当前位置:文档之家› 高考数学排列组合常见题型

高考数学排列组合常见题型

高考数学排列组合常见题型
高考数学排列组合常见题型

选修2-3:排列组合常见题型

可重复的排列(求幂法)

重复排列问题要区分两类元素:一类可以重复,另一类不能重复。

在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数。

【例1】 (1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)4

3(2)34 (3)3

4

相邻问题(捆绑法)

相邻的几个元素捆绑成一个组,当作一个大元素参与排列.

【例1】,,,,A B C D E 五人站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有

【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种

练习:(2012辽宁)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为 (A)3×3! (B) 3×(3!)3 (C)(3!)4 (D) 9! 【解析】:C

相离问题(插空法 )

元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.

【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是

【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是

52563600A A =

【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法

【解析】: 111789A A A =504

【例3】.马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?

【解析】:把此问题当作一个排队模型,在6盏亮灯的5个空隙中插入3盏不亮的灯3

5C = 10 种方法。

说明:一些不易理解的排列组合题,如果能转化为熟悉的模型如填空模型,排队模型,装盒 模型可使问题容易解决.

【例4】 3个人坐在一排8个椅子上,若每个人左右两边都有空位,则坐法的种数有多少种? 【解析】:先拿出5个椅子排成一排,在5个椅子中间出现4个空,*○*○*○*○*再让3个人每人带一把椅子去插空,于是有A 34=24种.

练习1:(2014辽宁)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( ) A.144 B.120 C.72 D.24

【解析】:D

练习2: 停车场划出一排12个停车位置,今有8辆车需要停放.要求空车位置连在一起,不同的停车方法有多少种?

【解析】:先排好8辆车有A 88种方法,要求空车位置连在一起,则在每2辆之间及其两端的9

个空档中任选一个,将空车位置插入有C 19种方法,所以共有C 19A 88种方法.

练习3: 某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工 程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。那么安排这6 项工程的不同排法种数是

【解析】:依题意,只需将剩余两个工程插在由甲、乙、丙、丁四个工程形成的5个空中,可得有

25A =20种不同排法。

某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

【例1】 1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种? 【解析】:老师在中间三个位置上选一个有1

3A 种,4名同学在其余4个位置上有4

4A 种方法;所以共有

143472A A =种。.

练习1: 有七名学生站成一排,某甲不排在首位也不排在末位的排法有多少种?

【解析】 法一:(从元素分析)1656A 3600A = 法二:(从位置分析)25653600A A =

法三:36006

66677=--A A A

练习2:(2010山东理)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有( ) (A )36种 (B )42种 (C)48种 (D )54种 【解析】:B

多排问题(单排法)

把元素排成几排的问题可归结为一排考虑,再分段处理。

【例1】(1) 6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是( ) A 、36种 B 、120种 C 、720种 D 、1440种

(2)8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法?

【解析】:(1)前后两排可看成一排的两段,因此本题可看成6个不同的元素排成一排,共66720A =种 (2)看成一排,某2个元素在前半段四个位置中选排2个,有24A 种,某1个元素排在后半段的四个位置中选一个有14A 种,其余5个元素任排5个位置上有55A 种,故共有1254455760A A A =种排法.

定序问题(缩倍法)

在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.

【例1】.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是( )

【解析】: 602

2

5

5

=A A 种 【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有多少种不同的插法?

【解析】:法一:66

99A A 法二: 3

9A

练习:.从1,2,3,…,9九个数字中选出三个不同的数字a ,b ,c ,且a <b <c ,作抛物线

y =ax 2+bx +c ,则不同的抛物线共有 条(用数字作答).

【解析】: 843

93

3

3

9==C A A 种

标号排位问题(不配对问题)

把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去, 依次即可完成.(常用树状图)

【例1】 将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个 方格的标号与所填数字均不相同的填法有( )

A 、6种

B 、9种

C 、11种

D 、23种【解析】B

练习:同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡, 则4张贺年卡不同的分配方式共有( ) (A )6种 (B )9种 (C )11种 (D )23种

【解析】B

【例2】 编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中 有且只有两个的编号与座位号一致的坐法是( ) A 10种 B 20种 C 30种 D 60种 【解析】B

不同元素的分配问题(先分堆再分配) 注意平均分堆的算法。

【例1】 有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式? (1) 分成1本、2本、3本三组;

(2) 分给甲、乙、丙三人,其中一个人1本,一个人2本,一个人3本; (3) 分成每组都是2本的三个组; (4) 分给甲、乙、丙三人,每个人2本; (5) 分给5人每人至少1本。

【解析】:(1)33251

6C C C (2)33

332516A C C C (3)33222426A C C C (4)2

22426C C C (5)554

4

1

2131426A A C C C C 练习:将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有 种

【解析】:211

3

42132

2

36C C C A A ???=

【例3】 5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有( ) (A )150种

(B)180种

(C)200种

(D)280种

【解析】:311352132

2

C C C A A ?+ 1223

542322C C C A A ?=150,选A 练习1:四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种? 【解析】:144

练习2:5人到一个5层居民楼调查,每人随机选一层,且选每个楼层可能性相等,则恰好只有3个楼层有人调查,且没有被调查的2层不相邻的安排方法有多少种? 【解析】(1)、先将5人分组,可分为3+1+1或2+2+1

(2)、将3组排成一列,会产生4个空,对这4空选2个进行插空。

即共有900)(2

4332

2

1

1232522111235=+C A A C C C A C C C 种排法。 练习3:(2016合肥一模理10)某企业的4名职工参加职业技能考核,每名职工均可从4个备选考核项

目中任意抽取一个参加考核,则恰有一个项目未被抽中的概率为

A.916

B.2764

C.81256

D.716 【解析】169

4

4

3

42

2111224=?=A A C C C P ,选A

练习4:(2015合肥三模理8)某校计划高一年级四个班级开展研学旅行活动,初选了A,B,C,D 四条不同路线,每个班级只能在这四条线路中选择一条,且同一线路最多只能有两个班级选择,则不同的选择方案有( )

A .240种

B .204种

C .188种

D .96种 【解析】答案B 。 选4条线路时有4

4A

, 选3条线路时有3422111224A C C C A 种, 选2条线路时有242

2

2

224A C C A 种. 相同元素的分配问题(隔板法)

【例1】: 10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 【解析】:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆 至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,

故共有不同的分配方案为6

984C =种.

【例2】把20个相同的球全放入编号分别为1,2,3的三个盒子中,要求每个盒子中的球数不少于其

编号数,则有多少种不同的放法?

【解析】:向1,2,3号三个盒子中分别放入0,1,2个球后还余下17个球,然后再把这17

个球分成3份,转化为每份至少一球,运用隔板法,共有1202

16=C 种放法。

练习1:(2012合肥二模理9)50台完全相同的校车发放给10所学校,每校至少2台,则不同发放方

案有____种。

【解析】:9

39C

练习2:如图为7?3方格,每个方格均为正方形,则图中共有多少个矩形?

【解析】:2

42

8C C

练习3:(1)三元一次方程10=++z y x 所有正整数解有多少个?

(2)三元一次方程10=++z y x 所有非负整数解有多少个?

【解析】:(1)2

9C (2)2

12C

【例3】:将4个相同的白球、5个相同的黑球、6个相同的红球放入4各不同的盒子中的3个 中,使得有一个空盒且其他盒子中球的颜色齐全的不同放法有多少种? 【解析】: 1、先从4个盒子中选三个放置小球有3

4C 种方法。

2、注意到小球都是相同的,我们可以采用隔板法。为了保证三个盒子中球的颜色齐全,可以在4个相同的白球、5个相同的黑球、6个相同的红球所产生的3个、4个5个空挡中分别插入两个板。各有2

3C 、

24C 、25C 种方法。 3、由分步计数原理可得34C 23C 24C 25C =720种 多面手问题( 分类法---选定标准)

【例1】: 有11名外语翻译人员,其中5名是英语译员,4名是日语译员,另外两名是英、 日语均精通,从中找出8人,使他们可以组成翻译小组,其中4人翻译英语,另4人翻译日 语,这两个小组能同时工作,问这样的8人名单可以开出几张?

【解析】:34111235244544253412454412354445C C C C C C C C C C C C C C C C +++++

走楼梯问题 (分类法与插空法相结合)

【例】 小明家住二层,他每次回家上楼梯时都是一步迈两级或三级台阶。已知相邻楼层之间有16级台阶,那么小明从一层到二层共有多少种不同的走法?

【解析】 : 插空法解题:考虑走3级台阶的次数: 1)有0次走3级台阶(即全走2级),那么有1种走法; 2)有1次走三级台阶。(不可能完成任务); 3)有两次走3级台阶,则有5次走2级台阶:

(a )两次三级台阶挨着:相当于把这两个挨着的三级台阶放到5个两级台阶形成的空中,有 166C =种(b )两次三级不挨着:相当于把这两个不挨着的三级台阶放到5个两级台阶形成的空中,有2615C =种

4)有3次(不可能)

5)有4次走3级台阶,则有2次走两级台阶,互换角色,想成把两个2级台阶放到3级台阶形成得空

中,同(3)考虑挨着和不挨着两种情况有种12

5515C C +=走法;

6)有5次(不可能) 故总共有:1+6+15+15=37种。

练习:欲登上第10级楼梯,如果规定每步只能跨上一级或两级,则不同的走法共有( )

(A )34种 (B )55种

(C )89种

(D )144种

【解析】:C

排数问题(注意数字“0”)

【例1】(2016年四川高考)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为 (A )24 (B )48 (C )60 (D )72 【解析】:D

练习:(2013山东理)试用0,1,……,9十个数字,可以组成有重复数字的三位数的个数为

( )

A .243

B .252

C .261

D .279 【解析】:=??-??89910109252 选

B

练习:(2010四川10)由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( )

A.72

B.96

C.108

D.144【解析】:C

【例2】从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?

【解析】:将{}1,2,3

,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能

被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,

,98C =,能被4除余3的数

集{}3,7,11,

99D =,

易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合

要求的取法共有211225252525

C C C C ++种.

5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种?

分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有5434240???= 根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再用加法原理求出不同的涂色方法种数。 【例2】(2003江苏卷)四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。

分析:依题意只能选用4种颜色,要分四类: (1)②与⑤同色、④与⑥同色,则有4

4A ; (2)③与⑤同色、④与⑥同色,则有44A ; (3)②与⑤同色、③与⑥同色,则有4

4A ; (4)③与⑤同色、② 与④同色,则有44A ; (5)②与④同色、③与⑥同色,则有44A ; 所以根据加法原理得涂色方法总数为544A =120

【例3】(2003年全国高考题)如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意至少要用3种颜色 当先用三种颜色时,区域2与4必须同色,区域3与5必须同色,故有3

4A 种; 当用四种颜色时,若区域2与4同色,则区域3与5不同色,有4

4A 种;

若区域3与5

同色,则区域2与4不同色,有4

4A 种,

④ ⑤

故用四种颜色时共有24

4A 种。

由加法原理可知满足题意的着色方法共有3

4A +24

4A =24+2?24=72

根据某两个不相邻区域是否同色分类讨论,从某两个不相邻区域同色与不同色入手,分别计算出两种情形的种数,再用加法原理求出不同涂色方法总数。

【例4】用红、黄、蓝、白、黑五种颜色涂在如图所示的四个区域内,每个区域涂一种颜色,相邻两个区域涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法? 分析:可把问题分为三类:

四格涂不同的颜色,方法种数为4

5A ;

有且仅两个区域相同的颜色,即只有一组对角小方格涂相同的颜色,涂法种数为12542C A ; 两组对角小方格分别涂相同的颜色,涂法种数为25A ,

因此,所求的涂法种数为212255452260A C A A ++=

【例5】将一个四棱锥S ABCD -的每个顶点染上一种颜色,并使同一条棱的两端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是多少?

解:可把这个问题转化成相邻区域不同色问题:如图, 对这五个区域用5种颜色涂色,有多少种不同的涂色方法? 解答略。

【例6】用红、黃、蓝、白四种颜色涂矩形ABCD 的四条边,每条边只涂一种颜色 ,且使相邻两边涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法? 解:(1)使用四颜色共有4

4A 种

(2)使用三种颜色涂色,则必须将一组对边染成同色,故有112

423C C A 种, (3)使用二种颜色时,则两组对边必须分别同色,有2

4A 种

因此,所求的染色方法数为41122

4423484A C C A A ++=种

【例7】四棱锥P ABCD -,用4种不同的颜色涂在四棱锥的各个面上,要求相邻不同色,有多少种涂法?

?

A C

解:这种面的涂色问题可转化为区域涂色问题,如右图,区域1、2、3、4相当于四个侧面,区域5相当于底面;根据共用颜色多少分类:

(1)最少要用3种颜色,即1与3同色、2与4同色,此时有3

4

A种;

(2)当用4种颜色时,1与3同色、2与4两组中只能有一组同色,此时有14

24

C A;

故满足题意总的涂色方法总方法交总数为314

42472

A C A

+=

最短线路问题:分解与合成

【例1】如图所示是一个由边长为1个单位的12个正方形组成的4

3?棋盘,规定每次只能沿正方形的边运动,且只能走一个单位,则从A走到B的最短路径的走法有种

【解析】35.要想从A走到B的路径最短,只需走7个单位,并且这7个单位中,有3个横单位和4个

竖单位;在这7各单位中,只要3个横单位确定,走法就确定;所以B的最短路径的走法有3

7

35

C=种练习:(2016新课标II理5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为【答案】B

(A)24 (B)18 (C)12 (D)9

【解析】:选B.由题意,小明从街道的E处出发到F处最短路径的条数为6

2

4

=

C,再从F处到G处最短路径的条数为3

1

3

=

C,则小明到老年公寓可以选择的最短路径条数为6318

?=。

环排问题

人A,B,C,D,E围桌而坐,有多少种坐法?

【解析】4

4

A。围桌与坐成一排不同点在于,坐成圆形无首尾之分,所以固定一人A,并从此位置把

圆形展成直线,其余4人共有排法4

4

A

一般地,n个不同元素作圆形排列,共有1

1

-

-

n

n

A种排法。

A

B

变式:6颗颜色不同的钻石,可穿成几种钻石图?

解:22

56

A A .设6个不同钻石为,f e d c b a ,,,,,。与围桌而坐情,情形不同点在于:

钻石圈可以翻转,f e d c b a ,,,,,与a b c d e f ,,,,,在本题中一样,

在选取总数中,只有一部分合条件,可从总数中减去不合条件数,即为所求. 【例1】以一个正方体顶点为顶点的四面体共有( ) A .70 个B .64 个 C .58 个D .52 个

【解析】选 C .分析正方体8个顶点,从中每次取四点,理论上可构成4

8C 个四面体,但6个

表面和6 个对角面的四个顶点共面都不能构成四面体,所 以四面体实际共有48C -12=58个,

【例2】正六边形中心和顶点共7个点,以其中3个点为顶点的三角形共有________个.

【解析】 从7个点中取3点的取法有3

7C 种,但有三组三点共线不能构成三角形,故所求三角形有

37C -3=32个.

例1、从4台甲型和5台乙型电视机中任取3台,其中至少要甲、乙各一台,则不同的取法有多少种? 【解析】不分条件有39C 种,全是甲34C 种,全是乙35C 种,共有39C -34C -3

5C =70种

练习1:【2015上海理8】在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示).

【解析】:55

9

61266120.C C -=-= 练习2:(2009全国Ⅱ理)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不

相同的选法共有( )

A. 6种

B. 12种

C. 30种

D. 36种

【解析】:2

42

42

4C C C -=30,选C

计数原理与排列组合经典题型

计数原理与排列组合题型解题方法总结 计数原理 一、知识精讲 1、分类计数原理: 2、分步计数原理: 特别注意:两个原理的共同点:把一个原始事件分解成若干个分事件来完成。 不同点:如果完成一件事情共有n类办法,这n类办法彼此之间相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事情,求完成这件事情的方法种数,就用分类计数原理。分类时应不重不漏(即任一种方法必须属于某一类且只属于这一类) 如果完成一件事情需要分成n个步骤,各个步骤都是不可缺少的,需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事情的方法种数就用分步计数原理。各步骤有先后,相互依存,缺一不可。 3、排列 (1)排列定义,排列数 (2)排列数公式: (3)全排列列: 4.组合 (1)组合的定义,排列与组合的区别; (2)组合数公式: (3)组合数的性质 二、.典例解析 题型1:计数原理 例1.完成下列选择题与填空题 (1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有种。 A.81 B.64 C.24 D.4 (2)四名学生争夺三项冠军,获得冠军的可能的种数是( ) A.81 B.64 C.24 D.4 (3)有四位学生参加三项不同的竞赛, ①每位学生必须参加一项竞赛,则有不同的参赛方法有; ②每项竞赛只许有一位学生参加,则有不同的参赛方法有;

③每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有 。 例2(1)如图为一电路图,从A 到B 共有 条不同的线路可通电。 例3: 把一个圆分成3块扇形,现在用5种不同的颜色给3块扇形涂色,要求相邻扇形的颜色互不相同,问有多少钟不同的涂法?若分割成4块扇形呢? 例4、某城在中心广场造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有 ________ 种.(以数字作答) 例5、 四面体的顶点和各棱的中点共10个,在其中取4个不共面的点,问共有多少种不同的取法? 例6、(1)电视台在”欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现有主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果? (2)三边均为整数,且最大边长为11的三角形的个数是 D C B A

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1. 相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 例1. A,B,C,D,E 五人并排站成一排,如果 A,B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60 种 B 、48 种 C 、36 种 D 、24 种 2. 相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几 个元素全排列,再把规定的相离的 几个元素插入上述几个元素的空位和两端 ? 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种 3. 定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法 例3.A,B,C,D,E 五人并排站成一排,如果 B 必须站在A 的右边(A, B 可以不相邻)那么不同的排法有 ( ) 4. 标号排位问题分步法:把元素排到指定位置上, 可 先把某个元素按规定排入, 第二步再排另一个元素, 如 此继续下去,依次即可完成 ? 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所 填数字均不相同的填法有( ) A 、6 种 B 、9 种 C 、11 种 D 、23 种 5. 有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法 例5.( 1 )有甲乙丙三项任务,甲需 2人承担,乙丙各需一人承担,从 10人中选出4人承担这三项任务, 不同的选法种数是( ) A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口 6. 全员分配问题分组法: 例6.( 1)4名优秀学生全部保送到 3所学校去,每所学校至少去一名,则不同的保送方案有多少种? A 、24 种 B 、60 种 C 、90 种 D 、 120 种 4人,则不同的分配方案有( 4 4 4 C 12C 8C 4 种 4 4 3C 12C 8C C 、 C 12C 8 A 3 种

高考数学专题之排列组合小题汇总

温馨提示:(每题4分满分100分时间90分钟)姓名________________ 一、单选题 1.某种植基地将编号分别为1,2,3,4,5,6的六个不同品种的马铃薯种在如图所示的 A B C D E F 这六块实验田上进行对比试验,要求这六块实验田分别种植不同品种的马铃薯,若种植时要求编号1,3,5的三个品种的马铃薯中至少有两个相邻,且2号品种的马铃薯不能种植在A 、F这两块实验田上,则不同的种植方法有 ( ) A. 360种 B. 432种 C. 456种 D. 480种 2.甲、乙、丙、丁、戊五位妈妈相约各带一个小孩去观看花卉展,她们选择共享电动车出行,每辆电动车只能载两人,其中孩子们表示都不坐自己妈妈的车,甲的小孩一定要坐戊妈妈的车,则她们坐车不同的搭配方式有() A.种 B.种 C.种 D.种 3.已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,这四名顾客购物后,恰好用了其中的三种结账方式,那么他们结账方式的可能情况有()种 A. 19 B. 26 C. 7 D. 12 4.有张卡片分别写有数字,从中任取张,可排出不同的四位数个数为() A . B. C. D. 5.我市拟向新疆哈密地区的三所中学派出5名教师支教,要求每所中学至少派遣一名教师,则不同的派出方法有() A. 300种 B. 150种 C. 120种 D. 90种 6.一只小青蛙位于数轴上的原点处,小青蛙每一次具有只向左或只向右跳动一个单位或者两个单位距离的能力,且每次跳动至少一个单位.若小青蛙经过5次跳动后,停在数轴上实数2位于的点处,则小青蛙不同的跳动方式共有( )种. A. 105 B. 95 C. 85 D. 75 7.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同排课顺序共有() A.种 B.种 C.种 D.种 8.郑州绿博园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,其中的小李和小王不在一起,不同的安排方案共有() A. 168种 B. 156种 C. 172种 D. 180种 9.用6种不同的颜色对正四棱锥的8条棱染色,每个顶点出发的棱的颜色各不相同,不同的染色方案共有多少种() A.14400 B.28800 C.38880 D.43200 10.《红海行动》是一部现代海军题材影片,该片讲述了中国海军“蛟龙突击队”奉命执行撤侨任务的故事.撤侨过程中,海军舰长要求队员们依次完成六项任务,并对任务的顺序提出了如下要求:重点任务A 必须排在前三位,且任务E、F必须排在一起,则这六项任务的不同安排方案共有() A. 240种 B. 188种 C. 156种 D. 120种 11.定义“有增有减”数列{}n a如下:* t N ?∈,满足 1 t t a a + <,且* s N ?∈,满足 1 S S a a + >.已知“有增有减”数列{}n a共4项,若{}() ,,1,2,3,4 i a x y z i ∈=,且x y z <<,则数列{}n a共有() 序号 1 2 3 4 5 6 7 8 9 10 11 12 选项 13 14 15 16 17 18 19 20 21 22 23 24 25

排列组合知识点汇总及典型例题(全)

排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集, 所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分 类,又要分步。其原则是先分类,后分步。 (43.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相 邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。 解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法; (6)“小团体”排列问题——采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。 (7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。 (8).数字问题(组成无重复数字的整数) ① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。②能被3整除的数的特征:各位数字之和是3的倍数; ③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。 ⑤能被5整除的数的特征:末位数是0或5。 ⑥能被25整除的数的特征:末两位数是25,50,75。 ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。 4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2). “含”与“不含” 用间接排除法或分类法: 3.分组问题: 均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。 非均匀分组:分步取,得组合数相乘。即组合处理。 混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。 4.分配问题: 定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。

排列组合题型总结

排列组合题型总结 排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。因而在求解排列组合应用题时,除做到:排列组合分清,加乘原理辩明,避免重复遗漏外,还应注意积累排列组合问题得以快速准确求解。 一.直接法、 1. 特殊元素法 例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位 (2)数字1不在个位,数字6不在千位。 分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理: 25A 24A =240 2.特殊位置法 (2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A , 共有14A 1 4A 24A =192所以总共有192+60=252 二.间接法当直接法求解类别比较大时,应采用间接法。如上例中(2)可用间接法2435462A A A +-=252 例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书? 分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因 而可使用间接计算:任取三张卡片可以组成不同的三位数333352A C ??个,其中0在百位的有 2242?C ?22A 个,这是不合题意的。故共可组成不同的三位数333352A C ??-2242?C ?22A =432 (个) 三.插空法 当需排元素中有不能相邻的元素时,宜用插空法。 例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方 法? 分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019A A ?=100中插 入方法。 四.捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。 例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种? 分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A 种排法,而男生之间又有44A 种排法,又乘法原理满足条件的排法有:44A ×4 4A =576 练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种(3324A C ) 2. 某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校

排列组合问题经典题型解析含答案

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A 的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种D、120种

4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( ) A 、6种 B 、9种 C 、11种 D 、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( ) A 、1260种 B 、2025种 C 、2520种 D 、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、44412 8 4 C C C 种 B 、44412 8 4 3C C C 种 C 、44312 8 3 C C A 种 D 、 4441284 33 C C C A 种

2020年高考理科数学易错题《排列组合》题型归纳与训练

2020年高考理科数学《排列组合》题型归纳与训练 【题型归纳】 题型一 计数原理的基本应用 例1 某校开设A 类选修课2门,B 类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有 A .3种 B .6种 C .9种 D .18种 【答案】 C . 【解析】 可分以下2种情况:①A 类选修课选1门,B 类选修课选2门,有 62312=?C C 种不同的选法;②A 类选修课选2门,B 类选修课选1门,有31322=?C C 种不同的选法.所以根据分类计数原理知不同的选法共有6+3=9种.故要求两类课程中各至少选一门,则不同的选法共有9种.故选:C 【易错点】注意先分类再分步 【思维点拨】两类课程中各至少选一门,包含两种情况:A 类选修课选1门,B 类选修课选2门;A 类选修课选2门,B 类选修课选1门,写出组合数,根据分类计数原理得到结果. 题型二 特殊元素以及特殊位置 例 1 将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法有( )种.(用数字作答) 【答案】 480 【解析】考虑到C B A ,,要求有顺序地排列,所以将这三个字母当作特殊元素对待。先排F E D ,,三个字母,有12036 =A 种排法;再考虑C B A ,,的情况:C 在最左端有2种排法,最右端也是2种排法,所以答案是4804120=?种. 【易错点】注意特殊元素的考虑 【思维点拨】对于特殊元素与特殊位置的考量,需要瞻前顾后,分析清楚情况,做到“不重复不遗漏”;如果情况过于复杂,可以考虑列举法,虽然形式上更细碎一些,但是情况分的越多越细微,每种情况越简单,准确度就越高. 题型三 捆绑型问题以及不相邻问题 例1 由1,2,3,4,5,6组成没有重复数字且1,3都不与5相邻的六位偶数的个数是( )个.

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 例2三个女生和五个男生排成一排 (1)如果女生必须全排在一起,可有多少种不同的排法? (2)如果女生必须全分开,可有多少种不同的排法? (3)如果两端都不能排女生,可有多少种不同的排法? (4)如果两端不能都排女生,可有多少种不同的排法? 例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。 (1)任何两个舞蹈节目不相邻的排法有多少种? (2)歌唱节目与舞蹈节目间隔排列的方法有多少种? 例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法. 例5现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种? 例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法? 例77名同学排队照相. (1)若分成两排照,前排3人,后排4人,有多少种不同的排法?

(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法? (3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法? (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法? 例8计算下列各题: (1) 215 A ; (2) 66 A ; (3) 1 1 11------?n n m n m n m n A A A ; 例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法. 例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法? 例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有 例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ). 例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ). 例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重 复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?

高考专题---总结排列组合题型

总结排列组合题型 一.直接法 1.特殊元素法 例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位 (2)数字1不在个位,数字6不在千位。 分析:(1)个位和千位有5个数字可供选择,其余2位有四个可供选择,由乘法原理:=240 2.特殊位置法 (2)当1在千位时余下三位有=60,1不在千位时,千位有种选法,个位有种,余下的有,共有=192所以总共有192+60=252 二.间接法当直接法求解类别比较大时,应采用间接法。如上例中(2)可用间接法=252 例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书? 分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数个,其中0在百位的有个,这是不合题意的。故共可组成不同的三位数-=432(个) 三.插空法当需排元素中有不能相邻的元素时,宜用插空法。 例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法? 分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有=100中插入方法。 四.捆绑法当需排元素中有必须相邻的元素时,宜用捆绑法。 例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种? 分析:先将男生捆绑在一起看成一个大元素与女生全排列有种排法,而男生之间又有种排

法,又乘法原理满足条件的排法有:×=576 练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有种() 2.某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有()(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有 其余的就是19所学校选28天进行排列) 五.阁板法名额分配或相同物品的分配问题,适宜采阁板用法 例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共种。 分析:此例的实质是12个名额分配给8个班,每班至少一个名额,可在12个名额种的11个空当中插入7块闸板,一种插法对应一种名额的分配方式,故有种 练习1.(a+b+c+d)15有多少项? 当项中只有一个字母时,有种(即a.b.c.d而指数只有15故。 当项中有2个字母时,有而指数和为15,即将15分配给2个字母时,如何分,闸板法一分为2,即 当项中有3个字母时指数15分给3个字母分三组即可 当项种4个字母都在时四者都相加即可. 练习2.有20个不加区别的小球放入编号为1,2,3的三个盒子里,要求每个盒子内的球数不少编号数,问有多少种不同的方法?() 3.不定方程X 1+X 2 +X 3 +…+X 50 =100中不同的整数解有() 六.平均分堆问题例6 6本不同的书平均分成三堆,有多少种不同的方法? 分析:分出三堆书(a 1,a 2 ),(a 3 ,a 4 ),(a 5 ,a 6 )由顺序不同可以有=6种,而这6种分法只算一 种分堆方式,故6本不同的书平均分成三堆方式有=15种 练习:1.6本书分三份,2份1本,1份4本,则有不同分法? 2.某年级6个班的数学课,分配给甲乙丙三名数学教师任教,每人教两个班,则分派方法的种数。

排列组合问题经典题型#精选.

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有() A、 444 1284 C C C 种 B、 444 1284 3C C C 种 C、 443 1283 C C A 种 D、 444 1284 3 3 C C C A种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为() A、480种 B、240种 C、120种 D、96种 7.名额分配问题隔板法: 例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A、210种 B、300种 C、464种 D、600种 (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种? (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?

高考数学专题之排列组合综合练习

高考数学专题之排列组 合综合练习 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1.从中选个不同数字,从中选个不同数字排成一个五位数,则这些五位数中偶数的个数为() A. B. C. D. 2.五个同学排成一排照相,其中甲、乙两人不排两端,则不同的排法种数为()A.33 B.36 C.40 D.48 3.某校从8名教师中选派4名同时去4个边远地区支教(每地1名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有() A.900种 B.600种 C.300种 D.150种 4.要从甲、乙等8人中选4人在座谈会上发言,若甲、乙都被选中,且他们发言中间恰好间隔一人,那么不同的发言顺序共有__________种(用数字作答). 5.有五名同学站成一排照毕业纪念照,其中甲不能站在最左端,而乙必须站在丙的左侧(不一定相邻),则不同的站法种数为__________.(用数字作答) 6.有个座位连成一排,现有人就坐,则恰有个空位相邻的不同坐法是 __________. 7.现有个大人,个小孩站一排进行合影.若每个小孩旁边不能没有大人,则不同的合影方法有__________种.(用数字作答) 8.(2018年浙江卷)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答) 9.由0,1,2,3,4,5这6个数字共可以组成______.个没有重复数字的四位偶数. 10.将四个编号为1,2,3,4的小球放入四个编号为1,2,3,4的盒子中. (1)有多少种放法

高考排列组合典型例题

高考排列组合典型例题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

排列组合典型例题 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个; 当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ??(个). ∴ 没有重复数字的四位偶数有 2296179250428181439 =+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有39A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千 位数是“0”排列数得:)(283914 A A A -?个 ∴ 没有重复数字的四位偶数有 22961792504)(28391439 =+=-?+A A A A 个.

高中数学排列组合例题

到车间也有7种分依此类推由分步计数原理共有76种不同的排法 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数 . 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这 两个位置 先排末位共有C 3 然后排首位共有C i 最后排其它位置共有A 3 113 由分步计数原理得 C 4C 3A 4 =288 练习题:7种不同的花种在排成一列的花盆里 ,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二. 相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内 5 2 2 部进行自排。由分步计数原理可得共有 A 5A 2A ; =480种不同的排法 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素 的位置,没有限制地安排在 m 个位置上的排列数为 m n 种 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新果将这两个节目插入原节目单中,那么不同插法的种数为 _42_ 2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯六. 环排问题线排策略 例6. 8人围桌而坐,共有多少种坐法? 解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以 从此位置把圆形展成直线其余7人共有(8-1 )!种排法即7 ! 要求某几个元素必须排在一起的问题 ,可以用捆绑法来解决问题 ?即将需要相邻的元素合并 为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列 ?练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三. 不相邻问题插空策略 例3. 一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续岀场,则节目的岀场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有 A 5种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 Ae 不同的方法,由分步计数原理,节目的不同顺序共有 A 5A 4 ______ 种 元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两 练习 一5个节目已排成节目单,开演前又增加了两个新节目 ----------- 插入原节目单中, 且两个新 节目不相邻,那么不同插法的种数为 JQ_ 四. 定序问题倍缩空位插入策略 例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题 ,可先把这几个元素与其他元素一起进行排列 ,然后用总排列数除以这几个 元素之间 的全排列数,则共有不同排法种数是: A 7∕A 3 (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 A 7 种方法,其余的三个位置甲乙丙共有 丄种坐法,则共有 A :种 方法。 思考:可以先让甲乙丙就坐吗 ? — — (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 ___________ 方法 定序问题可以用倍缩法,还可转化为占位插 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? C 15O 五. 重排问题求幕策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 J-种分法.把第二名实习生分配 排列组合 A 4并 -CKMXxMXXX) ABCDEFGHA D- B E A F H G

高考数学排列组合常见题型

选修2-3:排列组合常见题型 可重复的排列(求幂法) 重复排列问题要区分两类元素:一类可以重复,另一类不能重复。 在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数。 【例1】 (1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)4 3(2)34 (3)3 4 相邻问题(捆绑法) 相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 【例1】,,,,A B C D E 五人站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种 练习:(2012辽宁)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为 (A)3×3! (B) 3×(3!)3 (C)(3!)4 (D) 9! 【解析】:C 相离问题(插空法 ) 元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是 52563600A A = 【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法 【解析】: 111789A A A =504 【例3】.马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种? 【解析】:把此问题当作一个排队模型,在6盏亮灯的5个空隙中插入3盏不亮的灯3 5C = 10 种方法。

排列组合典型例题

排列组合典型例题

典型例题一 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有3 A个; 9 当个位上在“2、4、6、8”中任选一个来排,

则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有2 8181 4 A A A ??(个). ∴ 没有重复数字的四位偶数有 2296 179250428181439=+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有3 9 A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:) (28391 4 A A A -?个 ∴ 没有重复数字的四位偶数有 2296 1792504)(28391439=+=-?+A A A A 个. 解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有 2 81 515A A A ??个 干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有 2 81414A A A ??个 ∴ 没有重复数字的四位偶数有

高中数学排列组合典型例题精讲

概念形成 1、元素:我们把问题中被取的对象叫做元素 2、排列:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺.... 序.排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.... 。 说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列(与位置有关) (2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同 合作探究二 排列数的定义及公式 3、排列数:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出 m 元素的排列数,用符号m n A 表示 议一议:“排列”和“排列数”有什么区别和联系? 4、排列数公式推导 探究:从n 个不同元素中取出2个元素的排列数2n A 是多少?3n A 呢?m A n 呢? )1()2)(1(+-?--=m n n n n A m n (,,m n N m n *∈≤) 说明:公式特征:(1)第一个因数是n ,后面每一个因数比它前面一个少1,最后一个 因数是1n m -+,共有m 个因数; (2),,m n N m n *∈≤ 即学即练: 1.计算 (1)410A ; (2)25A ;(3)3355A A ÷ 2.已知101095m A =???,那么m = 3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ----用排列数符号表示为( ) A .5079k k A -- B .2979k A - C .3079k A - D .3050k A - 例1. 计算从c b a ,,这三个元素中,取出3个元素的排列数,并写出所有的排列。 5 、全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的全排列。 此时在排列数公式中, m = n 全排列数:(1)(2)21!n n A n n n n =--?=(叫做n 的阶乘). 即学即练:口答(用阶乘表示):(1)334A (2)44A (3))!1(-?n n 排列数公式的另一种形式: )! (!m n n A m n -= 另外,我们规定 0! =1 .

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

相关主题
文本预览
相关文档 最新文档