当前位置:文档之家› 自动控制原理第八章2

自动控制原理第八章2

第二章 自动控制原理答案

图2.68 习题2.1图 解: (a) 11r c u u i R -=,2()r c C u u i -= ,122c u i i R +=,12122 121212 c c r r R R R R R Cu u Cu u R R R R R R +=++++ (b) 11()r c C u u i -= ,1 21 r u u i R -=,1221i i C u += ,121c u i R u =+, 121211122112121121()()c c c r r r R R C C u R C R C R C u u R R C C u R C R C u u ++++=+++ (c) 11r c u u i R -=,112()r C u u i -=,1122u i i R +=,112 1c u i dt u C = +? , 121212222112122221()()c c c r r r R R C C u R C R C R C u u R R C C u R C R C u u ++++=+++ 2.2 试证明图 2.69(a)所示电路与图 2.69(b)所示的机械系统具有相同的微分方程。图2.69(b)中X r (t )为输入,X c (t )为输出,均是位移量。 (a) (b) 图2.69 习题2.2图 解: (a) 11r c u u i R -=,12()r c C u u i -= ,12i i i +=,22 1c u idt iR C =+? , 121211122212121122()()c c c r r r R R C C u R C R C R C u u R R C C u R C R C u u ++++=+++ (b) 2121()c B x x K x -= ,1121()()()r c r c c B x x K x x B x x -+-=- , 121221212121211212 ()()c c c r r r B B B B B B B B B x x x x x x K K K K K K K K K ++++=+++

自动控制原理(梅晓榕)习题答案第八章汇编

习题答案8 8-1 1)二阶系统,2个状态变量。 设 2121212)(2)()( )()(x x t y t y t y x t y x x t y x --=--==?=== , []? ?? ???==??????--==00 01 2110 B y A A ,,,x x x 2) []x x x 001 100322100010=?? ?? ? ?????+??????????---=y u 3) []x x x 121 100321100010=?? ?? ? ?????+??????????---=y u 提示:本题利用了可控规范型与微分方程系数的关系。 8-2 1) 2 3101 )()(s s s U s Y += []x x x 001 1001000100010=?? ?? ? ?????+??????????-=y u 2) 8 1 5611171181891)()(2 3+?++?-?=++=s s s s s s s U s Y []x x x 001 100980100010=?? ??? ?????+??????????--=y u 或 x x x ?? ????-=???? ? ?????+??????????--=5617 1 8 1 111800010000y u 3) []x x x 145 1006116100010=?? ?? ? ?????+??????????---=y u 提示:本题利用了状态空间的规范型与传递函数系数的关系。

8-3 8 659 122+++s s s 8-4 ?? ? ???-=??????-??????+-+---==??????----------t t t t t t t t t t At t x t x e e 11e 2e e 2e 2e e e e 2)0(e )()(222221x 8-5 ?? ? ???-+-+-=-==------t t t t s BU A sI t 32321 1 3e 4e 1e e 21)]()[(L )()0(x 0x , 8-6 [])(120)( )(100)(321100010)1(k k y k u k k x x x =?? ??? ?????+??????????---=+ 或 [])(100)( )(120)(310201100)1(k k y k u k k x x x =?? ??? ?????+??????????---=+ 或 [])(001)( )(111)(321100010)1(k k y k u k k x x x =?? ?? ? ?????-+??????????---=+ 提示:利用状态空间的规范型与差分方程系数的关系。 8-7 []0110 3210=??? ???=??????--= C B A 下面是对该状态方程的求解过程。设初始条件为零。 ???? ??????++++-+++++=? ? ????+-=---232 32231233321)(2 2221 1z z z z z z z z z z z z A zI ???? ??? ?????-++++--++-+=????????????-++-++=?? ? ?????--=-??????-=-=---)1(6)1(2)2(32)1(6)1(2)2(3)1)(23()1)(23( 10)(110()(22 21 1 1 z z z z z z z z z z z z z z z z z z z z z z A zI z z A)(zI BU(z)A)zI z X ? ?????????+-+--+---==-61)1(21)2(3 261)1(21)2(31)]([Z )(1k k k k z X k x 8-8 1) ???????=??????= 10 0010B A 101])[(L e 1 1? ? ????=-=--t A sI At

自动控制原理第六章

5-25 对于典型二阶系统,已知参数3=n ω,7.0=ξ,试确定截止频率c ω和相角裕度γ。 解 依题意,可设系统的开环传递函数为 ) 12 .4(143 .2) 37.02(3)2()(22+=??+=+=s s s s s s s G n n ξωω 绘制开环对数幅频特性曲线) (ωL 如图解5-25所示,得 143.2=c ω ?=+?=63)(180c ω?γ 5-26 对于典型二阶系统,已知σ%=15%,s 3=s t ,试计算相角裕度γ。 解 依题意,可设系统的开环传递函数为 ) 2()(2n n s s s G ξωω+= 依题 ???? ?====--n s o o o o t e σξξπ 5.33152 1 联立求解 ???==257.2517 .0n ωξ 有 )1333 .2(1824 .2) 257.2517.02(257.2)(2 +=??+= s s s s s G 绘制开环对数幅频特性曲线)(ωL 如图解5-26所示,得 1824.2=c ω ?=+?=9.46)(180c ω?γ 5-27 某单位反馈系统,其开环传递函数 G s s s s s ().(.)(.)(.) = +++1670810251006251 试应用尼柯尔斯图线,绘制闭环系统对数幅频特性和相频特性曲线。 解 由G(s)知:20lg16.7=24.5db 交接频率:ω11 08 125= =.. , ω210254==. , ω310062516==.

图解5-27 Bode 图 Nyquist 图 5-28 某控制系统,其结构图如图5-83所示,图中 ) 20 1(8.4)(,81) 1(10)(21s s s G s s s G += ++= 试按以下数据估算系统时域指标σ%和t s 。 (1)γ和ωc (2)M r 和ωc (3)闭环幅频特性曲线形状 解 (1) ) 20 1)(81()1(48)()()(21s s s s s G s G s G +++= = db 6.3348lg 20= 20, 1,125.081321====ωωω 065,6≈=∴ γωc 查图5-56 得 13.16 .6, %21%== =C S t ωσ秒 (2) 根据M r ,ωC 估算性能指标 当 ω=5 时: L(ω)=0, ?(ω)=-111°

自动控制原理习题第六章

第六章: 例1 图6-1是一采用PD 串联校正的控制系统。 图6-1 PD 串联校正的控制系统 (1)当10,1p d K K ==时,求相位裕量γ。 解:系统的开环传递函数为 ()(1) p d K K K s W s s s += + 当10,1p d K K ==时,有10(10.1) ()(1) K s W s s s +=+。 开环对数幅频特性为 ()20lg1020lg L ωω=+- 0.1ω=时,()20lg1020lg 40L dB ωω=-= 1ω=时,()20lg1020lg 20L dB ωω=-= 剪切频率c ω为 ()20lg1020lg 20lg 0L dB ωωω=--= ,c ω相位裕量γ为 1 18090arctan arctan 35.10.1 c c γωω=?-?+-=? (2)若要求该系统剪切频率5c ω=,相位裕量50γ=?,求,p d K K 的值。 解: 系统的开环传递函数为 (1) ()(1) (1) p d p d p K K K s K K K s W s s s s s ++= = ++ 相位裕量为 18090arctan arctan 50d c c p K K γωω=?-?+-=?

得,/0.16d p K K = 当5c ω=,可以得到(5)20lg 20lg 520lg 50p L K =--=,最后解得 25,4p d K K == 例2 已知单位负反馈系统开环传递函数为 ()(0.051)(0.21) K K W s s s s = ++ 试设计串联校正装置,使系统1 5s v K -≥,超调量不大于25%,调节时间不大于1s 。 解 (1) 由性能指标可知,系统提出的是时域指标,可利用它和频域指标的近似关系,先用频域法校正,然后再进行验算。由 2 %0.160.4(1)0.25%12 1.5(1) 2.5(1)1sin ()p s c p p p c M k t k M M M δπωγω=+-≤?? ?=≤?? ?=+-+-???= ?? 得系统要求的各项指标为 ?? ? ??=== 7.54)(74.7225.1c c p M ωγω (2)由5v K ≥,可以计算出放大系数5K =。其传递函数为 55 ()(0.051)(0.21)(1)(1) 205 W s s s s s s s = = ++++ 其对数幅频特性如图6-14所示。 系统未校正时,按下式可计算出其穿越频率,c ω如认为 1,20c ω>>得 5 ()15 c c c A ωωω≈ =? 故得5c ω≈ 其相位裕度为

自动控制原理第六章课后习题答案

自动控制原理第六章课后习题答案(免费) 线性定常系统的综合 6-1 已知系统状态方程为: ()100102301010100x x u y x ? -???? ? ?=--+ ? ? ? ?????= 试设计一状态反馈阵使闭环系统极点配置为-1,-2,-3. 解: 由()100102301010100x x u y x ? -???? ? ?=--+ ? ? ? ?????=可得: (1) 加入状态反馈阵()0 12K k k k =,闭环系统特征多项式为: 32002012()det[()](2)(1)(2322)f I A bK k k k k k k λλλλλ=--=++++-+--+- (2) 根据给定的极点值,得期望特征多项式: *32()(1)(2)(3)6116f λλλλλλλ=+++=+++ (3) 比较()f λ与*()f λ各对应项系数,可得:0124,0,8;k k k === 即:()408K =

6-2 有系统: ()2100111,0x x u y x ? -????=+ ? ?-????= (1) 画出模拟结构图。 (2) 若动态性能不能满足要求,可否任意配置极点? (3) 若指定极点为-3,-3,求状态反馈阵。 解(1) 模拟结构图如下: (2) 判断系统的能控性; 0111c U ?? =?? -?? 满秩,系统完全能控,可以任意配置极点。 (3)加入状态反馈阵01(,)K k k =,闭环系统特征多项式为: ()2101()det[()](3)22f I A bK k k k λλλλ=--=+++++ 根据给定的极点值,得期望特征多项式: *2()(3)(3)69f λλλλλ=++=++ 比较()f λ与*()f λ各对应项系数,可解得:011,3k k == 即:[1,3]K =

自动控制原理课后习题答案第二章

第二章 2-3试证明图2-5( a )的电网络与(b)的机械系统有相同的数学模型。 分析首先需要对两个不同的系统分别求解各自的微分表达式,然后两者进行对比,找岀两者之 间系数的对应关系。对于电网络,在求微分方程时,关键就是将元件利用复阻抗表示,然后利用电压、电阻和电流之间的关系推导系统的传递函数,然后变换成微分方程的形式,对于机械系统,关键就是系统的力学分析,然后利用牛顿定律列岀系统的方程,最后联立求微分方程。 证明:(a)根据复阻抗概念可得: 即取A、B两点进行受力分析,可得: 整理可得: 经比较可以看岀,电网络( a)和机械系统(b)两者参数的相似关系为 2-5 设初始条件均为零,试用拉氏变换法求解下列微分方程式,并概略绘制x(t)曲线,指岀各方程式的模态。 (1) (2 ) 2-7由运算放大器组成的控制系统模拟电路如图2-6所示,试求闭环传递函数U c ( s )/U r ( s)。 图2-6 控制系统模拟电路 解:由图可得 联立上式消去中间变量U1和U2,可得: 2-8某位置随动系统原理方块图如图2-7所示。已知电位器最大工作角度,功率放大级放

大系数为K3,要求:

(1) 分别求岀电位器传递系数 K 0、第一级和第二级放大器的比例系数 K 1和K 2; (2) 画岀系统结构图; (3) 简化结构图,求系统传递函数。 图2-7 位置随动系统原理图 (2)假设电动机时间常数为 Tm 忽略电枢电感的影响,可得直流电动机的传递函数为 式中Km 为电动机的传递系数,单位为。 又设测速发电机的斜率为,则其传递函数为 由此可画岀系统的结构图如下: (3)简化后可得系统的传递函数为 2-9若某系统在阶跃输入 r(t)=1(t) 时,零初始条件下的输岀 响应,试求系统的传递函数 和脉冲响应。 分析:利用拉普拉斯变换将输入和输出的时间域表示变成频域表示, 进而求解出系统的传递函数, 然后对传递函数进行反变换求岀系统的脉冲响应函数。 解:(1),则系统的传递函数 (2)系统的脉冲响应 2-10试简化图2-9中的系统结构图,并求传递函数 C(s)/R(s ) 和C(s)/N(s) 分析:分别假定 R(s)=o 和N(s)=O ,画出各自的结构图,然后对系统结构图进行等效变换, 将其化成最简单的形式,从而求解系统的传递函数。 解:(a )令N (s )= 0,简化结构图如图所示: 可求出: 分析:利用机械原理和放大器原理求解放大系数, 构图,求岀系统的传递函数。 解:(1) 然后求解电动机的传递函数, 从而画岀系统结

自动控制原理第8章习题解——邵世凡

习题8 8—1 三个非线性系统的非线性环节一样,线性部分分别为 ①G㈤一赢;②G㈤一志;③G㈤一高等揣。 试问用描述函数法分析时,哪个系统分析的准确度高? 8 2试求图8~41所示非线性特性的描述函数 8—3 试求图8—42所示非线性特性的描述函数。8—4求图8 43所示非线性描述函数。 8—5求图8 44所示非线性描述函数。 8 非线性系统理论§265 8—6 求出图8—45所示非线性控制系统线性部分的传递函数。

8—7一非线性系统其前向通路中有一描述函数N(A)一去e j寻的非线性元件,线性部分传递函数为试用描述函数法确定系统是否存在自激振荡,若有,求出自激振荡参数。 8 8试用描述函数分析图8 46所示系统必然存在自激振荡, y.z,e的稳态波形。 8 9若非线性系统的微分方程为 试求系统的奇点.并概略绘制奇点附近的相轨迹。并求出自激振荡振幅和振荡频率,并画出 8 10 非线性系统结构如图8—47所示,系统开始是静止的,输入信号r(£)一4×1(f),试写出切换线方程,确定奇点的位置和类型,作出该系统的相平面图,并分析系统的运动特点。 8—11 已知非线性系统的微分方程为 图8 47题8—10非线性系统 i1一T1(T;+z;一1)(T;+上;~9)一z2(z;+T;一4) j 2一z2(z;+卫!一1)(工}+z;~9)+z1(zi+T;一4) 试分析系统奇点的类型,判断系统是否存在极限环。 8 12绘制图8 48所示非线性系统的相轨迹,分析系统的运动特性(B>O,B。<4K)。

8—13 已知非线性系统如图8—49所示,粗略绘制系统在单位阶跃及斜坡输入r一、,T+R 作用下系统的相轨迹,并分析系统的运动特性(T>O,4KT>1)。 8—14一非线性控制系统如图8—50所示,请绘制系统在如下情况下的相轨迹,并分析系统的运动特性。 初始状态为P(O):3.5,i(O)一O。 8—15一位置继电控制系统结构如图8—51所示.当输入幅度为4的阶跃函数,绘制从y(0)一一3,j(O)一O出发的相轨迹,求系统运动的最大速度、超调量及峰值时间。

自动控制原理夏超英 第2章+习题解答

第二章 习题解答 2-1试求下列各函数的拉氏变换。 (a )()12f t t =+,(b )2 ()37()f t t t t δ=+++,(c )23()2t t t f t e e te ---=++, (d )2 ()(1)f t t =+,(e )()sin 22cos 2sin 2t f t t t e t -=++,(f )()2cos t f t te t t -=+,( g )()sin32cos f t t t t t =-,( h )()1()2cos 2f t t t t =+ 解: (a )212()F s s s = +(b )23372 ()1F s s s s =+++(c )2 121()12(3)F s s s s =+++++ (d )2 ()21f t t t =++,3221()F s s s s =++(e )222222()44(1)4s F s s s s =++++++ (f )2222 211621()11(1)s d s s F s s ds s s ?? ?++??=+=++++ (g )2222222223262231()(3)(1)s d d s s s s F s ds ds s s ???? ? ? +++????=-+=-++ (h )2222 211684()(4)s d s s F s s ds s s ?? ?++??=+=++ 2-2试求图2.54所示各信号的拉氏变换。 (a ) (b ) (c ) (d ) 图2.54 习题2-2图 解: (a )021()t s e X s s s -=+(b )000 221()t s t s e e X s t s s s --=-+- (c ) 33112212()()t s t s t s t s t s t s t s t s a ae be be ce ce a b a c b ce X s e e s s s s s s s s s s ----------=-+-+-=++- (d ) 11 ()1()1()1()()1()1()11 ()1()(2)1(2)1(2)111 1()21()2()1()(2)1(2)1(2) x t t t T t t t T t T t T T T t T t T t T t T t T T T t t T t t T t T t T t T t T T T T =--+------ --+--+-=-?-+---+--+-

自动控制原理课后习题答案第二章

第 二 章 2-3试证明图2-5(a)的电网络与(b)的机械系统有相同的数学模型。 分析 首先需要对两个不同的系统分别求解各自的微分表达式,然后两者进行对比,找出两者之间系数的对应关系。对于电网络,在求微分方程时,关键就是将元件利用复阻抗表示,然后利用电压、电阻和电流之间的关系推导系统的传递函数,然后变换成微分方程的形式,对于机械系统,关键就是系统的力学分析,然后利用牛顿定律列出系统的方程,最后联立求微分方程。 证明:(a)根据复阻抗概念可得: 22212121122122112121122121221 11()1()1 11 o i R u C s R R C C s R C R C R C s R u R R C C s R C R C R C C s R C s R C s + ++++== +++++ + + 即 220012121122121212112222()()i i o i d u du d u du R R C C R C R C R C u R R C C R C R C u dt dt dt dt ++++=+++取A 、B 两点进行受力分析,可得: o 112( )()()i o i o dx dx dx dx f K x x f dt dt dt dt -+-=- o 22()dx dx f K x dt dt -= 整理可得: 2212111221121212211222()()o o i i o i d x dx d x dx f f f K f K f K K K x f f f K f K K K x dt dt dt dt ++++=+++ 经比较可以看出,电网络(a )和机械系统(b )两者参数的相似关系为 11122212 11,,,K f R K f R C C : ::: 2-5 设初始条件均为零,试用拉氏变换法求解下列微分方程式,并概略绘制x(t)曲线,指出各方程式的模态。 (1) ; )()(2t t x t x =+&

自动控制原理考试试题第七章习题及答案

第七章 非线性控制系统分析 练习题及答案 7-1 设一阶非线性系统的微分方程为 3x x x +-=& 试确定系统有几个平衡状态,分析平衡状态的稳定性,并画出系统的相轨迹。 解 令 x =0 得 -+=-=-+=x x x x x x x 321110()()() 系统平衡状态 x e =-+011,, 其中:0=e x :稳定的平衡状态; 1,1+-=e x :不稳定平衡状态。 计算列表,画出相轨迹如图解7-1所示。 可见:当x ()01<时,系统最终收敛到稳定的平衡状态;当x ()01>时,系统发散;1)0(-x 时,x t ()→∞。 注:系统为一阶,故其相轨迹只有一条,不可能在整个 ~x x 平面上任意分布。 7-2 试确定下列方程的奇点及其类型,并用等倾斜线法绘制相平面图。 (1) ?x x x ++=0 (2) ?? ?+=+=2122112x x x x x x && 解 (1) 系统方程为 x -2 -1 -13 0 1 3 1 2 x -6 0 0.385 0 -0.385 0 6 x 11 2 0 1 0 2 11 图解7-1 系统相轨迹

?? ?<=-+I I >=++I )0(0:)0(0:x x x x x x x x &&& &&& 令0x x ==&&&,得平衡点:0e x =。 系统特征方程及特征根: 2 1,2 21,21:10,()2:10, 1.618,0.618 () s s s s s s I II ?++==-±?? ?+-==-+? 稳定的焦点鞍点 (, ) , , x f x x x x dx dx x x x dx dx x x x x x ==--=--==--=-+=αα β11 1 ??? ? ??? <-= >--=) 0(11 :II ) 0(1 1: I x x β αβ α 计算列表 用等倾斜线法绘制系统相平面图如图解7-2(a )所示。

自动控制原理第2章习题解

习 题 2 2-1 试证明图2-77(a)所示电气网络与图2 77(b)所示的机械系统具有相同的微分方程。 图2-77习题2-1图 证明:首先看题2-1图中(a) ()()()s U s U s U C R R -= ()()()()s U Cs R s CsU s U R s I R R R R ?? ? ??+=+= 11 ()()s I s C R s U C ???? ? ?+=221 ()()()[]s U s U s C R s C R s U C R C -??? ? ??+???? ??+=112211 ()()s U s C R s C R s U s C R s C R R C ???? ??+???? ??+=??????+???? ??+???? ? ?+112211221 1111 ()()()()()()s U R s C R s C s C R s U R s C R s C s C R R C 11122211122211111+?+=?? ????++?+ 2-2试分别写出图2-78中各有源网络的微分方程。 图2-78 习题2-2图 解: (a)()()()t u R t u R dt t du C o r r 211-=+ (b)()()()?? ????+-=t u R dt t du C t u R r o 2o 111

(c) ()()() ? ? ? ? ? ? + - =t u dt t du C R t u R r c c 2 1 1 2-3某弹簧的力一位移特性曲线如图2-79所示。在仅存在小扰动的情况下,当工作点分别为x0=-1.2,0,2.5时,试求弹簧在工作点附近的弹性系数。 解:由题中强调“仅存在小扰动”可知,这是一道非线性曲线线性化处理的问题。于是有,在x0=-1.2,0,2.5这三个点处对弹簧特性曲线做切线,切线的导数或斜率分别为: 1) () ()35.56 25 .2 80 5.1 75 .0 40 40 2.1 = = - - - - = - =x dx df 2)20 2 40 = - - = = x dx df 3)6 5.2 15 5.0 3 20 35 5.2 = = - - = = x dx df 2- 4图2-80是一个转速控制系统,其中电压u为输入量,负载转速ω为输出量。试写出该系统输入输出间的微分方程和传递函数。 解:根据系统传动机构图可列动态如下: ()()()t u K dt t di L t Ri r e = + +ω(1) i K T T em =(2) dt d J T i K T T L T L em ω = - = -(3)将方程(3)整理后得: dt d K J T K i T L T ω + = 1 (4)将方程(4)代入方程(1)后得: ()t u K dt d K LJ dt dT K L dt d K RJ T K R r e T L T T L T = + + + +ω ω ω 2 2 (5)

自控原理习题参考答案(8)

第八章习题参考答案 8-3 设系统如图8-30所示,其中继电器非线性特性的a =1。试用描述函数法分析系统是否会出现自持振荡?如存在,试求出系统自持振荡的振幅和频率的近似值。 解:死区继电特性的描述函数为: 2 )( 14= )(A a A πM A N - (A ≥a ) 将M =1,a =1代入上式得: 2 2 )1( 14= )( 14= )(A A πA a A πM A N -- 当A

其频率特性为:) 2+)(1+(10 = )(j ωj ωωj ωj G 幅频特性和相频特性分别为: ) 4+)(1+(10 = |)(2 2 ωωωωj G |, ω.a r c t a n ωa r c t a n ωφ5090=)(--- 令 180=)(-ωφ,即 180=5090=)(----ω.arctan ωarctan ωφ 90 =50+ω.arctan ωarctan → 90 =.501.512 ω ωarctan - 解得2=ω,此时7 .61≈35=18 210 = ) 4+)(1+(10 = |)2(2 2ωωωj G | 因此,当2=ω时,线性部分奈氏曲线ΓG 与负实轴的交点坐标为(-1.67,j 0)。 ΓG 曲线如下图所示。由图可见,ΓG 曲线和-1/N (A )曲线存在两个交点。 由1 4 =)(1)2+)(1+(10= )(2 2-- =-A A πANj ωj ωωj ωj G 解得两组解:2 =1ω,2.21=1A 和2 = 2ω,37.1=2A 根据周期运动稳定性判据,A 1和ω1对应不稳定的周期运动;A 2和ω2对应稳定的周期运动。 当初始条件或外扰动使A A 1,则系统运动存在自振荡: t sin .)t (e 2731= () jY ω() X ωω=∞ ω=7.61-7.15- ) (1 A N -

自动控制原理-第8章 非线性控制系统教案

8 非线性控制系统 前面几章讨论的均为线性系统的分析和设计方法,然而,对于非线性程度比较严重的系统,不满足小偏差线性化的条件,则只有用非线性系统理论进行分析。本章主要讨论本质非线性系统,研究其基本特性和一般分析方法。 8.1非线性控制系统概述 在物理世界中,理想的线性系统并不存在。严格来讲,所有的控制系统都是非线性系统。例如,由电子线路组成的放大元件,会在输出信号超过一定值后出现饱和现象。当由电动机作为执行元件时,由于摩擦力矩和负载力矩的存在,只有在电枢电压达到一定值的时候,电动机才会转动,存在死区。实际上,所有的物理元件都具有非线性特性。如果一个控制系统包含一个或一个以上具有非线性特性的元件,则称这种系统为非线性系统,非线性系统的特性不能由微分方程来描述。 图8-1所示的伺服电机控制特性就是一种非线性特性,图中横坐标u 为电机的控制电压,纵坐标ω为电机的输出转速,如果伺服电动机工作在A 1OA 2区段,则伺服电机的控制电压与输出转速的关系近似为线性,因此可以把伺服电动机作为线性元件来处理。但如果电动机的工作区间在B 1OB 2区段.那么就不能把伺服电动机再作为线性元件来处理,因为其静特性具有明显的非线性。 图8-1 伺服电动机特性 8.1.1控制系统中的典型非线性特性 组成实际控制系统的环节总是在一定程度上带有非线性。例如,作为放大元件的晶体管放大器,由于它们的组成元件(如晶体管、铁心等)都有一个线性工作范围,超出这个范围,放大器就会出现饱和现象;执行元件例如电动机,总是存在摩擦力矩和负载力矩,因此只有当输入电压达到一定数值时,电动机才会转动,即存在不灵敏区,同时,当输入电压超过一定数值时,由于磁性材料的非线性,电动机的输出转矩会出现饱和;各种传动机构由于机械加工和装配上的缺陷,在传动过程中总存在着间隙,等等。 实际控制系统总是或多或少地存在着非线性因素,所谓线性系统只是在忽略了非线性因素或在一定条件下进行了线性化处理后的理想模型。常见典型非线性特性有饱和非线性、死区非线性、继电非线性、间隙非线性等。 8.1.1.1饱和非线性 控制系统中的放大环节及执行机构受到电源电压和功率的限制,都具有饱和特性。如图8-2所示,其中a x a <<-的区域是线性范围,线性范围以外的区域是饱和区。许多元件的运动范围由于受到能源、功率等条件的限制,也都有饱和非线性特性。有时,工程上还人为引入饱和非线性特

自动控制原理 第二章习题答案

2-1试建立如图 所示电路的动态微分方程。 解: 输入u i 输出u o u 1=u i -u o i 2=C du 1 dt ) - R 2(u i -u o )=R 1u 0-CR 1R 2( du i dt dt du o o i 1=i-i 2 u o i= R 2 u 1 i 1= R 1 = u i -u o R 1 dt d (u i -u o ) =C C d (u i -u o ) dt u o - R 2 = u i -u o R 1 CR 1R 2 du o dt du i dt +R 1u o +R 2u 0=CR 1R 2 +R 2u i (a) i=i 1+i 2 i 2=C du 1 dt u o i 1= R 2 u 1-u o = L R 2 du o dt R 1 i= (u i -u 1) (b) o = R 1 u i -u 1 u o +C R 2 du 1 dt u 1=u o + L R 2 du o dt du o dt R 1R 2 L du o dt + CL R 2 d 2u o dt 2 = - - u i R 1 u o R 1 u o R 2 +C )u o R 1R 2 L du o dt ) CL R 2 d 2u o dt 2 = + +( u i R 1 1 R 1 1 R 2 +(C+ 解: 2-2 求下列函数的拉氏变换。 (1)t t t f 4cos 4sin )(+= (2)t e t t f 43 )(+= (3)t te t f --=1)(

(4)t e t t f 22)1()(-= 解: (1) f(t)=sin4t+cos4t L [sin ωt ]ω=s s+42+16L [sin4t+cos4t ]+s ω2+s 2L [cos ωt ]=解:(2) f(t)=t 3+e 4t 解: L [t 3+e 4t ]6s+24+s 4 s 4(s+4)= (3) f(t)=t n e at L [t n e at ]=n!(s-a)n+1(4) f(t)=(t-1)2e 2t L [(t-1)2e 2t ]=e -(s-2)2(s-2)3 解:解: 2-3求下列函数的拉氏反变换。 (1))3)(2(1)(+++= s s s s F (2) ) 2()1()(2++=s s s s F (3) )1(1 52)(2 2++-=s s s s s F (4) )2)(34(2)(2++++=s s s s s F A 1=(s+2)s+1(s+2)(s+3)s=-2=-1 =2f(t)=2e -3t -e -2t (1) F(s)=解:A 2=(s+3)s+1(s+2)(s+3)s=-3F(s)= 2s+3- (2) F(s)=s (s+1)2(s+2)F(s)=-2e -2t -te -t +2e -t 解:= A 2s+1s+2+ A 3+ A 1(s+1)2A 1=(s+1)2s (s+1)2(s+2)s=-1A 3=(s+2)s s+2][A 2s=-1=-1 =2=-2 (3) F(s)=2s 2-5s+1s(s 2+1)F(s)(s 2=A 1s+A 2s=+j A 2=-5 A 3解: = A 3 s 2+1A 1s+A 2=1 2s s 2-5s+1=A 1s+A s=j j -5j-1=-A 1+jA 2 A 1=1 F(s)= 1s s 2+1s -5s 2+1 ++ (4) F(s)=s+2s(s+1)2(s+3) 解:=+A 1A (s+1)2+A +A A 123A 3= A 4A 2d []A 2+e 212 -+f(t)=-t 32e -3t -t e -t 1 t t t f sin 5cos 1)(-+=

自动控制原理第八章3

频率响应法是分析和设计线性系统的有力工具,其特点是将 线性系统描述为复值函数(即频率响应),而非微分方程 : 012αα=+?+x x x x 考察范德波尔方程:正常数,)(考察范德波尔方程例 012=+?+x x x x α描述函数分析法 例:(续))(例(续) 极限环的振幅;振荡频率 =G 描述函数分析法 ) sin()(t A t x ω例:(续) 拟线性

G 例:(续) .0 系统真实的极限环: .1 4 1 4 12 2 2? ? ± ? ? =A Aα α λ) ( 64 ) ( 8 2,1 例:(续) 描述函数分析法 拟线性近似(描述函数)法的适用范围 描述函数分析法例:具有一个非线性元件的系统(续)例具有个非线性元件的系统(续) G G G→线性成分G

描述函数的应用(续) 描述函数法的基本假设 描述函数分析法 描述函数法的基本假设(续) 描述函数分析法 描述函数法的基本假设(续)

描述函数法的基本定义 如果非线性函数x为单值函数,非线性元件w t的输出则通 果非线性数f()为单值数,非线性件()的输则通 描述函数法的基本定义(续) 描述函数分析法 描述函数法的基本定义(续) 描述函数分析法 非线性元件描述函数的计算方法 度不是关键,因为描述函数法本身就是一种近似方法 非线性部分的非线性特性) ,因本身种 适用于非线性部分的非线性特性w(t) = f(x)为显函数并且易进行下列计算的情形:

非线性元件描述函数的计算方法(续) 非线性元件描述函数的计算方法(续) 描述函数分析法 常见非线性特性的描述函数 1 ? w(t):奇函数a & k :线性区的) / ( sin A a = γ 范围及斜率 描述函数分析法 常见非线性特性的描述函数(续) z

自动控制原理第7章离散系统题库习题

7-1已知下列时间函数()c t ,设采样周期为T 秒,求它们的z 变换()C z 。 (a )2 ()1()c t t t = (b )()()1()c t t T t =- (c )()()1()c t t T t T =-- (d )()1()at c t t te -= (e )()1()sin at c t t e t ω-= (f )()1()cos at c t t te t ω-= 7-2已知()x t 的拉氏变换为下列函数,设采样周期为T 秒,求它们的z 变换()X z 。 (a )21()C s s = (b )()()a C s s s a = + (c )2()() a C s s s a = + (d )1 ()()()()C s s a s b s c = +++ (e )2221 ()() C s s s a = + (f )()1 ()1sT C s e s -= - 7-3求下列函数的z 反变换。 (a ) 0.5(1)(0.4)z z z -- (b ) 2()() T T z z e z e ---- (c )2 2 (1)(2) z z z ++

7-4已知0k <时,()0c k =,()C z 为如下所示的有理分式 120121212()1n n n n b b z b z b z C z a z a z a z ------++++=++++L L 则有 0(0)c b = 以及 []1 ()()n k i i c kT b a c k i T ==--∑ 式中k n >时,0k b =。 (a )试证明上面的结果。 (b )设 23220.5 ()0.5 1.5 z z C z z z z +-=-+- 应用(a )的结论求(0)c 、()c T 、(2)c T 、(3)c T 、(4)c T 、(5)c T 。 7-5试用部分分式法、幂级数法和反演积分法,求下列函数的z 反变换: (a )10()(1)(2) z E z z z = -- (b )1 12 3()12z E z z z ----+=-+ (c )2()(1)(31)z E z z z = ++ (d )2 ()(1)(0.5) z E z z z = -+ 7-6用z 变换法求下面的差分方程 (2)3(1)2()0,(0)0,(1)1x k x k x k x x ++++=== 并与用迭代法得到的结果(0)x 、(1)x 、(2)x 、(3)x 、(4)x 相比较。 7-7求传递函数为

自动控制原理C作业(第二章)答案

自动控制原理C作业(第二 章)答案 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第二章 控制系统的数学模型 2.1 RC 无源网络电路图如图2-1所示,试采用复数阻抗法画出系统结构图,并求传 递函数U c (s )/U r (s )。 图2-1 解:在线性电路的计算中,引入了复阻抗的概念,则电压、电流、复阻抗之间的关系,满足广义的欧姆定律。即: )() () (s Z s I s U = 如果二端元件是电阻R 、电容C 或电感L ,则复阻抗Z (s )分别是R 、1/C s 或L s 。 (1) 用复阻抗写电路方程式: s C S I S V R S U S U S I s C S I S I S U R S U S U S I c c c c C r 222221212111 111)()(1 )] ()([)(1)]()([)(1 )]()([)(? =-=? -=? -= (2) 将以上四式用方框图表示,并相互连接即得RC 网络结构图,见图2-1(a )。 2-1(a )。 (3) 用梅逊公式直接由图2-1(a) 写出传递函数U c (s )/U r (s ) 。

? ?= ∑K G G K 独立回路有三个: S C R S C R L 11111 11-= ?- = S C R S C R L 22222111-=?- = 回路相互不接触的情况只有L 1和 L 2两个回路。则 2 221121121S C R C R L L L == 由上式可写出特征式为: 2 2211122211213211 1111)(1S C R C R S C R S C R S C R L L L L L ++++ =+++-=? 通向前路只有一条 221212*********S C C R R S C R S C R G =???= 由于G 1与所有回路L 1,L 2, L 3都有公共支路,属于相互有接触,则余子式为 Δ1=1 代入梅逊公式得传递函数 1 )(1 111111 21221122121222111222112 221111++++=++++= ??=s C R C R C R s C C R R s C R C R s C R s C R s C R s C R C R G G 2-2 已知系统结构图如图2-2所示,试用化简法求传递函数C (s )/R (s )。 S C R R S C L 12213111-= ?- =

相关主题
文本预览
相关文档 最新文档