当前位置:文档之家› SMTC 5 310 041 长玻璃纤维增强聚丙烯材料要求(20140116)

SMTC 5 310 041 长玻璃纤维增强聚丙烯材料要求(20140116)

SMTC 5 310 041 长玻璃纤维增强聚丙烯材料要求(20140116)
SMTC 5 310 041 长玻璃纤维增强聚丙烯材料要求(20140116)

SMTC

长玻璃纤维增强聚丙烯材料要求

Long glass fiber reinforced polypropylene material requirements

布Issue 上汽集团技术中心技术标准化委员会 Technical Standardization Committee of SAIC MOTOR Technical Center

前言

为规范车用长玻璃纤维增强聚丙烯材料要求,特制定本标准。

请注意本文件的某些内容可能涉及专利,上汽集团不承担识别这些专利的责任。

当中英文产生疑义时,以中文为准。

本标准由材料分标委提出。

本标准由SMTC标准化技术委员会批准。

本标准由标准化工作组负责标准化审核及归口管理。

本标准起草部门:质量保证部。

本标准主要起草人:邓家战、蒋中、胡仁其。

本标准于2014年1月16日首次批准发布,2014年1月17日实施。

Foreword

This standard describes the requirements for Long glass fiber reinforced polypropylene material requirements.

This standard is in Chinese and English. If in doubt, the Chinese version is the Master.

This standard was proposed by material sub-committee.

This standard was approved by the SMTC Technical Standardization Committee.

The Standardization Working Team is responsible for the standardization approval and overall management of this standard.

The draft department of this standard: Quality assurance department.

The main drafters of this standard: Deng Jiazhan, Jiang Zhong, Hu Renqi.

This standard was second approved and issued on Jan, 16. 2014 and it will be implemented on Jan, 17. 2014.

长玻璃纤维增强聚丙烯

材料要求Long glass fiber reinforced polypropylene material

requirements

1 范围

本标准规定了车用长玻璃纤维增强聚丙烯材料要求。

本标准适用车用各成型件上的长玻璃纤维增强聚丙烯材料,如:前端模块、底部导流板、蓄电池托盘,保险杠缓冲梁,天窗导轨等。1 Scope

This standard describes the requirements for Long glass fiber reinforced polypropylene material.

This standard specifies the material requirements for Long glass fiber reinforced polypropylene material for finished parts, e.g., Front-end module,The bottom of the deflector, Battery tray, bumper cushion girder, sun rail.

2 规范性引用文件

下列文件对于本标准的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本标准。2 Normative references

The following referenced documents are indispensable for the application of this standard. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced standard (including any amendments) applies.

SMTC 5 400 008 内部装饰材料燃烧性能要求

SMTC 5 400 008 Materials for vehicle Interiors; Flammability, Material Requirements

SMTC 5 400 030 聚合物材料低温落球试验方法

SMTC 5 400 030 Low temperature falling ball test of organic material

SMTC 5 500 001 整车环境标准零部件、材料、工作液体的有害物质禁用

SMTC 5 500 001 Vehicle Environmental standard; Vehicle Parts, Materials, Operating Fluids; Avoidance of Hazardous Substances

SMTC 5 500 003 汽车塑料件、橡胶件和热塑性弹性体的材料标示与标记

SMTC 5 500 003 Material identification and marking of automotive plastic

ISO 178 塑料—弯曲性能测定ISO 178 Plastics –Determination of

Flexural Properties

ISO 179-1 塑料—冲击属性的测定—第1部分:非器械冲击试验

ISO 179-1 Plastics –Determination of charpy Impact Properties, Part 1: Non-Instrumented Impact Test

ISO 291塑料-测试环境和条件的要求ISO 291 Plastics –Standard atmospheres

for conditioning and testing fourth edition

ISO 1172 玻璃纤维增强塑料,浸渍,模塑与复合,玻纤与矿物填料含量的测定

ISO 1172 Textile glass-reinforced plastics, prepregs, moulding compounds and laminates - Determination of the textile-glass and mineral-filler content

ISO 1183-1 塑料—非微孔塑料密度的测定方法—第1部分:沉浸法、液体比重瓶法和滴定法

ISO 1183-1 Plastics –Methods for Determining the Density of Non-Cellular Plastics –Part 1: Immersion Method, Liquid Pyknometer Method and Titration Method

ISO 3146 塑料-毛细管和偏振光显微镜法测定半晶状聚合物的熔化性能(熔化温度或熔化区域)

ISO 3146 Plastics, Determination of melting behaviour (melting temperature or melting range) of semi-crystalline polymers by capillary tube and polarizing-microscope methods

3 要求 3 Requirements

3.1 样品和预处理要求 3.1 Sampling and conditioning

requirements

3.1.1 样品要求 3.1.1 Sampling requirements

用于本标准所规定的测试试样,应当从成品上取样。若遇到无法从成品上取样时,其样品制备方法应当与SMPV中心实验室协商确定。为完成试验,需要多个成品零件。The test samples stipulated in the Standard. Samples should be made from finished prod ucts. If samples can’t be made from finished products, sample preparation method should be determined through the negotiation with SMPV SCL. Several parts are required for complete testing.

3.1.2 预处理 3.1.2 Conditioning

试验前,测试样品必须在ISO 291标准气候条件23℃,50 %RH下至少放置24 h。The test specimens should be conditioned at 23 °C,50%RH according to the ISO 291 at least 24h before test.

3.2 基本要求 3.2 General requirements

3.2.1 外观要求

成品件表面与内部不允许存在加工缺陷,如熔接痕、缩孔、裂纹及类似缺陷。3.2.1 Appearance requirements

The surface and interior of the finished parts shall be free of flaws and processing defects, such as flow lines, voids, cracks or similar faults.

3.2.2 颜色

按图纸的要求。3.2.2 Color According to drawing.

3.2.3 禁用/限用材料、避免使用的危险品

必须符合SMTC 5 500 001 的要求。3.2.3 Avoidance of hazardous substances According to SMTC 5 500 001.

3.2.4 燃烧性能

按照SMTC 5 400 008执行。3.2.4 Burning behavior According to SMTC 5 400 008

3.2.5标志

根据SMTC5 500 003。3.2.5 Symbol

According to the SMTC5 500 003.

3.2.6 材料鉴定

红外光谱法或 DSC法3.2.6 Material identification Infrared spectrometric or DSC method.

3.2.7 高温性能

若图纸或认可无其它规定,则采用90℃。对于接近发动机舱的部位零件采用100℃,如:前端模块,蓄电池托盘。时间:24h。要求:表面无缺陷,功能无失效。3.2.7 Elevated-temperature behavior Temperature unless stated in the drawing or release is 90°C. 100°C for those vehicle parts that are closed to engine, such as front-end module and battery tray. Duration: 24h. Requirement:No surface defects, function without failure.

3.2.8 低温性能

若图纸或认可无其它规定,则-40℃。时间:24h。要求:表面无缺陷,功能无失效。3.2.8 Low Temperature Behaviour Temperature unless stated in the drawing or release is -40°C. Duration: 24h. Requirement:No surface defects, function without failure.

3.3.9 耐老化特性

若图纸或认可无其它规定,成品件在150℃干燥箱中老化≥400h,机舱近车身≥700h,机舱发动机上≥1000h,冷却到23℃后零件不允许有脆化现象。若零件较大可将零件切割成合适大小后进行试验。3.3.9 Aging resistance

Finished parts shall be aged at 150 °C in the desiccators for 400h unless stated in the drawing or release. 700h for cabin near the body, 1000h for cabin engine. After the test parts are not allowed embrittlement to cool down to 23℃. Larger parts can be cut to fit the size of test.

3.2.10 落球试验

若图纸或认可无其它规定,则采用-30℃。时间:24h。按SMTC 5 400 030;落球高度400mm。要求:不断,不裂。如前端模块、底护板及蓄电池托盘等。3.2.10 Ball drop test

Temperature unless stated in the drawing or release is -30°C. Duration: 24h. Ball drop test according to SMTC 5 400 030. Ball drop height is 400mm. Requirement:No fracture, no cracking. E.g., Front-end module,The bottom of the deflector, Battery tray.

3.3 材料物理性能要求

材料物理性能要求见表1。3.3 Material Physical Properties Requirement

Material physical properties requirement see Table 1.

表1 材料物理性能要求

3.4测试结果评估

本标准所要求的数值适用于每次测量。3.4 Test result evaluation

The required numerical values apply to each individual measurement.

(新)环氧树脂玻璃纤维防水施工工法

环氧树脂玻璃纤维(环氧玻璃钢)防水施工工法 完成单位:四川省第六建筑有限公司第五工程分公司 主要完成人: 赵剑芳何云华易建辉凌红杨勇 1 前言 1.0.1 近年来随着城市建设的发展,高层建筑物超深地下室工程防水(地下水位压力过大)及各种对防水有特殊要求【耐碱(酸)性、耐久性、抗腐蚀、与基层粘结强度高、工艺性能好等】的工程越来越多,传统的卷材、涂膜防水不能满足这些工程的特殊使用要求;随着环氧类材料与玻璃纤维复合材料(俗称环氧类玻璃钢)防水技术的日渐成熟,在高层建筑地下室、地铁工程、工业厂房水池、海洋馆大洋水池等工程中大量使用了环氧类防水材料。 1.0.2 2007年6月华西集团四川省第六建筑有限公司第五工程分公司承建成都市虎豹海洋世界水族馆工程,针对该工程工期紧、质量要求高、结构异形、技术难度大等特点及首次承接相应大洋展示池、珊瑚池环氧类玻璃纤维防水工程的不利因素,我单位成立技术小组针对环氧类玻璃纤维防水进行了技术攻关,与相关协作单位一起,成功的解决了相关环氧类防水施工中的诸多难题,取得了良好的经济和社会效益。为了使环氧类玻璃纤维防水施工工艺更趋规范化、标准化,我单位在工程实践的基础上经过不断研究、探索,编制了本工法。 2 特点 2.0.1 该工法充分利用了电动磨光机(平板、角磨)、空压搅拌机、台秤等设备,并在精确的配制环氧树脂胶料(按配合比)和技术熟练操作人员的精心施工下,达到了施工快捷、质量保证、经济节约的目的。 2.0.2 该工艺流程合理且程序化、工效高、工程质量和施工安全容易控制、施工成本较低、适用范围广。 3 适用范围 3.0.1 本工法适用于高层建筑超深地下室、地铁工程、工业厂房水池、海洋馆海水池等对防水有耐久性要求的防水工程;本工法也适用于对防水质量要求高的屋面、卫生间防水工程(Ⅰ~Ⅳ级)。 4 工艺原理 4.0.1 环氧树脂与玻璃纤维复合材料所用原料有环氧树脂、增强用玻璃纤维、固化剂、增韧剂、稀释剂、填料。 4.0.2 环氧树脂底涂层具有高渗透性,它能通过混凝土或砂浆基层的微细裂缝和毛细管渗入

玻璃纤维增强PA

玻璃纤维增强PA 在PA 加入30% 的玻璃纤维,PA 的力学性能、尺寸稳定性、耐热性、耐老化性能 有明显提高,耐疲劳 尼龙 强度是未增强的2.5 倍。玻璃纤维增强PA 的成型工艺与未增强时大致相同,但因 流动较增强前差,所以注射压力和注射速度要适当提高,机筒温度提高10-40℃。 由于玻纤在注塑过程中会沿流动方向取向,引起力学性能和收缩率在取向方向上增强,导致制品变形翘曲,因此,模具设计时,浇口的位置、形状要合理,工艺上可以提高模具的温度,制品取出后放入热水中让其缓慢冷却。另外,加入玻纤的比例越大,其对注塑机的塑化元件的磨损越大,最好是采用双金属螺杆、机筒。 阻燃PA 由于在PA中加入了阻燃剂,大部分阻燃剂在高温下易分解,释放出酸性物质,对 金属具有腐蚀作用,因此,塑化元件(螺杆、过胶头、过胶圈、过胶垫圈、法兰等)需镀硬铬处理。工艺方面,尽量控制机筒温度不能过高,注射速度不能太快,以避免因胶料温度过高而分解引起制品变色和力学性能下降。 透明PA 具有良好的拉伸强度、耐冲击强度、刚性、耐磨性、耐化学性、表面硬度等性能,透光率高,与光学玻璃相近,加工温度为300--315 ℃,成型加工时,需严格控制 机筒温度,熔体温度太高会因降解而导致制品变色,温度太低会因塑化不良而影响制品的透明度。模具温度尽量取低些,模具温度高会因结晶而使制品的透明度降低。 耐候PA 在PA 中加入了碳黑等吸收紫外线的助剂,这些对PA的自润滑性和对金属的磨损 大大增强,成型加工时会影响下料和磨损机件。因此,需要采用进料能力强及耐磨性高的螺杆、机筒、过胶头、过胶圈、过胶垫圈组合。聚酰胺分子链上的重复结构单无是酰胺基的一类聚合物。 概括起来,主要在以下几方面进行改性。 ①改善尼龙的吸水性,提高制品的尺寸稳定性。 ②提高尼龙的阻燃性,以适应电子、电气、通讯等行业的要求。 ③提高尼龙的机械强度,以达到金属材料的强度,取代金属 ④提高尼龙的抗低温性能,增强其对耐环境应变的能力。 ⑤提高尼龙的耐磨性,以适应耐磨要求高的场合。

树脂基玻璃纤维复合材料注塑成型工艺研究

树脂基玻璃纤维复合材料注塑成型工艺研究树脂基玻璃纤维复合材料一种性能优异的轻量化材料,其材料的收缩率小,产品的比强度高,精度好,能很好的满足汽车轻量化需求。树脂基短切玻璃纤维复合材料很大程度上可以满足我们轻量化及性能要求,但是如何有效的控制纤维取向,为优化产品中的纤维分布,得到性能更好的产品,成为了新的挑战,本文在传统注塑成型工艺的基础上,提出了动态注塑成型方案,来优化成型过程中的纤维取向,从而获得更优性能的产品。 本文提出了新的生产工艺,在工艺设计、模具设计、工艺优化及实验验证方面做出了大量研究,本论文所做的具体研究如下:(1)根据树脂基短切玻璃纤维复合材料的特性,为优化玻璃纤维在产品中取向和分布,本文提出了动态注塑成型工艺,并阐述了动态注塑成型工艺的基本原理及过程,根据动态注塑成型的原理,动态注塑模具需要在合模状态下,使模腔空间根据需要变化,根据这一需求,本文引入活动型芯机构来进行模腔拓展,分析了动态注塑模具的工作过程,并根据模具的设计要点对动态注塑模具的整体结构设计。(2)利用Moldflow软件对16组不同工艺参数组合的成型过程分别进行了模拟,得到了纤维取向张量和翘曲量两个质量指标结果,并采用正交试验方法,对模拟结果进行了统计分析,结果显示初始型腔厚度对纤维分布有着显著影响,注射时间对产品的翘曲有着显著影响,得出了最佳的工艺参数设置,验证了动态注射成型工艺及模具的正确性。 (3)进行了生产实验,并生产过程中需注意的问题进行介绍和分析。试件注塑完成后,对试件进行了拉伸测试,弯曲测试以及断面组织观测,总结了在动态注塑成型工艺下各参数对塑件机械性能的影响,发现经动态注塑成型工艺优化后,产品的内部组织更加均匀,试件的拉伸强度得以提升,但弯曲强度略有提升。

玻璃纤维增强聚丙烯复合材料的力学性能

玻璃纤维增强聚丙烯复合材料的力学性能 摘要:本文论述了玻璃纤维增强聚丙烯复合材料的力学性能,主要包括材料的拉伸强度、拉伸模量、弯曲强度、弯曲模量和缺口冲击强度。并分析了复合材料力学性能与玻璃纤维含量之间的关系,最后将复合材料与ABS的力学性能进行比较,发现玻璃纤维增强的聚丙烯复合材料可以替代ABS应用于一些受力领域。关键词:玻璃纤维;聚丙烯;力学性能;ABS 1.引言 聚丙烯是一种综合性能十分优异的热塑性通用塑料,其具有易加工、密度小、生产成本低等特点,所以聚丙烯在家用电器、日常用品包装材料、汽车工业等行业有着广泛的应用,成为近些年来增长速度最快的塑料之一。然而聚丙烯也有一些缺点,比如:抗蠕变性差、熔点较低、尺寸稳定性不好、热变形温度低、低温脆性等,制约了其作为工程受力材料的应用。聚丙烯的一般性能如表1所示[1]。如果想提高聚丙烯的耐热性和冲击强度,拓宽其应用范围,就应对聚丙烯进行改性[2, 3]。 表1 聚丙烯的一般性能[1] Tab. 1 The properties of polypropylene 性能数据 拉伸强度/Mpa 29 断裂伸长率/% 200~700 弯曲强度/Mpa 50~58.8 压缩强度/Mpa 45 缺口冲击强度/(KJ/m2)5~10 洛氏硬度80~110 弹性模量/Mpa 980~9800 玻璃纤维增强聚丙烯复合材料(GFRPP)是以热塑性树脂聚丙烯为基体,以长玻璃纤维为增强骨架的材料[4],其性能与ABS 接近,但价格低于ABS 塑料。目前,国内外已对GF 增强PP 做了大量研究[5, 6]。玻璃纤维增强聚丙稀己广泛应用于汽车零部件、家电行业、飞机制造业等。 2.玻璃纤维增强聚丙烯复合材料的力学性能

玻璃纤维增强塑料的基础知识

玻璃纤维增强塑料(FRP)基础知识一.什么是复合材料 指一种材料不能满足使用要求,需要由两种或两种以上的才料,通过某种技术方法结合组成另一种能够满足人们需求的新材料,叫做复合材料。 二.什么是玻璃纤维增强塑料(Fiber Reinforced Plastics)指用玻璃纤维增强,不饱和聚酯树脂(或环氧树脂;酚醛树脂)为基体的复合材料,称为玻璃纤维增强塑料。简称FRP 由于其强度相当于钢材,又含有玻璃纤维且具有玻璃那样的色泽;形体和耐腐蚀;电绝缘;隔热等性能,在我国被俗称为“玻璃钢”。这个名称是原中国建筑材料工业部部长赖际发在1958年提出的一直延用至今。 三.FRP的基本构成 基体(树脂)+ 增强材料+助剂+颜料+填料 1.基体(树脂):环氧树脂;酚醛树脂;乙烯基树脂;不饱和聚酯树脂;双酚A等 2.增强材料(纤维):玻璃纤维;碳纤维;硼纤维;芳纶纤维;氧化铝纤维;碳化硅纤维;玄武岩纤维等。

3.助剂:引发剂(固化剂);促进剂;消泡剂;分散剂;基材润湿剂;阻聚剂;触边剂;阻燃剂等。 4.颜料:氧化铁红;大红粉;炭黑;酞青兰;酞青绿等。多数为色浆状态。 5. 填料:重钙;轻钙;滑石粉(400目以上);水泥等。PVC:聚氯乙烯,硬PVC和软PVC,硬PVC有毒。PPR:聚丙烯。 PUR:泡沫。 PRE:聚苯醚。 尼龙:聚酰胺纤维。 FRP的发展过程:无法确定发明人。 四.FRP材料的特点: 1.优点: (1)质轻高强:FRP的相对密度在1.5~2.0之间,只有碳钢的1/4~1/5但是拉伸强度却接近甚至超过碳素钢,而强度可以与高级合金钢相比,被广泛的应用于航空航天;高压容器以及其他需要减轻自重的制品中。 (2)耐腐蚀性好:FRP是良好的耐腐蚀材料,对于大气;水和一般浓度的酸碱;盐及多种油类和溶剂都有较好的抵抗力,已经被广泛应用于化工防腐的各个方面。正在取代碳钢;不锈钢;木材;有色金属等材料。 (3)电性能好:FRP是优良的绝缘材料,用于制造绝缘体,

环氧树脂优缺点

热固性树脂基复合材料是目前研究得最多、应用得最广的一种复合材料。它具有质量轻、强度高、模量大、耐腐蚀性好、电性能优异、原料来源广泛,加工成型简便、生产效率高等特点,并具有材料可设计性以及其他一些特殊性能,如减振、消音、透电磁波、隐身、耐烧蚀等特性,已成为国民经济、国防建设和科技发展中无法取代的重要材料。在热固性树脂基复合材料中使用最多的树脂仍然是酚醛树脂、不饱和聚酪树脂和环氧树脂这三大热固性树脂。这三种树脂阶性能各有特点:酚醛树脂的耐热性较高、耐酸性好、固化速度快,但较脆、需高压成型;不饱和聚酪树脂的工艺性好、价格最低,但性能较差;环氧树脂的粘结强度和内聚强度高,耐腐蚀性及介电性能优异,综合性能最好,但价格较贵。因此,在实际工程中环氧树脂复合材料多用于对使用性能要求高的场合,如用作结构材料、耐腐蚀材料、电绝缘材料及透波材料等。 1、环氯树脂复合材料的分类 环氧树脂复合材料(简称环氧复合材料,也有人称为环氧增强塑料)的品种很多,其名称、含义和分类方法也没有完全统一,但大体上讲可按以下方法分类。 (1)按用途可分为环氧结构复合材料、环氧功能复合材料和环氧功能型结构复合材料。结构复合材料是通过组成材料力学性能的复合,使之能用作受力结构材料,并能按受力情况设计和制造材料,以达到材料性能册格比的最佳状态。功能复合材料是通过组成材料其他性能(如光、电、热、耐腐蚀等)的复合,以得到具有某种理想功能的材料。例如环氧树脂覆铜板、环氧树脂电子塑封料、雷达罩等。需要指出的是,无论使用的是材料的哪一种功能性,都必须具有必要的力学性能,否则再好的功能材料也没有实用性。已有些功能材料同时还要有很高的强度,如高压绝缘子芯棒,要求绝缘性和强度都很高,是一种绝缘性结构复合材料。 (2)按成型压力可分为高压成型材料(成型压力5—30MPa),如环氧工程塑料及环氧层压塑料;低压成型材料(成型压力<2.5MPa),如环氧玻璃钢和高性能环氧复合材料。玻璃钢和高性能复合材料由于制件尺寸较大(可达几个㎡)、型面通常不是平面,所以不宜用高压成型。否则模具造价太高,压机吨位太大,因而成本太贵。 (3)按环氧复合材料阶性能、成型方法、产品及应用领域的特点,并照顾到习惯上的名称综合考虑可分为:环氧树脂工程塑料、环氧树脂层压塑料、环氧树脂玻璃钢(通用型环氧树脂复合材料)及环氧树脂结构复合材料。 3、环氧树脂复合材料的特性 (1)密度小,比强度和比模量高。高模量碳纤维环氧复合材料的比强度为钢的5倍、铝合金的4倍,钻合金的3.2倍。其比模量是钢、铝合金、钦合金的5.5—6倍。因此,在强度和刚度相同的情况下碳纤维环氧复合材料构件的重量可以大大减轻。这在节省能源、提高构件的使用性能方面,是现有任何金属材料所不能相比的。 (2)疲劳强度高,破损安全特性好。环氧复合材料在静载荷或疲劳载荷作用下,首先在最薄弱处出现损伤,如横向裂纹、界面脱胶、分层、纤维断裂等。然而众多的纤维和界面会阻

不饱和树脂及玻璃纤维增强复合材料

不饱和树脂及玻璃纤维增强复合材料(玻璃钢)的制备 实验目的 1、 了解线形不饱和聚酯树脂及玻璃纤维复合材料的制备原理和影响因素。 2、 掌握线形不饱和聚酯树脂合成和增强复合材料制备实验的操作技能;熟悉树脂的特性测 试和玻璃钢试样的性能实验方法。 实验原理 不饱和聚酯树脂主要是有不饱和二元酸(酐)、饱和二元酸(酐)和二元醇,以一定的摩尔比在惰性气氛保护下,经酯化缩聚而制得线型聚合物,其聚酯主链上具有重复的酯键制制品及不饱和双键,即称不饱和树脂,化学结构式如下: O R C O O R O C CH 制得的不饱和树脂和聚酯树脂主要用于制造玻璃纤维增强复合材料,也制造装饰涂料和油 漆、压塑粉与片状和块状模压复合材料制品。 仪器安装 图1:手糊成型 图2:浇注成型剖面图

主要设备一览表 表1:室温固化凝胶时间测定方法 名称/序号 树脂理论量 g 树脂实际量 g 引发剂理论量g 引发剂实际量g 促进剂理论量g 促进剂实际 量g 1 2 3 4 5 50 50 50 50 50 50.35 49.74 50.39 49.61 49.99 2.014 1.9896 2.0156 1.9844 1.9996 2.01 1.99 2.01 2.00 2.03 1.007 0.4974 0.3524 0.2481 0.1499 1.01 0.50 0.35 0.26 0.15 表2:浇注成型配方 表3:手糊成型配方 表4:室温固化凝胶时间测定设备 表5:浇注成型设备 表6:手糊成型设备 名称 理论用量g 实际用量g 树脂 引发剂 促进剂 100 4 1.02 100.33 4.01 1.01 名称 理论用量g 实际用量g 树脂 引发剂 促进剂 41.88 1.6724 0.1881 41.81 1.69 0.19 序号 名称 规格 数量 1 2 3 4 5 铁板 玻璃纸 橡胶管 玻璃棒 夹子 180*180 150*350 2个 1张 1根 1根 6个 序号 名称 数量 1 2 3 纸杯 玻璃棒 手表 5个 5根 1块 序号 名称 规格 数量 1 2 3 4 铁板 玻璃纸 玻璃布 刷子 180*180 200*200 180*180 2块 2张 10张 1个

玻璃纤维复合材料的十大应用领域

玻璃纤维复合材料的十大应用领域 玻璃纤维(英文原名为:glassfiber或fiberglass )是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差。它是以玻璃球或废旧玻璃为原料经高温熔制、拉丝、络纱、织布等工艺制造成的,其单丝的直径为几个微米到二十几米个微米,相当于一根头发丝的1/20-1/5 ,每束纤维原丝都由数百根甚至上千根单丝组成。玻璃纤维通常用作复合材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等国民经济各个领域。 一、船艇 玻璃纤维复合材料具有耐腐蚀性、重量轻、增强效果优越等特点,被广泛用于制造游艇船体、甲板等。 二、电子电气

玻璃纤维增强复合材料在电子电气方面的运用主要是利用了它的电绝缘性、防腐蚀性等特点。复合材料在电子电气领域的应用主要有以下几个部分: 1、电器罩壳:包括电器开关盒、电器配线盒、仪表盘罩等。 2、电器原件与电部件:如绝缘子、绝缘工具、电机端盖等。 3、输线电包括复合电缆支架、电缆沟支架等。 三、风能

风能是无污染、可持续的能源之一,采用风能发电是开发新能源的一种途径。玻璃纤维具有优越的增强效果、重量轻等特点,是用于制造玻璃钢叶片和机组罩的一种良好材料。 四、航空航天、军事国防 由于航空航天、军事等领域对材料的特殊要求,玻纤复合材料所具有的重量轻,强度高,耐冲击及阻燃性好等特色能为这些领域提供了广泛的解决方案。 复合材料在这些领域的应用如下: --小飞机机身 --直升机外壳和旋翼桨叶 --飞机次要结构部件(地板、门、座椅、辅助油箱) --飞机发动机零件

环氧树脂复合材料

环氧树脂复合材料 复合材料是由基体材料和增强材料复合而成的多相体系固体材料。它充分发挥了各组分材料的特点和潜在能力,通过各组分的合理匹配和协同作用,呈现出原来单一材料(均质材料、单相材料)所不具有的优异的新性能,从而达到对材料某些性能的综合要求。复合材料的出现在材料发展史上具有划时代的意义。受到国内外的极大重视。其发展之迅猛在历史上是空前的。已在工业、农业、交通、军事、科学技术和人民生活等各个领域广为应用。尤其是在航空、航天等尖端技领域中已成为不可缺少的重要的结构材料。无怪乎有人认为21世纪将进入“复合材料时代”。 热固性树脂基复合材料是目前研究得最多、应用得最广的一种复合材料。它具有质量轻、强度高、模量大、耐腐蚀性好、电性能优异、原料来源广泛,加工成型简便、生产效率高等特点,并具有材料可设计性以及其他一些特殊性能,如减振、消音、透电磁波、隐身、耐烧蚀等特性,已成为国民经济、国防建设和科技发展中无法取代的重要材料。在热固性树脂基复合材料中使用最多的树脂仍然是酚醛树脂、不饱和聚酪树脂和环氧树脂这三大热固性树脂。这三种树脂阶性能各有特点:酚醛树脂的耐热性较高、耐酸性好、固化速度快,但较脆、需高压成型;不饱和聚酪树脂的工艺性好、价格最低,但性能较差;环氧树脂的粘结强度和内聚强度高,耐腐蚀性及介电性能优异,综合性能最好,但价格较贵。因此,在实际工程中环氧树脂复合材料多用于对使用性能要求高的场合,如用作结构材料、耐腐蚀材料、电绝缘材料及透波材料等。 1、环氯树脂复合材料的分类 环氧树脂复合材料(简称环氧复合材料,也有人称为环氧增强塑料)的品种很多,其名称、含义和分类方法也没有完全统一,但大体上讲可按以下方法分类。 (1)按用途可分为环氧结构复合材料、环氧功能复合材料和环氧功能型结构复合材料。结构复合材料是通过组成材料力学性能的复合,使之能用作受力结构材料,并能按受力情况设计和制造材料,以达到材料性能册格比的最佳状态。功能复合材料是通过组成材料其他性能(如光、电、热、耐腐蚀等)的复合,以得到具有某种理想功能的材料。例如环氧树脂覆铜板、环氧树脂电子塑封料、雷达罩等。需要指出的是,无论使用的是材料的哪一种功能性,都必须具有必要的力学性能,否则再好的功能材料也没有实用性。已有些功能材料同时还要有很高的强度,如高压绝缘子芯棒,要求绝缘性和强度都很高,是一种绝缘性结构复合材料。 (2)按成型压力可分为高压成型材料(成型压力5—30MPa),如环氧工程塑料及环氧层压塑料;低压成型材料(成型压力<2.5MPa),如环氧玻璃钢和高性能环氧复合材料。玻璃钢和高性能复合材料由于制件尺寸较大(可达几个㎡)、型面通常不是平面,所以不宜用高压成型。否则模具造价太高,压机吨位太大,因而成本太贵。

玻璃纤维增强塑料成型工艺

玻璃纤维增强塑料成型工艺 ----------------------- 第一章绪论 FRP( Fiberglass Rei nforced Plastic S 或GRP( GlassRei nforced PlasticS 或GFRP (Glass fibre reinforced plastics 。玻璃钢是玻璃纤维增强塑料的习惯叫法,是一种新型工程材料。它是以玻璃纤维及其制品作为增强材料,以合成树脂作基体材料,通过一定的成型工艺而制成的一种复合材料。三十年代在美国出现后,到二 次世界大战期间由于战争的需要才发展起来。战后逐渐转到了民用工业方面,并 获得了迅速发展。由于玻璃钢具有许多特殊优良的性能(如机械强度高、比重 小、耐化学腐蚀、绝缘性能好等等)。因此被普遍应用于火箭、导弹、航空、造船、汽车、化工、电器、铁路以及一般民用等工农业部门中。目前世界各国都非常重视研究和发展玻璃钢材料,迄今为止,人们不但研究试制成功各种各样有特殊性能的玻璃钢材料产品,而且研究成功各种各样的成型工艺。 第二章玻璃钢基础知识 1、玻璃钢的发展历史 1940年,美国一家实验室的技术人员不小心将加有催化剂的不饱和聚酯树脂倾倒在玻璃布上,第二天发现固化后的这种复合材料强度很高,玻璃钢遂应运 而生。1942年第一艘玻璃钢渔船问世;玻璃钢管试制成功并投入使用。二战其间,美国以手工接触成型与抽真空固化工艺,制造了收音机雷达罩与副油箱;利 用胶接技术制作了玻璃钢夹芯结构的收音机机翼。 1946年发明了以纤维缠绕法生产压力容器的方法。 1949年预混料DMC(BMC )模压玻璃钢面试。 1950年真空袋与压力袋成型工艺研究成功;手糊环氧玻璃钢直升收音机旋翼面市。 20世纪50年代末,前苏联成功将玻璃钢用于炮弹引信体等军品及化工器材的生产。 1961年德国率先开发片状模塑料(SMC )及其模压技术。 1963年玻璃钢波形瓦开始机械化生产,美、法、日先后有高生产率的边疆生产线投生。 1972年美国研究成功干法生产的热塑性片状模塑料。 20世纪80年代,开发了湿法生产的热塑性片大辩论模塑料。瑞士、奥地利离心法成型玻璃钢管得到发展;意大利工业化纤维缠绕玻璃钢管生产线技术成熟,产品大量使用于石化、轻工、轮船等领域。 1956年,时任重工业部副部长、后任建材工业部长的赖际发同志赴前苏联考察玻璃钢。俄文称玻璃钢为“玻璃塑料” (CTEKJIOIIJIACTHHK ),当时中文里没有相应的词。想到材料内有玻璃,强度又高,就叫“玻璃钢”。这就是“玻璃钢” 一词的由来。

树脂性能对比以及玻璃纤维介绍

树脂性能介绍以及玻璃纤维简介 不饱和聚酯树脂 不饱和聚酯是不饱和二元羧酸(或酸酐)或它们和饱和二元羧酸(或酸酐)组成的混合酸和多元醇缩聚而成的,具有酯键和不饱和双键的线型高分子化合物。通常,聚酯化缩聚反应是在190~220℃进行,直至达到预期的酸值(或粘度)。在聚酯化缩反应结束后,趁热加入一定量的乙烯基单体,配成粘稠的液体,这样的聚合物溶液称之为不饱和聚酯树脂。 物理性质 1、相对密度在1.11~1.20左右,固化时体积收缩率较大 2、耐热性。绝大多数不饱和聚酯树脂的热变形温度都在50~60℃,一些耐热性好的树脂则可达120℃ 3、力学性能。不饱和聚酯树脂具有较高的拉伸、弯曲、压缩等强度 耐化学腐蚀性能。不饱和聚酯树脂耐水、稀酸、稀碱的性能较好, 4、耐有机溶剂的性能差,同时,树脂的耐化学腐蚀性能随其化学结构和几何开关的不同,可以有很大的差异。 5、介电性能。不饱和聚酸树脂的介电性能良好。 化学性质 不饱和聚酯是具有多功能团的线型高分子化合物,在其骨架主链上具有聚酯链键和不饱和双键,而在大分子链两端各带有羧基和羟基。 乙烯基树脂 乙烯基树脂又称为环氧丙烯酸树脂,是60年代发展起来的一类新型树脂,其特点是聚合物中具有端基不饱和双键。 乙烯基树脂具有较好的综合性能:①由于不饱和双键位于聚合物分子链的端部,双键非常活泼,固化时不受空间障碍的影响,可在有机过氧化物引发下,通过相邻分子链间进行交联固化,也可和单体苯乙烯其聚固化;②树脂链中的R基团可以屏蔽酯键,提高酯键的耐化学性能和耐水解稳定性;③乙烯基树脂中,每单位相对分子质量中的酯键比普通不饱和聚酯中少35%~50%左右,这样就提高了该树脂在酸、碱溶液中的水解稳定性; ④树脂链上的仲羟基和玻璃纤维或其它纤维的浸润性和粘结性从而提高复合材料的强 度;⑤环氧树脂主链,它可以赋和乙烯基树脂韧性,分子主链中的醚键可使树脂具有优异的耐酸性。 环氧树脂 环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合物,除个别外,它们的相对分子质量都不高。环氧树脂的分子结构是以分子链中含有活泼的环 氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。由于分子 结构中含有活泼的环氧基团,使它们可和多种类型的固化剂发生交联反应而形成不 溶、不熔的具有三向网状结构的高聚物。 环氧树脂的性能和特性 1、形式多样。各种树脂、固化剂、改性剂体系几乎可以适应各种使用对形式提出的要求,其范围可以从极低的粘度到高熔点固体。 2、固化方便。选用各种不同的固化剂,环氧树脂体系几乎可以在0~180℃温度范围内固化。 3、粘附力强。环氧树脂分子链中固有的极性羟基和醚键的存在,使其对各种物质具有很高的粘附力。环氧树脂固化时的收缩性低,产生的内应力小,这也有助于提高粘附强度。 4、收缩性低。环氧树脂和所用的固化剂的反应是通过直接加成反应或树脂分子中环氧基的

轻型PP玻璃纤维复合材料

轻型PP玻璃纤维复合材料 由聚丙烯纤维和玻璃纤维掺和的毛状物制成的一种轻型增强热塑性复合材料(LWRT)已由瑞士的QPC公司生产出来。由于具有膨松率高、透气性好以及成本低的特点而使其成为轻型GMT 复合材料的理想替代品。 瑞士Quardrant Plastics Composites (QPC)公司推出了一系列轻型的增强热塑性复合材料(LWRT),包括片材和预制坯料,商品名为Symalite。由于LWRT复合材料密度较小,其每单位重量产生的硬度要比传统的玻璃纤维毡增强热塑性(GMT)片材高,同时,这种材料与金属、GMT以及传统的PP和尼龙长纤维热塑性(LFT)复合物相比,具有可减轻重量、设计更灵活以及成本更低的优势,因此使其成为轻型GMT 复合材料的理想替代品。 据QPC公司介绍,通过采用低压成型技术,这种新型复合材料很容易粘附于织物、纱布、泡沫材料、干粉涂膜以及坚固的PP表面,因此可以很方便地进行模内装饰。此外,还可以利用一种粘附薄膜而使Symalite材料粘接在涂铝线圈的片材上,目前,QPC公司正在考虑将这种铝/塑层压制件用于制造汽车的车顶模塑件。 Symalite复合材料适合于制造汽车车底屏蔽防护装置、承重板、车顶内衬、车门装饰、行李架、车顶模塑件、发动机盖以及车后行李箱盖等。 新颖的生产工艺 通常,GMT 复合材料片材是由PP粉末和切碎的玻璃纤维复合而成。与GMT复合材料的制造工艺所不同的是,QPC公司的LWRT轻型复合材料是采用织物生产所用的干工艺技术来生成由PP和玻璃纤维掺和的毛状物。在连续生产过程中,该掺和毛状物被加热到高于PP 熔点的温度,再将其层压到粘接膜或纯PP膜的表面层,最后切成坯料。考虑到使用被切碎的过短的玻璃纤维模制零件时往往会发生树脂从纤维中分离的现象,因此该公司选用了长度为78mm的玻璃纤维以生成防止分离的3D基质。QPC公司声称,该工艺可使玻璃纤维很好地分布在PP中,同时也能很好地控制材料的膨松过程。 当片材遇热时会膨松扩展而使厚度达到原来的5倍,这是因为玻璃纤维由压缩状态的固结坯料中舒展开来所导致的。因此,QPC公司通过改变玻璃纤维的含量来调整片材的膨松度。一般,当玻璃纤维含量较高时,膨松度会增加,密度减小,从而使最终产品的比硬度(硬度与重量之比)升高。 在用Symalite坯料制作产品时,QPC公司采用了低压“热冲压”工艺。该工艺使用了一种双面型铝质板模具,据说,该模具的成本和研制周期都比钢质模具要少得多。使用这种模具以后,坯料在成型过程中只产生很小的变形,所生产出的最终制品在不同的壁厚处具有不同的强度,厚的地方通常是硬度很高,而薄的地方虽然硬度不高但抗拉强度却很高。 在德国,QPC公司能够生产出玻璃纤维含量为20%~60%的片材,目前玻璃纤维含量等级为40%~55%的产品已实现了商品化。其中,40%玻璃纤维含量的片材适合于制造车底屏蔽装置、承重板以及可开式车顶;55%玻璃纤维含量的片材适合于制造车顶内衬。以上这些层压制件的标准尺寸有22 in、30 in、45 in和90in(1in=25.4mm),当然也可以按照要求进行定制。 商业应用的成功 位于德国曼海姆市的Seeber AG公司用Symalite复合材料为BMW公司制造了车底屏蔽防护装置,这是该材料首次成功地实现了商业化应用。这种车底屏蔽防护装置是由4个玻璃纤维含量为40%的Symalite部件组成。由于它们是用未增强的PP膜从2个面层压而成的,因此其耐冲击、耐磨损以及防潮能力都得到了提高。与过去的GMT组件相比,其重量减轻了30%,阻力系数也得到了减小,而且这种产品还具有良好的消音功能。 据介绍,制造该装置的模具是一个包括4部分组件的多腔模具,该模具中带有一个可在

长玻纤增强聚丙烯成型工艺

长玻纤增强聚丙烯成型工艺 发布时间:2011-01-13 ;浏览次数:127 返回列表 长玻纤增强热塑性复合材料作为当今玻璃纤维增强材料的一个发展趋势,受到了国内外各大塑料改性生产厂商的高度重视,特别是长玻纤增强pp材料,由于其很高的性价比优势,更被业界所广泛看好。目前这些厂商纷纷投入大量的人力、物力进行该类型材料的生产研发和市场开拓的工作。 长玻纤增强pp产品定义 长玻纤增强pp产品是一种长玻纤增强pp的改性塑料材料。该材料一般为长度12毫米或25毫米,直径3毫米左右的柱状粒子。在这种粒子中,玻璃纤维有着和粒子同样的长度,玻璃纤维的含量可以从20%到70%不等,粒子颜色可以根据客户要求进行配色。该粒子一般可以用于注射及模压工艺,可以生产结构件或半结构件,应用的领域包括汽车、建筑、家电、电动工具等等。 长玻纤增强pp性能优势 lft粒料在进入注射机料斗时,内部的纤维长度和粒子长度相等,为0.5-3公分左右。随着注射机螺杆的输送、注射口的流体冲击以及在材料模腔内的流动等工艺条件的介入,玻璃纤维最后在制品中的平均长度为4毫米左右。相对于传统的短玻纤增强热塑性塑料(这种粒子在制品中的纤维长度在200μ左右),lftp材料在制品中保留了极长的玻纤长度,因此赋予了材料更好的力学性能,使得增强后通用pp材料的性能能够达到或接近增强工程塑料如pa或ppo的性能。 长玻纤增强pp性价比优势 由于lft材料类似于增强工程塑料的卓越性能以及pp基材相对于工程塑料基材极其低廉的价格成本,因此赋予了该材料极佳的性价比:相对于短纤增强pa材料而言,使用lft材料可在材料成本上节约40~50%左右;相对于短纤增强ppo材料而言,使用lft材料可在材料成本上节约100%

SMTC 5 310 041 长玻璃纤维增强聚丙烯材料要求(20140116)

SMTC 长玻璃纤维增强聚丙烯材料要求 Long glass fiber reinforced polypropylene material requirements 发 布Issue 上汽集团技术中心技术标准化委员会 Technical Standardization Committee of SAIC MOTOR Technical Center

前言 为规范车用长玻璃纤维增强聚丙烯材料要求,特制定本标准。 请注意本文件的某些内容可能涉及专利,上汽集团不承担识别这些专利的责任。 当中英文产生疑义时,以中文为准。 本标准由材料分标委提出。 本标准由SMTC标准化技术委员会批准。 本标准由标准化工作组负责标准化审核及归口管理。 本标准起草部门:质量保证部。 本标准主要起草人:邓家战、蒋中、胡仁其。 本标准于2014年1月16日首次批准发布,2014年1月17日实施。 Foreword This standard describes the requirements for Long glass fiber reinforced polypropylene material requirements. This standard is in Chinese and English. If in doubt, the Chinese version is the Master. This standard was proposed by material sub-committee. This standard was approved by the SMTC Technical Standardization Committee. The Standardization Working Team is responsible for the standardization approval and overall management of this standard. The draft department of this standard: Quality assurance department. The main drafters of this standard: Deng Jiazhan, Jiang Zhong, Hu Renqi. This standard was second approved and issued on Jan, 16. 2014 and it will be implemented on Jan, 17. 2014.

玻璃纤维增强环氧树脂基复合材料的制备

综合实验研究 玻璃纤维增强环氧树脂基复合材料的制备 院系:航空航天工程学部 专业:高分子材料与工程专业 指导教师:于祺 学生姓名:王娜

目录 第1章概述 1.1 玻璃纤维增强环氧树脂基复合材料的研究现状 1.2 本次试验的目的及方法 第2章手糊法制备玻纤/环氧树脂复合材料 2.1实验原料 2.1.1环氧树脂 2.1.2玻璃纤维 2.1.3咪唑固化剂 2.1.4活性稀释剂 2.2手糊成型简介 2.4实验部分 2.4.1实验仪器 2.4.2实验步骤 第3章力学性能测试 3.1剪切强度 3.2弯曲强度 3.3实验数据的分析 3.3.1 浸胶的用量及均匀度 3.3.2 固化时间与温度的影响 3.3.3 活性稀释剂的用量 第4章结论与展望 4.1结论与展望 参考文献

第1章概述 1.1 玻璃纤维增强环氧树脂复材的研究现状 EP/玻璃纤维(GF)复合材料是目前研究比较成熟、应用最广的一种复合材料。EP/GF复合材料具有质量轻、强度高、模量大、耐腐蚀性好、电性能优异、原料来源广泛、工艺性好、加工成型简便、生产效率高等特点,并具有材料可设计性及特殊的功能性如屏蔽电磁波、消音等特点,现已成为国民经济、国防建设和科技发展中无法代替的重要材料。且复合材料的研究水平已成为一个国家或地区科技经济水平的标准之一。目前美,日,西欧的水平较高,北美,欧洲,日本的产量分别占33%,32%,30%。毋庸置疑,EP/玻璃纤维(GF)复合材料的质量轻,高强度等优于金属的特性,会在某些领域更广泛的使用,目前复材的粘接性能与力学性能成为主要的研究方面。目前主要的成型方法有手糊成型,缠绕成型,热压管成型,RTM成型,拉挤成型。 1.2 本次试验的目的及方法 实验由学生自行设计采用一种固化体系,用手糊成型方法制备EP/玻璃纤维(GF)复合材料,再测量材料的力学性能如,弯曲,剪切。目的在于1,了解材料科学实验所涉及到的设备的基本使用。 2,掌握环氧树脂固化体系的配置及设计。 3,对手糊成型操作了解,及查找文献完成论文的能力。 就此要求我们第2组采用环氧树脂E-44,20cm×20cm的玻璃纤维布15张,用咪唑固化剂并加入稀释剂防止体系过粘。通过查阅相关文献,确定咪唑固化环氧树脂的最佳固化条件:60℃/2h+80℃/2h,制备了玻璃纤维增强环氧树脂复合材料,之后将制备的样品进行力学性能测试,其层间剪切强度为5.750Mpa,弯曲强度为127.64Mpa。

长玻纤增强聚丙烯应用介绍

长玻纤增强聚丙烯/PP+LGF 作为汽车模块载体材料,长玻纤增强聚丙烯的开发成功使之不只被应用在马自达汽车上。最近,新福特Fiesta车型前门模块也相继由Owens Coring汽车公司开发成功,该车门模块集成了多种功能元件,诸如门锁、车门玻璃升降器、扬声器、防盗装置等,采用的载体材料是DSM公司的牌号为StaMax P30YM240长玻纤增强聚丙烯材料。在开发该车门模块的过程中,一些专家对注射成型用长玻纤增强聚丙烯材料的性能进行了深入的研究,特别是对该种材料的抗蠕变性能进行了研究,结果表明,长玻纤增强聚丙烯材料即使经受100℃的高温也不会产生明显的蠕变,且比短玻纤增强聚丙烯有着更好的抗蠕变性能。在高温和长时间低负荷条件下,长玻纤增强聚丙烯材料不会产生变形,可使其制品具有良好的尺寸稳定性,这可从批量生产的新福特Fiesta车型前门模块的尺寸实测结果中得到证实。目前,随着汽车零部件模块化日益引起人们的重视且越来越多地得到应用,长玻纤增强聚丙烯无疑将成为一种理想的模块载体材料,为此有人预言,LGFPP材料将成为GMT材料作为汽车模块应用的替代品。以聚丙烯树脂为基材的不同纤维增强的热塑性复合材料,无论是GMT、SR-PP还是LGFPP,它们都有着一些共同的特点,即:与金属材料相比,它们具有密度低、重量轻、比强度高、耐腐蚀、易成型等特点;与热固性复合材料SMC和手糊玻璃钢相比,它们具有成型周期短、冲击韧性好、可再生利用等特点。尤其是可再生利用的特性使得这些材料在环保要求日益严格的今天具有更广阔的应用前景。 长纤PP的比重比尼龙PA轻20%,比铝合金轻62%。比重轻20%的优势在于是同样体积的长纤PP产品可以比尼龙轻20%,以同样重量的长纤PP原材料可以比尼龙多生产20%的产品。长纤PP替代尼龙加玻纤优势最为明显。 _ 独有的无取向的纤维网络结构使材料高低温度条件下及高低温高频交变的环境中的高力学性能保持性; _ 优异的抗冲击性能,高模量、高强度、低翘曲、与金属相近的热膨胀系数; _ 各向同性,低收缩率,低蠕变,高尺寸稳定性; _ 优异的耐磨和耐疲劳性; _ 优异的耐化学性; _ 优异的表面光洁度; _ 优异的成型加工性能:高流动,易脱模,对螺杆伤害低。 汽车工业:前端框架、车身门板模块、仪表盘骨架、冷却风扇及框架、蓄电池托架、保险杠骨架、座椅骨架、发动机罩壳、脚踏板、挡泥板、备用轮胎架等几十多种。 家电行业:洗衣机滚筒、叶轮、洗衣机三角支架、空调导风扇等,用于全面取代短纤增强PA、ABS材料或金属材料。 机电行业:导流管扇叶和电机过滤器罩、风叶/同轴气缸离合器辅助件/高承载力、高扬程潜水电机、水泵/止推轴承、导轴承/机车导轨、真空泵、压缩机转子、线圈轴等。 通讯电子电器行业:通讯、电子行业高精度接插件/点火器零组件、继电器基座/微波炉变压器线圈架、框架/电气联结器、继电器、电磁阀封装件/扫描仪组件等。 石油化工:防腐耐磨部件、平台格栅、过滤机、反应器内件等。 其他:电动工具外壳、自行车骨架、滑雪板、地面机车脚踏板、民用安全鞋头、安全头盔、水泵外壳及叶轮等等。 长玻纤增强PP市场应用

长玻纤市场概况

长玻纤市场概况 1) LFT 粒料供应商: 上海杰事杰新材料股份有限公司; 广州金发科技股份有限公司; 浙江俊尔新材料有限公司; LG 化学公司; 南京百事得实业有限公司; 青岛海尔集团; RTP 公司; 沙特基础工业公司(Sabic ); 三星道达尔公司; Taizhou Yong Sheng Eng; 泰科纳公司; 浙江坚定材料有限公司。 江苏世和复合材料有限公司 苏州银羊新材料股份有限公司 常州金欧汽车内饰新材料有限公司 江苏纤强复合材料有限公司 公司长玻纤增强PP 历史: 长玻纤增强热塑性复合材料作为当今玻璃纤维增强材料的一个发展趋势,受到了国内外各大塑料改性生产厂商的高度重视,特别是长玻纤增强PP 材料,由于其很高的性价比优势,更被业界所广泛看好。目前这些厂商纷纷投入大量的人力、物力进行该类型材料的生产研发和市场开拓的工作。 针对这一趋势,我公司结合自身的优势,同时吸取国外大公司先进的技术经验,于2006年和一家著名的美国公司——欧文斯科宁(中国)投资有限公司共同推出了长玻纤增强PP 系列材料。该系列材料采用了目前世界上独一无二的线缆包覆技术(“WIRE COATING”),具有极高的生产效率、稳定可靠的产品材料性能以及较低的生产成本等特点。 长玻纤增强PP 产品定义: 长玻纤增强PP 产品是一种长玻纤增强PP 的改性塑料材料。该材料一般为长度12毫米或25毫米,直径3毫米左右的柱状粒子。在这种粒子中,玻璃纤维有着和粒子同样的长度,玻璃纤维的含量可以从20%到70%不等,粒子颜色可以根据客户要求进行配色。该粒子一般可以用于注射及模压工艺,可以生产结构件或半结构件,应用的领域包括汽车、建筑、家电、电动工具等等。 长玻纤增强PP 性能优势: LFT 粒料在进入注射机料斗时,内部的纤维长度和粒子长度相等,为半英寸。随着注射机螺杆的输送、注射口的流体冲击以及在材料模腔内的流动等工艺条件的介入,玻璃纤维最后在制品中的平均长度为4毫米左右。相对于传统的短玻纤增强热塑性塑料(这种粒子在制品中的纤维长度在200μ左右),LFTP 材料在制品中保留了极长的玻纤长度,因此赋予了材料更好的力学性能,使得增强后通用PP 材料的性能能够达到或接近增强工程塑料如PA 或PPO 的性能。 2) LFT 粒料模塑厂商: 南京LG 熊猫电器有限公司; 三星电气公司; 延锋伟世通汽车饰件系统有限公司; 江阴万奇内饰系统有限公司; 长春英利汽车部件有限公司; 宁波华翔集团; 常州市天佐车业有限公司; 芜湖荣事达塑胶有限公司; 利昌汽车配件有限公司; 青岛海尔集团; 美的荣事达合资公司。

环氧树脂复合材料的分类组成特性以及应用

环氧树脂复合材料的分类组成特性以及应用 日期: 2008-03-03 复合材料是由基体材料和增强材料复合而成的多相体系固体材料。它充分发挥了各组分材料的特点和潜在能力,通过各组分的合理匹配和协同作用,呈现出原来单一材料(均质材料、单相材料)所不具有的优异的新性能,从而达到对材料某些性能的综合要求。复合材料的出现在材料发展史上具有划时代的意义。受到国内外的极大重视。其发展之迅猛在历史上是空前的。已在工业、农业、交通、军事、科学技术和人民生活等各个领域广为应用。尤其是在航空、航天等尖端技领域中已成为不可缺少的重要的结构材料。无怪乎有人认为21世纪将进入“复合材料时代”。 热固性树脂基复合材料是目前研究得最多、应用得最广的一种复合材料。它具有质量轻、强度高、模量大、耐腐蚀性好、电性能优异、原料来源广泛,加工成型简便、生产效率高等特点,并具有材料可设计性以及其他一些特殊性能,如减振、消音、透电磁波、隐身、耐烧蚀等特性,已成为国民经济、国防建设和科技发展中无法取代的重要材料。在热固性树脂基复合材料中使用最多的树脂仍然是酚醛树脂、不饱和聚酪树脂和环氧树脂这三大热固性树脂。这三种树脂阶性能各有特点:酚醛树脂的耐热性较高、耐酸性好、固化速度快,但较脆、需高压成型;不饱和聚酪树脂的工艺性好、价格最低,但性能较差;环氧树脂的粘结强度和内聚强度高,耐腐蚀性及介电性能优异,综合性能最好,但价格较贵。因此,在实际工程中环氧树脂复合材料多用于对使用性能要求高的场合,如用作结构材料、耐腐蚀材料、电绝缘材料及透波材料等。 1、环氯树脂复合材料的分类 环氧树脂复合材料(简称环氧复合材料,也有人称为环氧增强塑料)的品种很多,其名称、含义和分类方法也没有完全统一,但大体上讲可按以下方法分类。 (1)按用途可分为环氧结构复合材料、环氧功能复合材料和环氧功能型结构复合材料。结构复合材料是通过组成材料力学性能的复合,使之能用作受力结构材料,并能按受力情况设计和制造材料,以达到材料性能册格比的最佳状态。功能复合材料是通过组成材料其他性能(如光、电、热、耐腐蚀等)的复合,以得到具有某种理想功能的材料。例如环氧树脂覆铜板、环氧树脂电子塑封料、雷达罩等。需要指出的是,无论使用的是材料的哪一种功能性,都必须具有必要的力学性能,否则再好的功能材料也没有实用性。已有些功能材料同时还要有很高的强度,如高压绝缘子芯棒,要求绝缘性和强度都很高,是一种绝缘性结构复合材料。 (2)按成型压力可分为高压成型材料(成型压力5—30MPa),如环氧工程塑料及

相关主题
文本预览
相关文档 最新文档