3-5所示的调幅波。

角度调制与解调

实用标准文案 uttt]V,π×10其数学表达式为())=10cos[2π×10 +6cos(21.有一调角波,45utt,指出该调角信号是调频信号还是调10())=3cos(2(1)若调制信号π×4Ω相信号? 若 ut呢?π×10)(t)=3sin(24ΩfF是多少?载波频率是多少?调制信号频率(2)c utt时,)π×(1)当10( )=3cos(2解:4Ωutφttutut),与2成正比,(()中的附加相位偏移△((π×)=6cos(210))= 4ΩΩ故为调相波。 utt时)( )=3sin(2π×当104Ω utφt=6×2π×10(2(π×)中的附加相位偏移△π×(t)=6cos(210 )44 tttt d =4π×10(2π×1010)d)444 φtutut)为调频波。()的积分成正比,则即△( )与(Ωωf=10 (H) 故(2)载波频率:=2π×10 (rad/s) 55Zcc F==10(H) 调制信号频率4Z uttK为2π×20×)=2sin10V,调频灵敏度10 ,.设调制信号2(34fΩ6V,载波振幅为若载波频率为10MH。试求:Z精彩文档. 实用标准文案 (1)调频波的表达式; Ωω;,调频波的中心角频率(2)调制信号的角频率 c

f;最大频率偏△(3)m m;(4)调频指数f (5)最大相位偏移为多少? (6)最大角频偏和最大相偏与调制信号的频率变化有何关系?与振幅变化呢?解:(1)因调制信号为正弦波,故调频波的表达式为: utUωt-cos( () )= cFMcm 将各已知条件代入上式得 utt-) 10 )=6cos(2π×10×(6FM tt) π×10-25.12cos10 =6cos(2 47(2)调制信号角频率Ω=10 rad/s ;调频波的中心角频率4ω=2π×10×10 rad/s =2π×10 rad/s 76c f===4×10(H 最大频偏△(3)) 4Zm 精彩文档. 实用标准文案 m==25.12(rad) 调频指数(4)f (5)最大相位偏移可用调频指数表示,故为25.12rad

FSK信号调制与解调技术

1 引言 1。1 研究的背景与意义 现代社会中人们对于通信设备的使用要求越来越高,随着无线通信技术的不断发展,人们所要处理的各种信息量呈爆炸式地增长.传统的通信信号处理是基于冯·诺依曼计算 机的串行处理方式,利用传统的冯·诺依曼式计算机来进行海量信息处理的话,以现有的 技术,是不可能在短时间内完成的。而具于并行结构的信息处理方式为提高信息的处理速度提供了一个新的解决思路。 随着人们对于通信的要求不断提高,应用领域的不断拓展,通信带宽显得越来越紧张。人们想了很多方法,来使有限的带宽能尽可能的携带更多的信息。但这样做会出现一个问题,即:信号调制阶数的增加可以提升传送时所携带的信息量,但在解调时其误码 率也相应显著地提高。信息量不断增加的结果可能是,解调器很难去解调出本身所传递的信息。如果在提高信息携带量的同时,能够找到一种合适的解调方式,将解调的误码率控制在允许的范围内,同时又不需要恢复原始载波信号,从而降低解调系统的复杂程度, 那将是很好的。 通信技术在不断地发展,在现今的无线、有线信道中,有很多信号在同时进行着传递,相互之间都会有干扰,而强干扰信号也可能来自于其它媒介。在军事领域,抗干扰技术的研究就更为必要。我们需要通信设备在强干扰地环境下进行正常的通信工作. 目前常用的通信调制方法有很多种,如FSK、QPSK、QAM等.在实际的通信工程中,不同的调制制式由于自身的特点而应用于不同场合,而通信中不同的调制、解调制式就构成了不同的系统.如果按照常规的方法,每产生一种信号就需要一个硬件电路,甚至一个模块,那么要使一部发射机产生几种、几十种不同制式的通信信号,其电路就会异常复杂,体积重量都会很大.而在接收机部分,情况也同样是如此,即对某种特定的调制信号,必须有一个特定的对应模块电路来对该信号进行解调工作。如果发射端所发射的信号调制方式发生改变,这一解调模块就无能为力了.实际上,随着通信技术的进步和发展,现 代社会对于通信技术的要求越来越高,比如要求通信系统具有最低的成本、最高的效率,以及跨平台工作的特性,如PDA、电脑、手机使用时所要求的通用性、互连性等。怎样对多种类型的信号进行智能化处理,而又不增加电路的成本、处理速度以及体积重量等,是我们目前正面临的问题。

【强烈推荐】2FSK信号调制与解调

课程设计(论文)任务书 信息工程学院通信工程专业11-1 班 一、一、课程设计(论文)题目基于Simulink的数字通信系统的仿真设计 二、课程设计(论文)工作自2014 年6 月16 日起至2014 年 6 月27 日止。 三、课程设计(论文) 地点: 图书馆、寝室、通信实验室(4-410)。 四、课程设计(论文)内容要求: 1.本课程设计的目的 (1)使学生掌握通信系统各功能模块的基本工作原理; (2)培养学生采用Simulink仿真软件对各种电路进行仿真的方法; (3)培养学生对二进制数字调制及解调电路的理解能力; (4)能提高和挖掘学生对所学知识的实际应用能力即创新能力; (5)提高学生的科技论文写作能力。 2.课程设计的任务及要求 1)基本要求: (1)学习Simulink仿真软件的使用; (2)对数字通信系统调制及解调电路各功能模块的工作原理进行分析; (3)提出数字通信系统调制及解调电路的设计方案,选用合适的模块; (4)对所设计系统进行仿真; (5)并对仿真结果进行分析。 a. 2ASK调制及解调 b. 2FSK调制及解调 c. 2PSK调制及解调 d. 2DPSK调制及解调 e. MASK,MFSK,MPSK,MSK,QAM(至少选做一种) 2)创新要求: 3)课程设计论文编写要求 (1)要按照书稿的规格打印誊写毕业论文 (2)论文包括目录、绪论、正文、小结、参考文献、谢辞、附录等 (3)毕业论文装订按学校的统一要求完成 4)答辩标准: (1)完成原理分析(20分) (2)系统方案选择(30分)

(3)仿真结果分析(30分) (4)论文写作(20分) 5)参考文献: (1)王俊峰.《通信原理MATLAB仿真教程》人民邮电出版社第1版 .2010.11.1 (2)赵静.《基于MATLAB的通信系统仿真》北京航空航天大学出版社 6)课程设计进度安排 内容天数地点 构思及收集资料 2 图书馆 仿真 5 实验室 撰写论文 3 实验室 学生签名: 2014年6月16日 课程设计(论文)评审意见 (1)完成原理分析(20分):优()、良()、中()、一般()、差();(2)系统方案选择(30分):优()、良()、中()、一般()、差();(3)仿真结果分析(30分):优()、良()、中()、一般()、差();(4)论文写作(20分):优()、良()、中()、一般()、差();(5)格式规范性及考勤是否降等级:是()、否() 评阅人:职称:副教授 2014 年6 月27 日

FSK调制解调原理及设计

一.2FSK 调制原理: 1、2FSK 信号的产生: 2FSK 是利用数字基带信号控制在波的频率来传送信息。例如,1码用频率f1来传输,0码用频率f2来传输,而其振幅和初始相位不变。故其表示式为 式中,假设码元的初始相位分别为1θ和2θ;112 f π=ω和222f π=ω为两个不同的码元的角频率;幅度为A 为一常数,表示码元的包络为矩形脉冲。 2FSK 信号的产生方法有两种: (1)模拟法,即用数字基带信号作为调制信号进行调频。如图1-1(a )所示。 (2)键控法,用数字基带信号)(t g 及其反)(t g 相分别控制两个开关门电路,以此对两个载波发生器进行选通。如图1-1(b )所示。 这两种方法产生的2FSK 信号的波形基本相同,只有一点差异,即由调频器产生的2FSK 信号在相邻码元之间的相位是连续的,而键控法产生的2FSK 信号,则分别有两个独立的频率源产生两个不同频率的信号,故相邻码元的相位不一定是连续的。 (a) (b) 2FSK 信号产生原理图 由键控法产生原理可知,一位相位离散的2FSK 信号可看成不同频率交替发送的两个2ASK 信号之和,即 其中)(t g 是脉宽为s T 的矩形脉冲表示的NRZ 数字基带信号。 其中,n a 为n a 的反码,即若1=n a ,则0=n a ;若0=n a ,则1=n a 。 2、2FSK 信号的频谱特性: 由于相位离散的2FSK 信号可看成是两个2ASK 信号之和,所以,这里可以直接应用2ASK 信号的频谱分析结果,比较方便,即 2FSK 信号带宽为 s s F S K R f f f f f B 2||2||21212+-=+-≈ 式中,s s f R =是基带信号的带宽。 二.2FSK 解调原理: 仿真是基于非相干解调进行的,即不要求载波相位知识的解调和检测方法。 其非相干检测解调框图如下 M 信号非相干检测解调框图 当k=m 时检测器采样值为: 当k ≠m 时在样本和中的信号分量将是0,只要相继频率之间的频率间隔是,就与相移值无关了,于是其余相关器的输出仅有噪声组成。 其中噪声样本{}和{}都是零均值,具有相等的方差 对于平方律检测器而言,即先计算平方包络

二进制相移键控(2PSK)

二进制相移键控(2PSK ) 2PSK 信号的表达式 在2PSK 中,通常用初始相位0和π分别表示二进制“1”和“0”。因此,2PSK 信号的时域表达式为: )cos(A )(2PSK n c t t S ?ω+= 式中,?n 表示第n 个符号的绝对相位: ?? ?=”时 发送“”时发送“ ,01, 0π?n 因此,上式可以改写为: ?? ?-=-P P t t t S c c 1,cos A , cos A )(2PSK 概率为概率为ωω 由于两种码元的波形相同,极性相反,故2PSK 信号可以表述为一个双极性全占空矩形脉冲序列与一个正弦载波的相乘: ()t t f t S c ωcos )(2PSK = 式中: ∑-= n s n nT t g a t f )()( 这里,g (t )是脉宽为T s 的单个矩形脉冲,而a n 的统计特性为: ? ? ?-=-P P n a 1,1, 1概率为概率为 即发送二进制符号“1”时(a n 取+1),S 2PSK (t )取0相位;发送二进制符号“0”时( a n 取 -1), S 2PSK (t )取π相位。这种以载波的不同相位直接去表示相应二进制数字信号的调制方式,称为二进制绝对相移方式。 2PSK 信号的调制 模拟调制的方法 )

键控法 2PSK信号的解调 2PSK只能采用相干解调,因为发”0”或发”1”时,其采用相位变化携带信息。具体地说: 其振幅不变(无法提取不同的包络); 频率也不变(无法用滤波器分开)。 S 2 a b c d e

2PSK 的“倒∏现象”或“反向工作” 波形图中,假设相干载波的基准相位与2PSK 信号的调制载波的基准相位一致(通常默认为0相位)。但是,由于在2PSK 信号的载波恢复过程中存在着的相位模糊,即恢复的本地载波与所需的相干载波可能同相,也可能反相,这种相位关系的不确定性将会造成解调出的数字基带信号与发送的数字基带信号正好相反,即“1”变为“0”,“0”变为“1”,判决器输出数字信号全部出错。这种现象称为2PSK 方式的“倒π”现象或“反相工作”。这也是2PSK 方式在实际中很少采用的主要原因。另外,在随机信号码元序列中,信号波形有可能出现长时间连续的正弦波形,致使在接收端无法辨认信号码元的起止时刻。 为了解决上述问题,可以采用差分相移键控(DPSK )体制。 功率谱密度 比较2ASK 信号的表达式和2PSK 信号的表达式: 2ASK :()t t f t S c ωcos )(2A SK = 2PSK :?? ?-=-P P t t t S c c 1,cos A , cos A )(2PSK 概率为概率为ωω 可知,两者的表示形式完全一样,区别仅在于基带信号f (t )不同(a n 不同),前者为单极性,后者为双极性。因此,我们可以直接引用2ASK 信号功率谱密度的公式来表述2PSK 信号的功率谱,即: [])()(4 1 )(2c s c s PSK f f P f f P f P -++= {a n } 2PSK 信号 本地载波z(t)t t t t t x(t)t t t 定时脉冲抽样值2PSK 信号本地载波z(t)t t t t t x(t)t t t 定时脉冲 抽样值(b)(c){n a '{n a '{a n }

相关主题
文本预览
相关文档 最新文档