当前位置:文档之家› 数学排列组合常见题型及解法

数学排列组合常见题型及解法

数学排列组合常见题型及解法
数学排列组合常见题型及解法

排列组合常见题型及解法

排列组合问题,通常都是出现在选择题或填空题中,问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口,实践证明,解决问题的有效方法是:题型与解法归类、识别模式、熟练运用。 一.处理排列组合应用题的一般步骤为:

①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

二.处理排列组合应用题的规律

(1) 两种思路:直接法,间接法。(2)两种途径:元素分析法,位置分析法。

1 重复排列“住店法”

重复排列问题要区分两类元素:一类可以重复,另一类不能重复。把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题。

例1 8名同学争夺3项冠军,获得冠军的可能性有( )

[解析] 冠军不能重复,但同一个学生可获得多项冠军。把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可住进任意一家“店”,每个客有8种可能,因此共有3

8种不同的结果。

[评述]类似问题较多。如:将8封信放入3个邮筒中,有多少种不同的结果?这时8封信是“客”,3个邮筒是“店”,故共有8

3种结果。要注意这两个问题的区别。

2. 特殊元素(位置)用优先法:把有限制条件的元素(位置)称为特殊元素(位置),可优先将它(们)安排好,后再安排其它元素。对于这类问题一般采取特殊元素(位置)优先安排的方法。 例1. 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?

解法1:(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有种站法;第二步再让

其余的5人站在其他5个位置上,有

种站法,故站法有:

=480(种)

解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两人站在左右两端,有种;第二步再让剩余的4个人(含

甲)站在中间4个位置,有

种,故站法共有:

(种)

例2(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_________种(用数字作答)。

[解析]3名主力的位置确定在一、三、五位中选择,将他们优先安排,有3

3

A 种可能;然后从其余7名队员选2名安排在第二、四位置,有

27A 种排法。因此结果为2

733

A A =252种。 例3 5个“1”与2个“2”可以组成多少个不同的数列?

[解析]按一定次序排列的一列数叫做数列。由于7个位置不同,故只要优先选两个位置安排好“2”,剩下的位置填“1”(也可先填“1”再填“2”)。因此,一共可以组成2

22

7C C =21个不同的数列。

3. 相邻问题用捆绑法:对于要求某几个元素必须排在一起的问题,可用“捆绑法”“捆绑”为一个“大元素:与其他元素进行排列,然后相邻元素内部再进行排列。

例1. 5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?

解:把3个女生视为一个元素,与5个男生进行排列,共有种,然后女生内部再进行排列,有

种,所以排法共有:

(种)。

例2(1996年上海高考题)有8本不同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有____________种(结果用数字表示)。

[解析]将数学书与外文书分别捆在一起与其它3本书一起排,有55

A 种排法,再将3本数学书之间交换有3

3A 种,2本外文书之间交换有22A 种,故共有

2

23355A A A =1440种排法。

[评述]这里需要说明的是,有一类问题是两个已知元素之间有固定间隔时,也用“捆绑法”解决。

如:7个人排成一排,其中甲乙两人之间有且只有一人,问有多少种不同的排法?可将甲乙两人和中间所插一人“捆绑”在一起做“大元素”,但甲乙两人位置可对调,且中间一人可从其余5人中任取,有12005

52

2

1

5=A A C 种排法。

4. 相离问题用插空法:元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。

例5(2003年北京春季高考题)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目。如果将这两个节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 ( )

A 6

B 12

C 15

D 30

[解析]原来的5个节目中间和两端可看作分出6个空位。将两个新节目不相邻插入,相当于从6个位置中选2个让它们按顺序排列,故有

302

6=A 种排法,选(D )

。 [评述]本题中的原有5个节目不需要再排列,这一点要注意。请练习以下这道题:马路上有编号为1、2、3、·10的十盏路灯,为节约用电又能照明,现准备把其中的三盏灯,但不能关掉相邻的两盏或三盏,两端的灯也不许关掉,求不同的关灯方式有多少种?可得结果为3

6C =20种。你能很快求解吗?

例3. 7人排成一排,甲、乙、丙3人互不相邻有多少种排法?

解:先将其余4人排成一排,有

种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有种,所以排法共有:

(种)

5. 定序(顺序一定)问题用除法:对于在排列中,当某些元素次序一定时,可用此法。

例1、信号兵把红旗与白旗从上到下挂在旗杆上表示信号,现有3面红旗、2面白旗,把5面旗都挂上去,可表示不同信号的种数是( )(用数字作答)。

解:5面旗全排列有

5

5A

种挂,由于3

面红旗与2面白旗的分别全排列均只能作一次的挂法,故有

55

32

32

10A A A = 说明:在排列的问题中限制某几个元素必须保持一定的顺序问题,这类问题用缩小倍数的方法求解比较方便快捷

例2. 由数字0、1、2、3、4、5组成没有重复数字的六位数,其中个位数字小于十位数字的六位数有多少个?

解:不考虑限制条件,组成的六位数有种,其中个位与十位上的数字一定,所以所求的六位数有:(个)

6. 多排问题用直排法:对于把几个元素分成若干排的排列问题,若没有其他特殊要求,可采取统一成一排的方法求解。 例5. 9个人坐成三排,第一排2人,第二排3人,第三排4人,则不同的坐法共有多少种?

解:9个人可以在三排中随意就坐,无其他限制条件,三排可以看作一排来处理,不同的坐标共有

种。

7. 至少问题正难则反“排除法”:有些问题从正面考虑较为复杂而不易得出答案,这时,可以采用转化思想从问题的反面入手考虑,然后去掉不符合条件的方法种数往往会取得意想不到的效果。在应用此法时要注意做到不重不漏。 例1. 四面体的顶点和各棱中点共有10个点,取其中4个不共面的点,则不同的取法共有( )

A. 150种

B. 147种

C. 144种

D. 141种

解:从10个点中任取4个点有

种取法,其中4点共面的情况有三类。第一类,取出的4个点位于四面体的同一个面内,有

种;第二类,取任一条棱上的3个点及该棱对棱的中点,这4点共面,有6种;第三类,由中位线构成的平行四边形(其两组对边分别平行于四面体相对的两条棱),它的4个点共面,有3种。以上三类情况不合要求应减掉,所以不同的取法共有:

(种)。

8.先选后排“综合法”:“先选后排”是解排列组合问题的一个重要原则。一般地,在排列组合综合问题中,我们总是先从几类元素中取出符

合题意的几个元素,再安排到一定位置上。

例. 对某产品的6件不同正品和4件不同次品一一进行测试,至区分出所有次品为止。若所有次品恰好在第5次时被全部发现,则这样的测试方法有多少种可能?

[解析]第5次必测出一个次品,其余3个次品在前4次中被测出。从4个中确定最后一个次品有1

4C 种可能;前4次中应有1个正品3个次品,有3

31

6C C 种;前4次测试中的顺序有

44

A 种。分步计数原理得576)(4

4331614=?A C C C 种。 9.递推法

例八 一楼梯共10级,如果规定每次只能跨上一级或两级,要走上这10级楼梯,共有多少种不同的走法?

分析:设上n 级楼梯的走法为a n 种,易知a 1=1,a 2=2,当n ≥2时,上n 级楼梯的走法可分两类:第一类:是最后一步跨一级,有a n-1种走法,第二类是最后一步跨两级,有

a n-2

种走法,由加法原理知:a n =a n-1+ a n-2,据此,

a 3=a 1+a 2=3,a 4=a #+a 2=5,a 5=a 4+a 3=8,a 6=13,a 7=21,a 8=34,a 9=55,a 10=89.故走上10级楼梯共有89种不同的方法。

10.用转换法解排列组合问题

例.某人连续射击8次有四次命中,其中有三次连续命中,按“中”与“不中”报告结果,不同的结果有多少种. 解 把问题转化为四个相同的黑球与四个相同白球,其中只有三个黑球相邻的排列问题.25A =20种

例2:个人参加秋游带10瓶饮料,每人至少带1瓶,一共有多少钟不同的带法.

解: 把问题转化为5个相同的白球不相邻地插入排好的10个相同的黑球之间的9个空隙种的排列问题.5

9C =126种 例3. 从1,2,3,…,1000个自然数中任取10个不连续的自然数,有多少种不同的去法. 解 把稳体转化为10个相同的黑球与990个相同白球,其其中黑球不相邻的排列问题。10

991C

例4 某城街道呈棋盘形,南北向大街5条,东西向大街4条,一人欲从西南角走到东北角,路程最短的走法有多少. 解: 无论怎样走必须经过三横四纵,因此,把问题转化为3个相同的白球与四个相同的黑球的排列问题.3

7C =35(种) 例5 一个楼梯共18个台阶12步登完,可一步登一个台阶也可一步登两个台阶,一共有多少种不同的走法.

解 根据题意要想12步登完只能6个一步登一个台阶,6个一步登两个台阶,因此,把问题转化为6个相同的黑球与6个相同的白球的排列问题.6

12C =924(种).

例6求(a+b+c )10的展开式的项数.

解 展开使的项为a αb βc γ,且α+β+γ=10,把问题转化为2个相同的黑球与10个相同的白球的排列问题.2

12C =66

例7 亚、欧乒乓球对抗赛,各队均有5名队员,按事先排好的顺序参加擂台赛,双方先由1号队员比赛,负者淘汰,胜者再与负方2号队员比赛,直到一方全被淘汰为止,另一方获胜,形成一种比赛过程.那么所有可能出现的比赛过程有多少种?

解 设亚洲队队员为a 1,a 2,…,a 5,欧洲队队员为b 1,b 2,…,b 5,下标表示事先排列的出场顺序,若以依次被淘汰的队员为顺序.比赛过程转化为这10个字母互相穿插的一个排列,最后师胜队种步被淘汰的队员和可能未参加参赛的队员,所以比赛过程可表示为5个相同的白球和5个相同黑球排列问题,比赛过程的总数为6

10C =252(种)

11.错位排列问题:错位排列问题是一个古老的问题,最先由贝努利(Bernoulli )提出,其通常提法是:n 个有序元素,全部改变其位置的排列

数是多少?所以称之为“错位”问题。

例1.五个编号为1、2、3、4、5的小球放进5个编号为1、2、3、4、5的小盒里面,全错位排列(即1不放1,2不放2,3不放3,4不放4,5不放5,也就是说5个全部放错)一共有多少种放法?

【华图解析】直接求5个小球的全错位排列不容易,我们先从简单的开始。

小球数/小盒数 全错位排列 1 0

2 1(即2、1)

3 2(即3、1、2和2、3、1)

4 9

5 44

6 265

当小球数/小盒数为1~3时,比较简单,而当为4~6时,略显复杂,考生们只需要记下这几个数字即可(其实0,1,2,9,44,265是一个有规律的数字推理题,9=(1+2)*3;44=(2+9)*4;265=(44+9)*5;(44+265)*6=1854)由上述分析可得,5个小球的全错位排列为44种。

例2.五个瓶子都贴了标签,其中恰好贴错了三个,则错的可能情况共有多少种? 【华图解析】做此类题目时通常分为两步:第一步,从五个瓶子中选出三个,共有种选法;第二步,将三个瓶子全部贴错,根据上表

有2种贴法。则恰好贴错三个瓶子的情况有

种。

接下来,考生们再想这样一个问题:五个瓶子中,恰好贴错三个是不是就是恰好贴对两个呢?答案是肯定的,是。那么能不能这样考虑呢?

第一步,从五个瓶子中选出二个瓶子,共有

种选法;第二步,将两个瓶子全部贴对,只有1种方法,那么恰好贴对两个瓶子的方法有

种。

问题出来了,为什么从贴错的角度考虑是20种贴法,而从贴对的角度考虑是10种贴法呢?

答案是,后者的解题过程是错误的,这种考虑只涉及到两个瓶子而没有考虑其他三个瓶子的标签正确与否,给瓶子贴标签的过程是不完整的,只能保证至少有两个瓶子的标签是正确的,而不能保证恰有两个瓶子的标签是正确的。所以华图公务员考试辅导专家王永恒老师建议各位考生在处理错位排列问题时,无论问恰好贴错还是问恰好贴对,都要从贴错的角度去考虑,这样处理问题简单且不易出错。 例3. 同室四人各写一张贺卡,先集中起来,然后每人从中拿一张别人送出的卡片,则不同的分配方法有 种(9) 公式 1)))(1(21--+-=n n n

a a n a n=4时a 4=3(a 3+a 2)=9种 即三个人有两种错排,两个人有一种错排.

2)n a =n!(1-

!11+!21-!31+…+()n 1-!

1n

练习 有五位客人参加宴会,他们把帽子放在衣帽寄放室内,宴会结束后每人戴了一顶帽子回家,回家后,他们的妻子都发现他们戴了别人的帽子,问5位客人都不戴自己帽子的戴法有多少种?(44)

12. 分球问题“隔板法”:常用于解决整数分解型排列、组合的问题。

例1.求方程x+y+z=10的正整数解的个数。(即:10个相同的小球分给三人,每人至少1个,有多少种方法?)

分析:将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定由隔板分成的左、中、右三部分的球数分别为 x.y.z 之值(如图) ○○○ ○○○ ○○○○ 则隔板与解的个数之间建立了一一对立关系,故解的个数为2

936C = 个。实际运用隔板法解题时,在确定球数、如何插隔板等问题上形成了

一些技巧。

技巧一:添加球数用隔板法。

例1.求方程x+y+z=10 的非负整数解的个数。

分析:注意到x 、y 、z 可以为零,故上题解法中的限定“每空至多插一块隔板”就不成立了。怎么办呢?只要添加三个球,给 x 、 y 、z 各一个球。原问题就转化为求x+y+z=13 的正整数解的个数了,故解的个数为2

12C =66个。

【小结】本例通过添加球数,将问题转化为如例1中的典型的隔板法问题。 技巧二:减少球数用隔板法。

例.将20个相同的小球放入编号分别为1,2,3,4的四个盒子中,要求每个盒子中的球数不少于它的编号数,求放法总数。

分析1:先在编号1,2,3,4的四个盒子内分别放0,1,2,3个球,有1种方法;再把剩下的14个球,分成4组,每组至少1个,由例25知有

3

13

C =286 种方法。 分析2:第一步先在编号1,2,3,4的四个盒子内分别放1,2,3,4个球,有1种方法;第二步把剩下的10个相同的球放入编号为1,2,3,4的盒子里,由例26知有

3

13

C =286 种方法。 【小结】两种解法均通过减少球数将问题转化为例25、例26中的典型问题。 技巧三:先后插入用隔板法。

例:为构建和谐社会出一份力,一文艺团体下基层宣传演出,准备的节目表中原有4个歌舞节目,如果保持这些节目的相对顺序不变,拟再添2个小品节目,则不同的排列方法有多少种?

分析:记两个小品节目分别为A 、B 。先排A 节目。根据A 节目前后的歌舞节目数目考虑方法数,相当于把4个球分成两堆,由例26知有 1

5

C 种方法。这一步完成后就有5个节目了。再考虑需加入的B 节目前后的节目数,同上理知有1

6C 种方法。故由乘法原理知,共有1

1

5630C C =

种方法。

【小结】对本题所需插入的两个隔板采取先后依次插入的方法,使问题得到巧妙解决。

例. 有10个三好学生名额,分配到6个班,每班至少1个名额,共有多少种不同的分配方案?

解:6个班,可用5个隔板,将10个名额并排成一排,名额之间有9个空,将5个隔板插入9个空,每一种插法,对应一种分

配方案,故方案有:(种)

13.分球入盒问题

例32:将5个小球放到3个盒子中,在下列条件下,各有多少种投放方法? ① 小球不同,盒子不同,盒子不空

解:将小球分成3份,每份1,1,3或1,2,2。再放在3个不同的盒子中,即先分堆,后分配。有3122

3525332222

C C (+)A A A C C ? ②小球不同,盒子不同,盒子可空 解:5

3种 ③小球不同,盒子相同,盒子不空

解:只要将5个不同小球分成3份,分法为:1,1,3;1,2,2。共有3

1

2

2

525322

22

C C +A A C C =25种

④小球不同,盒子相同,盒子可空

本题即是将5个不同小球分成1份,2份,3份的问题。共有3

1

2

2

543525355522

22

C C ()(+)41A A C C C C C +++=种

⑤小球相同,盒子不同,盒子不空 解:(隔板法)。0 \ 00 \ 00 ,有2

4C 种方法

⑥小球相同,盒子不同,盒子可空

解一:把5个小球及插入的2个隔板都设为小球(7个球)。7个球中任选两个变为隔板(可以相邻)。那么2块隔板分成3份的小球数对应

于 相应的3个不同盒子。故有2

7C =21

解:分步插板法。

⑦小球相同,盒子相同,盒子不空

解:5个相同的小球分成3份即可,有3,1,1;2,2,1。 共 2种 ⑧小球相同,盒子相同,盒子可空

解:只要将将5个相同小球分成1份,2份,3份即可。分法如下:5,0,0; 4,1,0;3,2,0; 3,1,1; 2,2,1。

例33、有4个不同的小球,放入4个不同的盒子内,球全部放入盒子内 (1)共有几种放法?(答:4

4)

(2)恰有1个空盒,有几种放法?(答:23

44

144C A =)

(3)恰有1个盒子内有2个球,有几种放法?(答:同上

23

44144C A =)

(4)恰有2个盒子不放球,有几种放法?(答:3222

4444

84C A C C +=)

14.分组问题与分配问题

①分组问题:均匀分组,除法处理;非均匀分组,组合处理

例22。有9个不同的文具盒:(1)将其平均分成三组;(2)将其分成三组,每组个数2,3,4。上述问题各有多少种不同的分法? 分析:(1)此题属于分组问题:先取3个为第一组,有39C 种分法,再取3个不第二组,有36C 种分法,剩下3个为第三组,有3

3C 种

分法,由于三组之间没有顺序,故有333

9633

3

C C C A 种分法。(2)同(1),共有234974C C C 种分法,因三组个数各不相同,故不必再除以3

3A 。 练习:12个学生平均分成3组,参加制作航空模型活动,3个教师各参加一组进行指导,问有多少种分组方法? ②分配问题: 定额分配,组合处理; 随机分配,先组后排。

例23。有9本不同的书:(1)分给甲2本,乙3本,丙4本;(2)分给三个人,分别得2本,3本,4本。上述问题各有多少种不同的分法?

(1)此题是定额分配问题,先让甲选,有2

9C 种;再让乙选,有3

7C 种;剩下的给丙,有4

4C 种,共有2

3

4

974C C C 种不同的分法(2)此题是随机分配问题:先将9本书分成2本,3本,4本共有三堆,再将三堆分给三个人,共有2

3

4

3

9743...C C C A 种不同的分法。 【评述】本题涉及一类重要问题:问题中既有元素的限制,又有排列的问题,一般是先选元素(即组合)后排列 练1:3名教师分配到6个班里,各人教不同的班级,若每人教2个班,有多少种分配方法?2

2

2

642

90C C C =

2.将10本不同的专著分成3本,3本,3本和1本,分别交给4位学者阅读,问有多少种不同的分法?

3331

10741

4!C C C C ? 例25(06湖南卷)某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有 ( )

A.16种

B.36种

C.42种

D.60种 解析:有两种情况,一是在两个城市分别投资1个项目、2个项目,此时有1

2

3436C A ?=,

二是在在两个城市分别投资1,1,1个项目,此时有

3424A =,

15.合并单元格解决染色问题

例7 (全国卷(文、理))如图1,一个地区分为5个行政区域,现给地图着色,要求相邻区域不 得使用同一颜色,现有四种颜色可供选择,则不同的着色方法共有 种(以数字作答)。 分析:颜色相同的区域可能是2、3、4、5. 下面分情况讨论:

(ⅰ)当2、4颜色相同且3、5颜色不同时,将2、4合并成一个单元格,此时不同的着色方法相当于4个元素 ①③⑤的全排列数

A

44

2,4

3,5

2,4

(ⅱ)当2、4颜色不同且3、5颜色相同时,与情形(ⅰ)类似同理可得

A

44

种着色法.

(ⅲ)当2、4与3、5分别同色时,将2、4;3、5分别合并,这样仅有三个单元格 ①

从4种颜色中选3种来着色这三个单元格,计有A C 3

334?种方法.

由加法原理知:不同着色方法共有2

A C A 3

33

44

4+=48+24=72(种)

练习1(天津卷(文))将3种作物种植

在如图的5块试验田里,每快种植一种作物且相邻的试验田不能种植同一作物 , 不同的种植方法共 种(以数字作答) (72)

2.(江苏、辽宁、天津卷(理))某城市中心广场建造一个花圃,花圃6分为个部分(如图3),现要栽种4种颜色的花,每部分栽种一种且相邻部分不能栽种 同一样颜色的话,不同的栽种方法有 种(以数字作答).(120)

图3 图4

3.如图4,用不同的5种颜色分别为ABCDE 五部分着色,相邻部分不能用同一颜色,但同一种颜色可以反复使用也可以不用,则符合这种要求的不同着色种数.(540)

4.如图5:四个区域坐定4个单位的人,有四种不同颜色的服装,每个单位的观众必须穿同种颜色的服装,且相邻两区域的颜色不同,不相邻区域颜色相同,不相邻区域颜色相同与否不受限制,那么不同的着色方法是 种(84)

图5 图6

5.将一四棱锥(图6)的每个顶点染一种颜色,并使同一条棱的两端点异色,若只有五种颜色可供使用,则不同的染色方法共 种(420) 16、比赛计数问题

根据比赛规则,比赛计数问题主要分为四类,每类比赛都有对应的解题方法,如下所示:

注意:单循环赛,即任意两队打一场比赛,和顺序无关,所以是组合问题;双循环赛,即任意两个队打两场比赛,和顺序有关,所以是排列问题。

例1.100名男女运动员参加乒乓球单打淘汰赛,要产生男、女冠军各一名,则要安排单打赛多少场?() A .90 B .95 C .98 D .100

5

4

6

13

2

E

D C

B A

43

2

1

【华图解析】设有男运动员a 人,女运动员b 人。因为是淘汰赛,则要产生男冠军需要a -1场比赛,产生女冠军需要b -1场比赛,总的比赛场次需要a+b -2场。

例2.足球世界杯决赛圈有32支球队参加,先平均分成八组,以单循环方式进行小组赛;每组前两名的球队再进行淘汰赛。直到产生冠、亚、季军,总共需要安排()场比赛。 A .48 B .63 C .64 D .65

【华图解析】首先将32人平均分成八组,则每组有4支球队,每组球队要进行单循环赛,则每组有

,则八组总共需要

又因为在小组赛中每组决出前两名,八组一共决出16支队,也就是再对这16支队伍进行淘汰赛,直到产生冠、亚、季军,则有16场比赛。所以总比赛场次为48+16=64。

17.多元问题用分类法

对于多个元素问题,有时有多种情况需要进行分类讨论,然后根据分类计数原理将各种可能性相加即得。需要注意的是,分类时要不重复不遗漏。

例1 在一块并排10垄的田地中,选择2垄分别种植A 、B 两种作物,每种作物种植一垄。为有利于作物生长,要求A 、B 两种作物的间隔不小于6垄,则不同的选垄方法共有____________种

[解析]先考虑A 种在左边的情况,有三类:A 种植在最左边第一垄上时,B 有三种不同的种植方法;A 种植在左边第二垄上时,B 有两种不同的种植方法;A 种植在左边第三垄上时,B 只有一种种植方法。又B 在左边种植的情况与A 在左边时相同。故共有)123(2++?=12种不同的选垄方法。

例2 有11名翻译人员,其中5名英语翻译员,4名日语翻译员,另2人英语、日语都精通。从中找出8人,使他们组成两个翻译小组,其中4人翻译英文,另4人翻译日文,这两个小组能同时工作。问这样的分配名单共可开出多少张?

[解析]假设先安排英文翻译,后安排日文翻译。第一类,从5名只能翻译英文的人员中选4人任英文翻译,其余6人中选4人任日文翻译(若“多面手”被选中也翻译日文),则有4

64

5C C ;第二类,从5名只能翻译英文的人员中选3人任英文翻译,另从“多面手”中选1人任英文翻译,其余剩下5人中选4人任日文翻译,有4

51

23

5C C C ;第三类,从5名只能翻译英文的人员中选2人任英文翻译,另外安排2名“多面手”也任英文翻译,其余剩下4人全部任日文翻译,有4

42

22

5C C C 。三种情形相加即得结果185(张)。 [评述]本题当然也可以先安排日文翻译再安排英文翻译,请大家自己列式看看。

例3. 已知直线中的a ,b ,c 是取自集合{-3,-2,-1,0,1,2,3}中的3个不同的元素,并且该直线

的倾斜角为锐角,求符合这些条件的直线的条数。

解:设倾斜角为,由

为锐角,得

,即a ,b 异号。

(1)若c =0,a ,b 各有3种取法,排除2个重复(,

),故有:3×3-2=7(条)。

(2)若

,a 有3种取法,b 有3种取法,而同时c 还有4种取法,且其中任意两条直线均不相同,故这样的直线有:3×

3×4=36(条)。

从而符合要求的直线共有:7+36=43(条) 八. 排列、组合综合问题用先选后排的策略

处理排列、组合综合性问题一般是先选元素,后排列。

例4. 将4名教师分派到3所中学任教,每所中学至少1名教师,则不同的分派方案共有多少种?

解:可分两步进行:第一步先将4名教师分为三组(1,1,2),(2,1,1),(1,2,1),共有:(种),

第二步将这三组教师分派到3种中学任教有种方法。由分步计数原理得不同的分派方案共有:(种)。

因此共有36种方案。

排列组合基本题型方法

排列组合方法汇总 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有13C 然后排首位共有14C 最后排其它位置共有3 4A 由分步计数原理得 113434 288 C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480 A A A =种不同的排 法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素 中间包含首尾两个空位共有种4 6 A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 4 4 3

排列组合常见题型及解答

排列组合常见题型 一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个是底数,哪个是指数 【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)43(2)34(3)34 【例2】把6名实习生分配到7个车间实习共有多少种不同方法? 【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案, 第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案. 【例3】 8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、 3 8 A D、 3 8 C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种 不同的结果。所以选A 二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 【例1】A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排

法种数有 【解析】:把A,B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种 【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( ) A. 360 B. 188 C. 216 D. 96 【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,22223242C A A A =432,其中男生甲站两端的有1222223232A C A A A =144,符合条件的排法故共有288 三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排 法数是52563600A A = 【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法(数字作答) 【解析】: 1 11789A A A =504 【例3】 高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是 【解析】:不同排法的种数为5256A A =3600 【例4】 某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。那么安排这6项工程的不同排法种数是 【解析】:依题,只需将剩余两个工程插在由甲、乙、丙、丁四个工程形成的5个空中,可得有25A =20种不同排法。

排列组合问题的20种解法

排列组合问题的20种解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 复习巩固分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 44 3

由分步计数原理得113 434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆 里,问有多少不同的种法 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再 与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有 522 522480A A A =种不同的排法 练习题: 某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场 顺序有多少种 解:分两步进行第一步排2个相声和3个独唱共有5 5A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种4 6A 不同的方法,由分步计数原理,节目的不同顺序共有5 4 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行 排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数

排列组合题型总结

排列组合题型总结 排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。因而在求解排列组合应用题时,除做到:排列组合分清,加乘原理辩明,避免重复遗漏外,还应注意积累排列组合问题得以快速准确求解。 一.直接法、 1. 特殊元素法 例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位 (2)数字1不在个位,数字6不在千位。 分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理: 25A 24A =240 2.特殊位置法 (2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A , 共有14A 1 4A 24A =192所以总共有192+60=252 二.间接法当直接法求解类别比较大时,应采用间接法。如上例中(2)可用间接法2435462A A A +-=252 例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书? 分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因 而可使用间接计算:任取三张卡片可以组成不同的三位数333352A C ??个,其中0在百位的有 2242?C ?22A 个,这是不合题意的。故共可组成不同的三位数333352A C ??-2242?C ?22A =432 (个) 三.插空法 当需排元素中有不能相邻的元素时,宜用插空法。 例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方 法? 分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019A A ?=100中插 入方法。 四.捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。 例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种? 分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A 种排法,而男生之间又有44A 种排法,又乘法原理满足条件的排法有:44A ×4 4A =576 练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种(3324A C ) 2. 某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校

2020年高考理科数学易错题《排列组合》题型归纳与训练

2020年高考理科数学《排列组合》题型归纳与训练 【题型归纳】 题型一 计数原理的基本应用 例1 某校开设A 类选修课2门,B 类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有 A .3种 B .6种 C .9种 D .18种 【答案】 C . 【解析】 可分以下2种情况:①A 类选修课选1门,B 类选修课选2门,有 62312=?C C 种不同的选法;②A 类选修课选2门,B 类选修课选1门,有31322=?C C 种不同的选法.所以根据分类计数原理知不同的选法共有6+3=9种.故要求两类课程中各至少选一门,则不同的选法共有9种.故选:C 【易错点】注意先分类再分步 【思维点拨】两类课程中各至少选一门,包含两种情况:A 类选修课选1门,B 类选修课选2门;A 类选修课选2门,B 类选修课选1门,写出组合数,根据分类计数原理得到结果. 题型二 特殊元素以及特殊位置 例 1 将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法有( )种.(用数字作答) 【答案】 480 【解析】考虑到C B A ,,要求有顺序地排列,所以将这三个字母当作特殊元素对待。先排F E D ,,三个字母,有12036 =A 种排法;再考虑C B A ,,的情况:C 在最左端有2种排法,最右端也是2种排法,所以答案是4804120=?种. 【易错点】注意特殊元素的考虑 【思维点拨】对于特殊元素与特殊位置的考量,需要瞻前顾后,分析清楚情况,做到“不重复不遗漏”;如果情况过于复杂,可以考虑列举法,虽然形式上更细碎一些,但是情况分的越多越细微,每种情况越简单,准确度就越高. 题型三 捆绑型问题以及不相邻问题 例1 由1,2,3,4,5,6组成没有重复数字且1,3都不与5相邻的六位偶数的个数是( )个.

高考数学排列组合常见题型

选修2-3:排列组合常见题型 可重复的排列(求幂法) 重复排列问题要区分两类元素:一类可以重复,另一类不能重复。 在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数。 【例1】 (1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)4 3(2)34 (3)3 4 相邻问题(捆绑法) 相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 【例1】,,,,A B C D E 五人站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种 练习:(2012辽宁)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为 (A)3×3! (B) 3×(3!)3 (C)(3!)4 (D) 9! 【解析】:C 相离问题(插空法 ) 元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是 52563600A A = 【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法 【解析】: 111789A A A =504 【例3】.马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种? 【解析】:把此问题当作一个排队模型,在6盏亮灯的5个空隙中插入3盏不亮的灯3 5C = 10 种方法。

【智博教育原创专题】排列组合的常见题型及其解法大全(包含高中所有的题型)

★绝密 备战2014专题 主编:冷世平

排列组合的常见题型及其解法排列组合问题,通常都是出现在选择题或填空题中,问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口,实践证明,解决问题的有效方法是:题型与解法归类、识别模式、熟练运用。 ◆处理排列组合应用题的一般步骤为: ①明确要完成的是一件什么事(审题);②有序还是无序;③分步还是分类。 ◆处理排列组合应用题的规律 ⑴两种思路:直接法,间接法;⑵两种途径:元素分析法,位置分析法。 排列组合知识,广泛应用于实际,掌握好排列组合知识,能帮助我们在生产生活中,解决许多实际应用问题。同时排列组合问题历来就是一个老大难的问题。因此有必要对排列组合问题的解题规律和解题方法作一点归纳和总结,以期充分掌握排列组合知识。首先,谈谈排列组合综合问题的一般解题规律: ⑴使用“分类计数原理”还是“分步计数原理”要根据我们完成某件事时采取的方式而定,可以分类来完成这件事时用“分类计数原理”,需要分步来完成这件事时就用“分步计数原理”;那么,怎样确定是分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给的事件,而“分步”必须把各步骤均完成才能完成所给事件,所以准确理解两个原理强调完成一件事情的几类办法互不干扰,相互独立,彼此间交集为空集,并集为全集,不论哪类办法都能将事情单独完成,分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法。 ⑵排列与组合定义相近,它们的区别在于是否与顺序有关。 ⑶复杂的排列问题常常通过试验、画“树图”、“框图”等手段使问题直观化,从而寻求解题途径,由于结果的正确性难于检验,因此常常需要用不同的方法求解来获得检验。 ⑷按元素的性质进行分类,按事件发生的连续性进行分步是处理排列组合问题的基本思想方法,要注意“至少、至多”等限制词的意义。 ⑸处理排列、组合综合问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题的基本原理和方法,通过解题训练要注意积累和掌握分类和分步的基本技能,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。 ⑹在解决排列组合综合问题时,必须深刻理解排列组合的概念,能熟练地对问题进行分类,牢记排列数与组合数公式与组合数性质,容易产生的错误是重复和遗漏计数。 总之,解决排列组合问题的基本规律,即:分类相加,分步相乘,排组分清,加乘明确;有序排列,无序组合;正难则反,间接排除等;其次,我们在抓住问题的本质特征和规律,灵活运用基本原理和公式进行分析解答的同时,还要注意讲究一些解题策略和方法技巧,使一些看似复杂的问题迎刃而解。下面介绍几种常用的解题方法和策略。 【策略1】特殊元素(位置)用优先考虑 把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。 【例1】6人站成一横排,其中甲不站左端也不站右端,有种不同站法。 【分析】解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。 【法一】(优先考虑特殊元素)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有4种站法;第二步再让其余的5人站在其他5个位置上,有120种站法,故站法共有480种; A种方法;剩下四【法二】(优先考虑特殊位置)先从除甲外的五个元素中任取两个站在两端,有2 5 A种方法,共计有480种。 个人作全排列有4 4 用0,2,3,4,5五个数字,组成没有重复数字的三位数,其中偶数共有个。30 【策略2】相邻问题用捆绑法 将相邻的元素内部进行全排列,绑成一捆,看作一个整体,视为一个元素,与其他元素进行排列。

高考专题---总结排列组合题型

总结排列组合题型 一.直接法 1.特殊元素法 例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位 (2)数字1不在个位,数字6不在千位。 分析:(1)个位和千位有5个数字可供选择,其余2位有四个可供选择,由乘法原理:=240 2.特殊位置法 (2)当1在千位时余下三位有=60,1不在千位时,千位有种选法,个位有种,余下的有,共有=192所以总共有192+60=252 二.间接法当直接法求解类别比较大时,应采用间接法。如上例中(2)可用间接法=252 例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书? 分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数个,其中0在百位的有个,这是不合题意的。故共可组成不同的三位数-=432(个) 三.插空法当需排元素中有不能相邻的元素时,宜用插空法。 例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法? 分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有=100中插入方法。 四.捆绑法当需排元素中有必须相邻的元素时,宜用捆绑法。 例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种? 分析:先将男生捆绑在一起看成一个大元素与女生全排列有种排法,而男生之间又有种排

法,又乘法原理满足条件的排法有:×=576 练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有种() 2.某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有()(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有 其余的就是19所学校选28天进行排列) 五.阁板法名额分配或相同物品的分配问题,适宜采阁板用法 例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共种。 分析:此例的实质是12个名额分配给8个班,每班至少一个名额,可在12个名额种的11个空当中插入7块闸板,一种插法对应一种名额的分配方式,故有种 练习1.(a+b+c+d)15有多少项? 当项中只有一个字母时,有种(即a.b.c.d而指数只有15故。 当项中有2个字母时,有而指数和为15,即将15分配给2个字母时,如何分,闸板法一分为2,即 当项中有3个字母时指数15分给3个字母分三组即可 当项种4个字母都在时四者都相加即可. 练习2.有20个不加区别的小球放入编号为1,2,3的三个盒子里,要求每个盒子内的球数不少编号数,问有多少种不同的方法?() 3.不定方程X 1+X 2 +X 3 +…+X 50 =100中不同的整数解有() 六.平均分堆问题例6 6本不同的书平均分成三堆,有多少种不同的方法? 分析:分出三堆书(a 1,a 2 ),(a 3 ,a 4 ),(a 5 ,a 6 )由顺序不同可以有=6种,而这6种分法只算一 种分堆方式,故6本不同的书平均分成三堆方式有=15种 练习:1.6本书分三份,2份1本,1份4本,则有不同分法? 2.某年级6个班的数学课,分配给甲乙丙三名数学教师任教,每人教两个班,则分派方法的种数。

排列组合题型归纳

排列组合题型总结 一.直接法 1.特殊元素法 例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位 (2)数字1不在个位,数字6不在千位。 二.间接法当直接法求解类别比较大时,应采用间接法。 例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书 三.插空法当需排元素中有不能相邻的元素时,宜用插空法。 例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法 四.捆绑法当需排元素中有必须相邻的元素时,宜用捆绑法。 例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种 练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有种 五.阁板法名额分配或相同物品的分配问题,适宜采阁板用法 例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共种。

练习2.有20个不加区别的小球放入编号为1,2,3的三个盒子里,要求每个盒子内的球数不少编号数,问有多少种不同的方法() 六.平均分堆问题 例6 6本不同的书平均分成三堆,有多少种不同的方法 七.合并单元格解决染色问题 练习1将3种作物种植 在如图的5块试验田里,每快种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共种(以数字作答) 2.某城市中心广场建造一个花圃,花圃6分为个部分(如图3),现要栽种4种颜色的花,每部分栽种一种且相邻部分不能栽种同一样颜色的话,不同的栽种方法有种(以数字作答). 图3 图4 3.如图4,用不同的5种颜色分别为ABCDE五部分着色,相邻部分不能用同一颜色,但同一种颜色可以反复使用也可以不用,则符合这种要求的不同着色种数. 4.如图5:四个区域坐定4个单位的人,有四种不同颜色的服装,每个单位的观众必须穿同种颜色的服装,且相邻两区域的颜色不同,不相邻区域颜色相同,不相邻区域颜色相同与否不受限制,那么不同的着色方法是种 图5 图6

高中数学排列组合例题

到车间也有7种分依此类推由分步计数原理共有76种不同的排法 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数 . 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这 两个位置 先排末位共有C 3 然后排首位共有C i 最后排其它位置共有A 3 113 由分步计数原理得 C 4C 3A 4 =288 练习题:7种不同的花种在排成一列的花盆里 ,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二. 相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内 5 2 2 部进行自排。由分步计数原理可得共有 A 5A 2A ; =480种不同的排法 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素 的位置,没有限制地安排在 m 个位置上的排列数为 m n 种 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新果将这两个节目插入原节目单中,那么不同插法的种数为 _42_ 2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯六. 环排问题线排策略 例6. 8人围桌而坐,共有多少种坐法? 解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以 从此位置把圆形展成直线其余7人共有(8-1 )!种排法即7 ! 要求某几个元素必须排在一起的问题 ,可以用捆绑法来解决问题 ?即将需要相邻的元素合并 为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列 ?练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三. 不相邻问题插空策略 例3. 一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续岀场,则节目的岀场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有 A 5种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 Ae 不同的方法,由分步计数原理,节目的不同顺序共有 A 5A 4 ______ 种 元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两 练习 一5个节目已排成节目单,开演前又增加了两个新节目 ----------- 插入原节目单中, 且两个新 节目不相邻,那么不同插法的种数为 JQ_ 四. 定序问题倍缩空位插入策略 例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题 ,可先把这几个元素与其他元素一起进行排列 ,然后用总排列数除以这几个 元素之间 的全排列数,则共有不同排法种数是: A 7∕A 3 (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 A 7 种方法,其余的三个位置甲乙丙共有 丄种坐法,则共有 A :种 方法。 思考:可以先让甲乙丙就坐吗 ? — — (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 ___________ 方法 定序问题可以用倍缩法,还可转化为占位插 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? C 15O 五. 重排问题求幕策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 J-种分法.把第二名实习生分配 排列组合 A 4并 -CKMXxMXXX) ABCDEFGHA D- B E A F H G

高中数学排列组合典型例题精讲

概念形成 1、元素:我们把问题中被取的对象叫做元素 2、排列:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺.... 序.排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.... 。 说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列(与位置有关) (2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同 合作探究二 排列数的定义及公式 3、排列数:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出 m 元素的排列数,用符号m n A 表示 议一议:“排列”和“排列数”有什么区别和联系? 4、排列数公式推导 探究:从n 个不同元素中取出2个元素的排列数2n A 是多少?3n A 呢?m A n 呢? )1()2)(1(+-?--=m n n n n A m n (,,m n N m n *∈≤) 说明:公式特征:(1)第一个因数是n ,后面每一个因数比它前面一个少1,最后一个 因数是1n m -+,共有m 个因数; (2),,m n N m n *∈≤ 即学即练: 1.计算 (1)410A ; (2)25A ;(3)3355A A ÷ 2.已知101095m A =???,那么m = 3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ----用排列数符号表示为( ) A .5079k k A -- B .2979k A - C .3079k A - D .3050k A - 例1. 计算从c b a ,,这三个元素中,取出3个元素的排列数,并写出所有的排列。 5 、全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的全排列。 此时在排列数公式中, m = n 全排列数:(1)(2)21!n n A n n n n =--?=(叫做n 的阶乘). 即学即练:口答(用阶乘表示):(1)334A (2)44A (3))!1(-?n n 排列数公式的另一种形式: )! (!m n n A m n -= 另外,我们规定 0! =1 .

完整版排列组合题型归纳

排列组合难题二十一种方法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1. 进一步理解和应用分步计数原理和分类计数原理。 2. 掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3. 学会应用数学思想和方法解决排列组合问题. 复习巩固 1. 分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有 m2种不同的方法,…,在第n类办法中有m n种不同的方法,那么完成这件事共有: N mi m2 L m n 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有口种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有: N mi m2 L m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.

高中数学题型总结与易错点提示(排列组合)

排列组合 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有 34A 由分步计数原理得11 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 乙 甲丁 丙 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 C 1 4 A 3 4 C 1 3 要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素 一起作排列,同时要注意合并元素内部也必须排列. 元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端 定序问题可以用倍缩法,还可转化为占位插空模型处理

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

排列组合常见类型与解法

排列组合的常见题型及其解法 排列、组合的概念具有广泛的实际意义,解决排列、组合问题,关键要搞清楚是否与元素的顺序有关。复杂的排列、组合问题往往是对元素或位置进行限制,因此掌握一些基本的排列、组合问题的类型与解法对学好这部分知识很重要。 一. 特殊元素(位置)用优先法 把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。 例1. 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法? 分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。 解法1:(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的 任一位置上,有A 41种站法;第二步再让其余的5人站在其他5个位置上,有A 55种站法, 故站法共有:A A 415 5?=480(种) 解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两 人站在左右两端,有A 52种;第二步再让剩余的4个人(含甲)站在中间4个位置,有A 4 4种,故站法共有:A A 5244480?=(种) 二. 相邻问题用捆绑法 对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。 例2. 5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法? 解:把3个女生视为一个元素,与5个男生进行排列,共有A 66种,然后女生内部再 进行排列,有A 33种,所以排法共有:A A 6633 4320?=(种)。 三. 相离问题用插空法 元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。 例3. 7人排成一排,甲、乙、丙3人互不相邻有多少种排法? 解:先将其余4人排成一排,有A 44种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有A 53种,所以排法共有:A A 44531440?=(种) 四. 定序问题用除法 对于在排列中,当某些元素次序一定时,可用此法。解题方法是:先将n 个元素进行

排列组合常见题型及解答

排列组合常见题型及解答 Revised by Jack on December 14,2020

排列组合常见题型 一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个是底数,哪个是指数 【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少 种不同的报名方法 (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果 (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法 【解析】:(1)43(2)34(3)34 【例2】把6名实习生分配到7个车间实习共有多少种不同方法 【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方 案, 第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案. 【例3】 8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、 3 8 A D、3 8 C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种 不同的结果。所以选A 二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.

【例1】A,B,C,D,E 五人并排站成一排,如果A,B 必须相邻且B 在A 的右边,那么不同的排法种数有 【解析】:把A,B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种 【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( ) A. 360 B. 188 C. 216 D. 96 【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,22223242C A A A =432,其中男生甲站两端的有1 222223232A C A A A =144,符合条件的排法故共有 288 三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同 的排法数是52563600A A = 【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法(数字作答) 【解析】: 1 11789A A A =504 【例3】 高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是 【解析】:不同排法的种数为5256A A =3600 【例4】 某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。那么安排这6项工程的不同排法种数是

相关主题
文本预览
相关文档 最新文档