当前位置:文档之家› 1.1 矩阵的特征值与特征向量

1.1 矩阵的特征值与特征向量

线性代数中关于特征值和特征向量的方法(刘妍原创)

线性代数中关于特征值和特征向量的方法 万学教育 海文考研 考研教学与研究中心 刘妍 基础阶段的复习我们一般在进入4月份以后,很多同学都开始启动线性代数的复习了。有些同学对于线代总是感觉知识点很散,对于一些解题的方法感觉学起来不容易记。其实线性代数是方法性比较强的一门学科,如果能把各个章节串联的去学习,那么对于线性代数的学习可能会更加的游刃有余一些。下面我就特征值,特征向量这一部分给大家说几种结题方法: 一、方法一: (1) 取定数域P 上的线性空间n V 的一个基, 写出线性变换T 在该基下的矩阵A ; (2) 求出A 的特征多项式?λ()在数域P 上的全部根, 它们就是T 的全部特征值; (3) 把求出的特征值逐个代入方程组, 解出矩阵A 的属于每个特征值的全部线性 无关的特征向量; (4) 以A 的属于每个特征值的特征向量为n V 中取定基下的坐标, 即得T 的相应特征 向量. 例1 求矩阵 ?? ??? ?????=A 122212221, 的特征值与特征向量. 解 容易算出A 的多项式 )(det A -I λ= 12 2 2 1 22 21 ---------λλλ) 5()1(2-+=λλ, 所以T 的特征值是11-=λ(二重)和.52=λ 特征方程0)(=-I x A λ的一个基础解系为T -)1,0,1(, T -)1,1,0(. T 的属于1λ的两个线性无关的特征向量为,311x x y -= 322x x y -=. 所以T 的属于1λ的全部特征向量为2211y k y k + (其中k k k ∈21,且不同时为零). 特征方 程的一个基础解系为T )1,1,1(. 记3213 λλλ++=y , 则T 的属于2λ 的全体特征向量为33y k (k k ∈3且不为零).

特征值与特征向量定义与计算

特征值与特征向量 特征值与特征向量的概念及其计算 定义1. 设A是数域P上的一个n阶矩阵,λ是一个未知量, 称为A的特征多项式,记?(λ)=| λE-A|,是一个P上的关于λ 的n次多项式,E是单位矩阵。 ?(λ)=| λE-A|=λn+α1λn-1+…+αn= 0是一个n次代数方程,称为A 的特征方程。特征方程?(λ)=| λE-A|=0的根(如:λ0) 称为A的特征根(或特征值)。n次代数方程在复数域有且仅有n 个根,而在实数域不一定有根,因此特征根的多少和有无,不仅与A有关,与数域P也有关。 以A的特征值λ0代入(λE-A)X=θ,得方程组(λ0E-A)X=θ,是一个齐次方程组,称为A的关于λ0的特征方程组。因为 |λ0E-A|=0,(λ0E-A)X=θ必存在非零解X(0),X(0) 称为A的属于λ0的特征向量。所有λ0的特征向量全体构成了λ0的特征向量空间。

一.特征值与特征向量的求法 对于矩阵A,由AX=λ0X,λ0EX=AX,得: [λ0E-A]X=θ即齐次线性方程组 有非零解的充分必要条件是: 即说明特征根是特征多项式|λ0E-A| =0的根,由代数基本定理 有n个复根λ1, λ2,…, λn,为A的n个特征根。

当特征根λi (I=1,2,…,n)求出后,(λi E-A)X=θ是齐次方程,λi均会使|λi E-A|=0,(λi E-A)X=θ必存在非零解,且有无穷个解向量,(λi E-A)X=θ的基础解系以及基础解系的线性组合都是A的特征向量。 例1. 求矩阵的特征值与特征向量。 解:由特征方程 解得A有2重特征值λ1=λ2=-2,有单特征值λ3=4 对于特征值λ1=λ2=-2,解方程组(-2E-A)x=θ 得同解方程组x1-x2+x3=0 解为x1=x2-x3 (x2,x3为自由未知量)

第五章 矩阵的特征值与特征向量

第五章 矩阵的特征值与特征向量 5.1矩阵的特征值与特征向量 5.1.1矩阵的特征值与特征向量的概念 设A 是n 阶矩阵,若存在数λ及非零的n 维列向量α,使得:λαα=A (0≠α)成立,则称λ是矩阵A 的特征值,称非零向量α是矩阵A 属于特征值λ的特征向量. 5.1.2矩阵的特征值与特征向量的求法 把定义公式λαα=A 改写为()0=-αλA E ,即α是齐次方程组()0=-x A E λ的非零解.根据齐次方程组有非零解的充分条件可得:0=-A E λ. 所以可以通过0=-A E λ求出所有特征值,然后对每一个特征值i λ,分别求出齐 次方程组()0=-x A E i λ的一个基础解系,进而再求得通解. 【例5.1】求??? ? ? ?????------=324262423A 的特征值和特征向量. 解:根据()()0273 2 4 26 24 23 2 =+-=---= -λλλλλλA E ,可得71=λ,22-=λ. 当7=λ时,??? ? ? ?????? ??? ???????=-0000002124242124247A E , 所以()07=-x A E 的一个基础解系为:()T 0,2,11-=α,()T 1,0,12-=α,则相应的特征向量为2211ααk k +,其中21,k k 是任意常数且()()0,0,21≠k k . 当2-=λ时,???? ? ?????--? ??? ? ??????---=--00012014152428242 52A E ,所以()02=--x A E 的一个基础解系为()T 2,1,23=α,则相应的特征向量为33αk ,其中3k 是任意常数且

矩阵的特征值和特征向量

第五章矩阵的特征值和特征向量 来源:线性代数精品课程组作者:线性代数精品课程组 1.教学目的和要求: (1) 理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量. (2) 了解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对 角矩阵. (3) 了解实对称矩阵的特征值和特征向量的性质. 2.教学重点: (1) 会求矩阵的特征值与特征向量. (2) 会将矩阵化为相似对角矩阵. 3.教学难点:将矩阵化为相似对角矩阵. 4.教学内容: 本章将介绍矩阵的特征值、特征向量及相似矩阵等概念,在此基础上讨论矩阵的对角化问题. §1矩阵的特征值和特征向量 定义1设是一个阶方阵,是一个数,如果方程 (1) 存在非零解向量,则称为的一个特征值,相应的非零解向量称为属于特征值的特 征向量. (1)式也可写成, (2) 这是个未知数个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式 , (3) 即 上式是以为未知数的一元次方程,称为方阵的特征方程.其左端是的 次多项式,记作,称为方阵的特征多项式.

== = 显然,的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,阶矩阵有个特征值. 设阶矩阵的特征值为由多项式的根与系数之间的关系,不难证明 (ⅰ) (ⅱ) 若为的一个特征值,则一定是方程的根, 因此又称特征根,若为 方程的重根,则称为的重特征根.方程的每一个非 零解向量都是相应于的特征向量,于是我们可以得到求矩阵的全部特征值和特征向量的方法如下: 第一步:计算的特征多项式; 第二步:求出特征方程的全部根,即为的全部特征值; 第三步:对于的每一个特征值,求出齐次线性方程组: 的一个基础解系,则的属于特征值的全部特征向量是 (其中是不全为零的任意实数). 例1 求的特征值和特征向量. 解的特征多项式为 =

特征值与特征向量定义与计算

. 特征值与特征向量 特征值与特征向量的概念及其计算 定义1. 设A是数域P上的一个n阶矩阵,λ是一个未知量, 称为A的特征多项式,记?(λ)=| λE-A|,是一个P上的关于λ 的n次多项式,E是单位矩阵。 ?(λ)=| λE-A|=λn+α1λn-1+…+αn= 0是一个n次代数方程,称为A 的特征方程。特征方程?(λ)=| λE-A|=0的根 (如:λ0) 称为A的特征根(或特征值)。 n次代数方程在复数域内有且仅有n 个根,而在实数域内不一定有根,因此特征根的多少和有无,不仅与A有关,与数域P也有关。 以A的特征值λ0代入 (λE-A)X=θ,得方程组 (λ0E-A)X=θ,是一个齐次方程组,称为A的关于λ0的特征方程组。因为 |λ0E-A|=0,(λ0E-A)X=θ必存在非零解X(0),X(0) 称为A的属于λ0的特征向量。所有λ0的特征向量全体构成了λ0的特征向量空间。

. 一.特征值与特征向量的求法 对于矩阵A,由AX=λ0X,λ0EX=AX,得: [λ0E-A]X=θ即齐次线性方程组 有非零解的充分必要条件是: 即说明特征根是特征多项式 |λ0E-A| =0的根,由代数基本定理 有n个复根λ1, λ2,…, λn,为A的n个特征根。

当特征根λi(I=1,2,…,n)求出后,(λi E-A)X=θ是齐次方程,λi 均会使 |λi E-A|=0,(λi E-A)X=θ必存在非零解,且有无穷个解向量, (λi E-A)X=θ的基础解系以及基础解系的线性组合都是A的特征向量。 例1. 求矩阵的特征值与特征向量。 解:由特征方程 解得A有2重特征值λ1=λ2=-2,有单特征值λ3=4 对于特征值λ1=λ2=-2,解方程组 (-2E-A)x=θ 得同解方程组 x1-x2+x3=0 解为x1=x2-x3 (x2,x3为自由未知量)

特征值与特征向量优秀教学设计.docx

特征值与特征向量 【教学目标】 1.亲历矩阵特征值与特征向量意义的探索过程,体验分析归纳得出矩阵特征值与特征向量的存在与性质,进一步发展学生的探究、交流能力。 2.掌握矩阵特征值与特征向量的定义及其性质。 3.能从几何直观上,利用线性变换求特征值与特征向量。 【教学重难点】 重点:掌握阵特征值与特征向量的定义及其性质。 难点:从几何直观上,利用线性变换求特征值与特征向量。 【教学过程】 一、新课引入 教师:对于线性变换,是否存在平面内的直线,使得该直线在这个线性变换作用下保持不变?是否存在向量,使得该向量在这个线性变换的作用下具有某种“不变性”?为了解决我们的问题,我们今天将学习矩阵特征值与特征向量。 二、讲授新课 教师:请同学们回忆一下,我们在前面的课程里面,学过哪些基本的变换? 学生:伸缩变换,反射变换等等。 教师:那下面我们来研究一下伸缩变换,反射变换一些不变的性质,我一起来看例题。 例1:对于相关x 轴的反射变换σ:1001x x y y '???? ??= ? ? ?'-? ?????,从几何直观上可以发现,只有x 轴和平行于y 轴的直线在反射变换σ的作用下保持不动,其他的直线都发生了变化。因此,反射 变换σ只把形如10k α??= ???和20k β?? = ??? 的向量(其中1k ,2k 是任意常数),分别变成与自身共线的 向量。可以发现,反射变换σ分别把向量10k α??= ???,20k β??= ???变成10k α??= ???,20k β?? -= ?-??。特别的,反射变换σ把向量110ξ??= ???变成110ξ??= ???,把向量201ξ??= ???变成01?? ?-?? 。用矩形的形式可表示为

第四章矩阵的特征值和特征向量

第四章 矩阵的特征值和特征向量 例1 求下列矩阵的特征值与特征向量???? ??????----=163053064A ,并判断它能否相似对角化。若能,求可逆阵P ,使∧=-AP P 1(对角阵)。 例2 已知三阶方阵A 的三个特征值为4,3,2-,则1-A 的特征值为_______,T A 的特征值为_______,*A 的特征值为_______,E A A 232 +-的特征值为_______ 例3 设矩阵???? ??????=0011100y x A 有三个线性无关的特征向量,则y x ,应满足条件_______ 例5 已知矩阵??????????=x A 10200002与???? ??????-=10000002y B 相似,则____________==y x 例6 设n 阶方阵A 满足0232 =+-I A A ,求A 的特征值 例7 已知向量T k )1,,1(=ξ是矩阵???? ??????=211121112A 的逆矩阵1-A 的特征向量,求常数k 例8 设A 为非零方阵,且0=m A (m 为某自然数),证明:A 不能与对角阵相似 例9 设n 阶方阵A 满足01072=+-I A A ,求证:A 相似于一个对角矩阵 结 论 总结 1 n 阶方阵A 有n 个特征值,它们的和等于A 的主对角线元素之和(即A 的逆trA ),它们的乘积等于A 的行列式A 2 如果m λλ,,1Λ是方阵A 的特征值,m P P ,,1Λ是与之对应的特征向量,如m λλ,,1Λ互不相等时,m P P ,,1Λ线性无关 3 如果n 阶方阵A 与B 相似,则A 与B 有相同的特征多项式,从而有相同的特征值 4 如果n 阶方阵A 与对角阵∧相似,则∧的主对角线元素就是A 的n 个特征值

矩阵的特征值与特征向量习题

第五章 矩阵的特征值与特征向量 习题 1 试用施密特法把下列向量组正交化 (1)?? ? ? ? ??=931421111) , ,(321a a a (2)???? ?? ? ??---=011101110111) , ,(321a a a 2 设x 为n 维列向量 x T x 1 令H E 2xx T 证明H 是对称的正交 阵 3 求下列矩阵的特征值和特征向量: (1)??? ?? ??----20133 521 2; (2)??? ? ? ??633312321. 4 设A 为n 阶矩阵 证明A T 与A 的特征值相同 5 设 0是m 阶矩阵A m n B n m 的特征值 证明 也是n 阶矩阵BA 的特 征值. 6 已知3阶矩阵A 的特征值为1 2 3 求|A 35A 2 7A | 7 已知3阶矩阵A 的特征值为1 2 3 求|A * 3A 2E | 8 设矩阵??? ? ? ??=50413102x A 可相似对角化 求x

9 已知p (1 1 1)T 是矩阵???? ? ??---=2135212b a A 的一个特征向量 (1)求参数a b 及特征向量p 所对应的特征值 (2)问A 能不能相似对角化?并说明理由 10 试求一个正交的相似变换矩阵, 将对称阵??? ? ? ??----020212022化为对角 阵. 11 设矩阵????? ??------=12422421x A 与??? ? ? ? ?-=Λy 45 相似 求x y 并 求一个正交阵P 使P 1AP 12 设3阶方阵A 的特征值为1 2 2 2 3 1 对应的特征 向量依次为p 1 (0 1 1)T p 2(1 1 1)T p 3(1 1 0)T 求A . 13 设3阶对称矩阵A 的特征值 1 6 2 3 3 3 与特征值 1 6对应的特征向量为p 1 (1 1 1)T 求A . 14 设?? ? ? ? ??-=340430241A 求A 100

矩阵的特征值和特征向量

线性代数复习总结大全 第五章矩阵的特征值和特征向量 特征值、特征向量 A 是N 阶方阵,若数λ使AX=λX ,即(λI-A )=0有非零解,则称λ为A 的一个特征值,此时,非零解称为A 的属于特征值λ的特征向量。 |A|=n λλλ...**21注:1、AX=λX 2、求特征值、特征向量的方法 0=-A I λ求i λ将i λ代入(λI-A )X=0求出所有非零解 3、对于不同的矩阵,有重根、单根、复根、实根(主要学习的) 特殊:n I )(λ的特征向量为任意N 阶非零向量或)(21不全为零i n c c c c ???? ? ??4、特征值:若)0(≠λλ是A 的特征值 则1-A -------- λ1则m A --------m λ 则kA --------λ k 若2 A =A 则-----------λ=0或1若2 A =I 则-----------λ=-1或1若k A =O 则----------λ=0迹tr(A ):迹(A )=nn a a a +??++2211性质: 1、N 阶方阵可逆的充要条件是A 的特征值全是非零的 2、A 与1 -A 有相同的特征值 3、N 阶方阵A 的不同特征值所对应的特征向量线性无关 4、5、P281 相似矩阵 定义P283:A 、B 是N 阶矩阵,若存在可逆矩阵P ,满足B AP P =-1,则矩阵A 与B 相似,记作A~B

性质1、自身性:A~A,P=I 2、对称性:若A~B 则B~A B AP P =-11 -=PBP A A BP P =---111)(3、传递性:若A~B 、B~C 则A~C B AP P =-111 C BP P =-212---C P P A P P =-)()(211214、若AB ,则A 与B 同(不)可逆 5、若A~B ,则11~--B A B AP P =-1两边同取逆,1 11---=B P A P 6、若A~B ,则它们有相同的特征值。(特征值相同的矩阵不一定相似) 7、若A~B ,则) ()(B r A r =初等变换不改变矩阵的秩例子:B AP P =-1则1 100100-=P PB A O AP P =-1A=O I AP P =-1A=I I AP P λ=-1A=I λ矩阵对角化 定理:N 阶矩阵A 与N 阶对角形矩阵相似的充要条件是A 有N 个线性无关的特征向量注:1、P 与^中的i i x λ与顺序一致 2、A~^,则^与P 不是唯一的 推论:若n 阶方阵A 有n 个互异的特征值,则~^A (P281) 定理:n 阶方阵~^A 的充要条件是对于每一个i K 重特征根i λ,都有i i K n A I r -=-)(λ注:三角形矩阵、数量矩阵I λ的特征值为主对角线。 约当形矩阵 约当块:形如?????? ? ??=λλλλ111J 的n 阶矩阵称为n 阶约当块;

特征值与特征向量精品教案

特征值与特征向量 【教学目标】 1.亲历矩阵特征值与特征向量意义的探索过程,体验分析归纳得出矩阵特征值与特征向量的存在与性质,进一步发展学生的探究、交流能力。 2.掌握矩阵特征值与特征向量的定义及其性质。 3.能从几何直观上,利用线性变换求特征值与特征向量。 【教学重难点】 重点:掌握阵特征值与特征向量的定义及其性质。难点:从几何直观上,利用线性变换求特征值与特征向量。 【教学过程】 一、新课引入 教师:对于线性变换,是否存在平面内的直线,使得该直线在这个线性变换作用下保持不变?是否存在向量,使得该向量在这个线性变换的作用下具有某种“不变性”?为了解决我们的问题,我们今天将学习矩阵特征值与特征向量。二、讲授新课 教师:请同学们回忆一下,我们在前面的课程里面,学过哪些基本的变换?学生:伸缩变换,反射变换等等。 教师:那下面我们来研究一下伸缩变换,反射变换一些不变的性质,我一起来看例题。 例1:对于相关x 轴的反射变换σ:,从几何直观上可以发现,只有x 1001x x y y '???? ??= ? ? ?'-? ?????轴和平行于y 轴的直线在反射变换σ的作用下保持不动,其他的直线都发生了变化。因此, 反射变换σ只把形如和的向量(其中,是任意常数),分别变成与自身共 10k α??= ???20k β?? = ??? 1k 2k 线的向量。可以发现,反射变换σ分别把向量,变成,。 10k α??= ???20k β??= ???10k α??= ???20 k β?? -= ?-??特别的,反射变换σ把向量变成,把向量变成。用矩形的形式可 110ξ??= ???110ξ??= ???201ξ??= ???01?? ?-??

浅谈矩阵的特征值与特征向量的应用(终稿)复习课程

浅谈矩阵的特征值与特征向量的应用(终稿)

浅谈矩阵的特征值与特征向量的应用 摘要 特征值与特征向量在现代科学中有重要的应用。本文介绍了特征值与特征向量的定义以及性质,并且给出了在线性空间中线性变换的特征值、特征向量与矩阵中的特征值、特征向量之间的关系。然后介绍了几种特征值与特征向量的求解方法。最后介绍了特征值与特征向量在实际中的应用,如在数学领域中、物理中以及经济发展与环境污染增长模型中的应用等等。 关键字:特征值;特征向量;应用;矩阵;初等变换 Abstract Eigenvalues and eigenvectors have important applications in modern science. This paper introduces the definition and nature of the eigenvalues and eigenvectors, eigenvalues and gives linear space of linear transformations, eigenvectors and eigenvalues of the relationship matrix, feature vectors. Then introduces several eigenvalues and eigenvectors of solving methods. Finally, the eigenvalues and

eigenvectors in practical application, such as in the fields of mathematics, physics, economic development and environmental pollution growth model and the application, and so on. Keys words:eigenvalue;eigenvector;application;matrix;elementary; 目录 浅谈矩阵的特征值与特征向量的应用 (2) 摘要 (2) Abstract (2) 第1章引言 (4) 1.1 研究背景 (4) 1.2 研究现状 (5) 1.3 本文研究目的及意义 (6) 第2章特征值与特征向量的一般理论 (6) 2.1 特征值与特征向量的定义和性质 (6) 2.1.1 特征值与特征向量的定义 (7) 2.1.2 特征值与特征向量的性质 (7) 2.2 特征值与特征向量的一般求解方法 (8) 2.2.1 一般数字矩阵的简单求解 (8)

矩阵特征值与特征向量的几个问题的思考

矩阵特征值与特征向量的几个问题的思考 第1章引言 矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具.“矩阵”这个词是由西尔维斯特(J.Sylvester,英国,1814-1897)首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个述语.而实际上,矩阵这个课题在诞生之前就已经发展的很好了.从行列式的大量工作中明显的表现出来,方阵本身可以用行列式的性质来研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的.在逻辑上,矩阵的概念应先于行列式的概念,然而在历史上次序正好相反. 矩阵本身所具有的性质依赖于元素的性质,矩阵由最初作为一种工具经过两个多世纪的发展,现在已成为独立的一门数学分支——矩阵论.而矩阵论又可分为矩阵方程论、矩阵分解论和广义逆矩阵论等矩阵的现代理论.矩阵及其理论现已广泛地应用于现代科技的各个领域. 现代行列式与矩阵的研究从形式上已推广到无限阶,从内容上已有了属于抽象域的元素的矩阵,这些理论都在继续发展之中. 现如今,矩阵在许多领域有所应用,一般只要是多维函数关系都能用到,如经济领域、矢量计算、流体流动、传热传质等等.这些领域的问题既是实际问题的应用,实质上也是数学理论的求解.对于数学的场论等方面理论问题,有时需要这一工具来求解.它在数学的发展史上

有一定地位与作用,它的产生主要源自于解决现实多元问题的需要,但是建立在数学理论发展到一定阶段的基础上. 第2章 矩阵特征值与特征向量的概念 2.1 矩阵特征值与特征向量 工程技术中的一些问题,如振动问题和稳定性问题,常可归结为求一个方阵的特征值和特征向量的问题.数学中诸如方阵的对角化及解微分方程组等问题,也要用到特征值的理论. 2.1.1 矩阵的特征值与特征向量 定义1 设A 是n 阶矩阵,如果λ和n 维非零列向量x 使关系式 x x λA = (1) 成立,那么,这样的数λ称为矩阵A 的特征值,非零列向量x 称为A 的对应于特征值λ的特征向量.(1)式也可写成 ()0x λA -E =, 这是n 个未知数和n 个方程的齐次线性方程组,它有非零解的充要条件是系数行列式0λA -E =,即 1112 1212221 2 -=0n n n n nn a a a a a a a a a λλλλ --A E =- 上式是以λ为未知数的一元n 次方程,称为矩阵A 的特征方程.其左端-λA E 是λ的n 次多项式,记作()f λ,称为矩阵A 的特征多项式.显然,A 的特征值就是特征方程的解.特征方程在复数范围恒有解,其个数为方程的次数(重数按重数计算).因此,n 阶矩阵A 在复数范围内有n 个特征值.

第八章矩阵的特征值与特征向量的数值解法

第八章 矩阵的特征值与特征向量的数值解法 某些工程计算涉及到矩阵的特征值与特征向量的求解。如果从原始矩阵出发,先求出特征多项式,再求特征多项式的根,在理论上是无可非议的。但一般不用这种方法,因为了这种算法往往不稳定.常用的方法是迭代法或变换法。本章介绍求解特征值与特征向量的一些方法。 §1 乘幂法 乘幂法是通过求矩阵的特征向量来求特征值的一种迭代法,它适用于求矩阵的按模最大的特征值及对应的特征向量。 定理8·1 设矩阵An ×n 有n 个线性无关的特征向量X i(i=1,2,…,n),其对应的特征值λi (i =1,2,…,n)满足 |λ1|>|λ2|≧…≧|λn | 则对任何n维非零初始向量Z 0,构造Zk = AZ k-1 11()lim ()k j k k j Z Z λ→∞ -= (8·1) 其中(Zk )j表示向量Z k 的第j个分量。 证明 : 只就λi是实数的情况证明如下。 因为A 有n 个线性无关的特征向量X i ,(i = 1,2,…,n)用X i(i = 1,2,…,n)线性表示,即Z 0=α1X 1 + α2X2 +用A 构造向量序列{Z k }其中 ? 21021010, ,k k k Z AZ Z AZ A Z Z AZ A Z -=====, (8.2) 由矩阵特征值定义知AXi =λi X i (i=1,2, …,n),故 ? 0112211122211121k k k k k n n k k k n n n k n k i i i i Z A Z A X A X A X X X X X X ααααλαλαλλλααλ===++ +=+++???? ??=+ ?????? ? ∑ (8.3) 同理有 1 1 11 1121k n k i k i i i Z X X λλααλ---=? ? ????=+ ????? ? ? ∑ (8.4) 将(8.3)与(8.4)所得Zk 及Z k-1的第j 个分量相除,设α1≠0,并且注意到 |λi |<|λ1|(i=1,2,…,n )得

并行计算-矩阵特征值计算--

9 矩阵特征值计算 在实际的工程计算中,经常会遇到求n 阶方阵 A 的特征值(Eigenvalue)与特征向量(Eigenvector)的问题。对于一个方阵A,如果数值λ使方程组 Ax=λx 即(A-λI n )x=0 有非零解向量(Solution Vector)x,则称λ为方阵A的特征值,而非零向量x为特征值λ所对应的特征向量,其中I n 为n阶单位矩阵。 由于根据定义直接求矩阵特征值的过程比较复杂,因此在实际计算中,往往采取一些数值方法。本章主要介绍求一般方阵绝对值最大的特征值的乘幂(Power)法、求对称方阵特征值的雅可比法和单侧旋转(One-side Rotation)法以及求一般矩阵全部特征值的QR 方法及一些相关的并行算法。 1.1 求解矩阵最大特征值的乘幂法 1.1.1 乘幂法及其串行算法 在许多实际问题中,只需要计算绝对值最大的特征值,而并不需要求矩阵的全部特征值。乘幂法是一种求矩阵绝对值最大的特征值的方法。记实方阵A的n个特征值为λi i=(1,2, …,n),且满足: │λ1 │≥│λ2 │≥│λ3 │≥…≥│λn │ 特征值λi 对应的特征向量为x i 。乘幂法的做法是:①取n维非零向量v0 作为初始向量;②对于 k=1,2, …,做如下迭代: 直至u k+1 ∞ - u k u k =Av k-1 v k = u k /║u k ║∞ <ε为止,这时v k+1 就是A的绝对值最大的特征值λ1 所对应的特征向∞ 量x1 。若v k-1 与v k 的各个分量同号且成比例,则λ1 =║u k ║∞;若v k-1 与v k 的各个分量异号且成比例,则λ1 = -║u k ║∞。若各取一次乘法和加法运算时间、一次除法运算时间、一次比较运算时间为一个单位时间,则因为一轮计算要做一次矩阵向量相乘、一次求最大元操作和一次规格化操作,所以下述乘幂法串行算法21.1 的一轮计算时间为n2+2n=O(n2 )。 算法21.1 单处理器上乘幂法求解矩阵最大特征值的算法 输入:系数矩阵A n×n ,初始向量v n×1 ,ε 输出:最大的特征值m ax Begin while (│diff│>ε) do (1)for i=1 to n do (1.1)sum=0 (1.2)for j= 1 to n do sum=sum+a[i,j]*x[j] end for

矩阵的特征值与特征向量的求法

摘要:首先给出了求解矩阵特征值和特征向量的另外两种求法,然后运用特征值的性质讨论了矩阵合同、相似的充要条件,以及逆矩阵的求解等相关问题. 关键词:矩阵的特征多项式,特征值,特征向量,对角矩阵,逆矩阵

Abstract:Firstly,it is given matrix eigenvalues and eigenvectors of two other methods, then with the properties of eigenvalue the contract of matrix discussed,we deeply discuss the sufficient and necessary conditions for the similar matrix contract, and the inverse matrix of the related problem solving. Keywords:matrix characteristic polynomial, eigenvalue, eigenvector, diagonal matrices, inverse matrix

目录 1 前言 (4) 2 矩阵的特征值和特征向量的求法 (4) 2.1 矩阵的初等变换法 (4) 2.2 矩阵的行列互逆变换法 (6) 3 矩阵特征值的一些性质及应用 (7) 3.1 矩阵之间的关系 (7) 3.1.1 矩阵的相似 (7) 3.1.2 矩阵的合同 (7) 3.2 逆矩阵的求解 (8) 3.3 矩阵相似于对角矩阵的充要条件 (8) 3.4 矩阵的求解 (9) 3.5 矩阵特征值的简单应用 (10) 结论 (11) 参考文献 (12) 致谢 (13)

矩阵特征值和特征向量解法的研究

矩阵特征值和特征向量解法的研究 周雪娇 (德州学院数学系,山东德州 253023) 摘 要:对矩阵特征值和特征向量的一些方法进行了系统的归纳和总结.在比较中能够 更容易发现最好的方法,并提高问题的解题效率. 关键词: 矩阵; 特征值; 特征向量; 解法 引言 矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具.矩阵计算问题是很多科学问题的核心.在很多工程计算中,常常会遇到特征值和特征向量的计算问题,如:机械、结构或电磁振动中的固有值问题;物理学中的各种临界值等,这些特征值的计算往往意义重大.很多科学问题都要归结为矩阵计算的问题,在这里主要研究矩阵计算中三大问题之——特征值问题. 1 矩阵特征值与特征向量的概念及性质 1.1 矩阵特征值与特征向量的定义 设A 是n 阶方阵,如果存在数λ和n 维非零向量x ,使得x Ax λ=成立,则称 λ为A 的特征值,x 为A 的对应于特征值λ的特征向量. 1.2 矩阵特征值与特征向量的性质 矩阵特征值与特征向量的性质包括: (1)若i i r A 的是λ重特征值,则i i s A 有对应特征值λ个线性无关的特征向量,其中i i r s ≤. (2)若线性无关的向量21,x x 都是矩阵A 的对应于特征值0λ的特征向量,则当21,k k 不全为零时,2211x k x k +仍是A 的对应于特征值0λ的特征向量. (3)若A n 是矩阵λλλ,,,21 的互不相同的特征值,其对应的特征向量分别是 n x x x ,,,21 ,则这组特征向量线性无关.

(4)若矩阵()n n ij a A ?=的特征值分别为n λλλ,,,21 ,则 nn n a a a +++=+++ 221121λλλ,A n =λλλ 21. (5)实对称矩阵A 的特征值都是实数,且对应不同特征值的特征向量正交. (6)若i λ是实对称矩阵A 的i r 重特征值,则对应特征值i λ恰有i r 个线性无关的特征向量. (7)设λ为矩阵A 的特征值,()x P 为多项式函数,则()λP 为矩阵多项式()A P 的特征值.[]1 2 普通矩阵特征值与特征向量的求法 2.1 传统方法 确定矩阵A 的特征值和特征向量的传统方法可以分为以下几步: (1)求出矩阵A 特征多项式()A E f -=λλ的全部特征根; (2)把所求得的特征根()n i i ,,2,1 =λ逐个代入线性方程组()0=-X A E i λ, 对于每一个特征值,解方程组()0=-X A E i λ,求出一组基础解系,这样,我们也就求出了对应于每个特征值的全部线性无关的特征向量.[]2 例1 已知矩阵 ???? ? ?????-=11 111 110 A 求矩阵A 的特征值和特征向量. 解 A E -λ = 1 1 1 1 1 11 ------λλλ = ()21-λλ 所以,由()012=-λλ知A 的特征根1,0321===λλλ.

第五章 习题与复习题详解(矩阵特征值和特征向量)----高等代数

习题 1. (1) 若A 2 = E ,证明A 的特征值为1或-1; (2) 若A 2 = A ,证明A 的特征值为0或1. 证明(1)2 2A E A =±所以的特征值为1,故A 的特征值为1 (2) 2222 2 ,,()0,001 A A A X A X AX X X X λλλλλλλ===-=-==所以两边同乘的特征向量得即由于特征向量非零,故即或 2. 若正交矩阵有实特征值,证明它的实特征值为1或 -1. 证明 1,1 T T T A A A E A A A A A λλλλ -=∴==±设是正交阵,故有与有相同的特征值, 1 故设的特征值是,有=,即 3.求数量矩阵A=aE 的特征值与特征向量. 解 A 设是数量阵,则 000000000000a a A aE a a a E A a λλλλ?? ? ?== ? ??? ---= -L L L L L L L L L L L L 所以:特征值为a (n 重), A 属于a 的特征向量为 k 1(1,0,…,0)T + k 2(0,1,…,0)T + k n (0,0,…,1)T ,(k 1, k 2, …, k n 不全为0)

4.求下列矩阵的特征值与特征向量. (1)113012002-?? ? ? ??? (2)324202423?? ? ? ??? (3)??? ?? ??---122212 221 (4)212533102-?? ?- ? ?--?? ()1112221211(5) , , (0,0)0.T T n n n n a a b a a b A b b b a b a a b αβαβαβ?? ???? ? ? ? ? ? ?====≠≠= ? ? ? ? ? ? ? ? ??? ???? L M M M 其中,且 解(1) 11 3 0120,1,2,00 2A E AX λλλ λλλλ ---=-====-0,123求得特征值为:分别代入=求得 A 属于特征值1的全部特征向量为k(1,0,0)T ,(k ≠0) A 属于特征值2的全部特征向量为k(1,2,1)T ,(k ≠0) 解(2)

3矩阵特征值及特征向量的计算

第3章 矩阵特征值与特征向量的计算 一些工程技术问题需要用数值方法求得矩阵的全部或部分特征值及相关的特征向量。 3.1 特征值的估计 较粗估计ρ(A )≤ ||A || 欲将复平面上的特征值一个个用圆盘围起来。 3.1.1盖氏图 定义3.1-1 设A = [a ij ]n ?n ,称由不等式∑≠=≤-n i j j ij ii a a z 1 所确定的复区域为A 的第i 个盖氏图, 记为G i ,i = 1,2,…,n 。 >≤-=<∑≠=}:{1n i j j ij ii i a a z z G 定理3.1-1 若λ为A 的特征值,则 n i i G 1 =∈ λ 证明:设Ax = λx (x ≠ 0),若k 使得∞ ≤≤==x x x i n i k 1max 因为 k n j j kj x x a λ=∑=1 ?∑≠= -n k j j kj k kk x a x a )(λ ?∑∑∑ ≠=≠=≠≤≤= -n k j j kj n k j j k j kj n k j k j kj kk a x x a x x a a 11λ ? n i i k G G 1 =? ∈λ 例1 估计方阵????? ?? ?????----=41.03.02.05.013.012.01.035.03.02.01.01A 特征值的X 围

解: G 1 = {z :|z – 1|≤ 0.6};G 2 = {z :|z – 3|≤ 0.8}; G 3 = {z :|z + 1|≤ 1.8};G 4 = {z :|z + 4|≤ 0.6}。 注:定理称A 的n 个特征值全落在n 个盖氏圆上,但未说明每个圆盘内都有一个特征值。 3.1.2盖氏圆的连通部分 称相交盖氏圆之并构成的连通部分为连通部分。 孤立的盖氏圆本身也为一个连通部分。 定理3.1-2若由A 的k 个盖氏圆组成的连通部分,含且仅含A 的k 个特征值。 证明: 令D = diag(a 11,a 12,…,a nn ),M = A –D ,记 )10(00 0)(212211122211≤≤?? ?? ? ? ? ??+??????? ??=+=εεεε n n n n nn a a a a a a a a a M D A 则显然有A (1) = A ,A (0) = D ,易知A (ε)的特征多项式的系数是ε的多项式,从而A (ε)的特征 值λ1(ε),λ2(ε),…,λn (ε)为ε的连续函数。 A (ε)的盖氏圆为:)10(,}||||:{)(11≤≤?=≤ -=∑∑≠=≠=εεεεi n i j j ij n i j j ij ii i G a a a z z G 因为A (0) = D 的n 个特征值a 11,a 12,…,a nn ,恰为A 的盖氏圆圆心,当ε由0增大到1时,λi (ε)画出一条以λi (0) = a ii 为始点,λi (1) = λi 为终点的连续曲线,且始终不会越过G i ; 不失一般性,设A 开头的k 个圆盘是连通的,其并集为S ,它与后n –k 个圆盘严格分离,显然,A (ε)的前k 个盖氏圆盘与后n –k 个圆盘严格分离。 当ε = 0时,A (0) = D 的前k 个特征值刚好落在前k 个圆盘G 1,…,G k 中,而另n –k 个特征值则在区域S 之外,ε从0变到1时, k i i G 1 )(=ε与 n k i i G 1 )(+=ε始终分离(严格) 。连续曲线始终在S 中,所以S 中有且仅有A 的k 个特征值。 注:1) 每个孤立圆中恰有一个特征值。 2) 例1中G 2,G 4为仅由一个盖氏圆构成的连通部分,故它们各有一个特征值,而G 1,G 3构

矩阵特征值和特征向量的求法与应用

毕业论文(设计)题目:矩阵特征值和特征向量的求法与应用

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

第九章矩阵特征值与特征向量计算方法

第九章 矩阵特征值与特征向量计算方法 教学目的 1. 掌握求矩阵特征值与特征向量的幂法及反幂法;2. 掌握求矩阵特征值的QR 方法。 教学重点及难点 重点是求矩阵特征值与特征向量的幂法及反幂法求矩阵特征值的QR 方法;难点是求矩阵特征值的带原点位移的QR 方法。 教学时数 12学时 教学过程 §2 幂法及反幂法 2.1幂法 在一些工程、物理力学部标题中,需要我们求矩阵的按模最大的特征值(称为A 的主特征值)和对应的特征向量。 幂法是一种计算矩阵A n n R ?∈的主特征值的一种迭代法,它最大优点是方法简单,适合于计算大型稀疏矩阵的主特征值。 设n n R aij A ?∈=)(,其特征值为i λ,对应特征向量为),,,1(n i x i =即 i i i x Ax λ= ),,1(n i = 且},{,n i x x 线性无关。设A 特征值满足:(即1λ为强占优) ||||||21n λλλ≥≥> (2.1) 幂法的基本思想,是任取一个非零初始向量n R v ∈0,由矩阵A 的乘幂构造一向量序列 ?????=====++0 110 2 1201v A Av v v A Av v Av v k k k (2.2) 称}{k v 为迭代向量。 下面来分折关系与及}{11k v x λ。 由设},,{1n x x 为n R 中一个基本,于是,00≠v 有展开式 ∑=n i i i x a v 1 (且设01≠?) 且有 i k i n i i K k k x v A Av v λα ∑=-= ==1 01 ))( )( (1 2221111 n k n n k k k x x x v λλαλ λααλ+++= )(111k k x a ελ+≡ (2.3)

相关主题
文本预览
相关文档 最新文档