当前位置:文档之家› 第17章 非线性电路

第17章 非线性电路

第17章 非线性电路

第十七章 非线性电路简介

17-1 电路如图17.1(a )所示,其中U S =16V ,R 1=R 2=2Ω,R 3=1Ω,非线性电阻的伏安特性如图17.1(b )所示。试计算各支路电压、电流。

17-2 如图17.2所示电路中非线性电阻的伏安关系为u=2i+i 2,给定的直流电压源U S =10V ,R=1Ω。试用小信号法求s(t)0.1cos(t) (V)u =ω时非线性电阻上的电压u 和i 。 R 1 R 3

U S u

图17.1 (b)

R

i

+

u=2i+i 2

_

图17.2

第十七章答案

17-1 i 2=5.5A, i 2=2.5A, i =3A, u 1=11V , u 2=5V ,

17-2 80.0857cos ,20.0143cos tV tA +ω+ω

第17章习题 非线性电路

第十七章非线性电路简介 学习要点 含有非线性元件的电路称为非线性电路。本章简要介绍非线性电阻元件及含有非线性电阻电路的分析方法。要求理解非线性电阻元件的特性,掌握非线性电路的分析方法—小信号分析法。 内容提要 非线性电阻 1.定义 含有非线性元件的电路称为非线性电路,实际元件都是非线性的,而当其非线性程度比较薄弱时,即可作为线性元件来处理。线性电阻元件的伏安关系满足欧姆定律Ri u=,在i u-平面上是一条通过原点的直线。非线性电阻元件的伏安特性不满足欧姆定律,在i u-平面上不是直线。非线性电阻元件的图形符号如图(a)所示。 (1)若电阻元件两端的电压是其电流的单值函数,这种电阻称为电流控制型的非线性电阻,其伏安关系可表示为 )(i f u=(17-1)它的典型伏安特性如图(b)所示。 } (2)如果通过电阻的电流是其两端电压的单值函数,这种电阻称为电压控制型的非线性电阻,其伏安关系可表示为 ) (u g i=(17-2)它的典型伏安特性如图(c)所示。 2.动态电阻 (c) (a)(b) 图 u

非线性电阻元件在某一工作状况下(如图中P 点)的动态电阻为该点的电压对电流的导数,即 di du R d = 图中P 点的动态电阻正比于tan β(区别于其静态电阻R ,R 正比于tan α)。 3.静态工作点 如图(a )所示电路由线性电阻R 0和直流电压源U 0及一个非线性电阻R 组成(其虚线框也可由复杂网络等效而得)。设非线性电阻的伏安特性如图(b )所示,并可表示为式()。 根据KVL 和KCL ,对此电路列方程有 u i R U +=00 \ 或 i R U u 00-= (17-3) 是虚线方框一侧的伏安特性,如图(b )中直线AB 所示。 直线AB 与伏安特性)(u g i =的交点(U Q ,I Q ),同时满足式(17-3)和式(17-2), 所以有: Q Q U I R U +=00 | )(Q Q U g I = 交点Q (U Q ,I Q )称为电路的静态工作点。由上述分析可知:Q 点可通过图解法(作直线AB 与伏安特性)(u g i =或)(i f u =的交点)或解析法(联立求解i R U u 00-= (b) g (u ) ( (a) 图 图

第二章 电阻电路的等效变换

第二章 电阻电路的等效变换 1、各种电路类型在我没学校了 (1)线性电路:由线性无源元件、线性受控源和独立电源组成的电路,称为线性电路。第十七章介绍非线性电路的分析 (2)电阻电路:如果构成电路的线性无源元件均为线性电阻,电路则称为线性电阻性电路(简称电阻电路)。第二、三、四章介绍电阻电路的分析 (3)直流电路:当电路中的独立电源都是直流电源时,这类电路称为直流电路。电感在直流电路中相当于短路,电容在直流电路中相当于开路。 2、等效变换 (1)一端口 (2)等效的条件:如果两个一端口网络的伏安特性完全相同,则这两个一端口网络等效。 (3)等效变换的特点:对外等效。 3、电阻串并联 (1)电路元件的串并联 (A )串联:两个元件连接在单节点上,称为串联。串联连接的电路元件具有相同的电流。 (B )并联:两个元件连接在一对节点上,称为并联。并联连接的电路元件两端的电压相同。如果认为两个元件并联就是他们并行排列在电路图上,这是错误的,并联连接元件的特点是他们两端的电压相同。 (2)电阻串联:(A )证明 (B )分压公式 (3)电阻并联:(A )证明 (B )分流公式 4、电阻的Y 型连接和?型连接的等效变换 5、电压源、电流源的串联和并联 (1)电压源串联:(A )公式(B )加减号的确定 (2)电流源并联:(A )公式(B )加减号的确定 (3)电压源并联和电流源串联需满足基尔霍夫定律。 6、实际电源的两种电路模型及其等效变换 (1)实际电源的两种电路模型:(A )电路模型,要注意其参考方向(B )对应的实际电源 (2)两种电源电路模型进行等效变换的方法步骤:(A )画出对应的电源电路模型,注意参考方向(B )确定电阻值(C )根据公式s s Ri u =确定电源电路模型中独立源的源电压、 源电流 第二次课

第六章随机信号通过非线性系统习题

1. 非线性系统的传输特性为:()x y g x be ==其中b 为正的实常数。已知输入()X t 是一个均值为m x ,方 差为 2x σ 的平稳高斯噪声。试求 (1)输出随机信号Y (t )的一维概率密度函数; (2)输出随机信号Y (t )的均值和方差。 作业 2 非线性系统的传输特性为 ()y g x b x ==,b 为正的实常数。已知输入()X t 是一个均值为0方差为1 的平稳高斯噪声。试求 (1)输出随机信号()Y t 的一维概率密度函数; (2)输出随机信号()Y t 的平均功率。 作业 3.单向线性检波器的传输特性为 ||0()00b x x y g x x >?==?≤? 输入()X t 是一个均值0的平稳高斯信号,其相关函数为()x R τ。求检波器输出随机信号()Y t 的均值和方差。 4.设有非线性系统如图所示。输入随机信号()X t 为高斯白噪声,其功率谱密度0()2x N S ω=。若电路本 身热噪声忽略不计,且平方律检波器的输入阻抗为无穷大。试求输出随机信号的自相关函数和功率谱密度函数。 5. 非线性系统的传输特性为 20()00 x e x y g x x ?≥==?

作业 7.设非线性系统的传输特性为2 y x =。若输入随机信号()X t 是0均值单位方差,相关系数为()r τ的高斯平稳过程,求输出()y t 的一维概率密度函数和二维概率密度函数。 8. 设非线性系统的传输特性y x =。若输入随机信号()X t 是0均值单位方差,相关系数为()r τ的高斯平稳过程,求输出()y t 的均值和自相关函数。 作业 9. 设非线性系统的传输特性y x =。若输入随机信号()X t 是0均值的高斯平稳过程,求输出低频直流功率、低频总功率和低频起伏功率。 10. 一般说来,信号和噪声同时作用于非线性系统的输入端,其输出功率有三部分组成: 0()s Ω---信号自身所得到的输出平均功率 0()N Ω---噪声自身所得到的输出平均功率 0()SN Ω---信号与噪声得到的输出平均功率 对于通信系统中的非线性系统,计算输出信噪比的公式为: 0000 ()()()s N SN S N Ω??= ?Ω+Ω?? 对于通信系统中的非线性系统,计算输出信噪比的公式为: 000 0()()()s SN N S N Ω+Ω??= ?Ω?? 设窄带中放的幅频特性为: 0,()0,K H ωωωω?±≤?=?? 其他 其输入为()()t t S t N t +,其中信号0()(1)sin t S t A t ξω=+,ξ是(-1,1)间均匀分布的随机变量。()t N t 是单边功率谱密度为0N 的白噪声。求()()t t S t N t +通过窄带中放,再通过包络检波,输出信号的信噪比。 11. 设窄带中放的幅频特性为: 0,()0,K H ωωωω?±≤?=?? 其他 其输入为()()t t S t N t +,其中信号0()sin t S t A t ω=,ξ是(-1,1)间均匀分布的随机变量。()t N t 是单边功率谱密度为0N 的白噪声。求()()t t S t N t +通过窄带中放,再通过平方率检波器,输出信号的信噪比。 12. 设3 ()()()Y t X t X t =+,若()X t 是理想白噪声,求()Y t 的自相关函数。

非线性电路的应用——混沌电路

非线性电路的应用——混沌电路 摘要 本文给出了一种含有由两个运算放大器组成的非线性负电阻的蔡氏混沌电路,如图一所示。利用非线性电阻电路,设计了如图二所示的非线性伏安特性曲线。图二即为在示波器中得到的伏安特性曲线。在实现图二的伏安特性曲线的基础上,设计了图三所示的混沌电路。使用示波器,连续改变混沌电路的敏感参数(如图中的可变电阻由2K欧姆逐渐减小到零),得到了各种情况下的涡旋现象,得到双涡旋到大极限环变化时的参数,从理论分析与仿真实验两个角度分别研究蔡氏电路的混沌行为,研究结果表明在相同的混沌行为预期下,仿真实验与理论分析结论十分吻合,仿真实验能准确地观测到混沌吸引子的行为特征.通过利用Mutisim7.0进行仿真,观察到由直流平衡态经周期倍增分岔到Hopf分岔形成类似于Rossler吸引子,然后再过渡到双涡卷状的蔡氏吸引子大极限环的全过程。 关键词 蔡氏电路;非线性伏安特性曲线;Mutisim7.0仿真;双涡卷混沌吸引子;倍周期分岔 引言 蔡式电路是美国贝克莱大学的蔡少棠教授设计的能产生混沌行为的最简的一种自治电路。该典型电路并不唯一。蔡式电路在非线性系统及混沌研究中,占有极为严重的地位。 许多非线性动力系统的特性曲线不是跟踪简单、有规则和可预测的轨线,而是围绕像随机且似乎不规则但是明确的形式滑动。只要有关的过程是非线性的,甚至简单的严格确定性的模型可能发展这样复杂的行为。这行为被理解或接受为混沌,而且它已经导致非线性科学和动力系统工程的惊人发展。 混沌理论是近年来国际上兴起的新理论,它广泛应用于电路系统,并具有很强的抽象性,不容易被接受.本文通过对一种含由两个运算放大器组成的非线性电阻的RLC电路混沌现象实验分析,让人们从感性上更加清晰地了解混沌现象产生的机理,熟悉混沌现象产生的条件,掌握电路中混沌状态的基本规律,使人们对电路中的混沌现象具有更具体、更形象的认识。 正文 电路中存在混沌现象已经是在理论和实验中证明了的不争的事实。在传统的电路理论中,通常将电路划分为线性电路和非线性电路两大类。从严格意义上来讲,线性电路是不存在的,它仅仅是在特定的工作点附近呈现出所谓的“线性”特征,一旦电路的外部条件或内部参数发生变化使其偏离工作点(有时仅仅是微小的偏离),电路的线性特征将会大大地削弱,如发生信号波形失真、电路出现“噪声过量”等现象。非线性是所有电气电路、电子电路具有的固有特性。 混沌科学的发展,不仅大大拓宽了人们的视野,并加深了人们对客观世界的认识,而且由于混沌的奇异特性,尤其是对初始条件微小变化的高度敏感性及

(完整版)第二章电路分析方法

第二章电路的分析方法 电路分析是指在已知电路构和元件参数的情况下,求出某些支路的电压、电流。分析和计算电路可以应用欧姆定律和基尔霍夫定律,但往往由于电路复杂,计算手续十分繁琐。为此,要根据电路的构特点去寻找分析和计算的简便方法。 2.1 支路电流法 支路电流法是分析复杂电路的的基本方法。它以各支路电流为待求的未知量,应用基尔霍夫定律(KCL 和KVL )和欧姆定律对结点、回路分别列出电流、电压方程,然后解出各支路电流。下面通过具体实例说明支路电流法的求解规律。 例2-1】试用支路电流法求如图2-1 所示电路中各支路电流。已知U S1 130V ,U S2 117V ,R1 1 ,R2 0.6 ,R 24 。【解】该电路有3 条支路(b=3),2个结 点(n=2),3 个回路(L=3 )。先假定各支路电流的参 考方向和回路的绕行方向如图所示。因为有3 条支路则 有3 个未知电流,需列出3 个独立方程,才能解得3 个未知量。根据KCL 分别对点A、B 列出的方程实际上是 相同的,即结点A、B 中只有一个结点电流方程是独立 的,因此对具有两个结点的电路,只能列出一个独立的 KCL 方程。 再应用KVL 列回路电压方程,每一个方程中至少要包含一条未曾使用过的支路(即没有列过方程的支路)的电流或电压,因此只能列出两个独立的回路电压方程。根据以上分析,可列出3 个独立方程如下: 结点A I1 I2 I 0 回路ⅠI1R1 I2R2 U S1 U S2 回路ⅡI2 R2 IR U S2 I1 10A, I2 5A, I=5A 联立以上3 个方程求解,代入数据解得支路电流 通过以上实例可以总出支路电流法的解题步骤是: 1.假定各支路电流的参考方向,若有n个点,根据KCL 列出(n-1)个结点电流方程。 2.若有b 条支路,根据KVL 列(b-n+1)个回路电压方程。为了计算方便,通常选网孔作为回路。

二阶非线性动态电路

二阶非线性动态电路分析 题目: 二阶非线性电路如图1,R=10Ω,i=?+32.0?,C=0.25×210-F,C U (-0)=2V.求C U (t)(t>0),并画出t>0时?-C U 的相图。 图1.二阶非线性电路 理论分析: 解:取?与C U 为状态变量,t>0时: 32.0-??-=-==i i dt du C C c => 380-400??-=dt du c 32.0???R R U Ri U u dt d C C L --=-== => 3210???--=C U dt d Matlab 求解: 此非线性动态电路难求解析解,因此利用Matlab 做数值求解,得到响应在离散时刻的近似值,再根据此离散值做出响应相关图像。 Matlab 求解的原理是利用ode45函数解微分方程组。ode45表示采用四阶,五阶runge-kutta 单步算法。ode45函数语法为[T,Y] = ode45(odefun, tspan,y0),这里tspan 选择0到2.5s ,初值C U =2,?=0。 首先写一个函数M 文件列出待求解方程组如下: function dy=rlc(t,y) dy=zeros(2,1) dy(1)=-400*y(2)-80*y(2)^3 dy(2)=y(1)-10*y(2)-2*y(2)^3 end 在命令行输入[t,y]=ode45(@rlc,[0 2.5],[2 0]),可求出响应C U (t )、?(t )数值解。 在命令行输入: plot(t,y(:,1)) grid on 数值解

title('Uc-t曲线') xlabel('t') ylabel('Uc') 可得到Uc(t)曲线。可以更直观的观查Uc随时间的变化。 图2 Uc响应曲线同理可得到?(t)图像如图3所示: 图3 ψ-t曲线 同理可得到?-Uc相图如图4所示。 图4 ?-Uc相图

第17章习题 非线性电路

第十七章 非线性电路简介 17.1 学习要点 含有非线性元件的电路称为非线性电路。本章简要介绍非线性电阻元件及含有非线性电阻电路的分析方法。要求理解非线性电阻元件的特性,掌握非线性电路的分析方法—小信号分析法。 17.2 内容提要 17.2.1 非线性电阻 1.定义 含有非线性元件的电路称为非线性电路,实际元件都是非线性的,而当其非线性程度比较薄弱时,即可作为线性元件来处理。线性电阻元件的伏安关系满足欧姆定律 Ri u =,在i u -平面上是一条通过原点的直线。非线性电阻元件的伏安特性不满足欧姆定律,在i u -平面上不是直线。非线性电阻元件的图形符号如图17.1(a )所示。 (1)若电阻元件两端的电压是其电流的单值函数,这种电阻称为电流控制型的非线性电阻,其伏安关系可表示为 )(i f u = (17-1) 它的典型伏安特性如图17.1(b )所示。 (2)如果通过电阻的电流是其两端电压的单值函数,这种电阻称为电压控制型的非线性电阻,其伏安关系可表示为 )(u g i = (17-2) 它的典型伏安特性如图17.1(c )所示。 2.动态电阻 非线性电阻元件在某一工作状况下(如图17.2中P 点)的动态电阻为该点的电 (c) (a) (b) i 图17.1 u i u 0

压对电流的导数,即 di du R d = 图17.2中P 点的动态电阻正比于tan β(区别于其静态电阻R ,R 正比于tan α)。 3.静态工作点 如图17.3(a )所示电路由线性电阻R 0和直流电压源U 0及一个非线性电阻R 组成(其虚线框也可由复杂网络等效而得)。设非线性电阻的伏安特性如图17.3(b )所示,并可表示为式(17.2)。 根据KVL 和KCL ,对此电路列方程有 u i R U +=00 或 i R U u 00-= (17-3) 是虚线方框一侧的伏安特性,如图17.3(b )中直线AB 所示。 直线AB 与伏安特性)(u g i =的交点(U Q ,I Q ),同时满足式(17-3)和式(17-2), 所以有: Q Q U I R U +=00 )(Q Q U g I = 交点Q (U Q ,I Q )称为电路的静态工作点。由上述分析可知:Q 点可通过图解法(作直线AB 与伏安特性)(u g i =或)(i f u =的交点)或解析法(联立求解i R U u 00-=及非线性电阻的伏安特性式)求出。 + (b) 1' B i - (U Q ,I Q ) R U A 1 i =g (u ) - R 0 Q + O (a) u U 0 R u i U 0 图17.3 u α i β O P 图17.2

集成运放的非线性失真分析及电路应用

集成运放的非线性失真分析及电路应用 0 引言运算放大器广泛应用在各种电路中,不仅可以实现加法和乘法等线性运算电路功能,而且还能构成限幅电路和函数发生电路等非线性电路,不同的连接方式就能实现不同的电路功能。集成运放将运算放大器和一些外围电路集成在一块硅片上,组合成了具有特定功能的电子电路。集成运放体积小,使用方便灵活,适合应用在移动通信和数码产品等便携设备中。线性特性是考查具有放大功能的集成运放和接收射频前端电路的一个重要参数,并且线性范围对集成运放的连接方式也有很大影响。集成运放的线性范围太小,就会造成输出信号产生多次谐波和较大的谐波功率,严重地影响整个电路的功能。基于集成运放的非线性分析,可以发现造成电路非线性失真的原因,并且在不改变电路设计的前提下,通过改变集成运放的连接方式,达到实现集成运放正常工作的目的。本文设计优化的集成运放电路应用于定位系统射频前端电路,完成对基带扫频信号的放大输出,能有效抑制了集成运放谐波的产生,实现射频接收前端电路的高增益,提高对后端电路设计部分的驱动能力。l 差分电路的接入方法和集成运放的非线性参数通用集成运放电路由:偏置电路、输入级、中间级和输出级等组成。其输入级部分由差分电路构成。差分电路有双端输入和单端输入两种信号输入方法;偏置电路可以采用单电源和双电源两种供电方式。在移动通信或便携设备中,一般采用单电源供电方式,单电源供电的集成运放要求输入信号采用单极性形式,即输入信号始终是正值或是负值,差分输入级可以用来保证输入中间级电路的信号极性,同时差分输入级放大电路可以有效抑制共模信号,增强集成运放的共模抑制比。但是,当共模输入信号较大时,差分对管就会进入非线性工作状态,放大器将失去共模抑制能力,严重影响到集成运放的共模抑制比。集成运放的非线性特性参数除了最大共模输入

第二章电路知识点

前者是电阻的决定式,说明电阻和哪些因素有关,后者是定义式,提供了测量电阻的手段,并不能说明R 与U 成正比与I 成反比。 测量电路 测量电路有两种方法:电流表内接法和电流表外接法. 甲图中:1X V X X X X V V R R R U R R R I R R R = ==++外<,误差ΔR=R 外-R X =2 X X V R R R - + 乙图中: X A X U R R R R I = =+内>, 误差ΔR=R 内-R X =R A 确定内接法还是外接法,有三种方法: a .直接比较法:当R x >>R A 时用内接法,当R x <

伏安特性曲线不是直线,这样的元件叫非线性元件。 2、串联电路和并联电路:串联,,并联:①几个相同的电阻并联,总电阻为一个电阻的几分之一; ②若不同的电阻并联,总电阻小于其中最小的电阻; ③若某一支路的电阻增大,则总电阻也随之增大; ④若并联的支路增多时,总电阻将减小;(5)当一个大电阻与一个小电阻并联时,总电阻接近小电阻。 分压式与限流式接法: 名称/电路图 (限流电路) (分压电路) 电流调节范围 R U I R R U R ≤≤+0 R U I R ≤ ≤0 电压调节范围 U U U R R R R ≤≤+0 U U R ≤≤0 效果比较 0R R R U U R +=U R R R U R 0 += R R R R R U U R R R U b a b a b R ++= = +并并 当R>>R 0调节效果相当差,一般适用 于R 与R 0相差不多时 缺点 调节范围小,在R>>R 0时,调节效果差 电路结构较复杂,在用电器正常工作时,电路消耗的功率较大,在R<>R 0时,调节效果相当好 1.在下面三种情况下必须选择分压接法: a .要使某部分电路的电压或电流从零开始连续调节,只有滑动变阻器分压接法的电路才能满足(如测定导体的伏安特性、校对改装后的电表等电路) b 如果实验所提供的电压表、电流表量程或电阻元件允许最大电流较小,采用限流接法时,无论怎样调节,电路中实际电流电压都会超过电表量程或电阻元件允许的最大电流电压为了保证电表和电阻元件免受损坏,必须采用滑动变阻器分压接法连接电路. c 伏安法测电阻实验中,若所用的变阻器阻值小于待测电阻阻值,若采用限流接法时,即使变阻器触头从一端滑至另一端,待测电阻上的电流(电压)变化小,这不利于多次测量求平均值或用图像法处理数据,为了变阻器远小于待测电阻阻值的情况下能大范围地调节待测电阻上的电流(电压)应选择滑动变阻器的分压接法。 几点说明: ⑴对实验器材和装置的选择,应遵循的几条主要原则: ①安全性原则 ②准确性原则 ③方便性原则 ④经济性原则

电力系统设计应用非线性设备的谐波评估

电力系统应用非线性设备的谐波评估 更新时间: 2006-12-28 华北电力科学研究院许遐 摘自<<电力系统装备>>杂志 1概述 供电公司有责任向用户提供电压质量合格的电能。而电网和用户使用设备中的非线性装置产生的谐波都可以引起供电电压发生畸变;直接与电力系统连接的非线性设备产生的谐波可以引起供电电压畸变;供电系统参数在某些条件下可能形成系统谐振,也可以引起供电电压发生畸变。为使整个电网电压畸变保持在合适的限值X围内,供电公司和用户必须相互协作,各自承担相应的责任和义务,国家标准GB/T 14549-1993《电能质量公用电网谐波》提供了供电公司和用户双方必须共同遵守的法规。 谐波畸变是电力系统中描述电能质量的众多参数中重要的一种,它直接影响到供电公司提供的电能质量。执行GB/T 14549-1993《电能质量公用电网谐波》规定的谐波畸变限值是供电公司能够提供并使所有用户都能得到质量合格的电能的惟一措施。通过对每个用户控制其注入谐波电流限值和控制整个电力系统的谐振条件,供电公司才能将全网电压畸变率保持在所有用户都可以接受的水平。 1.1谐波电压的监控 GB/T 14549-1993《电能质量公用电网谐波》中规定了各个不同电压等级的电压畸变率限值。其作用在于:一方面用作考核供电公司提供用户电能质量的一种质量指标;另一方面可用作电网公司和电力用户评估新建输供电工程的设计规划指标。供电系统谐波电压畸变率是电力系统阻抗和非线性负载注入系统谐波电

流的函数,工程实际中很容易被测量,在工程实施中配套设计谐波补偿装置时也方便评估。如果电压畸变率超过国家标准规定的限值,供电公司和用户就可能要一起研究系统中设备运行的问题。供电公司需要仔细研究电力系统具体结构参数及所要采取的补偿措施。而用户在装设配电设备和谐波滤波及无功补偿装置时,也必须考虑投用该装置引起的供电系统电压畸变率。谐波滤波及无功补偿器与配电设备必须在规定的供电系统电压畸变率限值下安全运行。 1.2谐波电流的监控 供电系统谐波电压是注入系统的谐波电流和系统阻抗的乘积。任何供电系统,在谐波电压畸变率超过规定的限值之前,只能容许承受注入有限的谐波电流。谐波电流畸变限值主要是用在供电系统向多个用户供电的公共连接点处,公平地分配有限的注入供电系统谐波电流允许值的一种措施。GB/T 14549-1993中规定的注入谐波电流允许值考虑了用户之间用电协议容量的相对大小以及用户与所连供电系统的最小方式下三相短路容量。 在已有的系统中,电流畸变率受系统阻抗影响不显著,主要由负载设备的特性所确定,在公共连接点处用有效的商用监测装置可方便地检测到。在用户设备中存在多个产生谐波的负载时,用户注入的谐波电流之和通常要考虑各个谐波负载之间存在一定程度的抵消作用。因此,在公共连接点处检测到的谐波电流远小于用户各单个谐波负载的谐波电流代数和。 在设计新的项目或扩建已有的工程时,采用GB/T 14549-1993规定的注入谐波电流允许值指标,对于化解供电公司和用户之间特殊的矛盾是非常有用的。通过了解用户设备中产生谐波的负载类型,可以预估谐波电流畸变的水平,并在设计阶段就能决定是否需要采用谐波控制措施。对于新报装用户内部产生的谐波问

第六章题目及解答

6-1 为什么调幅,检波和混频都必须利用电子器件的非线性特性才能实现它们之间各有何异同之处 分析 非线性器件可以产生新的频率分量,而调幅,检波和混频都为了产生新的频率分量。调幅、检波和混频不同点是输入的信号不同,输出的滤波器不同。 解 由于调幅、检波和混频均属于频率变换,即输出信号中产生了新的频率分量,而线性器件不可能产生新的频率分量,只有利用非线性器件才能完成频率变换的功能。调幅、检波和混频三者相同之处是都属于线性频率变换,即实现频谱搬移,它们实现的原理框图都可用下图表示。 非线性器件都可采用乘法器。调幅、检波和混频不同点是输入的信号不同,输出的滤波器不同。调幅输入的是调制信号()v t Ω和载波()o v t ,即1v =()v t Ω,2v =()o v t ,滤波器是中心频率为载波频率ω0的带通滤波器。检波输入的是已调制的中频信号 ()i v t 和本地振荡信号()o v t ,即1v = ()i v t ,2v =()o v t ,滤波器是RC 低通滤波器。混频 输入的是已调制信号vs(t)和本地振荡信号()o v t ,即1v =()s v t ,2v =()o v t ,滤波器是中心频率为中频频率ωi 的带通滤波器。

6-2 为什么调幅系数m a 不能大于1 分析 调幅系数大于1,会产生过量调制。 解 若调幅系数ma>1,调幅波产生过量调制。如下图所示,该信号传送到接收端经包络检波后使解调出的调制信号产生严重的失真。 6-3 试画下列调幅信号的频谱图,确定信号带宽,并计算在单位电阻上产生的信号功率。 (1) )V )(t (102cos )t 32002cos 1.0t 4002cos 2.01(20)t (6?π?π+?π+=v (2) )V (t 102cos t 6280cos 4)t (6?π=v 分析 根据信号带宽公式和信号功率即可求得。 解(1)6 ()20(10.2cos 24000.1cos 23200)cos 210()()t t t t V υπππ=+?+??的信号频谱图如下图所示。 t

运算放大器的非线性应用

运算放大器的非线性应用 实验目的 1.掌握检查运算放大器工作在非线性区的分析方法。 2.学会运用运算放大器实现波形变换及波形产生。 实验仪器 1.双踪示波器X1 2.函数发生器X1 3.数字万用表X1 4.直流稳压电源X1 5.模拟实验箱X1 实验原理 1.在集成运放应用的电路中,运放的工作范围有两种:工作在线性区(指输入电压U0与输出电压Ud成正比时的输入电压范围)或工作在非线性区。 2.集成运放工作在非线性区的特点: Uo=UoH(UP>UN) Uo=UoL(UP

(2)过零比较器 实验电路图: 实验步骤: 1.如图连接电路,在输入端接入(峰峰值)Ui=2V,f=1kHz的正弦信号。 2.用示波器分别观察输入Ui和输出Uo波形,绘制传输特性。 实验结果: (3)方波信号发生器 实验电路图: 操作步骤: 1.如上图所示连接电路。 2.用示波器观察输出Uo的波形,绘制波形。 3.用示波器测量输出Uo的频率,f= 4.用示波器观察输出Uo的幅值,Uo= 实验结果:

模拟电子技术实验-集成运算放大器的非线性应用电路

实验: 集成运算放大器的非线性应用电路 一、实验目的 1.掌握单限比较器、滞回比较器的设计、测量和调试方法。 2.掌握电压比较器应用电路电压传输特性的测试方法。 3.学习集成电压比较器在电路设计中的应用。 二、实验内容 CC V + 8765 1234 OE IN - IN +CC V - LM311 OC BAL/ STRB BAL 图1 741 A μ和LM311的引脚图 1. 电压比较器(SPOC实验、Multisim仿真实验) (1)学习SPOC实验内容,利用Multisim仿真软件,按图2接好电路,电阻R1=R2=10kΩ,电阻 R3为5.1kΩ。由函数信号发生器调出1000Hz,峰峰值为5V,偏移量为0V的正弦交流电压加至 i u端。 按表中给定数值改变直流信号源输入电压U R。利用示波器通道1测量输入 i u电压波形,通道2测量 输出 o u端的矩形波波形如图3所示。其中稳压管VS选取:“DIODE”→“ZENER”→“1N5233B” i u o u 图2 电压比较器图3 输出电压波形 (2)按表1中给定值调节U R的大小,用示波器观察输出矩形波的变化,测量测量 H T和T的数值,并记入表1中。 表1 电压比较器的测量

0 1000 492.518 0.5 1000 945.454 1 1000 436.052 截图仿真电路图: 当U R =1V 时,截取输入i u 和输出o u 的电压波形: 2. 反相滞回比较器电路(SPOC 实验、Multisim 仿真实验) 1) 学习SPOC 实验内容,利用仿真软件,按图4所示的电路选择电路元件,接好电路。 其中稳压管VS 选取:“DIODE ”→“ZENER ” →“1N5233B ”

第17章习题 非线性电路教学文稿

第17章习题非线性 电路

第十七章非线性电路简介 17.1 学习要点 含有非线性元件的电路称为非线性电路。本章简要介绍非线性电阻元件及含有非线性电阻电路的分析方法。要求理解非线性电阻元件的特性,掌握非线性电路的分析方法—小信号分析法。 17.2 内容提要 17.2.1 非线性电阻 1.定义 含有非线性元件的电路称为非线性电路,实际元件都是非线性的,而当其非线性程度比较薄弱时,即可作为线性元件来处理。线性电阻元件的伏安关系满足欧姆定律Ri u=,在i u-平面上是一条通过原点的直线。非线性电阻元件的伏安特性不满足欧姆定律,在i u-平面上不是直线。非线性电阻元件的图形符号如图17.1(a)所示。 (1)若电阻元件两端的电压是其电流的单值函数,这种电阻称为电流控制型的非线性电阻,其伏安关系可表示为 )(i f u=(17-1)它的典型伏安特性如图17.1(b)所示。 (2)如果通过电阻的电流是其两端电压的单值函数,这种电阻称为电压控制型的非线性电阻,其伏安关系可表示为 ) (u g i=(17-2)它的典型伏安特性如图17.1(c)所示。 2.动态电阻 (c) (a)(b) 图17.1

非线性电阻元件在某一工作状况下(如图17.2中P 点)的动态电阻为该点的电压对电流的导数,即 di du R d = 图17.2中P 点的动态电阻正比于tan β(区别于其静态电阻R ,R 正比于tan α)。 3.静态工作点 如图17.3(a )所示电路由线性电阻R 0和直流电压源U 0及一个非线性电阻R 组成(其虚线框也可由复杂网络等效而得)。设非线性电阻的伏安特性如图17.3(b )所示,并可表示为式(17.2)。 根据KVL 和KCL ,对此电路列方程有 u i R U +=00 或 i R U u 00-= (17-3) 是虚线方框一侧的伏安特性,如图17.3(b )中直线AB 所示。 直线AB 与伏安特性)(u g i =的交点(U Q ,I Q ),同时满足式(17-3)和式(17-2), 所以有: Q Q U I R U +=00 )(Q Q U g I = ) g (u ) (a ) 0图17.3 图17.2

第二章 电路的分析方法(答案)汇总

第二章电路的分析方法 本章以电阻电路为例,依据电路的基本定律,主要讨论了支路电流法、弥尔曼定理等电路的分析方法以及线性电路的两个基本定理:叠加定理和戴维宁定理。 1.线性电路的基本分析方法 包括支路电流法和节点电压法等。 (1)支路电流法:以支路电流为未知量,根据基尔霍夫电流定律(KCL)和电压定律(KVL)列出所需的方程组,从中求解各支路电流,进而求解各元件的电压及功率。适用于支路较少的电路计算。 (2)节点电压法:在电路中任选一个结点作参考节点,其它节点与参考节点之间的电压称为节点电压。以节点电压作为未知量,列写节点电压的方程,求解节点电压,然后用欧姆定理求出支路电流。本章只讨论电路中仅有两个节点的情况,此时的节点电压法称为弥尔曼定理。 2 .线性电路的基本定理 包括叠加定理、戴维宁定理与诺顿定理,是分析线性电路的重要定理,也适用于交流电路。 (1)叠加定理:在由多个电源共同作用的线性电路中,任一支路电压(或电流)等于各个电源分别单独作用时在该支路上产生的电压(或电流)的叠加(代数和)。 ①“除源”方法 (a)电压源不作用:电压源短路即可。 (b)电流源不作用:电流源开路即可。 ②叠加定理只适用于电压、电流的叠加,对功率不满足。 (2)等效电源定理 包括戴维宁定理和诺顿定理。它们将一个复杂的线性有源二端网络等效为一个电压源形式或电流源形式的简单电路。在分析复杂电路某一支路时有重要意义。 ①戴维宁定理:任何一个线性含源的二端网络,对外电路来说,可以用一个理想电压源和一个电阻的串联组合来等效代替,其中理想电压源的电压等于含源二端网络的开路电压,电阻等于该二端网络中全部独立电源置零以后的等效电阻。 ②诺顿定理:任何一个线性含源的二端网络,对外电路来说,可以用一个理想电流源和一个电阻的并联组合来等效代替。此理想电流源的电流等于含源二端网络的短路电流,电阻等于该二端网络中全部独立电源置零以后的等效电阻。 3 .含受控源电路的分析 对含有受控源的电路,根据受控源的特点,选择相应的电路的分析方法进行分析。 4.非线性电阻电路分析

现代电子线路基础(新版教材)_第六章习题答案

第六章习题答案 6.1 在题图6.1所示调谐放大器中,工作频率f o =10.7MHz,L 1-3=4μH,Q o =100, N 1-3=20匝, N 2-3=5匝, N 4-5=5匝,晶体管3DG39在f o =10.7MHz 时测得g ie =2860μS,C ie =18pF, g oe =200μS, C oe =7pF,|y fe |= 45mS,y re =0,试求放大器的电压增益A vo 和通频带BW 。 解: 25.020 5 3 ~13~21== =N N P , 25.02053~15~42== =N N P 总电容pF 4.55)L *)f 2/((1C 20==∑π LC 振荡回路电容pF 8.53C p C p C C ie 22oe 21=--=∑ LC 振荡回路固有谐振频率'0f ==10.85(MHz) 固有损耗电导:''6 00036.710()0011g S Q L 2Q f L ωπ-= = =? 2226 2661200.2520010 0.2528601036.7100.228()oe ie G P g P g g mS ---∑=++=??+??+?= 116.32L 0Q G L ω∑== )KHz (6563 .167 .10Q f B L 0W === , 1210 228.0104525.025.0G |y |P P A 6 3fe 210 V -=????-=-=--∑ 注:由上述计算可以看出,'0f 和0f 相差不大,即部分接入后对谐振频率影响较小,但概念要清楚。另外,这里给出了fe y (即认为是m g )不要通过EQ I 来计算m g 。 6.2 题图6.2是某中放单级电路图。已知工作频率f o =30MHz,回路电感L =1.5μH, Q o =100,N 1/N 2=4,C 1~C 4均为耦合电容和旁路电容。晶体管在工作条件下的y 参数为 ie (2.8j3.5)mS y =+; re 0y ≈ fe (36j27)mS y =- oe (0.2j2)mS y =+ 试解答下列问题: (1) 画出放大器y 参数等效电路; (2) 求回路谐振电导g Σ; (3) 求回路总电容C Σ; (4) 求放大器电压增益A vo 和通频带BW ; (5) 当电路工作温度或电源电压变化时, A vo 和BW 是否变化? i V o V C 2

电工电子学 林小玲主编 第二章答案

第2章习题答案 2.1.1 选择题 (1)在图2-73所示电路中,发出功率的元件是__A___。 (A)仅是5V的电源(B)仅是2V的电源 (C)仅是电流源(D)电压源和电流源都发出功率 (E)条件不足 图2-73题2.1.1(1)图图2-74题2.1.1(2)图 (2)在图2-74所示电路中,当增大时,恒流源两端的电压U__B___。 (A)不变(B)升高(C)降低 (3)在图2-75所示电路中,当开关S闭合后,P点的电位__B___。 (A)不变(B)升高(C)为零 (4)在图2-76所示电路中,对负载电阻R而言,点画线框中的电路可用一个等效电源代替,该等效电源是__C___。 (A)理想电压源(B)理想电流源(C)不能确定 图2-75题2.1.1(3)图图2-76题2.1.1(4)图 (5) 实验测的某有源二端线性网络的开路电压为10V,当外接3Ω的电阻时,其端电压为6V,则该网络的戴维南等效电压的参数为(C)。 (a)U S=6V,R0=3Ω (b)U S=8V,R0=3Ω (c)U S=10V,R0=2Ω (6) 实验测得某有源二端线性网络的开路电压为6V,短路电流为3A。当外接电阻为4Ω时,流过该电阻的电流I为( A )。 (a)1A(b)2A(c)3A

(7) 在图2-77所示电路中,已知U S1=4V,U S2=4V,当U S2单独作用时,电阻R中的电流为1MA,那么当U S1单独作用时,电压U AB是(A) (A)1V (B)3V (C)-3V 图2-77题2.1.1(7)图 (8)一个具有几个结点,b条支路的电路,其独立的KVL方程为(B) a)(n-1)个 b)(b-n+1)个 (9)一个具有几个结点,b条支路的电路,要确定全部支路电流,最少要测量(B) a)(n-1)次 b)(b-n+1)次 (10)一个具有n个结点,b条支路的电路,要确定全部支路电压,最少要测量(A) a)(n-1)次 b)(b-n+1)次 (11)电阻并联时,电阻值越大的电阻:(A) a)消耗功率越小; b)消耗功率越大。 (12)两个电阻并联时,电阻值,越小的电阻(B) a)该支路分得的电流愈小; b)该支路分得的电流愈大。 (13)电路如图2-78所示,ab端的等效电阻R ab=(B) a)2.4 b)2 (14)电路如图2-79所示,已知U AB=6V,已知R1与R2消耗功率之比为1:2,则电阻R1,R2分别为(A) a)2 ,4 b)4 ,8 图2-78题2.1.1(13)图图2-79题2.1.1(14)图

邱关源《电路》笔记及课后习题(非线性电路)【圣才出品】

第17章非线性电路 17.1 复习笔记 一、非线性电阻 若电阻元件的伏安关系为非线性的,即称为非线性电阻元件。图形符号及伏安函数关系如图17-1-1和图17-1-2所示。 图17-1-1 非线性电阻符号 图17-1-2 伏安特性(流控电阻) 1.非线性电阻元件分类 (1)流控型电阻,u=g(i); (2)压控型电阻,i=f(u); (3)既是流控又是压控型的电阻(单调型),u=g(i),i=f(u);

(4)既不是流控型又不是压控型的电阻。 2.静态电阻与动态电阻(如图17-1-3所示) 静态电阻 R=u/i=tanα 动态电阻 动态电导 图17-1-3 3.非线性电阻的串联与并联 若串联的非线性电阻均为流控型,如u1=g1(i),u2=g2(i),则等效非线性电阻的伏

安特性为 u=u1+u2=g1(i)+g2(i)(流控型) 若并联的非线性电阻均为压控型的,如i1=f1(u),i2=f2(u),则等效非线性电阻的伏安特性为 i=i1+i2=f1(u)+f2(u)(压控型) 二、非线性电容 若电容元件的库伏关系为非线性的,则称为非线性电容元件。电路符号如图17-1-4所示。 图17-1-4 1.非线性电容元件分类 (1)压控型电容元件,q=f(u); (2)荷控型电容元件,u=g(q); (3)单调型电容元件。 2.参数 静态电容

动态电容 三、非线性电感 若电感元件的韦安关系为非线性的,即称为非线性电感元件,电路符号如图17-1-5所示。 图17-1-5 1.非线性电感元件分类 (1)流控型电感元件,ψ=f(i); (2)磁控型电感元件,i=g(ψ); (3)单调型电感元件。 2.参数 静态电感

第17 章非线性电阻电路

第17章 非线性电阻电路 §17-1 非线性电阻 若一个二端元件的伏安关系由u -i 平面上一条非线性曲线表示时称为非线性电阻。 一、 电压控制型: ()i f u = 隧道二极管 12i u i i i u i <<是的单值函数时是的多值函数 二、电流控制型: ()u g i = 12u i u u u i u <<充气二极管 为的单值函数当时为的多值函数 三、单调型: ()i f u = ()u g i = 如普通二极管。 u i i i i i i 0 21

§17-2 仅含一个非线性电阻的电路分析 一、图解法 一个有源线性二端网络两端接一非线性电阻组成的电路如下图所示。这样的电路可以用“曲线相交法”来求出电路中电流i 和电压u 。 交点Q 称为电路的静态工作点,在电子电路中直线常称为负载线。 二、解析法 2::0.13:i u u u =+例1已知非线性电阻的伏安关系为求和i 解: 22121220.13 2.5201 20.130.769V 20V 0.846A 32A u u i u u i u u u u i i ?++=? +?=??=+?==?== 对于非线性电阻电路,若对解无约束条件,则可能为多解问题,一定要求出所有解;若有约 束条件,仅需求满足约束条件的解。 ) 22Ω

2 2::1:u i i u =?+例已知非线性电阻的伏安关系为求和i 解: 23201i u u i i ?++=???=?+? 223210 20 i i i i i ?++?+=+?= 1212 1A 2A 1V 7V i i u u ==????? ==?? 若要求线性部分的电压或电流,则可将非线性电阻用所求得的电压(电流)作为电压源 (电流源)的电压(电流)值,利用线性电路的方法求解线性部分的电压(电流)。 例如,若要求2A 电流源两端的电压i U , 则有 1211121(2)75i i U V U V =×+==×?+= §17-3 小信号分析法 一、静态电阻和动态电阻 0 1 g ||d d Q Q U R I R di du d R di 静态电阻动态电阻 二、小信号分析的前提 1V i 0 i )u ) R

相关主题
文本预览
相关文档 最新文档