当前位置:文档之家› 原子物理学 量子力学导论 (3.1.1)--玻尔理论的困难波粒二象性

原子物理学 量子力学导论 (3.1.1)--玻尔理论的困难波粒二象性

物理学中的对称性

目录 摘要 (1) Abstract (1) 1 引言 (1) 2 对称性 (1) 2.1镜像对称 (2) 2.2 转动对称 (2) 2.3平移对称 (2) 2.4置换对称性 (2) 3 物理定律的对称性 (3) 3.1物理定律的空间平移对称性 (3) 3.2物理定律的转动对称性 (3) 3.3物理定律对时间的平移对称性 (3) 3.4物理定律对于匀速直线运动的对称性 (3) 4 对称性与物理定律的关系 (3) 5 对称性在物理学中的应用 (4) 6结论 (5) 参考文献 (5)

物理学中的对称性 摘要:从自然界中的对称性开始,讲解了物理学中转动对对称性开始称,平移对称,置换对称;还讲解了物理定律中的空间平移对称性,转动对称性,时间平移对称性,匀速直线运动的对称性;进而说明了物理定律与对称性的关系和对称性在物理学中的应用,以及对称性导致物理问题发生和解决。 关键词:对称性;物理定律;守恒 Discuss the Symmetry Secondary Physics Abstract:From the nature of the symmetry of the begining, explain the physics rotation on symmetry started to call, translational symmetry, permutation symmetry; also explained the laws of physics in the spatial translational symmetry, rotational symmetry, time translation symmetry, the symmetry uniform motion in a straight line; then describes the physical laws and symmetry and symmetry in the application of Physics, as well as symmetry leads to physical problems and solutions. Key words:symmetrical; the laws of physicsl; conservation 1引言 对称性是自然界最普遍、最重要的特性[1]。近代科学表明,自然界的所有重要的规律均与某种对称性有关,甚至所有自然界中的相互作用,都具有某种特殊的对称性——所谓“规范对称性”。实际上,对称性的研究日趋深入,已越来越广泛的应用到物理学的各个分支:量子论、高能物理、相对论、原子分子物理、晶体物理、原子核物理,以及化学(分子轨道理论、配位场理论等)、生物和工程技术。 2对称性 什么是对称性?对称性首先来源于生活,对称式自然界中十分普片的现象,从总星系到星系团,从银河系到太阳系,地球,从原生物到各种动植物,都具有不同程度

量子力学导论第6章答案

第六章 中心力场 6.1) 利用6.1.3节中式(17)、(18),证明下列关系式 相对动量 ()21121p m p m M r p -==? μ (1) 总动量 1p p R M P +==? (2) 总轨迹角动量p r P R p r p r L L L ?+?=?+?=+=221121 (3) 总动能 μ 22222 22 221 21p M P m p m p T + =+= (4) 反之,有 ,11r m R r μ+ = r m R r 2 2μ-= (5) p P m p +=2 1μ ,p P m p -= 1 2μ (6) 以上各式中,()212121 ,m m m m m m M +=+=μ 证: 2 12 211m m r m r m R ++= , (17) 21r r r -=, (18) 相对动量 ()211221212 11p m p m M r r m m m m r p -=??? ? ??-+= =? ?? μ (1’) 总动量 ()212 1221121p p m m r m r m m m R M P +=+++==? ?? (2’) 总轨迹角动量 221121p r p r L L L ?+?=+= )5(2211p r m u R p r m u R ???? ? ??-+????? ?? += () () 2112 211p m p m M r p p R -? ++?= ) 2)(1(p r P R ?+?= 由(17)、(18)可解出21,r r ,即(5)式;由(1’)(2’)可解出(6)。 总动能()22 11 2 262221212222m p P m m p P m m p m p T ??? ? ??-+ ? ?? ? ??+=+= μμ 2 12 2 2 2 2 122 11 2 2 2 2 12 2222m m p P u m p P m m u m m p P u m p P m m u ?- + + ?+ + =

量子力学导论 答案

第六章 中心力场 6.1) 利用6.1.3节中式(17)、(18),证明下列关系式 相对动量 ()21121p m p m M r p -==? μ (1) 总动量 1p p R M P +==? (2) 总轨迹角动量p r P R p r p r L L L ?+?=?+?=+=221121 (3) 总动能 μ 22222 22 221 21p M P m p m p T + = + = (4) 反之,有 ,11r m R r μ+ = r m R r 2 2μ-= (5) p P m p += 2 1μ ,p P m p -= 1 2μ (6) 以上各式中,()212 121 ,m m m m m m M +=+=μ 证: 2 12211m m r m r m R ++= , (17) 21r r r -=, (18) 相对动量 ()211221212 11p m p m M r r m m m m r p -=??? ? ??-+= =? ?? μ (1’) 总动量 ()212 1221121p p m m r m r m m m R M P +=+++==? ?? (2’) 总轨迹角动量 221121p r p r L L L ?+?=+= )5(2211p r m u R p r m u R ????? ? ?-+????? ?? += () () 2112 211p m p m M r p p R -? ++?= ) 2)(1(p r P R ?+?= 由(17)、(18)可解出21,r r ,即(5)式;由(1’)(2’)可解出(6)。 总动能()2 2 11 2 262221212222m p P m m p P m m p m p T ??? ? ??-+ ? ?? ? ??+=+= μμ 2 12 2 2 2 2 122 11 2 2 2 2 12 2222m m p P u m p P m m u m m p P u m p P m m u ?- + + ?+ + =

量子力学科普:量子通信与波粒二象性

量子力学科普:量子通信与波粒二象性 从什么是量子开始。量子,本意是指微观世界中【一份一份】的不连续能量。这是本书中写明的定义,它的前提条件是微观世界。 接下来,他说明了一下关于光是波还是粒子的百年之争。粒派支持者包括牛顿、爱因斯坦、普朗克,认为光是一颗颗光滑的小球球构成的;波派支持者包括惠更斯、杨、麦克斯韦、赫兹,认为光是一圈一圈的水波纹构成的。 粒子和波二者区别: 1. 粒子可以分成一个最小单位,单个粒子不可再分;波是连续的能量分布,无所谓【一个波】或者【两个波】; 2. 粒子是直线前进的,波却能同时向四面八方发射; 3. 粒子可以静止在同一个固定的位置上,波却必须动态的在整个空间传播。 科学家们在思考为什么光不能两者都是呢?于是就有了著名的双缝干涉实验。双缝,就是在一块隔板上开两条缝。用一个发射光子的机枪对着双缝扫射,从中露出的光子,打在缝后面的屏上,就会留下一个光斑。 第一次实验,把光子发射机对准双缝发射,结果是标准的斑马线,证明光是纯波。第二次实验,把光子机枪切换到点射模式,保证每次只发射一个光子,结果依然还是斑马线。第三次实验,在屏幕前加装两个摄像头,一边一个左右排开。哪边的摄像头看到光子,就说明了光子穿过了哪条缝。同样还是点射模式,发射光子。结果,每次不是左边的摄像头看到一个光子,就是右边看到一个,从来没有发现哪个光子分裂成半个的情况。

这里先把书里的例子提上来。你在屏幕面前看球员起脚射门时,立马按了暂停键,那么你预测下一秒球是否会踢进?在球迷看来,球能否踢进跟射手是谁,对方门将状态有关;在科学家看来是否射进同射门的角度、速度、力度、方向、摩擦力等有关系。大家公认的,不管球最终是否射进,它和一件事情绝对无关,那就是你家的电视。常理来说,射球的动作和结果在你看视频之前就已经完成,它不受你家电视的影响。但双缝干涉实验的第三次实验则证明了,在其他条件完全相同的形况下,球进还是不仅,直接取决于射门的一瞬间,你看还是不看电视。 双缝干涉实验带来了观察者魔咒,引发了一些人的三观崩塌,许多科学家针对双缝干涉实验的结论产生了争议。尼尔斯玻尔认为,将宏观世界的经验常识套用到微观世界的科学研究上,纯属扯淡。他认为量子力学存在三大原则:态叠加原理、测不准原理和观察者原理。 态叠加原理:在量子世界,一切事物可以同时处于不同的状态(叠加态),各种可能性并存。 测不准原理:叠加态是不可能精确测量的。 观察者原理:虽然一切事物都是多种可能性的叠加,但我们永远看不到一个既左且右,又黑又白的量子物体,只要进行观察必然看到一个确定无疑的结果。 波尔认为,在实验观测的一瞬间,光子会蜕变成为多种可能中的一种,他将这个过程称为“坍缩”。 针对波尔的理论,薛定谔提出了假设进行反驳——著名的“薛定谔的猫”。 把一只猫关在封闭的箱子里。和猫同处一室还有个自动化装置,内含一个放射性原子,如果原子核衰变,就会激发α射线,射线触发开关,开关启动锤子,锤子落下打破毒药瓶,于是猫当场毙命。

最新量子力学导论期末考试试题内含答案

量子力学试题(1)(2005) 姓名 学号 得分 一. 简答题(每小题5分,共40分) 1. 一粒子的波函数为()()z y x r ,,ψψ=? ,写出粒子位于dx x x +~间的几率。 2. 粒子在一维δ势阱 )0()()(>-=γδγx x V 中运动,波函数为)(x ψ,写出)(x ψ'的跃变条件。 3. 量子力学中,体系的任意态)(x ψ可用一组力学量完全集的共同本征态)(x n ψ展开: ∑=n n n x c x )()(ψψ, 写出展开式系数n c 的表达式。 4. 给出如下对易关系: [][][] ?,? ,? ,===z x y z L L p x p z 5. 何谓几率流密度?写出几率流密度),(t r j ? ?的表达式。 6. 一维运动中,哈密顿量)(22 x V m p H +=,求[][]?,?,==H p H x 7. 一质量为μ的粒子在一维无限深方势阱?? ?><∞<<=a x x a x x V 2,0, 20,0)( 中运动,写出其状态波函数和能级表达式。 8. 已知厄米算符A 、B 互相反对易:{}0,=+=BA AB B A ;b 是算符B 的本征态: b b b B =,本征值 0≠b 。求在态b 中,算符A 的平均值。

二. 计算和证明题 1. 设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。 2. 考虑如下一维波函数:0/0()n x x x x A e x ψ-?? = ??? , 其中0,,A n x 为已知常数。利用薛定谔 方程求位势()V x 和能量E 。对于它们,该波函数为一本征函数(已知当,()0x V x →∞→)。 3.一质量为m 的粒子沿x 正方向以能量E 向0=x 处 的势阶运动。当0≤x 时,该势为0;当0>x 时,该势为 E 4 3 。问在0=x 处粒子被反射的的几率多大?(15分) 0 X 4.设粒子处于()?θ,lm Y 状态下, 1)证明在的本征态下,0==y x L L 。(提示:利用x y z z y L i L L L L η=-, []y L i η=-=z x x z x z L L L L L ,L 求平均。) 2)求()2 x L ?和() 2 y L ? (附加题)5. 设),(p x F 是p x ,的整函数,证明 [][]F , F,,p i F x x i F p ?? =?? -=η η 整函数是指),(p x F 可以展开成∑∞ ==0 ,),(n m n m mn p x C p x F 。

量子力学导论习题答案(曾谨言)

第五章 力学量随时间的变化与对称性 5.1)设力学量A 不显含t ,H 为本体系的Hamilton 量,证明 [][]H H A A dt d ,,2 2 2 =- 证.若力学量A 不显含t ,则有[]H A i dt dA ,1 =, 令[]C H A =, 则 [][]H C H C i dt C d i dt A d ,1 ,112 22 -===, [][]H H A A dt d ,, 2 2 2 =-∴ 5.2)设力学量A 不显含t ,证明束缚定态,0=dt dA 证:束缚定态为::() () t iE n n n e t -=ψψ,。 在束缚定态()t n ,ψ,有()()()t E t t i t H n n n n ,,,ψψψ=?? = 。 其复共轭为()()()t r E e r t i t r H n n t iE n n n ,,** * * ψψψ=?? -= 。 ??? ??=n n dt dA dt dA ψψ,()??? ??-??? ??-=??n n n n n n A A A dt d ψψψψψψ,,, ?? ? ??-??? ??-= n n n n H i A A H i dt dA ψψψψ 1,,1 []()()n n n n AH i HA i H A i t A ψψψψ,1 ,1,1 -++??= []()()n n HA AH i H A i ψψ--= ,1,1 [][]() 0,,1=-=A H H A i 。 5.3)(){} x x iaP x a a D -=? ?? ??? ??-=exp exp 表示沿x 方向平移距离a 算符.证明下列形式波函数(Bloch 波函数)()()x e x k ikx φψ=,()()x a x k k φφ=+ 是()a D x 的本征态,相应的本征值为ika e - 证:()()()() ()a x e a x x a D k a x ik x +=+=+φψψ ()()x e x e e ika k ikx ika ψφ=?=,证毕。

量子力学专题二(波函数和薛定谔方程)

量子力学专题二: 波函数和薛定谔方程 一、波粒二象性假设的物理意义及其主要实验事实(了解) 1、波动性:物质波(matter wave )——de Broglie (1923年) p h =λ 实验:黑体辐射 2、粒子性:光量子(light quantum )——Einstein (1905年) h E =ν 实验:光电效应 二、波函数的标准化条件(熟练掌握)

1、有限性: A 、在有限空间中,找到粒子的概率是有限值,即有 =?ψψτ* d 有限值 有限空间 B 、在全空间中,找到粒子的概率是有限值,即有 =? ψψτ* d 有限值 全空间 2、连续性:波函数ψ及其各阶微商连续; 3、单值性:2 ψ是单值函数(注意:不是说ψ是单值!) 三、波函数的统计诠释(深入理解) 1、∝dV 2ψ在dV 中找到粒子的概率;

2、ψ和ψC 表示的是同一个波函数(注意:我们关心的只是相对概率); 四、态叠加原理以及任何波函数按不同动量的平面波展开的方法及其物理意义(理解) 1、态叠加原理:设1ψ,2ψ是描述体系的态,则 2211ψψψC C += 也是体系的一个态。其中,1C 、2C 是任意复常数。 2、两种表象下的平面波的形式: A 、坐标表象中 r d e p r r p i 3/2/3)() 2(1)( ??=?πψ B 、动量表象中

p d e r p r p i 3/2/3)() 2(1)( ?-?=ψπ? 注意:2/3)2( π是热力学中,Maxwell 速率分布的一个常数,也可以使原子物理中,一个相空间的大小! 五、Schrodinger Equation (1926年) 1、Schrodinger Equation 的建立过程(熟练掌握) ψψH t i ?=?? 其中,V T H ???+=。 2、定态薛定谔方程,定态与非定态波函数的意义及相关联系(深入了解) A 、定态:若某一初始时刻(0=t )

2量子力学与热力学中的随机性

2、量子力学与热力学中的随机性 戴维斯指出,在宇宙学情况下,初始奇点的随机性(即“分子混沌”)导致宇宙的时间不可逆性,混沌粒子运动是大爆炸过程中光滑宇宙流体的一个特点。如果宇宙重新收缩,终极奇点态是混沌的或随机的而不是高度有序的(块状的),这与安置在一个假想的霍金盒子中的黑洞的情形相反,在那里奇点的随机形成和随即消失带来的是时间的对称性,这种黑洞奇点的随机性是内在随机的。在宇宙学的情况下,终极奇点被赋予由宇宙动力学支配的奇点,所以塌缩到视界内的宇宙不是黑洞。但是,宇宙终极奇点如何不同于黑洞奇点,以及宇宙是否真的象戴维斯所期望的那样振荡不息,这是一个没有澄清的问题。我们认为,只有搞清各种势在决定量子波函数演化过程中如何影响从过去向未来演化的提供波ψ(t)和从未来像过去倒转演化的确认波ψ*(-t)的几率幅;特别是在各种奇点附近,由魏尔曲率决定的引力势如何影响量子波在时间两个方向上的演化几率,才能解决宇宙演化的最后结局。 引力论与量子论相统一的理论还遥遥无期,宇宙论和量子论的时间之矢已然浮现,但远未被澄清。但是,对热力学第二定律的理解却在进一步深化,这特别归功于以普里高津为首的布鲁塞尔学派的工作。普里高津提出的耗散结构论对热力学第二定律提出了新的理解:(1)热力学第二定律并不是在经典动力学基础之上的宏观近似,而是动力学的基本原理,可以从它开始建立动力学的更一般的形式体系;(2)热力学第二定律并不意味着热力学系统的单向退化,它也是进化的原动力,熵最大状态只是演化的终态,而在演化过程中,不可逆性导致自组织的出现。在远离平衡态的非线性体系中,通过耗散机制可以导致类似生命现象的复杂结构出现。走向复杂化的进化过程在一定范围内与热力学不可逆过程一致。 普里高津指出,不可逆理论的构建方式有:(1)存在着不可逆理论,它们出于描述观察到的宏观不可逆性的明显目的而被构建出来,如热力学,扩散理论等等。(2)通过引入隐含不可逆性的几率假定,从可逆的动力学方程中推导出不可逆性的理论。例如,在处理具有大数目的系统时,人们抛弃了动力学观点,而把碰撞事件或一系统状态的改变看作是马尔代夫类型的随机过程,即在某种瞬间发生的事件只依赖于那个瞬间的状态而根本不依赖于过去的历史。于是,粒子碰撞造成的不稳定性动力学关联在微观状态被打破,抹去了粒子过去运动的信息。分子运动论和统计力学就是这样构建出来的。(3)还有一些理论,它们基于时间反演不变的理论,但通过引入初始条件或通过t的拉普拉斯变换,从而成为不可逆理论,宇宙学的时间箭头就是这样引入的。 普里高津认为,几率分布允许我们在动力学描述的框架内把相空间复杂的微观结构包括进去。因此,它包含附加的信息,此种信息在个体轨道的层次上不存在。因为对于具有对初始条件敏感性的不稳定系统,个体轨道变得不可计算,只能给出多种运动形式的几率分布。于是,在分布函数ρ的层次上,我们得到一个新的动力学描述,它允许我们预言包含特征时间尺度的系统的未来演化,这在个体轨道层次上是不可能的。个体层次与统计层次间的等价性被打存了。而对于稳定体系,“个体”层次(对应于单个轨道)和“统计”层次(对应于系统)是等价的。在不可积动力学体系中,个体的某一轨道可以对应于不同的系统分布ρ,而同一系统分布ρ可以对应不同的个体轨道,过去和未来的不对称性在系统层面上涌现出来,它意味着时间反演的初始系统分布是低几率的。普里高津认为宏观的时间方向是一种突现现象,同时又主张寻求微观不可逆过程的理论描述。 概率随机性被引入物理学,第一次是热力学,第二次是量子力学。然而,这两次引入却被认为具有非常不同的含义。在热力学中,随机性被认为是主观引入的,而在量子力学中,随机性被认为是客观的,具有不可还原的终极意义。将热力学第二定律作为一个基本的事实,意味着微观层次的随机性也应该是客观而非主观的,终极的非表面的。普里高津坚决反对熵和

对波粒二象性的理解

量子力学 题目: 专题理解:波粒二象性 学生姓名 专业 学号 班级 指导教师 成绩 工程技术学院 2016 年 1 月

专题理解:波粒二象性 前言: 波粒二象性(wave-particle duality)是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。在量子力学里,微观粒子有时会显示出波动性(这时粒子性较不显著),有时又会显示出粒子性(这时波动性较不显著),在不同条件下分别表现出波动或粒子的性质。这种量子行为称为波粒二象性,是微观粒子的基本属性之一。但从经典物理学的观点来看,“微粒”和“波”是相互排斥的概念,或者说“波”与“微粒”是两种截然对立的存在。一个东西要么是波,要么是微粒,即“非此即彼”。那么究竟自由理解波粒二象性呢?通过对量子力学课程的学习以及查阅相关资料,我对其有了更深的理解并做了以下整理与总结。 一、波粒二象性理论的发展简述 较为完全的光理论最早是由克里斯蒂安·惠更斯发展成型,他提出了一种光波动说。稍后,艾萨克·牛顿提出了光微粒说。光的波动性与粒子性的争论从未平息。十九世纪早期,托马斯·杨完成的双缝实验确切地证实了光的波动性质。到了十九世纪中期,光波动说开始主导科学思潮,因为它能够说明偏振现象的机制,这是光微粒说所不能够的。同世纪后期,詹姆斯·麦克斯韦将电磁学的理论加以整合,提出麦克斯韦方程组。应用电磁波方程计算获得的电磁波波速等于做实验测量到的光波速度。麦克斯韦于是猜测光波就是电磁波。1888年,海因里希·赫兹做实验发射并接收到麦克斯韦预言的电磁波,证实麦克斯韦的猜测正确无误。从这时,光波动说开始被广泛认可。 为了产生光电效应,光频率必须超过金属物质的特征频率,称为其“极限频率”。根据光波动说,光波的辐照度或波幅对应于所携带的能量,因而辐照度很强烈的光束一定能提供更多能量将电子逐出。然而事实与经典理论预期恰巧相反。1905年,爱因斯坦对于光电效应给出解释。他将光束描述为一群离散的量子,现称为光子,而不是连续性波动。从普朗克黑体辐射定律,爱因斯坦推论,组成光束的每一个光子所拥有的能量等于频率乘以一个常数,即普朗克常数,他提出了“爱因斯坦光电效应方程”。1916年,美国物理学者罗伯特·密立根做实验证实了爱因斯坦关于光电效应的理论。物理学者被迫承认,除了波动性质以外,光也具有粒子性质。 在光具有波粒二象性的启发下,法国物理学家德布罗意在1924年提出一个“物质波”假说,指出波粒二象性不只是光子才有,一切微观粒子,包括电子和质子、中子,都有波粒二象性。他把光子的动量与波长的关系式p=h/λ推广到一切微观粒子上,指出:具有质量m 和速度v 的运动粒子也具有波动性,这种波的波长等于普朗克恒量h 跟粒子动量mv 的比,即λ= h/(mv)。这个关系式后来就叫做德布罗意公式。根据德布罗意假说,电子是应该会具有干涉和衍射等波动现象。1927年,克林顿·戴维森与雷斯特·革末设计与完成的戴维森-革末实验成功证实了德布罗意假说。 2015年瑞士洛桑联邦理工学院科学家成功拍摄出光同时表现波粒二象性的照片。

对称性原理在物理学中的表现形式

对称性原理在物理学中的表现形式 在近代科学的开端,哥白尼对日心说的数学结构做了美学说明和论证,他从中看到令人惊异的“对称性”与“和谐联系”——这可以说是科学美学的宣言书.开普勒醉心于宇宙的和谐,他在第谷的庞杂数据中清理出具有美感的行星运动三定律,并由衷地感到难以置信的狂喜和美的愉悦.伽利略对落体定律的揭示,在纷繁的事实多样性中求得统一的定律.牛顿的严整而简单的力学体系把天地间的万物运动统摄在一起,他推崇和倡导节约原理,并认为上帝最感兴趣的事情是欣赏宇宙的美与和谐.这一切,谱写了近代科学的美的协奏曲.以相对论和量子力学为代表的现代科学,更是把科学审美发挥到了极致.撇开这些理论的抽象的理性美和雅致的结构美不谈,令人叫绝的是,数学实在和物理实在之间的(神秘的)一致是由群的关系保证的,科学理论中审美要素的存在是由群的真正本性决定的——对称性或不变性(协变性,invariance)之美跃然纸上! (1)经典物理学中的对称性原理 在原始的意义上,对称是指组成某一事物或对象的两个部分的对等性.物理是研究客观世界的最基本规律的一美科学,而它们在很多方面存在着对等性,例如:正电荷和负电荷、电荷的负极与正极、光速的可逆性、空间与时间、正功与负功、质子与中子、电子与正电子等均具有对称性.万有引力公式F=GMm/r2与静电力公式F=KQ1Q2/r2,弹性势能公式E=0.5kx2与动能公式E=0.5mv2,凸透镜成象公式1/u+1/v=1/f与并联电阻公式1/R1+1/R2=1/R、弹簧串联公式1/k1+1/k2=1/k,欧姆定律公式I=U/R与压强公式P=F/S、密度公式ρ=m/V 、电场强度E=F/Q、电压U=W/Q与电容C=Q/U,安培力F=BIL与电功W=Uit,重量G=ρgV与热量Q=cm Δt等均具有相似性根据这些相似性.开普勒用行星轨道的椭圆对称性代替了古希腊人所坚持的圆形对称性, 开普勒第一定律:每个行星都沿椭圆轨道运行,太阳就在这些椭圆的一个焦点上. 物理学中有一些规律属于基本定律,它们具有支配全局的性质,掌握它们显然是极端重要的.例如力学中的牛顿定律是质点、质点组机械运动(非相对论)的基本定律,电磁学的麦克斯韦方程组是电磁场分布、变化的基本定律,物理学中还有另外一种基本定律的表述形式,这就是最小作用原理(变分原理),它可表述为系统的各种相邻的经历中,真实经历使作用量取极值.可以看出最小作用原理的表述形式与牛顿定律、麦克斯韦方程组的表述形式极不相同.牛顿定律告诉我们,质点此时此刻的加速度由它此时此刻所受的力和它的质量的比值决定;麦克斯韦方程组告诉我们,此时此刻的电场分布由此时此刻的电荷分布以及此时此刻的磁场的变化决定,此时此刻的磁场分布由此时此刻的电流分布以及此时此刻的电场

对波粒二象性的理解和认识

对波粒二象性的理解与认识 摘要:光的波粒二象性被发现之后,德布罗意由此得到启发,大胆地把这二象性推广 到物质客体上去,提出了实物粒子也具有波粒二象性的理论。本文结合所学知识,通过对波粒二象性发展的简单梳理,阐述了目前自己对其的理解与认识。 引言 量子论和相对论是近代物理学的两大支柱, 两者都改变了人们对物质世界的根 本认识并对20世纪的科学技术、生产实践起到了决定性的推动作用。相对论以相对时空观取代源于常识的绝对空观, 量子力学则用以物质粒子的波粒二象性为基础的 概率来描述物质粒子的行为, 使物质粒子的行为具有了神秘的不确定性。经过课本 上的知识的学习,我进行了进一步的了解总结与思考。 1.光的波粒二象性 光究竟是粒子还是波?这个问题涉及对光的本性的不同认识。1672年,牛顿向英国皇家学会递交了一篇《关于光和色的新理论》的论文。他认为光是由许多机械微粒组成的,提出了光的微粒说。19世纪托马斯·扬和其他一些人决定性的证明了, 光的粒子理论是错误的。他们认为,光更应该是一种波。关于波,我们熟悉的一种特性是,干涉。托马斯·扬利用他的著名的双缝实验装置制造出两个光波源, 并观察到光也 有类似的干涉图案。这样,在19世纪下半叶,光的波动说占了统治地位。 但是,没有过多久,19世纪末进行的一些实验,发现了一些新的实验现象,不能用光 的波动理论解释。这些实验里面最著名的就是光电效应和康普顿效应,。而爱因斯坦在普朗克的量子假说基础上提出的光量子假说,对光电效应成功地解释,又复兴了以前的光的粒子论。但这一次并没有否定波动说, 而是由此得出了光的波粒二象性的 结论。 2.物质波 1923 年, 德布罗意在光有波粒二象性的启示下, 提出实物粒子也具有波动性的 假说。德布罗意认为, 任何运动着的物体都伴随着一种波动, 而且不可能将物体的运动和波的传播分开, 这种波称为相位波。存在相位波是物体的能量和动量同时满足 量子条件和相对论关系的必然结果。后来薛定愕解释波函数的物理意义时称为,物 质波,。 德布罗意的物质波理论是在没有得到任何已知事实支持的情况下提出来的, 所 以还只能是一种假说。1 927 年初, 戴维孙和革末通过电子束在镍单晶体表面上散射的实验,观察到了和X射线衍射类似的电子衍射图像,首先证实了德布罗意假说的正确性。同年G. P. 汤姆逊用多晶体薄膜做电子衍射实验,也观察到了和X射线衍射类似的电子衍射图像,实验观测和由德布罗意理论得到的结果非常一致, 这充分证明 了电子具有波动性, 再一次用无可辩驳的事实向人们展示了德布罗意理论是正确的。 以后, 人们通过实验又观察到原子、分子等微观粒子都具有波动性。实验证明了物质具有波粒二象性, 不仅使人们认识到德布罗意的物质波理论是正确的, 而且为

最新量子力学导论习题答案(曾谨言)(1)

第九章 力学量本征值问题的代数解法 9—1) 在8.2节式(21)中给出了自旋(2 1)与轨迹角动量(l )耦合成总角动量j 的波函数j ljm φ,这相当于2 1,21===s j l j 的耦合。试由8.2节中式(21)写出表9.1(a )中的CG 系数 jm m m j 21121 解:8.2节式(21a )(21b ): ()21),0( 21+=≠-=m m l l j j j ljm φ???? ??-+++=+11121 lm lm Y m l Y m l l () ????? ??-++---+=+=21,2121,212121,21j j m j j m j j Y m j Y m j j m j m l j (21a ) ()21-= j l j ljm φ???? ??++---=+11121 lm lm Y m l Y m l l () ????? ??+++--+++-++=≠-=21,2121,211122121),0( 21j j m j j m j j Y m j Y m j j m j m l l j (21b ) ()21++j l 此二式中的l 相当于CG 系数中的1j ,而2 12==s j ,21,~,,~21±=m m m m j 。 因此,(21a )式可重写为 jm ∑=222112 211m jm m j m j m j m j 2 12121212121212111111111--+=m j jm m j m j jm m j ??????? ? ??-???? ??++-???? ??++++=+=212112212121122111211111211121121),21(m j j m j m j j m j j l j a (21a ’) 对照CG 系数表,可知:当21121+=+=j j j j ,212=m 时 , 21111112212121??? ? ??++=+j m j jm m j 而2 12-=m 时,

高二物理波粒二象性知识点总结

高二物理波粒二象性知识点总结 高二物理课本中,粒二象性是量子力学中非常重要的概念之一,学生要掌握相关知识点,下面给大家带来高二物理波粒二象性知识点,希望对你有帮助。 高二物理波粒二象性知识点一、量子论 1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。 2.量子论的主要内容 ①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即能量子或称量子,也就是说组成能量的单元是量子。 ②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。 3.量子论的发展 ①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。 ②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。 ③到1925年左右,量子力学最终建立。 二、黑体和黑体辐射

1.热辐射现象 任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。 ①物体在任何温度下都会辐射能量。 ②物体既会辐射能量,也会吸收能量。物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。 辐射和吸收的能量恰相等时称为热平衡。此时温度恒定不变。 实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。 2.黑体 物体具有向四周辐射能量的本领,又有吸收外界辐射来的能量的本领。黑体是指在任何温度下,全部吸收任何波长的辐射的物体。 3.实验规律: ①随着温度的升高,黑体的辐射强度都有增加; ②随着温度的升高,辐射强度的极大值向波长较短方向移动。 三、光电效应

量子力学为什么要选用“波粒二象性”来描述微观粒子运动

量子力学为什么要用“波粒二象性”来描述微观粒子运动? 司今(jiewaimuyu@https://www.doczj.com/doc/5f13254336.html,) 摘要:量子力学无疑是20世纪研究微观粒子世界最成功的力学,但自它诞生之日起,带给人们的争论与困惑却曾没有停息过,也没有人真正理解其中的物理奥秘,于是,它几乎沦为了一门“玄而又玄”的应用工具学,这与其成功的物理价值不相匹配,那么,量子力学为什么会处于这种状况呢? 解铃还须系铃,量子力学脱胎于经典力学,必定与经典力学有千丝万缕的关系;通过阅读、分析量子力学发展史,就有可能找出量子力学所描述的粒子运动本质来;本质一旦明晰,我们就可以看出经典物理学存在什么缺陷或缺失——量子力学的“波粒二象性”描述无疑是思考这个问题的最佳突破口。 关键词:经典粒子波粒二象性自旋自旋磁荷磁陀螺进动 中图分类号:0441 文献标识码:A 0、引言 量子力学发展史告诉我们: 1、通过黑体辐射研究,将能量辐射与微观粒子联系起来,从而破坏了经典物理学中能量扩散的连续性原理; 2、通过引入麦克斯韦电磁波思想将粒子运动与波现象联系起来,从而改变了人们对粒子运动的经典认识; 3、通过光谱分析“制定”了玻尔量子化轨道理论,从而改变了经典圆周运动理论; 4、通过分析“干涉、衍射”、“光电效应”实验,确立了粒子运动存在“波粒二象性”,并以此为基础构建了与经典物理学截然不同的量子物理理论,在这个理论中,微观粒子运动不在遵守经典粒子运动规律,且还丧失了动量与位置的确定性,表现出“概率”性; 5、通过剖析“施特恩—盖拉赫”实验,发现微观粒子有自旋和自旋磁矩性,这是经典粒子所不具有的属性; 6、通过研究粒子在磁场中的运动,发现粒子通过通电螺线管外空间时会产生AB效应,这就将微观粒子运动与空间磁场真正地联系起来了;......,......,...... 在量子力学理论描述中,微观粒子运动的自旋、自旋磁矩性与“波粒二象性”无疑是它立论的核心,但它在研究粒子通过小孔或窄缝时,只选用“波粒二象性”来构建自己的“几率波”理论体系,这是为什么呢? 就此问题,我想从以下几个方面作以剖析,对错与否,抛砖引玉,愿与朋友间交流、榷商。 1、研究方法“先入为主” 量子力学虽然诞生于19世纪初的“二朵乌云”中,但是“二朵乌云”体现的是经典力学认识与微观世界现象存在严重冲突,这种冲突根源在于:宏观力学所描述的物体运动是没有自旋与空间不存在场影响的运动,而在微观世界中,任何粒子运动都是有自旋和自旋磁矩性,任何物质组成的空间都有磁场性,这种“双重性”是经典力学根本没有涉及或全面认识到的;量子力学正是沿着微观世界粒子这种“双重性”思路出发并发展起来的。 但由于“紫外线灾难”是从维恩与瑞利-金斯的二个黑体辐射公式对长波辐射与短波辐射描述存在差异开始提出的;当普朗克用“内插法”统一了这二个公式后,又不得不引入一个“能量子”概念,这个概念的出现就使建立在宏观统计学之上的能量连续传播概念得到彻底破坏。由于普朗克能量公式是继承维恩与瑞利-金斯公式中用频率描述能量的思想,结果就把辐射粒子的动能与波概念联系到了一起,这是一种“先入为主”的做法,从而使量子力学不得不

量子力学导论习题答案(曾谨言)

第三章一维定态问题 3.1)设粒子处在二维无限深势阱中, ?? ?∞<<<<=其余区域 ,0,0 ,0),(b y a x y x V 求粒子的能量本征值和本征波函数。如b a = ,能级的简并度如何? 解:能量的本征值和本征函数为 m E y x n n 222π = )(2 22 2b n a n y x + ,2,1, ,sin sin 2== y x y x n n n n b y n a x n ab y x ππψ 若b a =,则 )(22 22 22y x n n n n ma E y x +=π a y n a x n a y x n n y x ππψsin sin 2= 这时,若y x n n =,则能级不简并;若y x n n ≠,则能级一般是二度简并的(有偶然简并情况,如5,10==y x n n 与2,11' ' ==y x n n ) 3.2)设粒子限制在矩形匣子中运动,即 ? ??∞<<<<<<=其余区域 ,0,0,0 ,0),,(c z b y a x z y x V 求粒子的能量本征值和本征波函数。如c b a ==,讨论能级的简并度。 解:能量本征值和本征波函数为 )(222 2 222 22c n b n a n m n n n E z y x z y x + +=π , ,3,2,1,, , sin sin sin 8 == z y x z y x n n n c z n b y n a x n abc n n n z y x πππψ 当c b a ==时, )(2222222z y x n n n ma n n n E z y x ++=π a y n a y n a x n a n n n z y x z y x πππψsin sin sin 22 3 ??? ??= z y x n n n ==时,能级不简并; z y x n n n ,,三者中有二者相等,而第三者不等时,能级一般为三重简并的。

曾谨言《量子力学导论》习题解答

曾谨言《量子力学导论》习题解答第三章一维定态问题 3.1)设粒子处在二维无限深势阱中, ,,,,0, 0xa,0yb,V(x,y), ,,, 其余区域, a,b求粒子的能量本征值和本征波函数。如,能级的简并度如何, 解:能量的本征值和本征函数为 2222nn,,yx(,)E, nn22xy2mab ny,nx,2yx,sinsin, n,n,1,2,? ,nnxyxyabab 22,,22a,bE,(n,n)若,则 nnxy2xy2ma ny,nx,2yx,sinsin ,nnxyaaa n,10,n,5这时,若n,n,则能级不简并;若n,n,则能级一般是二度简并的(有偶然简并情况,如xyxyxy ''n,11,n,2与) xy 3.2)设粒子限制在矩形匣子中运动,即 ,,,,,,0, 0xa,0yb,0zc,,V(x,y,z) ,,, 其余区域, a,b,c求粒子的能量本征值和本征波函数。如,讨论能级的简并度。 解:能量本征值和本征波函数为 22222nnn,,yxzE, ,(,,)222nnnm2abcxyz ny,nxnz,,8yxz,sinsinsin,,nnn abcabcxyz n,n,n,1,2,3,?xyz a,b,c当时, 22,,222 E,(n,n,n)xyz2nnn2maxyz 32ny,nxny,,2,,yxz ,sinsinsin,,,nnnaaaaxyz,,

n,n,n时,能级不简并; xyz n,n,n三者中有二者相等,而第三者不等时,能级一般为三重简并的。 xyz 三者皆不相等时,能级一般为6度简并的。 n,n,nxyz 222222,5,6,8,3,4,10(1,7,9),(1,3,11)如 ,22222210,12,16,6,8,20(1,5,10),(3,6,9), 3.3)设粒子处在一维无限深方势阱中, 0, 0,x,a,V(x,y), ,,, x,0,x,a, 证明处于定态的粒子 ,(x)n 2aa62x,,,, (x-x)(1) 22212n,讨论的情况,并于经典力学计算结果相比较。n , , 证:设粒子处于第n个本征态,其本征函数 ,2n(x),sinx. ,naa 2aa2n,a分部2 (1) ,,sin xxdxxxdx,n,,002aa 2a2a2222(,),,,,, xxxxxdxn,04 2a212n,xa2,,(1,cos), xdx ,024aa 2a6,,(1) (2) 22n,12 在经典情况下,在区间粒子除与阱壁碰撞(设碰撞时间不计,且为弹性碰撞,即粒子碰撞后仅运动方向改,,0, a dxxxdx,,变,但动能、速度不变)外,来回作匀速运动,因此粒子处于范围的几率为,故 a adxa , (3) ,,,xx,02a 2adxa22,,,xx, ,03a 222aa22() (4) x,x,x,x,,34 当时,量子力学的结果与经典力学结果一致。 n,,

物理学中的对称性简析_李清玉[1]

第20卷第6期2000年11月 云南师范大学学报 Jou rnal of Yunnan N o r m al U n iversity V o l.20N o.6 N ov.2000 物理学中的对称性简析Ξ 李清玉1, 吴文良2 (1.昭通师范高等专科学校物理系,云南昭通657000;2.昭通师范高等专科学校印刷所,云南昭 通657000) 摘 要: 从讨论几何学中的对称概念出发,简述了对称性的广义概念、对称性与物理守恒律的关系、相 对论的对称性实质,并举例说明了对称性分析在解决物理问题中的运用。 关 键 词: 物理学;对称性;相对论;守恒律;洛仑兹力 中图分类号: O409 文献标识码: A 文章编号: 1007-9793(2000)06-38-04 1 几何中的对称概念与不变性 1.1平面图形的四种对称类型 对称最初是一个几何概念,对称图形通常指轴对称图形和中心对称图形,特指关于竖直轴对称的图形,即“左右对称”。平面轴对称可以通过一次二维空间反射操作实现,平面中心对称可以通过两次正交的二维空间反射操作实现。 由文[1]对对称性的分析可知:周期性重复可以也应该看作是一种对称类型;平图对称图形还可以具有一种称为滑动对称的对称类型,它是指沿一条线移动,并同时向这条线反射后与原图形重合的图形。例如,正弦函数的图像就同时具有周期性重复和滑动对称两种对称类型。空间图形还可以具有更多类型的对称,在此就不深入讨论。 1.2与平面四种对称类型对应的函数类型 一元函数y=f(x)可表示为平面直角坐标系中的图像。偶函数[f(-x)=f(x)]的图像是以y轴为对称轴的轴对称图形;奇函数[f(-x) =-f(x)]的图像是以原点为对称中心的中心对称图形;周期函数[f(x+l)=f(x)]的图像是周期重复对称图形。我们可以称满足关系f(x+l) =-f(x)的函数为滑动对称函数,其中l为固定常数,显然,滑动对称函数的图像是滑动对称图形。 奇函数、偶函数、周期函数和滑动对称函数代表了平面图形的四种类型的对称,这四种函数可统称为对称函数。仔细观察这四种函数,不难发现:它们都具有这样的性质:在对自变量进行反射操作x→-x或平移操作x→x+l后,函数值保持绝对值不变——或者仅符号发生变化,或者连符号也不改变。这就揭露了对称的本质:所谓对称,是指在对自变量进行某种对称操作(反演、平移、旋转等)后,函数的绝对值保持不变的性质。对称性实质上是一种不变性。 2 普遍的对称概念 对一组变量的一种变换定义一个对称操作,若这些变量的某个函数通过某种变换后其值(或绝对值)不变,就说这个函数相对这种操作对称。常用的对称操作有平移、旋转、镜像反射、标度变换等空间对称操作,有时间平移、时间反演等时间对称操作,还有不同参照系间的变换。 例如在伽利略变换下,选择同一参照物,选择不同的坐标原点,描述物体同一时刻空间坐标的数值是不同的,但描述物体同一段时间位移的数值却是相同的,表明物体的位移关于坐标平移操 Ξ收稿日期:1999-10-28 作者简介:李清玉(1963-),女,云南省昭通市人,副教授,从事量子力学方面研究.

相关主题
文本预览
相关文档 最新文档