当前位置:文档之家› 证明线段和差练习题

证明线段和差练习题

证明线段和差练习题
证明线段和差练习题

证明线段和差练习题

几何中有许多题目要证明一线段等于另两线段的和(或差),解决这类问题常用的方

法大体有五种,即,利用等量线段代换、截短法、接长法、利用面积证明、旋转等五种。下面分别列举几例逐一说明:

一、利用等量线段代换:证一线段等于另两线段的和(或差),只需证这条全线段的两部分,分别等于较短的两条线段,问题就解决了。

例1已知:如图,在△ABC 中,∠B 和∠C 的角平分线BD 、CD 相交于一点D ,过D 点作EF ∥BC 交AB 与点E ,交AC 与点F 。求证:EF=BE+CF

二、截短法或接长法:所谓截短法就是将长线段,截成几条线段,然后分别证明这几条线段等于要证明中的较短的线段,最后代入达到目的。所谓接长法是将较短的两条线段适当的连接起来,然后再证这条线段等于第三条线段,从而达到目的。

例2:如图所示已知 △ABC 中,0

90C ∠=,AC=BC ,AD 是∠BAC 的 角平分线.求证:AB=AC+CD.

三、面积法:利用三角形的面积进行证明。

例3:所示已知△ABC中,AB=AC,P是底边上的任意一点,PE⊥AC,

PD⊥AB,BF是腰AC上的高,E、D、F为垂足。

求证:①PE+PD=BF

②当P点在BC的延长线上时,PE、PD、PF之间满足什么关系式?

四、旋转法:通过旋转变换,而得全等三角形是解决正方形中有关题目类型的一种技巧

例4、如图①,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°,则有结论EF=BE+FD成立;

(1)如图②,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC、CD上的点,且∠EAF是∠BAD的一半,那么结论EF=BE+FD是否仍然成立?若成立,请证明?若不成立,请说明理由。

(2)若将(1)中的条件改为:在四边形ABCD中,AB=AD,∠B+∠D=180°,延长BC到点E,延长CD到点F,使得∠EAF仍然是∠BAD的一半,则结论EF=BE+FD是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明。

练习题

1. 如图2—1—3所示已知 三角形ABC 中,AD 平分∠BAC ,∠B=2∠C ,

求证:AB+BD=AC.

2. 如图2—1—8所示已知△ ABC 中,0

90ACB ∠=,AC=BC ,E 是AB 上的一点,

BD ⊥CE ,AF ⊥CE ,垂足分别为D 、F ,∠B=2∠C ,求证:DF+AF=CF.

3、.已知:P 是等腰三角形ABC 的底边BC 上的任意一点,过P 作AB 、AC 的平行线交AC 、AB 于Q 、R.证明:PQ+PR 的值不随P 点的变化而变化.且PQ+PR 为定值.

5、 如图,所示已知 四边形ABCD 中,AD ∥BC ,且∠DAB 的角平分线AE 交CD 于E ,连结BE ,且BE 平分∠ABC ,求证:AD+BC=AB.

(word完整版)初中三角形总复习+中考几何题证明思路总结

初中三角形总复习 【知识精读】 1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2. 三角形中的几条重要线段: (1)三角形的角平分线(三条角平分线的交点叫做内心) (2)三角形的中线(三条中线的交点叫重心) (3)三角形的高(三条高线的交点叫垂心) 3. 三角形的主要性质 (1)三角形的任何两边之和大于第三边,任何两边之差小于第三边; (2)三角形的内角之和等于180° (3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和; (4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角; (5)三角形具有稳定性。 4. S S ABE ?? 基础。 5. 三角形边角关系、性质的应用 【分类解析】

例1. 锐角三角形ABC 中,∠C =2∠B ,则∠B 的范围是( ) A. 1020?<?∠∠B C 90 ∴>?390∠B ,即∠B >?30 ∴?<

初中几何经典培优题型(三角形)

全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等; (3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等; (4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: 1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”. 2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.

3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的 思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理. 4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是 全等变换中的“平移”或“翻转折叠” 5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相 等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 常见辅助线写法: ⑴过点A作BC的平行线AF交DE于F ⑵过点A作BC的垂线,垂足为D ⑶延长AB至C,使BC=AC ⑷在AB上截取AC,使AC=DE ⑸作∠ABC的平分线,交AC于D ⑹取AB中点C,连接CD交EF于G点

证题技巧之三——证明线段或角的和差倍分(推荐文档)

证题技巧之三一一证明线段或角的和差倍分 一、证明线段或角的倍分 1、方法:①长(或大)折半 ②短(或小)加倍 2、判断:两种方法有时对同一个题都能使用,但存在易繁的问 题,因此,究竟是折半还是加倍要以有利于利用已知条件为准。 3、添线:①为折半或加倍而添;②为折半或加倍后创造条件或 利于利用已知条件而添。 4、传递:在加倍或折半后,还不易或不能证明结论,则要找与 被证二量有等量关系的量来传递,或者添加这个量来传递。此时,添 线从两方面考虑:①造等量②为证等量与被证二量相等而添。参考例 4、例 5、例6。 例1 AD 是^ ABC 的中线,ABEF 和ACGH 是分别以AB 和 AC 为边向形外作的正方形。求证:FH=2AD / BAC+ / ACN=180 证明:延长AD 至N 使AD=DN 则ABNC 是平行四边形 CN=AB=FA AC=AH 又/ FAH+ / BAC=180 ???△ FAHY NCA ??? FH=AN 例 2、△ ABC 中,/ B=2 / C , AD 是高,M 是BC 边上的中点。 $ ???

1 求证:DM=2 AB / 2=Z B ???/ 2=2Z 1 ???/ 1 = / DNM 又 AN=DN=ND ? DM=2 A B 1 贝J BFAC ??? BF=AE ???△ AEC 心 BFD ?DF 二CE 二 CD=2CE 作业: 1、在△ABC 中,D 为BC 的中点,E 为AD 的中点,BE 的延长 1 线交AC 于F ,求证:AF=2 FC 2、AB 和AC 分别切? O 于B 和C, BD 是直径。求证/ BAC 二Z CBD 3、圆内接△ ABC 的AB=AC ,过C 作切线交AB 的延长线于D , DE 垂直于AC 的延长线于E 。求证:BD=2CE 例4从平行四边形的钝角顶点 A 向BC 边作垂线,垂足为E , 证明:取AB 的中点N ,连接MN 、DN 贝J MN // AC / 1 = / C ??? DM=DN 例 3 △ ABC 中,AB=AC , E 是 AB 的中点,D 在AB 的延长线上,且 DB=AC 。求证:CD=2CE 证明:过B 作CD 的中线BF V AB=AC , E 是AB 的中点 又 DB=AC

如何做几何证明题(方法情况总结)

如何做几何证明题 知识归纳总结: 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 一. 证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

二. 证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 例3. 如图3所示,设BP、CQ是的内角平分线,AH、AK分别为A到BP、CQ的垂线。求证:KH∥BC 例4. 已知:如图4所示,AB=AC,。 求证:FD⊥ED 三. 证明一线段和的问题 (一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法) 例5. 已知:如图6所示在中,,∠BAC、∠BCA的角平分线AD、

2020年全国各地中考数学压轴题按题型(几何综合)汇编(一)三角形中的计算和证明综合(原卷版)

2020全国各地中考数学压轴题按题型(几何综合)汇编 一、三角形中的计算和证明综合题 1.(2020贵州黔东南州)如图1,△ABC和△DCE都是等边三角形. 探究发现 (1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由. 拓展运用 (2)若B、C、E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长. (3)若B、C、E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD的长. 2.(2020黑龙江牡丹江)在等腰△ABC中,AB=BC,点D,E在射线BA上,BD=DE,过点E作EF∥BC, 交射线CA于点F.请解答下列问题:

(1)当点E 在线段AB 上,CD 是△ACB 的角平分线时,如图①,求证:AE +BC =CF ;(提示:延长CD ,FE 交于点M .) (2)当点E 在线段BA 的延长线上,CD 是△ACB 的角平分线时,如图②;当点E 在线段BA 的延长线上,CD 是△ACB 的外角平分线时,如图③,请直接写出线段AE ,BC ,CF 之间的数量关系,不需要证明; (3)在(1)、(2)的条件下,若DE =2AE =6,则CF = . 3.(2020武汉)问题背景:如图(1),已知△ABC ∽△ADE ,求证:△ABD ∽△ACE ; 尝试应用:如图(2),在△ABC 和△ADE 中,∠BAC =∠DAE =90°,∠ABC =∠ADE =30°,AC 与DE 相交于点F ,点D 在BC 边上, AD BD = √3,求 DF CF 的值; 拓展创新 如图(3),D 是△ABC 内一点,∠BAD =∠CBD =30°,∠BDC =90°,AB =4,AC =2√3,直接写出AD 的长. 4.(2020湖南常德)已知D 是Rt △ABC 斜边AB 的中点,∠ACB =90°,∠ABC =30°,过点D 作Rt △DEF 使∠DEF =90°,∠DFE =30°,连接CE 并延长CE 到P ,使EP =CE ,连接BE ,FP ,BP ,设BC 与DE 交于M ,PB 与EF 交于N . (1)如图1,当D ,B ,F 共线时,求证: ①EB =EP ; ②∠EFP =30°; (2)如图2,当D ,B ,F 不共线时,连接BF ,求证:∠BFD +∠EFP =30°.

上海初二数学几何证明练习之全等三角形

上海初中数学几何证明练习之全等三角形 一、填空题(每小题2分,共20分) 1.如图,△ABC ≌△DEB ,AB =DE ,∠E =∠ABC ,则∠C 的对应角为 ,BD 的对应边为 . 2.如图,AD =AE ,∠1=∠2,BD =CE ,则有△ABD ≌△ ,理由是 ,△ABE ≌ (第1题) (第 2题) (第4题) 3.已知△ABC ≌△DEF ,BC =EF =6cm ,△ABC 的面积为18平方厘米,则EF 边上的高是 cm. 4.如图,AD 、A′D′分别是锐角△ABC 和△A′B′C′中BC 与B′C′边上的高,且AB = A′B′,AD = A′D′,若使△ABC ≌△A′B′C′,请你补充条件 (只需填写一个你认为适当的条件) 5. 若两个图形全等,则其中一个图形可通过平移、 或 与另一个三角形 完全重合. 6. 如图,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向 的长度DF 相等,则∠ABC +∠DFE =___________度 (第6题) (第7题) (第8题) 7.已知:如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点, 则DN +MN 的最小值为__________. 8.如图,在△ABC 中,∠B =90o ,D 是斜边AC 的垂直平分线与BC 的交点,连结AD ,若 ∠DAC :∠DAB =2:5,则∠DAC =___________. 9.等腰直角三角形ABC 中,∠BAC =90o ,BD 平分∠ABC 交AC 于点D ,若AB +AD =8cm , M N D C B A E D C B A

线段和差问题证明

线段的和差证明的问题 已知在△ ABC 中,/ B=60°, AD CE 分别平分/ BAC 和/ BCA 求证:AE+CD=AC 如图,在正方形 ABCD 中,点E 在BC 上移动,/ EAF=45°, AF 交CD 于 F ,连接EF ,求证: BE+DF=EF 在厶ABC 中,AB=CB / ABC=90 , AD 为角平分线交 CB 于点 AE 的数量关系,请说明理由 已知在△ ABC 中,/ B=2/ C,Z BAC 的平分线 AD 交BC 于点D,求证: AB+BD=AC 如图,/ ACB=90 ,

变式:已知 AF 平分/ DAE 求证:AE=BE+DF 变式:已知 EF=BE+DF 求证:/ EAF=45 已知在△ ABC 的BC 边上取两点D F , E 、G,求证: AB=ED+GF 如图,点A B C D 顺次在O O 上 , 如图,已知△ ABC 和△ BED 都是等边三角形,且 A 、E 、D 在一条直线上,求证: AB=BD+CD

如图,在梯形 ABCD 中, AD//BC , / BAD 和/ ABC 的平分线交于 E,且CD 过点E ,求证:AB=AD+BC 在四边形ABCD 中,对角线AC 平分/ DAB 1) 如图 1,当/ DAB=120 时,/ B=Z D=90° 时,求证: AB+AD=AC 2) 如图2.当/ DAB=120时,/ B 与/ D 互补时,线段 AB AD AC 有怎样的数量关系?写 出你的猜想并证明 3) 如图3,当/ DAB=90时,/ B 与/ D 互补时,线段 AB AD AC 有怎样的数量关系?写 △ ABC 为等边三角形,点D 为BC 边上一点,连接AD,以AD 为边作等边△ ADE (图1),连接CE, 易证:CE+DC=AC 当点D 在BC 延长线(或反向延长线)上时,其他条件不变,如图 2、3两 种情况下,上述结论是否成立?若成立,给予证明。若不成立,请写出 CE DC AC 之间的 关系,并证明 如图,已知在厶 ABC 中,/ A=108° 出你的猜想并证明 ,AB=AC

初中几何证明常用方法归纳

初中几何证明常用方法 归纳 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

几何证明常用方法归纳 一、证明线段相等的常用办法 1、同一个三角形中,利用等角对等边:先证明某两个角相等。 2、不同的三角形中,利用两个三角形全等:A找到两个合适的目标三角形B确定已有几个 条件C还要增加什么条件。 3、通过平移或旋转或者折叠得到的线段相等。 4、线段垂直平分线性质:线段垂直平分线的一点到线段两个端点的距离相等。 5、角平分线的性质:角平分线上的一点到角两边的距离相等。 6、线段的和差。 二、求线段的长度的常用办法 1、利用线段的和差。 2、利用等量代换:先求其他线段的长度,再证明所求线段与已求的线段相等。 3、勾股定理。 三、证明角相等的常用办法 1、同(等)角的余(补)角相等。 2、两直线平行,内错角(同位角)相等。 3、角的和差 4、同一个三角形中,利用等边对等角:先证明某两条边相等。 5、不同的三角形中,利用两个三角形全等:A找到两个合适的目标三角形B确定已有几个 条件C还要增加什么条件。 四、求角的度数的常用方法 1、利用角的和差。 2、利用等量代换:先求其他角的长度,再证明所求角与已求的角相等。 3、三角形内角和定理。 五、证明直角三角形的常用方法 1、证明有一个角是直角。(从角) 2、有两个角互余。(从角) 3、勾股定理逆定理。(从边) 4、30度角所对的边是另一边的一半。 5、三角形一边上的中线等于这边的一半 六、证明等腰三角形的常用方法 1、证明有两边相等。(从边) 2、证明有两角相等。(从角) 七、证明等边三角形的常用方法 1、三边相等。 2、三角相等。 3、有一角是60度的等腰三角形。 八、证明角平分线的常用方法 1、两个角相等(定义)。 2、等就在:到角两边的距离相等的点在角平行线上。 九、证明线段垂直平分线的常用方法 1、把某条线段平分,并与它垂直。

八年级下册三角形几何证明

八年级下册三角形几何证明 1.三角形的一个外角等于_________的两个内角的和. 2.在△ABC中,若∠A:∠B:∠C=1:2:3,则∠C=________. 3.在△ABC中,∠B=45°,∠C=72°,那么与∠A相邻的一个外角等于_______. 4.如图1所示,△ABC中,D,E分别是AC,BD上的点, 且∠A=65°,∠ABD=∠DCE=30?°,则∠BEC的度数是_________. (1) (2) (3) (4) 5.按第4题图所示,请你直接写出∠A,∠BEC,∠EDC之间的大小关系,用“55°或70°D.以上答案都不对 9.若三角形的三个外角的度数之比为2:3:4,则与之对应的三个内角的度数之比为()A.4:3:2 B.3:2:4 C.5:3:1 D.3:1:5 10.满足下列条件的△ABC中,不是直角三角形的是() A.∠B+∠A=∠C B.∠A:∠B:∠C=2:3:5 C.∠A=2∠B=3∠C D.一个外角等于和它相邻的一个内角 11.如图3所示,在△ABC中,∠ABC与∠BAC的平分线相交于点O,若∠BOC=120°,则∠A为() A.30°B.60°C.80°D.100° 12.如图所示,在锐角△ABC中,CD和BE分别是AB和AC边上的高,且CD和BE?交于点P,若∠A=50°,则∠BPC的度数是() A.150°B.130°C.120°D.100°

专题十一 几何证明之三角形中作辅助线造全等 2020年中考数学冲刺难点突破 几何证明问题(原卷版)

2020年中考数学冲刺难点突破几何证明问题 专题十一几何证明之三角形中作辅助线造全等 1、如图1,OA=2,OB=4,以点A为顶点,AB为腰在第三象限作等腰直角△ABC. (Ⅰ)求C点的坐标; (Ⅱ)如图2,OA=2,P为y轴负半轴上的一个动点,若以P为直角顶点,PA为腰等腰直角△APD,过D作DE⊥x轴于E点,求OP﹣DE的值; (Ⅲ)如图3,点F坐标为(﹣4,﹣4),点G(0,m)在y轴负半轴,点H(n,0)x轴的正半轴,且FH⊥FG,求m+n的值. 2、如图,在△ABC中,AB=AC,点M在△ABC内,AM平分∠BAC.点D与点M在AC所在直线的两侧, AD⊥AB,AD=BC,点E在AC边上,CE=AM,连接MD、BE. (1)补全图形; (2)请判断MD与BE的数量关系,并进行证明; (3)点M在何处时,BM+BE会有最小值,画出图形确定点M的位置;如果AB=5,BC=6,求出BM+BE 的最小值.

3、如图1,∠AOB=90°,OC平分∠AOB,以C为顶点作∠DCE=90°,交OA于点D,OB于点E. (1)求证:CD=CE; (2)图1中,若OC=3,求OD+OE的长; (3)如图2,∠AOB=120°,OC平分∠AOB,以C为顶点作∠DCE=60°,交OA于点D,OB于点E.若OC=3,求四边形OECD的面积. 4、在△ABC中,AB=AC,CD是AB边上的高,若AB=10,BC=. (1)求CD的长. (2)动点P在边AB上从点A出发向点B运动,速度为1个单位/秒;动点Q在边AC上,从点A出发向点C运动,速度为v个单位/秒(v>1).设运动的时间为t(t>0),当点Q到点C时,两个点都停止运动. ①若当v=2时,CP=BQ,求t的值. ②若在运动过程中存在某一时刻,使CP=BQ成立,求v关于t的函数表达式,并写出自变量t的取值 范围.

中考几何证明---线段的和差 根号

线段和差根号 1.已知∠AOB=900,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA、OB(或它们的反向延长线)相交于点D、E.当三角板绕点C旋转到CD与OA垂直时(如图1),易证:OD+OE=2 OC.当三角板绕点C旋转到CD与OA不垂直时,在图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段OD、OE、OC之间又有怎样的数量关系?请写出你的猜想,不需证明. 图1 图2 图3 2.已知等腰△ABC中,AB=AC, ∠ACB=900 ,D为AB的中点,点E为平面内一点,连接DF、BE 。过点D作DE的垂线 交直线BE于点F ,且∠DEF=∠ABC ,连接CF .当点E在△ABC内时,如图1 ,易证:BF=CF+2DF . 当点E在△ABC外时,如图2、3两种情况,线段BF、CF、DF又有怎样的数量关系?请写出你的猜想,并对图3加以证明。 3.在△ABC中,∠ABC=450 , CD⊥AB ,BE⊥AC ,垂足分别为DE ,连接DE . 当点E与点C重合时,此时EC=0 (如图1) ,易证:EB-EC=2DE . 当点E与点C不重合时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,EBECDE又有怎样的数量关系?请写出你的猜想,不需证明。 4.如图,正方形ABCD中,点O是对角线AC的中点,P是直线AC上的一动点,过点P作PF⊥CD ,交直线CD于F . (1)如图1,若点P在线段AO上(不与点A、O重合)时,PE⊥PB ,且PE交CD于点E.求证:DF=EF . (2) 若点P在线段OA上(不与点A、O重合), PE⊥PB ,且PE交直线CD于点E ,求证:PC=PA+2CE . (3) 若点P在直线AC上(不与点A、C重合),PE⊥PB ,且PE交直线CD于点E ,(2)中的结论是否成立?若成立,说明理由。若不成立,请直接写出线段PC、PA、CE间的一个等量关系。 A B C D E F A B C D E F A B C D A B C D E A B C D E

几何证明三角形

1.在△ABC、△AED中,AB=AC,AD=AE,且∠CAB=∠DAE,若将△AED绕点A沿逆时针方向旋转,使D、E、B 在一条直线上,CE=BD成立吗?若成立,请说明理由 1.已知点E、F在正方形ABCD的边BC、CD上,若E、F分别是BC、CD的中点,G在AE、BF的交点上 求证:GD=AD 2.已知BD、CE是△ABC的两条高,M、N分别是BC、DE的中点,求证:(1)EM=DM(2)MN⊥DE 3.正方形ABCD,E、F分别为BC、CD边上一点。(1)若∠EAF=45·。求证:EF=BE+DF(2)若△AEF绕A点旋转,保持∠EAF=45·,问△CEF的周长是否随△AEF的位置的变化而变化? 4.已知正方形ABCD的边长为1,BC、CD上各有一点E、F,如果△CEF的周长为2,求∠EAF的度数 5.已知正方形ABCD,F为BC中点E为CD边上一点,且满足∠BAF=∠FAE求证:AF=BC+CE 6.已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC,PF⊥CD于点F,(1)若四边形PECF 绕点C旋转,在旋转过程中是否总有BP=DP?若是,请证明之;若不是,请举出反例(2)试选取正方形ABCD 的两个顶点,分别与四边形PECF的两个顶点连结,使得到的两条线段在旋转的过程中长度始终相等,并证明之 求任意三角形面积公式的方法? 7.某人在上午6点至7点之间去长跑,开始时看表,分针与时针成110度,跑完后再看,有、又成110度,问此人跑了多久?(表没停) 8.已知三角形ABC是等腰三角形,角C=90度, 1,操作并观察,如图将三角板的45度角的顶点于点C重合,使这个角落在角ACB的内部,两边分别与斜边AB交于E,F两点,(E, F不与AB重合)然后将这个角绕点C在角ACB的内部旋转,观察并指出在点E,F的位置发生什么变化时,AE , EF , FB中最长的线段 2探索AE , EF , FB这三条线段能否组成直角三角形?如果能加以证明!!! 9.有浓度为百分之五十五的酒精溶液若干升,加入一升浓度为百分之八十的酒精溶液后,酒精溶液浓度变为百分之六十。如果要得到百分之七十的酒精溶液需要再加入多少升浓度为百分之八十的酒精溶液? 10. 22÷33333=() 11. 1/2 , 1/3 , 2/3 , 1/4 , 2/4 , 3/4 , 1/5 , 2/5 , 3/5 , 4/5...... 问:第一百个分数是!? 12..若方程组:kx-y=1和4x+my=2无解,则k与m的值分别为K= ,M= . 13.一个数的平方根是a +b 和4a-6b+13,那么这个数是 1

中考几何证明题知识点分析

目录 1、考点总分析 2、知识点讲解 3、出题的类型 4、解题思路 5、相关练习题

几何证明题专题 本题的主要知识点(中考中第3道,分值为8分) 七年级上第4章几何图形初步七年级下第5章相交线与平行线 八年级上第11章三角形第12章全等三角形第13章轴对称 八年级下第17章勾股定理第18章平行四边形 九年级上第23章旋转第24章圆 九年级下第27章相似第28章投影与视图 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。 几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。 这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 几何证明题重点考察的是学生的逻辑思维能力,能通过严密的"因为"、"所以"逻辑将条件一步步转化为所要证明的结论。这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。 知识结构图

证明线段和差练习题(三角形全等)

证明线段和差练习题 几何中有许多题目要证明一线段等于另两线段的和(或差),解决这类问题常用的方 法大体有五种,即,利用等量线段代换、截短法、接长法、利用面积证明、旋转等五种。下面分别列举几例逐一说明: 一、利用等量线段代换:证一线段等于另两线段的和(或差),只需证这条全线段的两部分,分别等于较短的两条线段,问题就解决了。 例1已知:如图,在△ABC 中,∠B 和∠C 的角平分线BD 、CD 相交于一点D ,过D 点作EF ∥BC 交AB 与点E ,交AC 与点F 。求证:EF=BE+CF 二、截短法或接长法:所谓截短法就是将长线段,截成几条线段,然后分别证明这几条线段等于要证明中的较短的线段,最后代入达到目的。所谓接长法是将较短的两条线段适当的连接起来,然后再证这条线段等于第三条线段,从而达到目的。 例2:如图所示已知 △ABC 中,0 90C ∠=,AC=BC ,AD 是∠BAC 的 角平分线.求证:AB=AC+CD.

三、面积法:利用三角形的面积进行证明。 例3:所示已知△ABC中,AB=AC,P是底边上的任意一点,PE⊥AC, PD⊥AB,BF是腰AC上的高,E、D、F为垂足。 求证:①PE+PD=BF ②当P点在BC的延长线上时,PE、PD、PF之间满足什么关系式? 四、旋转法:通过旋转变换,而得全等三角形是解决正 方形中有关题目类型的一种技巧 例4、如图①,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°,则有结论EF=BE+FD成立; (1)如图②,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC、CD上的点,且∠EAF是∠BAD的一半,那么结论EF=BE+FD是否仍然成立?若成立,请证明?若不成立,请说明理由。 (2)若将(1)中的条件改为:在四边形ABCD中,AB=AD,∠B+∠D=180°,延长BC 到点E,延长CD到点F,使得∠EAF仍然是∠BAD的一半,则结论EF=BE+FD是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明。 D

三角形全等证明题(含答案)

如何做几何证明题 【知识精读】 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 【分类解析】 1、证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 例1. 已知:如图1所示,?ABC 中,∠=?===C AC BC AD DB AE CF 90,,,。 求证:DE =DF

分析:由?ABC 是等腰直角三角形可知,∠=∠=?A B 45,由D 是AB 中点,可考虑连结CD ,易得CD AD =,∠=?DCF 45。从而不难发现??DCF DAE ? 证明:连结CD ΘΘΘAC BC A B ACB AD DB CD BD AD DCB B A AE CF A DCB AD CD =∴∠=∠∠=?=∴==∠=∠=∠=∠=∠=90,,,, ∴?∴=??ADE CDF DE DF 说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。本题亦可延长ED 到G ,使DG =DE ,连结BG ,证?EFG 是等腰直角三角形。有兴趣的同学不妨一试。 例2. 已知:如图2所示,AB =CD ,AD =BC ,AE =CF 。 求证:∠E =∠F

初中几何证明题思路及做辅助线总结

中考几何题证明思路总结 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 二、证明两角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。 4.两条平行线的同位角、错角或平行四边形的对角相等。 5.同角(或等角)的余角(或补角)相等。 6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。 三、证明两直线平行 1.垂直于同一直线的各直线平行。 2.同位角相等,错角相等或同旁角互补的两直线平行。 3.平行四边形的对边平行。 4.三角形的中位线平行于第三边。 5.梯形的中位线平行于两底。 6.平行于同一直线的两直线平行。 7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。 四、证明两直线互相垂直 1.等腰三角形的顶角平分线或底边的中线垂直于底边。 2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。 3.在一个三角形中,若有两个角互余,则第三个角是直角。 4.邻补角的平分线互相垂直。 5.一条直线垂直于平行线中的一条,则必垂直于另一条。 6.两条直线相交成直角则两直线垂直。 7.利用到一线段两端的距离相等的点在线段的垂直平分线上。 8.利用勾股定理的逆定理。 9.利用菱形的对角线互相垂直。 10.在圆中平分弦(或弧)的直径垂直于弦。 11.利用半圆上的圆周角是直角。

初一几何三角形练习题及答案

初一几何---三角形 一.选择题 (本大题共 24 分) 1.以下列各组数为三角形的三条边,其中能构成直角三角形的是() (A)17,15,8 (B)1/3,1/4,1/5 (C) 4,5,6 (D) 3,7,11 2.如果三角形的一个角的度数等于另两个角的度数之和,那么这个三角形一定是() (A)锐角三角形(B)直角三角形(C)钝角三角形(D)等腰三角形 3.下列给出的各组线段中,能构成三角形的是() (A)5,12,13 (B)5,12,7 (C)8,18,7 (D)3,4,8 4.如图已知:Rt△ABC中,∠C=90°,AD平分∠BAC,AE=AC,连接DE,则下列结论中,不正确的是() (A) DC=DE (B) ∠ADC=∠ADE (C) ∠DEB=90°(D) ∠BDE=∠DAE 5.一个三角形的三边长分别是15,20和25,则它的最大边上的高为() (A)12 (B)10 (C) 8 (D) 5 6.下列说法不正确的是() (A)全等三角形的对应角相等 (B)全等三角形的对应角的平分线相等 (C)角平分线相等的三角形一定全等 (D)角平分线是到角的两边距离相等的所有点的集合 7.两条边长分别为2和8,第三边长是整数的三角形一共有() (A)3个(B)4个(C)5个(D)无数个 8.下列图形中,不是轴对称图形的是() (A)线段MN (B)等边三角形(C) 直角三角形(D) 钝角∠AOB 9.如图已知:△ABC中,AB=AC,BE=CF,AD⊥BC于D,此图中全等的三角形共有() (A)2对(B)3对(C)4对(D)5对 10.直角三角形两锐角的平分线相交所夹的钝角为() (A)125°(B)135°(C)145°(D)150°

几何证明之线段倍分关系(一) (2)

中考专题复习 几何证明之线段倍分关系(一) (教学设计) 一、教学目标 1、掌握几何证明题的基本解题步骤、思路和方法(本节课重点学习解题方法,可简略书写过程)。 2、灵活运用线段中点的常见用法,会证明线段的2倍关系。 3、体会重要的数学思想——转化思想;会从不同角度出发思考问题,探索用多种方法解答问题。 二、教学重难点 教学重点:几何证明题的基本解题步骤、思路和方法;灵活运用线段中点的常见用法,会证明线段的2倍关系。 教学难点:作辅助线。 三、教学过程: (一)、自学预检(用简短的语言或图形表示) 1、几何证明题的解题步骤是: 2、线段的中点有哪些常见的用法: 3、证明线段的2倍关系除以上中点的基本图形外还有什么方法: 4、证明线段相等有哪些常见的方法: (二)、合作探究 例1:如图,在菱形ABCD中,∠BAD=60°,M为线段AC上一点(M不与A,C重合),以AM为边,构造如图所示等边三角形AMN,线段MN与AD交于点G,连接NC,DM,Q为线段NC的中 点,连接DQ,MQ,求证:DM=2DQ. 请同学们标上已知条件,并思考以下问题: 1、由菱形ABCD你在图中能得到哪些结论?结合∠BAD=60°你又能得到时哪些结论?把你认为有用的结论标在图上。 2、由等边三角形AMN你能得出哪些结论? 3、中点有哪些常见的用法?结合图形和已知条件猜想中点Q可以怎么用?

4、线段的2倍关系有哪些常见的证明方法?结合图形和已知条件你认为有哪些可能的方 法? 5、你还有其他方法吗?请写出简要解题思路(可不写证明过程)。 我的收获: (三)当堂达标: 如图,在RT △ABC 中,∠ABC=90°,在RT △BDE 中,∠BDE=90°,AB=DB ,∠ BAC=∠BDE ,连接CD ,连接AE 交BD 于点F ,点F 恰好为AE 的中点。求证:CD=2BF 。 (四)课堂小结 备用图 备用图 备用图

三角形几何证明每日一题(六)及答案

几何证明每日一题(六) 1.已知:如图,在△ABC 中,点D,E 分别在边AB,AC 上, 且DE∥BC,∠1+∠2=180°. 求证:∠3=∠B. 2.如图,在△ABC 中,AD⊥BC 于D,DG∥AB 交AC 于点G, 点E,F 分别在边AB,BC 上,且∠1=∠2. 求证:EF⊥BC.

3.已知:如图, ∠AED=∠A+∠B.求证: DE∥CB.

2

4.如图,在△ABC 中,点D,E 在边BC 上,AD 平分∠BAC, F 为DA 延长线上一点,FE⊥BC 于E,∠B=35°,∠C=65°, 求∠F 的度数.

5.已知:如图,在△ABC 中,D 为BC 边上一点,DF⊥AB 于 F,DE∥AC 交AB 边于点E, ∠A=∠B.求证:∠1=∠2.

【参考答案】 1.证明:如图, ∵∠1+∠2=180°(已知) ∠1+∠DFE=180°(平角的定义) ∴∠2=∠DFE(同角的补角相等) ∴ AB∥EF(内错角相等,两直线平行) ∴∠3=∠ADE(两直线平行,内错角相等) ∵DE∥BC(已知) ∴∠ADE=∠B(两直线平行,同位角相等) ∴∠3=∠B(等量代换) 2.证明:如图, ∵DG∥AB(已知) ∴∠2=∠BAD(两直线平行,内错角相等) ∵∠1=∠2(已知) ∴∠1=∠BAD(等量代换) ∴EF∥AD(同位角相等,两直线平行) ∴∠ADB=∠EFB(两直线平行,同位角相等) ∵AD⊥BC(已知) ∴∠ADB=90°(垂直的定义) ∴∠EFB=90°(等量代换) ∴EF⊥BC(垂直的定义) 3.证明:如图,延长DE 交AB 于点F ∵∠AED 是△AEF 的一个外角(外角的定义) ∴∠AED=∠A+∠AFE(三角形的一个外角等于和它不相邻 的两个内角的和) ∵∠AED=∠A+∠B(已知) ∴∠AFE=∠B(等式的性质) ∴DE∥BC(同位角相等,两直线平行) 4.解:如图, 在△ABC 中,∠B=35°,∠C=65°(已知) ∴∠BAC=180°-∠B-∠C =180°-35°-65° =80°(三角形的内角和等于180°) ∵AD 是∠BAC 的平分线(已知)

怎样证明线段平方的和、差关系

怎样证明线段平方的和、差关系 1.如图所示,在ABC ?中,BC AD ⊥于D ,M 为AD 上任意一点,求证:2 2 2 2 AC AB MC MB -=-. 2.如图所示,已知ABC ?中,?=∠90A ,M 为AC 的中点,BC MD ⊥于D ,求证:2 2 2 CD BD AB -=. 3.已知:如图所示,在ABC ?中,AB=AC ,?=∠90BAC , D 是BC 上一点.求证:2 2 2 2AD CD BD =+. 4.如图所示,已知D 、E 为等腰ABC Rt ?斜边BC 上两点,且?=∠45DAE ,求证:2 22DE BE CD =+. A M B D C A M C D B A D C B A B E D

5.已知:如图所示,在四边形ABCD 中,?=∠+∠90CBA DAB .求证:2 222AB CD BD AC +=+. 6.如图所示,在ABC Rt ?中,?=∠90C ,D 是AB 的中点,E 、F 分别在AC 和BC 上,且DF DE ⊥,求证:222BF AE EF +=. 7.如图所示,在ABC ?中,?=∠90ACB ,D 是AC 上任意一点,连结BD ,求证:2222AC BD AB CD +=+ 8.如图所示,在ABC ?中,AD 是BC 边上的中线,点M 在AB 边上,点N 在AC 边上,且?=∠90MDN .如果2 2 2 2 DN DM CN BM +=+,求证:() 222 4 1 AC AB AD +=. A D B A F E C B C D A A M N C D B

9.已知:如图所示,AD 是ABC ?的中线,AB DE C ⊥?=∠,90于E .求证:2 22AC BE AE =-. 10.已知:如图所示,在ABC ?中,?=∠90C ,D 是AC 的中点.求证:2 2 2 34BC AB BD +=. 11.已知:如图所示,在ABC ?中,AB=AC ,M 是BC 上的点.求证:2 2 AB MC MB MA =?+. 12.已知:如图所示,在P 、Q 分别是ABC Rt ?两直角边AB 、AC 上的点,M 为斜边BC 的中点,且 MQ PM ⊥.求证:2222QM PM QC PB +=+. D E A C A C D B A B C A P Q M B C

(完整版)做几何证明题方法归纳

做几何证明题方法归纳 知识归纳: 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 一. 证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 例1. 已知:如图1 求证:DE =DF 分析:由?ABC 连结CD ,易得CD = 证明:连结CD ΘΘΘAC BC A B ACB AD DB CD BD AD DCB B A AE CF A DCB AD CD =∴∠=∠∠=?=∴==∠=∠=∠=∠=∠=90,,,, ∴?∴=??ADE CDF DE DF 说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。本题亦可延长ED 到G ,使DG =DE ,连

相关主题
文本预览
相关文档 最新文档