当前位置:文档之家› (完整版)上海高中数学-复数讲义

(完整版)上海高中数学-复数讲义

(完整版)上海高中数学-复数讲义
(完整版)上海高中数学-复数讲义

复数

一、知识点梳理: 1、i 的周期性: i 4

=1,所以,i

4n+1

=i, i

4n+2

=-1, i

4n+3

=-i, i 4n

=1()n Z ∈

()44142430n n n n i i i i n Z ++++++=∈

2、复数的代数形式:(),a bi a b R +∈,a 叫实部,b 叫虚部,实部和虚部都是实数。

{}|,C a bi a b R =+∈叫做复数集。N Z Q R C.

3、复数相等:a bi c di a c +=+?=且b=d ;00a bi a +=?=且b=0

4、复数的分类:0,0)0)0,0)Z a bi a a ??

=+≠≠??≠??

≠=??

实数 (b=0)复数一般虚数(b 虚数 (b 纯虚数(b

虚数不能比较大小,只有等与不等。即使是3,62i i ++也没有大小。

5、复数的模:若向量u u r OZ 表示复数z ,则称u u r

OZ 的模r 为复数z 的模, 22||z a bi a b =+=+

积或商的模可利用模的性质(1)112n n z z z z z ?=???L L ,(2)()11

2

22

0z z z

z z =≠

6、复数的几何意义:

复数(),z a bi a b R =+∈←???

→一一对应

复平面内的点(,)Z a b ()

,Z a bi a b R =+∈?

u u r

一一对应

复数平面向量OZ , 7其中x 轴叫做实轴,

y 轴叫做虚轴,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数

8、复数代数形式的加减运算

复数z 1与z 2的和:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i . (),,,a b c d R ∈ 复数z 1与z 2的差:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i . (),,,a b c d R ∈ 复数的加法运算满足交换律和结合律

数加法的几何意义:复数z 1=a +bi ,z 2=c +di (),,,a b c d R ∈;OZ = 1OZ +2OZ =(a ,b )+(c ,

d )=(a +c ,b +d )=(a +c )+(b +d )i

复数减法的几何意义:复数z 1-z 2的差(a -c )+(b -d )i 对应由于1212Z Z OZ OZ =-u u r u r u u u u r u u u u r

,两个

复数的差z -z 1与连接这两个向量终点并指向被减数的向量对应.

9. 特别地,AB z =u u u r z B -z A .,B A AB

z AB z z ==-u u u r 为两点间的距离。 12||||z z z z -=-z 对应的点的轨迹是线段12Z Z 的垂直平分线;0||z z r -=, z 对应的点的

轨迹是一个圆;()

1212||||22z z z z a Z Z a -+-=<, z 对应的点的轨迹是一个椭圆;

()1212||||22z z z z a Z Z a ---=>, z 对应的点的轨迹是双曲线。

10、显然有公式:

(

)

1212122

2

22

121212

2z z z z z z z z z z z z -≤±≤+++-=+

11、复数的乘除法运算:

复数的乘法:z 1z 2= (a +bi )(c +di )=(ac -bd )+(bc +ad )i . (),,,a b c d R ∈ 复数的乘法运算满足交换律、结合律和分配律。

实数集R 中正整数指数的运算律,在复数集C 中仍然成立.即对z 1,z 2,z 3∈C 及m,n ∈N *

有:

z m z n =z m+n , (z m )n =z mn , (z 1z 2)n =z 1n z 2n .

复数的除法:

12z z =(a+bi)÷(c+di)=di c bi a ++=2222

ac bd bc ad

i c d c d +-+++ (),,,a b c d R ∈,分母实数化是常规方法

12、共轭复数:若两个复数的实部相等,而虚部是互为相反数时,这两个复数叫互为共轭复数;特别地,虚部不为0的两个共轭复数也叫做共轭虚数;

(),,z a bi z a bi a b R =+=-∈,两共轭复数所对应的点或向量关于实轴对称

。||z z ==2

2

2

2

,z z a b R z z z z ?=+∈?==,111212121222

,

,

z z z z z z z z z z z z ??±=±?=?= ??? 13、熟记常用算式:1i i

=-,i i 2)1(2=+,i i 2)1(2

-=-,i i i =-+11,i i

i

-=+-11 14、复数的代数式运算技巧:

(1)①i i 2)1(2=+ ②i i 2)1(2

-=- ③i i i =-+11 ④i i i

-=+-11

(2)“1”的立方根

i

232

1

±

-=ω的性质:

①13=ω ②ωω=2

③012

=++ωω ④1

1

-=+

ω

ω ⑤ω

ω

=1

15、实系数一元二次方程的根问题:

(1)当042≥-=?ac b 时,方程有两个实根 21,x x 。

(2)当042<-=?ac b 时,方程有两个共轭虚根,其中 21x x =。

此时有 a

c

x x x x =

==212

2

21且a i b x 22,1?-±-=。

注意两种题型:21x x (1)- 21x x (2)+

虚系数一元二次方程有实根问题:不能用判别式法,一般用两个复数相等求解。但仍然适用

韦达定理。

已知12x x -是实系数一元二次方程0c bx ax 2=++的两个根,求12x x -的方法: (1)当042

≥-=?ac b 时,

a

ac

b x x x x x x 44)(2212

2112-=-+=-

(2)当042

<-=?ac b 时,

a

b a

c x x x x x x 2

212

211244)(-=

-+=-

已知21x ,x 是实系数一元二次方程0c bx ax 2

=++的两个根,求12x x +的方法:

(1)当042≥-=?ac b 时,

①,021≥?x x 即0≥a

c

,则 a b x x x x =+=+2112

②,021

c ,则 a ac b x x x x x x x x 44)(2212

212112-=-+=-=+

(2)当042

<-=?ac b 时,

a c x x x x x 2

2221112=?==+

二、典例分析:

例1.(1)复数(1+i)

2

1-i

等于( )

A.1-i

B.1+i

C.-1+ i

D.-1-i

解析: 复数(1+i)

2

1-i =

2(1)11i i i i i =+=-+-,选C . (2)若复数z 同时满足z --

z =2i ,-

z =iz (i 为虚数单位),则z = . 解:已知2211i Z iZ i Z i i

?-=?==--;

(3)设a 、b 、c 、d ∈R ,则复数(a +b i)(c +d i)为实数的充要条件是

A.ad -bc =0

B.ac -bd =0

C. ac +bd =0

D.ad +bc =0

解析:(1),,,a b c R ∈复数()()a bi c di ++=()()ac bd ad bc i -++为实数,∴0ad bc +=,

选D ; (4)已知

=+-=+ni m i n m ni i

m

是虚数单位,则是实数,,,其中11( ) (A)1+2i (B) 1-2i (C)2+i (D)2-i 解析:

()()i n n m ni i m

-++=?-=+1111,由m 、n 是实数,得??

?=+=-m n n 101, ∴i ni m m n +=+???

?==22

1

,故选择C 。

(5)设,x y 为实数,且

5

11213x y i i i

+=

---,则x y += 。 解析:

(1)(12)2()()112252525

x y x i y i x y x y i i i +++=+=+++--, 而

55(13)13131022i i i +==+- 所以123252252

x y x y +=+=且,解得x =-1,y =5, 所以x +y =4。

点评:本题考查复数的运算及性质,基础题。

例2:(1)计算:

1996

1232132???

?

??-+++-i i i

答案:i +-1

(2)设复数z 满足关系i z z +=+2||,求z ;

解:设z=a+bi (a,b 为实数),由已知可得i b a bi a +=+++222

由复数相等可得:?????==++1

2

22b b a a ,解得1,43==b a ,所以i z +=43

设z=a+bi-x+yi (a,b 为实数)复数问题实数化。 (3)若C x ∈,解方程x i x -+=31||

解:设x=a+bi (a,b ∈R)代入条件得:i b a b a )3(122-+-=+,由复数相等的定义可得:

?

?

?=--=+03122b a

b a ,∴a=-4,b=3,∴x=-4+3i 。 例3:(1)复数z 满足1||||2

2

=--+i z i z ,则z 对应的点在复平面内表示的图形为(A ) A .直线 B .圆 C .椭圆 D .抛物线

解:令z=x+yi (x ,y∈R),则x 2+(y+1)2-[x 2+(y -1)2

]=1,∴y=1/4。故选A 。 (2)设复数z 满足:3|33|=

-+i z ,求|z|的最大值与最小值;

解:|z|的最大值为33,最小值为3;

(3)已知z ∈C ,|z -2|=1且复数z -2对应的点落在直线y=x 上,求z 。 解:设z -2=a+ai ,∵|z -2|=1,∴2

=a , ∴i z 22222++

=或i z 2

2222--=。 【思维点拨】从整体出发利用条件,可简化运算,本题也可设z=a+bi 再利用条件,但运算

复杂。

(4)设2||1,≤

≤∈z C z ,则复数)1(i z u +=,在复平面内对应的图形面积为_______。

解:∵|u|=|z |?|1+i|=2|z|,∴2≤|u|≤2,故面积S=ππ2])2(2[2

2=-。

【思维点拨】复数问题实数化是处理复数问题的常用方法。

例4:已知z=1+i ,a ,b 为实数, (1)若ω=z 2

+3z -4,求|ω|;

(2)若i z z b

az z -=+-++11

2

2,求a ,b 的值。 解:(1)ω=(1+i)2

+3(1-i)-4=―1―i ,∴2||=

ω。

(2)由条件i i i a b a -=+++1)2()(,∴i i a b a +=+++1)2()(,∴?

?

?=-=21b a 。 【思维点拨】利用复数的充要条件解题。

例5:设,C z ∈且

1

-z z

是纯虚数,求||i z +的最大值。 解:令z=x+yi (x ,y∈R),则1-z z 2

22222)1()1(y x y

y x x y x +--

+--+=,∵

1

-z z

是纯虚数, ∴?

??≠=-+0022y x y x ,即)0(41)21(2

2≠=+-y y x ,由数形结

合可知本题是求圆)0(4

1

)2

1

(2

2≠=

+-y y x 上的点到A(0,-1)的最大距离。∴||i z +max =|PA|=

2

1

5+。

练习:

1.______8)2(2=-+z i z z 均是纯虚数,则与已知复数i Z 2-=

2..若i b i i a -=-)2(,其中a 、b ∈R ,i 是虚数单位,则22b a +=( D ) A .0 B .2 C .2

5 D .5

3.设复数ω=-

21

+2

3i ,则1+ω=( ) C (A )–ω (B )ω2 (C )ω1- (D )2

4.复数i

z -=11的共轭复数是(B )

A .i 2

12

1+

B .i 2

12

1-

C .i -1

D .i +1

5.若复数z 满足方程2

20z +=,则3z = ( ) D

A.±

B. -

C. -

D. ±

6. 设a 、b 、c 、d ∈R ,若i

i

a b c d ++为实数,则 ( C )

(A) 0bc ad +≠ (B) 0bc ad -≠ (C) 0bc ad -=

(D) 0bc ad +=

7.如果复数2

()(1)m i mi ++是实数,则实数m =( ) B A .1 B .1- C

D

. 8.=-+2005

)11(

i

i ( ) A

A .i

B .-i

C .2005

2 D .-2005

2

9.满足条件||||z i i -=+34的复数z 在复平面上对应点的轨迹是( )C A. 一条直线 B. 两条直线 C. 圆 D. 椭圆 10.若 12z a i =+, 234z i =-,且1

2z z 为纯虚数,则实数a 的值为 .3

8=a 11.已知

=+-=+ni m i n m ni i

m

是虚数单位,则是实数,,,其中11 C (A)1+2i (B) 1-2i (C)2+i (D)2- i

12、复数3

(1)i -的虚部为

(A )3 (B )-3 (C )2 (D )-2 解析:复数()3

1i -=13322i i i --+=--,所以它的虚部为-2,选D. 13、在复平面内,复数

1i

i

+对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 解:

1i i +111

i i i (+)

==--故选D ; 点评:复数的概念和性质是高考对复数部分的一个考点,属于比较基本的题目,主要考察复数的的分类和几何性质。 14、求满足条件:i

i

i z z z +-=

++23)(2

(i 为虚数单位)的复数z [解]原方程化简为i i z z z -=++1)(2,

设z=x+yi(x 、y ∈R),代入上述方程得 x 2+y 2+2xi=1-i,

∴x 2+y 2=1且2x=-1,解得x=-

2

1

且y=±23,

∴原方程的解是z=-21

±2

3i. 15、已知i x x z ?++

=1221,i a x z )(22+=对于任意的x ∈R 均有|z 1|>|z 2|成立,试求

实数a 的取值范围。

解:∵|z 1|>|z 2|,∴2

2

2

4

)(1a x x x +>++,∴0)1()21(2

2

>-+-a x a ,对R x ∈成

立。

当021=-a ,即2

1

=a 时,不等式成立; 当021≠-a 时??

?<--->-0

)1)(21(40212

a a a 211<<-?a 。综上得]21

,1(-∈a 。 【思维点拨】通过转化将复数问题变为实数问题是常用手段。

高中数学-复数的基础知识

复数 基础知识 1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除 等运算。便产生形如a+bi (a,b ∈R )的数,称为复数。所有复数构成的集合称复数集。通常用C 来表示。 2.复数的几种形式。对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。若z=r(cos θ+isin θ),则θ称为z 的辐角。若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=22b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ ,称为复数的指数形式。 3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。模与共轭的性质有: (1)2121z z z z ±=±;(2)2121z z z z ?=?;(3)2||z z z =?;(4)2 121z z z z =???? ??;(5)||||||2121z z z z ?=?; (6)||||||2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则z z 1= 。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z 1=r 1(cos θ1+isin θ1), z 2=r 2(cos θ2+isin θ2),则z 1??z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];若2 1212,0r r z z z =≠[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z 1z 2=r 1r 2e i(θ1+θ2),.)(2 12121θθ-=i e r r z z 5.棣莫弗定理:[r(cos θ+isin θ)]n =r n (cosn θ+isinn θ). 6.开方:若=n w r(cos θ+isin θ),则)2s i n 2(c o s n k i n k r w n π θπ θ+++=, k=0,1,2,…,n-1。 7.单位根:若w n =1,则称w 为1的一个n 次单位根,简称单位根,记Z 1=n i n ππ2sin 2cos +,则全部单位根可表示为1,1Z ,1121,,-n Z Z .单位根的基本性质有(这里记k k Z Z 1=,

3.1.1数系的扩充和复数的概念(教学设计)

§3.1.1数系的扩充和复数的概念(教学设计) 教学目标: 知识与技能目标: 了解引进复数的必要性;理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部、复数相等)。理解虚数单位i 以及i 与实数的四则运算规律。 过程与方法目标: 通过问题情境,了解扩充数系的必要性,感受数系的扩充过程,体会引入虚数单位i 和复数形式的合理性,使学生对数的概念有一个初步的、完整的认识。 情感、态度与价值观目标: 通过问题情境,体会实际需求与数学内部矛盾在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系。 教学重点: 复数的概念,虚数单位i ,复数的分类(实数、虚数、纯虚数)和复数相等等概念是本节课的教学重点.复数在现代科学技术中以及在数学学科中的地位和作用 教学难点: 虚数单位i 的引进及复数的概念是本节课的教学难点.复数的概念是在引入虚数单位i 并同时规定了它的两条性质之后,自然地得出的.在规定i 的第二条性质时,原有的加、乘运算律仍然成立 教学过程: 一、创设情境、新课引入: 数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N 随着生产和科学的发展,数的概念也得到发展 为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q .显然N Q .如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z ,则有Z Q 、N Z .如果把整数看作分母为1的分数,那么有理数集实际上就是分数集 有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R .因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以实数集实际上就是小数集 因生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.但是,数集扩到实数集R 以后,像x 2=-1这样的方程还是无解的,因为没有一个实数的平方等于-1.由于解方程的需要,人们引入了一个新数i ,叫做虚数单位.并由此产生的了复数 二、师生互动、新课讲解 1.虚数单位i : (1)它的平方等于-1,即 2 1i =-; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立. 2. i 与-1的关系: i 就是-1的一个平方根,即方程x 2=-1的一个根,方程x 2=-1的另一个根是-i ! 3. i 的周期性:i 4n+1=i, i 4n+2=-1, i 4n+3=-i, i 4n =1 4.复数的定义:形如(,)a bi a b R +∈的数叫复数,a 叫复数的实部,b 叫复数的虚部全体复数所成的集合叫做复数集,用字母C 表示* 3. 复数的代数形式: 复数通常用字母z 表示,即(,)z a bi a b R =+∈,把复数表示成a +bi 的形式,叫

高中数学复数专题知识点整理

专题二 复数 【1】复数的基本概念 (1)形如a + b i 的数叫做复数(其中R b a ∈,);复数的单位为i ,它的平方等于-1,即1i 2-=.其中a 叫做复数的实部,b 叫做虚部 实数:当b = 0时复数a + b i 为实数 虚数:当0≠b 时的复数a + b i 为虚数; 纯虚数:当a = 0且0≠b 时的复数a + b i 为纯虚数 (2)两个复数相等的定义: 00==?=+∈==?+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且 (3)共轭复数:z a bi =+的共轭记作z a bi =-; (4)复平面:建立直角坐标系来表示复数的平面叫复平面;z a bi =+,对应点坐标为(),p a b ;(象限的复习) (5)复数的模:对于复数z a bi =+,把z =z 的模; 【2】复数的基本运算 设111z a b i =+,222z a b i =+ (1) 加法:()()121212z z a a b b i +=+++; (2) 减法:()()121212z z a a b b i -=-+-; (3) 乘法:()()1212122112z z a a b b a b a b i ?=-++ 特别22z z a b ?=+。 (4)幂运算:1i i =21i =-3i i =-41i =5i i =61i =-?????? 【3】复数的化简 c di z a bi +=+(,a b 是均不为0的实数);的化简就是通过分母实数化的方法将分母化为实数:()()22ac bd ad bc i c di c di a bi z a bi a bi a bi a b ++-++-==?=++-+ 对于()0c di z a b a bi +=?≠+,当c d a b =时z 为实数;当z 为纯虚数是z 可设为c di z xi a bi +==+进一步建立方程求解

高中数学复数

第1章:复数与复变函数 §1 复数 1.复数域 形如iy x z +=的数,称为复数,其中y x ,为实数。实数x 和实数y 分别称为复数iy x z +=的实部与虚部。记为 z x Re =, z y Im = 虚部为零的复数可看成实数,虚部不为零的复数称为虚数,实部为零虚部不为零的复数称为纯虚数。复数iy x z -= 和iy x z +=称为互为共轭复数,z 的共轭复数记为z 。 设 ,复数的四则运算定义为 加(减)法: 乘法: 除法: 相等: 当且仅当 复数的四则运算满足以下运算律 ①加法交换律 1221z z z z +=+ ②加法结合律 321321)()(z z z z z z ++=++ ③乘法交换律 1221z z z z ?=? ④乘法结合律 321321)()(z z z z z z ??=?? ⑤乘法对加法的分配律 3121321)(z z z z z z z ?+?=+? 全体复数在引入相等关系和运算法则以后,称为复数域. 在复数域中,复数没有大小. 正如所有实数构成的集合用R 表示,所有复数构成的集合用C 表示。

例 设i 3,i 5221+=-=z z ,求 2 1 z z . 分析:直接利用运算法则也可以,但那样比较繁琐,可以利用共轭复数的运算结果。 解 为求 2 1 z z ,在分子分母同乘2z ,再利用1i 2-=,得 i 101710110i 171)i 3)(i 52(2222121-=-=--=??=z z z z z z z 2.复平面 一个复数iy x z +=本质上由一对有序实数唯一确定。于是能够确定平面上全部的点和全体复数间一一对应的关系。如果把x 和y 当作平面上的点的坐标,复数z 就跟平面上的点一一对应起来,这个平面叫做复数平面或z 平面,x 轴称为实轴,y 轴称为虚轴. 在复平面上,从原点到点 所引的矢量 与复数z 也构成一一对应 关系,且复数的相加、减与矢量相加、减的法则是一致的,即满足平行四边形法则,例如: 这样,构成了复数、点、矢量之间的一一对应关系. 3. 复数的模与辐角 向量 的长度称为复数 的模或绝对值,即:

最新高中数学《复数》经典考题分类解析

最新高中数学《复数》经典考题分类解析 复数的代数运算年年必考,其题目活而不难,主要考查学生灵活运用知识的能力,复数的几何意义也是考查的一个重点。落实考查特点有利于抓住复习中的关键:(1)复数的概念,包括虚数、纯虚数、复数的实部与虚部、复数的模、复数的相等、共轭复数的概念。(2)复数代数形式基本运算的技能与技巧,特别是 i ±1的计算,注意转化思想的训练,善于将复数向实数转化。 (3)复数的几何意义, 1、复数的概念以及运算 例1i 是虚数单位,238i 2i 3i 8i ++++=L .(用i a b +的形式表示,a b ∈R ,) 解:原式=i -2-3i +4+5i -6-7i +8=4-4i 点评:复数是高中数学的重要内容,是解决数学问题的重要工具,本题考查了复数的概念以及复数的引入原则,主要考查i 12-=的实际应用问题。 例2若a 为实数, =,则a 等于( ) A . B . C . D .-解析:由已知得:等式左边=i a a i ai 3 223223)21)(2(-++=-+ 由复数相等的充要条件知:???????-=-=+23 220322a a ,所以a = 点评:本题考查了复数的基本运算以及复数相等的概念。 例3若复数(1)(2)bi i ++是纯虚数(i 是虚数单位,b 是实数),则b =( ) A .2 B .12 C .12- D .2- 解析:(1)(2)bi i ++=i b b )12()2(++-,因为(1)(2)bi i ++是纯虚数,因此

???≠+=-0 1202b b 所以b =2。 点评:本题考查的复数的乘法运算问题,通过该运算考查了纯虚数的概念。 2、复数的几何意义 复数与复平面上的点,及复平面上从原点出发的向量建立了一一对应关系,这样使得 复数问题可以借助几何图形的性质解决,反之,一些解析几何问题、平面几何问题也可以借助于复数的运算加以解决。 例4若35ππ44θ??∈ ??? ,,则复数(cos sin )(sin cos )i θθθθ++-在复平面内所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析:复数的实部a =)4sin(2sin cos π θθθ+=+,虚部b = )4sin(2cos sin πθθθ-=-,因为4 543πθπ<<,所以 ππθπππθπ<-<<+<42,234,所以0)4sin(<+πθ,0)4 sin(>-πθ,即a<0,b>0,所以复数对应的点在第二象限。 点评:本题以复数的三角形式作为命题背景,考查了复数的三角形式运算以及三角函数的恒等变化,以及复数的几何意义。复数与复平面内的点的对应关系经常出现在考题中,关键是把复数化简成bi a +的形式,并且准确的判断出a 、b 的符号是求解问题的关键。 3、复数的开放性的考查 例4.复数i z a b a b =+∈R ,,,且0b ≠,若24z bz -是实数,则有序实数对()a b ,可以是 .(写出一个有序实数对即可) 解析:因为24z bz -=i b ab ab b a )42()4(222-+--是实数,所以有 0422=-b ab ,因为0≠b ,所以b a 2=,所以答案可以填写(2,1)或(2,4)、(3,6)等等。

高一数学复数的运算练习题

复数的运算测试题 一、选择题 1.0a =是复数()z a bi a b =+∈R ,为纯虚数的( ) A.充分条件但不是必要条件 B.必要条件但不是充分条件 C.充要条件 D.既不是充分也不必要条件 答案:B 2.若12z i =+,23()z ai a =+∈R ,12z z +的和所对应的点在实轴上,则a 为( ) A.3 B.2 C.1 D.—1 答案:D 3.复数22(2)(2)z a a a a i =-+--对应的点在虚轴上,则( ) A.2a ≠或1a ≠ B.2a ≠且1a ≠ C.0a = D. 2 a =或 0a = 答案:D 4.设1z ,2z 为复数,则下列四个结论中正确的是( )

A.若22120z z +>,则2212z z >- B. 12 z z -= C.22121200z z z z +=?== D.11z z -是纯虚数或零 答案:D 5.设22(253)(22)z t t t t i =+-++-+,t ∈R ,则下列命题中正确的是( ) A.z 的对应点Z 在第一象限 B.z 的对应点Z 在第四象限 C.z 不是纯虚数 D.z 是虚数 答案:D 6.若1i +是实系数方程20x bx c ++=的一个根,则方程的另一个根为( ) A.1i - B.1i -+ C.1i -- D.i 答案:A 7.已知复数1cos z i θ=-,2sin z i θ=+,则1 2z z ·的最大值为( )

A.3 2 D.3 答案:A 8.已知m ∈R ,若6()64m mi i +=-,则m 等于( ) A. 2- B. C. D.4 答案:B 9.在复平面内12 ω=-对应的向量为OA ,复数2ω对应的向量为 OB .那么向量AB 对应的复数是( ) A.1 B. 1- D. 答案:D 10.在下列命题中,正确命题的个数为( ) ①两个复数不能比较大小; ②123z z z ∈C ,,,若221221()()0z z z z -+-=,则13z z =; ③若22(1)(32)x x x i -+++是纯虚数,则实数1x =±; ④z 是虚数的一个充要条件是z z +∈R ; ⑤若a b ,是两个相等的实数,则()()a b a b i -++是纯虚数; ⑥z ∈R 的一个充要条件是z z =.

《复数的概念》教学设计【高中数学人教A版必修2(新课标)】

《复数的概念》教学设计 教材通过三个环节完成了对实数系的扩充过程:(1)提出问题(用什么方法解决方程x2+1=0在实数集中无解的问题),引发学生的认知冲突,激发学生扩充实数系的欲望;(2)回顾从自然数集逐步扩充到实数集的过程和特点(添加新数,满足原来的运算律);(3)类比、设想扩充实数系的方向及引入新数i所满足的条件(使i2=-1成立,满足原来的运算律).由于学生对数系扩充的知识并不熟悉,教学中教师需多作引导. 复数的概念是复数这一章的基础,复数的有关概念都是围绕复数的代数表示形式展开的.虚数单位、实部、虚部的命名,复数相等的概念,以及虚数、纯虚数等概念的理解,教学中可结合具体例子,以促进对复数实质的理解. 课时分配 1课时. 1.了解引进复数的必要性;理解虚数单位i以及i与实数的四则运算规律.理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部、复数相等).2.通过问题情境,了解扩充数系的必要性,感受数系的扩充过程,体会引入虚数单位i和复数形式的合理性,使学生对数的概念有一个初步的、完整的认识. 3.通过问题情境,体会实际需求与数学内部矛盾在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系. 重点:复数的概念,虚数单位i,复数的分类(实数、虚数、纯虚数)和复数相等等概念. ~ 难点:虚数单位i的引进及复数的概念. 引入新课 请同学们回答以下问题: (1)在自然数集N中,方程x+4=0有解吗

(2)在整数集Z中,方程3x-2=0有解吗 (3)在有理数集Q中,方程x2-2=0有解吗 ) 活动设计:先让学生独立思考,然后小组交流,最后师生总结. 活动成果:问题(1)在自然数集中,方程x+4=0无解,为此引进负数,自然数→整数; 问题(2)在整数集中,方程3x-2=0无解,为此引进分数,整数→有理数; 问题(3)在有理数集中,方程x2-2=0无解,为此引进无理数,有理数→实数. 数集的每一次扩充,对数学本身来说,解决了在原有数集中某种运算不能实施的矛盾,如分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾. 提出问题:从自然数集N扩充到实数集R经历了几次扩充每一次扩充的主要原因是什么每一次扩充的共同特征是什么 活动设计:先让学生独立思考,然后小组讨论,师生共同归纳总结. 活动成果:扩充原因:①满足解决实际问题的需要;②满足数学自身完善和发展的需要. $ 扩充特征:①引入新的数;②原数集中的运算规则在新数集中得到保留和扩展,都满足交换律和结合律,乘法对加法满足分配律. 设计意图 回顾从自然数集N扩充到实数集R的过程,帮助学生认识数系扩充的主要原因和共同特征. 探究新知 提出问题:方程x2+1=0在R上有解吗如何对实数集进行扩充,使方程x2+1=0在新的数集中有解 活动设计:小组讨论,类比猜想,设想新数的引进,师生共同完成. 学情预测:学生讨论可能没有统一结果,无法描述. 类比原来不同阶段数系的每一次扩充的特点,在实数集中方程x2+1=0无解,需要引进“新数”扩充实数集.让我们设想引入一个新数i,使i满足两个条件:(1)i是方程x2+1=0

(完整word版)高中数学-复数专题

复数专题 一、选择题 1 .(2012年高考(天津理)) i 是虚数单位,复数7= 3i z i -+ ( ) A .2i + B .2i - C .2i -+ D .2i -- 2 .(2012年高考(新课标理))下面是关于复数2 1z i = -+的四 个命题:其中的真命 题为 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1- ( ) A .23,p p B .12,p p C .,p p 24 D .,p p 34 3 .(2012年高考(浙江理))已知i 是虚数单位,则 3+i 1i -= ( ) A .1-2i B .2-i C .2+i D .1+2i 4 .(2012年高考(四川理))复数2(1)2i i -= ( ) A .1 B .1- C . i D .i - 5 .(2012年高考(上海理))若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则 ( ) A .3,2==c b . B .3,2=-=c b . C .1,2-=-=c b . D .1,2-==c b . 6 .(2012年高考(陕西理))设,a b R ∈, 是虚数单位,则“0ab =”是“复数b a i + 为纯虚数”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 7 .(2012年高考(山东理))若复数z 满足(2)117z i i -=+( i 为虚数单位),则z 为 ( ) A .35i + B .35i - C .35i -+ D .35i -- 8 .(2012年高考(辽宁理))复数 22i i -=+ ( ) A .34i - B .34i + C .41i - D .3 1i +

复数教学设计(省优质课)

§5.1 数系的扩充与复数的引入 江西省永新县任弼时中学 文辉 【教学目标】 (1) 了解引进复数的必要性,理解复数的基本概念,了解复数的代数法表示, 理解虚数单位,理解复数相等的充要条件. (2) 了解复数的几何意义,理解复数模的概念,了解复数与复平面内的点的 对应关系. (3) 体会实际需求与数学内部的矛盾在数学扩充过程中的作用,感受人类理 性思维在数系的扩充过程的作用以及数与现实世界的联系。 (4) 通过复数与复平面内的点的对应关系,体会二维空间中数与形之间的内 在联系. 【教学重难点】 重点:引进虚数单位i 的必要性,对i 的规定,复数的有关概念. 难点:实数系扩充到复数系的过程的理解,复数的概念的理解. 教学方法:1.启发式教学法. 2.激励---探索---讨论---发现. 教具准备:多媒体,投影仪. 教学过程 Ⅰ.课题导入 ㈠引导学生回顾数的变化发展过程 数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N 随着生产和科学的发展,数的概念也得到发展. 为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q .显然N Q .如果把自然数集(含正整数和零)与负整数集合并在一起,构成整数集Z ,则有Z Q 、N Z .如果把整数看作分母为1的分数,那么﹛有理数﹜=﹛分数﹜=﹛循环小数﹜. 有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R .因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以﹛实数﹜=﹛小数﹜. ㈡设置问题情境,探究实践 问题①:请类比引进2,就可以解决方程02x 2=-在有理数集中无解的问题,怎么解决方程01x 2=+在实数集中无解的问题?

高中数学复数练习题百度文库

一、复数选择题 1.复数3 (23)i +(其中i 为虚数单位)的虚部为( ) A .9i B .46i - C .9 D .46- 2.已知i 为虚数单位,则复数23i i -+的虚部是( ) A . 35 B .35i - C .15 - D .1 5 i - 3.已知复数21i z i =-,则复数z 在复平面内对应点所在象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4. )) 5 5 11-- +=( ) A .1 B .-1 C .2 D .-2 5.若复数1z i =-,则 1z z =-( ) A B .2 C . D .4 6.若 1m i i +-是纯虚数,则实数m 的值为( ). A .1- B .0 C .1 D 7.若复数2i 1i a -+(a ∈R )为纯虚数,则1i a -=( ) A B C .3 D .5 8.已知复数z 满足2 2z z =,则复数z 在复平面内对应的点(),x y ( ) A .恒在实轴上 B .恒在虚轴上 C .恒在直线y x =上 D .恒在直线y x =-上 9.复数z 满足22z z i +=,则z 在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10.已知2021(2)i z i -=,则复平面内与z 对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 11.设复数z 满足41i z i =+,则z 的共轭复数z 在复平面内的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 12.设a + ∈R ,复数()()() 2 4 2 121i i z ai ++=-,若1z =,则a =( ) A .10 B .9 C .8 D .7

高中数学_数系的扩充和复数的概念教学设计学情分析教材分析课后反思

《数系的扩充与复数的概念》教学设计 §3.1.1 数系的扩充和复数的概念 一、学习目标: 1.在问题的情境中让学生了解把实数系扩充到复数系的过程. 2.理解复数的有关概念以及复数相等的充要条件,掌握复数的代数形式 二、重点、难点: 重点:复数的概念与复数的代数形式,复数的分类. 难点:复数的概念及分类,复数相等. 三、学习过程: 1.复习回顾 问题1:你知道的数集有哪些?分别用什么符号表示?它们有什么关系? 2. 3.问题2:方程012=+x 在实数集中无解。联系从自然数系到实数系的扩充过程,你能设想 一种方法,使这个方程有解吗? 结论:引入一个新数 ,规定(1) (2) 【复数的概念及代数形式】 练习1.指出下列复数的实部与虚部。 (1)2+3i (2)1-2i (3)5i -4(4)2i (5)-3i (6)8i (7)10 (8)-8 (9)0 问题3:你认为应怎样定义两个复数相等? 【复数相等的充要条件】 问题4:复数),(R b a bi a z ∈+=在什么条件下是实数? 【复数的分类】 练习2.下列各数是否是虚数,并说出各数的实部与虚部. i 3-1 i 7 1 31+ i )(π-1 85-i

问题5.两个复数能否比较大小? 4、例题巩固 例1.实数m 取什么值时,复数i m m z )1(1-++=是(1)实数;(2)虚数;(3)纯虚数。 变式:将复数改为i m m m z )1(1-++=应注意什么? 方法小结: 例2. 下列命题中正确的有_____ (1)若C z ∈,则02≥z (2) i yi x +=+1(x,y 为实数)的充要条件是 1==y x (3)1+ai 是一个虚数(4)若a =0,则a +bi 为纯虚数 方法小结: 例3.已知i xyi y x 222 2=+-,求实数y x ,的值。 变式1:已知0222=+-xyi y x ,求实数y x ,的值。 变式2:若0)1(2>-+i x x ,则=x 方法小结 5、课堂小结 6、作业布置(课本55页A 组1、2题) 《数系扩充和复数的概念》学情分析 在学习本节之前,学生对数的概念已经扩充到实数,也已清楚各 种数集之间的包含关系等内容,但知识是零碎、分散的,对数的生成 发展的历史和规律缺乏整体认识与理性思考,知识体系还未形成。另 一方面学生对方程解的问题会默认为在实数集中进行,缺乏严谨的思 维习惯。

湖北省武汉市部分市级示范高中高二数学复数练习试题 百度文库

一、复数选择题 1.复数()1z i i =?+在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.若复数1z i i ?=-+,则复数z 的虚部为( ) A .-1 B .1 C .-i D .i 3.已知a 为正实数,复数1ai +(i 为虚数单位)的模为2,则a 的值为( ) A B .1 C .2 D .3 4.已知,a b ∈R ,若2 ()2a b a b i -+->(i 为虚数单位),则a 的取值范围是( ) A .2a >或1a <- B .1a >或2a <- C .12a -<< D .21a -<< 5.在复平面内复数Z=i (1﹣2i )对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.若复数()()24z i i =--,则z =( ) A .76i -- B .76-+i C .76i - D .76i + 7.已知复数5i 5i 2i z =+-,则z =( ) A B .C .D .8.已知复数5 12z i =+,则z =( ) A .1 B C D .5 9.若复数z 满足421i z i +=+,则z =( ) A .13i + B .13i - C .3i + D .3i - 10.满足313i z i ?=-的复数z 的共扼复数是( ) A .3i - B .3i -- C .3i + D .3i -+ 11.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ?④z z ,其结果一定是实数的是( ) A .①② B .②④ C .②③ D .①③ 12.复数 2i i -的实部与虚部之和为( ) A .35 B .15- C .15 D . 35 13.设21i z i +=-,则z 的虚部为( )

高中数学高考总复习复数习题

高中数学高考总复习复 数习题 Last revised by LE LE in 2021

高中数学高考总复习复数习题一、选择题 1.复数3+2i 2-3i =( ) A.i B.-i C.12-13i D.12+13i 2.在复平面内,复数6+5i,-2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是( ) A.4+8i B.8+2i C.2+4i D.4+i 3.若复数(m2-3m-4)+(m2-5m-6)i表示的点在虚轴上,则实数m的值是( ) A.-1 B.4 C.-1和4 D.-1和6 4.(文)已知复数z= 1 1+i ,则z-·i在复平面内对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限 (理)复数z在复平面上对应的点在单位圆上,则复数z2+1 z ( ) A.是纯虚数 B.是虚数但不是纯虚数C.是实数

D.只能是零 5.复数(3i-1)i的共轭复数 ....是( ) A.-3+i B.-3-i C.3+i D.3-i 6.已知x,y∈R,i是虚数单位,且(x-1)i-y=2+i,则(1+i)x-y的值为( ) A.-4 B.4 C.-1 D.1 7.(文)复数z1=3+i,z2=1-i,则z=z1·z2在复平面内对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 (理)现定义:e iθ=cosθ+isinθ,其中i是虚数单位,e为自然对数的底,θ∈R,且实数指数幂的运算性质对e iθ都适用,若a=C50cos5θ-C52cos3θsin2θ+ C 54cosθsin4θ,b=C 5 1cos4θsinθ-C 5 3cos2θsin3θ+C 5 5sin5θ,那么复数a+b i等于 ( ) A.cos5θ+isin5θ B.cos5θ-isin5θ C.sin5θ+icos5θ D.sin5θ-icos5θ 8.(文)已知复数a=3+2i,b=4+xi(其中i为虚数单位),若复数a b ∈R,则实数x 的值为( ) A.-6 B.6

高中数学复数练习题百度文库

一、复数选择题 1.已知复数1z i =+,则2 1z +=( ) A .2 B C .4 D .5 2.在复平面内,复数534i i -(i 为虚数单位)对应的点的坐标为( ) A .()3,4 B .()4,3- C .43,55??- ??? D .43,55?? - ??? 3.若复数1z i i ?=-+,则复数z 的虚部为( ) A .-1 B .1 C .-i D .i 4.已知a 为正实数,复数1ai +(i 为虚数单位)的模为2,则a 的值为( ) A B .1 C .2 D .3 5.已知i 为虚数单位,若复数()12i z a R a i +=∈+为纯虚数,则z a +=( ) A B .3 C .5 D .6.若复数1z i =-,则1z z =-( ) A B .2 C . D .4 7.已知复数5 12z i =+,则z =( ) A .1 B C D .5 8.若 1m i i +-是纯虚数,则实数m 的值为( ). A .1- B .0 C .1 D 9.在复平面内,复数z 对应的点是()1,1-,则1 z z =+( ) A .1i -+ B .1i + C .1i -- D .1i - 10.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3 B .5 C .6 D .8 11.已知复数z 满足()1+243i z i =+,则z 的虚部是( ) A .-1 B .1 C .i - D .i 12.若i 为虚数单位,,a b ∈R ,且2a i b i i +=+,则复数a bi -的模等于( ) A B C D

高中数学复数(DOC)

复 数 知识回顾: 一、复数的概念 1. 虚数单位i (1) 它的平方等于1-,即2 i 1=-; (2) 实数可以与它进行四则运算,进行四则运算时,原有的加、乘法运算仍然成立,即满足交换律与结合律. (3) i 的乘方:4414243*i 1,i i,i 1,i i,N n n n n n +++===-=-∈,它们不超出i b 的形式. 2. 复数的定义 形如i(,)R a b a b +∈的数叫做复数,单个复数常常用字母z 表示.把复数z 表示成i a b +时,叫做复数的代数形式.,a b 分别叫做复数的实部与虚部,记作Re ,Im z z . 注意复数的实部和虚部都是实数. 3. 复数相等 如果两个复数1i(,)R z a b a b =+∈和2i(,)R z c d c d =+∈的实部和虚部分别相等,即,a c b d ==,那么这两个复数相等,记作i i a b c d +=+.一般的,两个复数只能说相等或不相等,而不能比较大小. 4. 共轭复数 当两个复数实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,也称这两个复数互相共轭.复数z 的共轭复数用z ,也就是当i z a b =+时,i z a b =-. a a =,i i b b =-. 二、复数的分类

正整数 有理数,Q Z q p q p ??=∈???? 零(0a b ==) 实数R :(0b =) 负整数 复数C 无理数 i (,) R z a b a b =+∈ 纯虚数(0a =) 虚数(0b ≠) 非纯虚数(0a ≠) i z a b =+是实数0b z z ?=?=. i z a b =+是纯虚数0,00,0a b z z z ?=≠?+=≠. 三、复平面及复数的坐标表示 1. 复平面 在直角坐标系里,点z 的横坐标是a ,纵坐标是b ,复数i z a b =+可用点(,)Z a b 来表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴为实轴,y 轴出去原点的部分称为虚轴. 2. 复数的坐标表示 一个复数i z a b =+对应了一个有序实数对(,)a b ;反之一个有序实数对(,)a b 对应了一个复数i a b +.在复平面内,复数i z a b =+与复平面内的点(,)Z a b 是一一对应的. 我们常把复数i a b +看作点(,)Z a b . 3. 复数的向量表示

复数 教案(绝对经典)

复 数 复数的基本概念、复数相等的充要条件以及复数的代数运算是高考的热点,并且一般在前三题的位置,主要考查对复数概念的理解以及复数的加减乘除四则运算,难度较小. 【复习指导】 1.复习时要理解复数的相关概念如实部、虚部、纯虚数、共轭复数等,以及复数的几何意义. 2.要把复数的基本运算作为复习的重点,尤其是复数的四则运算与共轭复数的性质等.因考题较容易,所以重在练基础。 基础梳理 1.复数的有关概念 (1)复数的概念 形如a +b i (a ,b ∈R )的数叫作复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数,若b ≠0,则a +b i 为虚数,若a =0且b ≠0,则a +b i 为纯虚数. (2)复数相等:a +b i =c +d i ?a =c 且b =d (a ,b ,c ,d ∈R ). (3)共轭复数:a +b i 与c +d i 共轭?a =c ,b =-d (a ,b ,c ,d ∈R ). (4)复平面 建立直角坐标系来表示复数的平面,叫作复平面.x 轴叫作实轴,y 轴叫作虚轴.实轴上的点都表示实数;除原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数. (5)复数的模 向量OZ →的模r 叫作复数z =a +b i 的模,记作__|z |__或|a +b i|,即|z |=|a +b i|=a 2+b 2. 2.复数的几何意义 (1)复数z =a +b i(a ,b ∈R )的模|z |=a 2+b 2,实际上就是指复平面上的点Z 到原点O 的距离;|z 1-z 2|的几何意义是复平面上的点Z 1、Z 2两点间的距离. (2)复数z 、复平面上的点Z 及向量OZ → 相互联系,即z =a +b i(a ,b ∈R )?Z (a ,b )?OZ → . 3.复数的四则运算 设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则 (1)加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; (2)减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; (3)乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; (4)除法:z 1z 2 =a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=(ac +bd )+(bc -ad )i c 2+d 2(c +d i ≠0).

人教版高中数学(理科)选修复数的概念教案

复数的概念 教学目标 1.掌握复平面、向量等有关概念;弄清复数集C与复平面内所有的点组成的集合之间一一对应关系,以及复数与从原点出发的向量之间的一一对应关系;弄清复数模的几何意义.2.通过数形结合研究复数,提高学生的数形结合能力,突出比较与类比的研究方法.3.感受到为真理执着追求的精神.进行辩证唯物主义教育. 教学重点与难点 重点:复数与点与向量的对应关系以及复数的模. 难点:自由向量与位置向量的区别,以及它们与复数的对应关系. 教学过程设计 师:我们已经学习了复数的概念.什么是复数? 生:形如a+bi的数叫复数. (学生有不同意见,小声议论) 师:谁有补充? 生:形如a+bi(a,b∈R)的数叫复数. (教师给予肯定) 师:a,b∈R的条件很重要,实际上我们是用实数来定义的复数,虽然我们知道了复数的定义,但是复数对于我们来说,总感到摸不着抓不住,不像实数,任何一个实数,都可以在数轴上找到一个点与它对应,那么复数到底在哪里呢?我们能不能像实数那样来表示复数呢? 生:数轴上的点不能表示虚数,只能表示实数. 师:那么用什么可以表示复数呢?注意复数是由a,b两个实数决定的,可以大胆设想一下,我们可以利用什么来表示复数? 生:可以用直角坐标系里的点来表示吗? 师:××提出了一个想法,用直角坐标系内的点来表示复数.这种想法行不行呢? (在黑板上画出直角坐标系,任取一点(a,b)) 师:能不能用点来表示复数呢? 生:可以.因为有一个复数a+bi(a,b∈R),就有一个点(a,b),而有一个点(a,b),就有一个复数a+bi. 师:他刚才所说的实际想说明一点复数集与坐标系中的点构成的集合是一一对应的.的确,由复数相等的概念,我们知道一个复数a+bi由一个有序实数对(a,b)唯一确定,而

高中数学复数基础部分练习题

1. 计算:i i 31-=________. 2. 下面四种说法中,正确的是 ( ) A. 实数b a =,则()()i b a b a ++-是纯虚数; B. 模相等的复数为共轭复数; C. 如果z 是纯虚数,则z z ≠; D. 任何数的偶次幂不小于零.¥ 3. i i -+11的值为 4. 若复数i m m m m m z )34(3 222+-+--+=是纯虚数,则实数=m ¥ 5. 下列命题中,正确的命题是 。 (1)对任意两个复数y x ,,若满足y x >,则y x ,必定都是实数 (2)复数),(R b a bi a z ∈+=的虚部是bi (3)当0=a 时,复数),(R b a bi a z ∈+=为纯虚数 (4)因为i 表示虚数单位,所以它不是一个虚数 ¥ 6. 已知)(2)1(32 2yi x i i y x -=+-+,其中y x ,都是实数,求复数=+yi x ¥ 7. 已知i z m z -==2,21,若21z z >,则实数m 的取值范围是 8. 已知复数z 满足4=z ,若0Im Re =+z z ,则=z 9. 21z z =是21z z =的 条件。¥ 10. 复数R m i m m z ∈-++=,)23()1(,求复数z 的模的最小值为 11. 若实数z 满足53=+-i z ,则=z 12. 已知i a a a z )21()6(21-+--=,i a a a z )22()3(22+-+-=,其中R a ∈,若21z z =,则=a 13. 若集合},|2||{},,11|{C z z i z z N C z z z M ∈=-=∈=+=,则=?N M ¥ 14. 已知1,=∈z C z ,求2-z 的取值范围¥ 15. 若i z +=2,则2z 的共轭复数为 16. 计算:=????200953i i i i ΛΛ¥

相关主题
文本预览
相关文档 最新文档